Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/xen/enlighten.c
10818 views
1
/*
2
* Core of Xen paravirt_ops implementation.
3
*
4
* This file contains the xen_paravirt_ops structure itself, and the
5
* implementations for:
6
* - privileged instructions
7
* - interrupt flags
8
* - segment operations
9
* - booting and setup
10
*
11
* Jeremy Fitzhardinge <[email protected]>, XenSource Inc, 2007
12
*/
13
14
#include <linux/cpu.h>
15
#include <linux/kernel.h>
16
#include <linux/init.h>
17
#include <linux/smp.h>
18
#include <linux/preempt.h>
19
#include <linux/hardirq.h>
20
#include <linux/percpu.h>
21
#include <linux/delay.h>
22
#include <linux/start_kernel.h>
23
#include <linux/sched.h>
24
#include <linux/kprobes.h>
25
#include <linux/bootmem.h>
26
#include <linux/module.h>
27
#include <linux/mm.h>
28
#include <linux/page-flags.h>
29
#include <linux/highmem.h>
30
#include <linux/console.h>
31
#include <linux/pci.h>
32
#include <linux/gfp.h>
33
#include <linux/memblock.h>
34
35
#include <xen/xen.h>
36
#include <xen/interface/xen.h>
37
#include <xen/interface/version.h>
38
#include <xen/interface/physdev.h>
39
#include <xen/interface/vcpu.h>
40
#include <xen/interface/memory.h>
41
#include <xen/features.h>
42
#include <xen/page.h>
43
#include <xen/hvm.h>
44
#include <xen/hvc-console.h>
45
46
#include <asm/paravirt.h>
47
#include <asm/apic.h>
48
#include <asm/page.h>
49
#include <asm/xen/pci.h>
50
#include <asm/xen/hypercall.h>
51
#include <asm/xen/hypervisor.h>
52
#include <asm/fixmap.h>
53
#include <asm/processor.h>
54
#include <asm/proto.h>
55
#include <asm/msr-index.h>
56
#include <asm/traps.h>
57
#include <asm/setup.h>
58
#include <asm/desc.h>
59
#include <asm/pgalloc.h>
60
#include <asm/pgtable.h>
61
#include <asm/tlbflush.h>
62
#include <asm/reboot.h>
63
#include <asm/stackprotector.h>
64
#include <asm/hypervisor.h>
65
66
#include "xen-ops.h"
67
#include "mmu.h"
68
#include "multicalls.h"
69
70
EXPORT_SYMBOL_GPL(hypercall_page);
71
72
DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
73
DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
74
75
enum xen_domain_type xen_domain_type = XEN_NATIVE;
76
EXPORT_SYMBOL_GPL(xen_domain_type);
77
78
unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
79
EXPORT_SYMBOL(machine_to_phys_mapping);
80
unsigned int machine_to_phys_order;
81
EXPORT_SYMBOL(machine_to_phys_order);
82
83
struct start_info *xen_start_info;
84
EXPORT_SYMBOL_GPL(xen_start_info);
85
86
struct shared_info xen_dummy_shared_info;
87
88
void *xen_initial_gdt;
89
90
RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
91
__read_mostly int xen_have_vector_callback;
92
EXPORT_SYMBOL_GPL(xen_have_vector_callback);
93
94
/*
95
* Point at some empty memory to start with. We map the real shared_info
96
* page as soon as fixmap is up and running.
97
*/
98
struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
99
100
/*
101
* Flag to determine whether vcpu info placement is available on all
102
* VCPUs. We assume it is to start with, and then set it to zero on
103
* the first failure. This is because it can succeed on some VCPUs
104
* and not others, since it can involve hypervisor memory allocation,
105
* or because the guest failed to guarantee all the appropriate
106
* constraints on all VCPUs (ie buffer can't cross a page boundary).
107
*
108
* Note that any particular CPU may be using a placed vcpu structure,
109
* but we can only optimise if the all are.
110
*
111
* 0: not available, 1: available
112
*/
113
static int have_vcpu_info_placement = 1;
114
115
static void clamp_max_cpus(void)
116
{
117
#ifdef CONFIG_SMP
118
if (setup_max_cpus > MAX_VIRT_CPUS)
119
setup_max_cpus = MAX_VIRT_CPUS;
120
#endif
121
}
122
123
static void xen_vcpu_setup(int cpu)
124
{
125
struct vcpu_register_vcpu_info info;
126
int err;
127
struct vcpu_info *vcpup;
128
129
BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
130
131
if (cpu < MAX_VIRT_CPUS)
132
per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
133
134
if (!have_vcpu_info_placement) {
135
if (cpu >= MAX_VIRT_CPUS)
136
clamp_max_cpus();
137
return;
138
}
139
140
vcpup = &per_cpu(xen_vcpu_info, cpu);
141
info.mfn = arbitrary_virt_to_mfn(vcpup);
142
info.offset = offset_in_page(vcpup);
143
144
/* Check to see if the hypervisor will put the vcpu_info
145
structure where we want it, which allows direct access via
146
a percpu-variable. */
147
err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
148
149
if (err) {
150
printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
151
have_vcpu_info_placement = 0;
152
clamp_max_cpus();
153
} else {
154
/* This cpu is using the registered vcpu info, even if
155
later ones fail to. */
156
per_cpu(xen_vcpu, cpu) = vcpup;
157
}
158
}
159
160
/*
161
* On restore, set the vcpu placement up again.
162
* If it fails, then we're in a bad state, since
163
* we can't back out from using it...
164
*/
165
void xen_vcpu_restore(void)
166
{
167
int cpu;
168
169
for_each_online_cpu(cpu) {
170
bool other_cpu = (cpu != smp_processor_id());
171
172
if (other_cpu &&
173
HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
174
BUG();
175
176
xen_setup_runstate_info(cpu);
177
178
if (have_vcpu_info_placement)
179
xen_vcpu_setup(cpu);
180
181
if (other_cpu &&
182
HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
183
BUG();
184
}
185
}
186
187
static void __init xen_banner(void)
188
{
189
unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
190
struct xen_extraversion extra;
191
HYPERVISOR_xen_version(XENVER_extraversion, &extra);
192
193
printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
194
pv_info.name);
195
printk(KERN_INFO "Xen version: %d.%d%s%s\n",
196
version >> 16, version & 0xffff, extra.extraversion,
197
xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
198
}
199
200
static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
201
static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
202
203
static void xen_cpuid(unsigned int *ax, unsigned int *bx,
204
unsigned int *cx, unsigned int *dx)
205
{
206
unsigned maskebx = ~0;
207
unsigned maskecx = ~0;
208
unsigned maskedx = ~0;
209
210
/*
211
* Mask out inconvenient features, to try and disable as many
212
* unsupported kernel subsystems as possible.
213
*/
214
switch (*ax) {
215
case 1:
216
maskecx = cpuid_leaf1_ecx_mask;
217
maskedx = cpuid_leaf1_edx_mask;
218
break;
219
220
case 0xb:
221
/* Suppress extended topology stuff */
222
maskebx = 0;
223
break;
224
}
225
226
asm(XEN_EMULATE_PREFIX "cpuid"
227
: "=a" (*ax),
228
"=b" (*bx),
229
"=c" (*cx),
230
"=d" (*dx)
231
: "0" (*ax), "2" (*cx));
232
233
*bx &= maskebx;
234
*cx &= maskecx;
235
*dx &= maskedx;
236
}
237
238
static void __init xen_init_cpuid_mask(void)
239
{
240
unsigned int ax, bx, cx, dx;
241
unsigned int xsave_mask;
242
243
cpuid_leaf1_edx_mask =
244
~((1 << X86_FEATURE_MCE) | /* disable MCE */
245
(1 << X86_FEATURE_MCA) | /* disable MCA */
246
(1 << X86_FEATURE_MTRR) | /* disable MTRR */
247
(1 << X86_FEATURE_ACC)); /* thermal monitoring */
248
249
if (!xen_initial_domain())
250
cpuid_leaf1_edx_mask &=
251
~((1 << X86_FEATURE_APIC) | /* disable local APIC */
252
(1 << X86_FEATURE_ACPI)); /* disable ACPI */
253
ax = 1;
254
xen_cpuid(&ax, &bx, &cx, &dx);
255
256
xsave_mask =
257
(1 << (X86_FEATURE_XSAVE % 32)) |
258
(1 << (X86_FEATURE_OSXSAVE % 32));
259
260
/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
261
if ((cx & xsave_mask) != xsave_mask)
262
cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
263
}
264
265
static void xen_set_debugreg(int reg, unsigned long val)
266
{
267
HYPERVISOR_set_debugreg(reg, val);
268
}
269
270
static unsigned long xen_get_debugreg(int reg)
271
{
272
return HYPERVISOR_get_debugreg(reg);
273
}
274
275
static void xen_end_context_switch(struct task_struct *next)
276
{
277
xen_mc_flush();
278
paravirt_end_context_switch(next);
279
}
280
281
static unsigned long xen_store_tr(void)
282
{
283
return 0;
284
}
285
286
/*
287
* Set the page permissions for a particular virtual address. If the
288
* address is a vmalloc mapping (or other non-linear mapping), then
289
* find the linear mapping of the page and also set its protections to
290
* match.
291
*/
292
static void set_aliased_prot(void *v, pgprot_t prot)
293
{
294
int level;
295
pte_t *ptep;
296
pte_t pte;
297
unsigned long pfn;
298
struct page *page;
299
300
ptep = lookup_address((unsigned long)v, &level);
301
BUG_ON(ptep == NULL);
302
303
pfn = pte_pfn(*ptep);
304
page = pfn_to_page(pfn);
305
306
pte = pfn_pte(pfn, prot);
307
308
if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
309
BUG();
310
311
if (!PageHighMem(page)) {
312
void *av = __va(PFN_PHYS(pfn));
313
314
if (av != v)
315
if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
316
BUG();
317
} else
318
kmap_flush_unused();
319
}
320
321
static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
322
{
323
const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
324
int i;
325
326
for(i = 0; i < entries; i += entries_per_page)
327
set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
328
}
329
330
static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
331
{
332
const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
333
int i;
334
335
for(i = 0; i < entries; i += entries_per_page)
336
set_aliased_prot(ldt + i, PAGE_KERNEL);
337
}
338
339
static void xen_set_ldt(const void *addr, unsigned entries)
340
{
341
struct mmuext_op *op;
342
struct multicall_space mcs = xen_mc_entry(sizeof(*op));
343
344
op = mcs.args;
345
op->cmd = MMUEXT_SET_LDT;
346
op->arg1.linear_addr = (unsigned long)addr;
347
op->arg2.nr_ents = entries;
348
349
MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
350
351
xen_mc_issue(PARAVIRT_LAZY_CPU);
352
}
353
354
static void xen_load_gdt(const struct desc_ptr *dtr)
355
{
356
unsigned long va = dtr->address;
357
unsigned int size = dtr->size + 1;
358
unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
359
unsigned long frames[pages];
360
int f;
361
362
/*
363
* A GDT can be up to 64k in size, which corresponds to 8192
364
* 8-byte entries, or 16 4k pages..
365
*/
366
367
BUG_ON(size > 65536);
368
BUG_ON(va & ~PAGE_MASK);
369
370
for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
371
int level;
372
pte_t *ptep;
373
unsigned long pfn, mfn;
374
void *virt;
375
376
/*
377
* The GDT is per-cpu and is in the percpu data area.
378
* That can be virtually mapped, so we need to do a
379
* page-walk to get the underlying MFN for the
380
* hypercall. The page can also be in the kernel's
381
* linear range, so we need to RO that mapping too.
382
*/
383
ptep = lookup_address(va, &level);
384
BUG_ON(ptep == NULL);
385
386
pfn = pte_pfn(*ptep);
387
mfn = pfn_to_mfn(pfn);
388
virt = __va(PFN_PHYS(pfn));
389
390
frames[f] = mfn;
391
392
make_lowmem_page_readonly((void *)va);
393
make_lowmem_page_readonly(virt);
394
}
395
396
if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
397
BUG();
398
}
399
400
/*
401
* load_gdt for early boot, when the gdt is only mapped once
402
*/
403
static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
404
{
405
unsigned long va = dtr->address;
406
unsigned int size = dtr->size + 1;
407
unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
408
unsigned long frames[pages];
409
int f;
410
411
/*
412
* A GDT can be up to 64k in size, which corresponds to 8192
413
* 8-byte entries, or 16 4k pages..
414
*/
415
416
BUG_ON(size > 65536);
417
BUG_ON(va & ~PAGE_MASK);
418
419
for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
420
pte_t pte;
421
unsigned long pfn, mfn;
422
423
pfn = virt_to_pfn(va);
424
mfn = pfn_to_mfn(pfn);
425
426
pte = pfn_pte(pfn, PAGE_KERNEL_RO);
427
428
if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
429
BUG();
430
431
frames[f] = mfn;
432
}
433
434
if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
435
BUG();
436
}
437
438
static void load_TLS_descriptor(struct thread_struct *t,
439
unsigned int cpu, unsigned int i)
440
{
441
struct desc_struct *gdt = get_cpu_gdt_table(cpu);
442
xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
443
struct multicall_space mc = __xen_mc_entry(0);
444
445
MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
446
}
447
448
static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
449
{
450
/*
451
* XXX sleazy hack: If we're being called in a lazy-cpu zone
452
* and lazy gs handling is enabled, it means we're in a
453
* context switch, and %gs has just been saved. This means we
454
* can zero it out to prevent faults on exit from the
455
* hypervisor if the next process has no %gs. Either way, it
456
* has been saved, and the new value will get loaded properly.
457
* This will go away as soon as Xen has been modified to not
458
* save/restore %gs for normal hypercalls.
459
*
460
* On x86_64, this hack is not used for %gs, because gs points
461
* to KERNEL_GS_BASE (and uses it for PDA references), so we
462
* must not zero %gs on x86_64
463
*
464
* For x86_64, we need to zero %fs, otherwise we may get an
465
* exception between the new %fs descriptor being loaded and
466
* %fs being effectively cleared at __switch_to().
467
*/
468
if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
469
#ifdef CONFIG_X86_32
470
lazy_load_gs(0);
471
#else
472
loadsegment(fs, 0);
473
#endif
474
}
475
476
xen_mc_batch();
477
478
load_TLS_descriptor(t, cpu, 0);
479
load_TLS_descriptor(t, cpu, 1);
480
load_TLS_descriptor(t, cpu, 2);
481
482
xen_mc_issue(PARAVIRT_LAZY_CPU);
483
}
484
485
#ifdef CONFIG_X86_64
486
static void xen_load_gs_index(unsigned int idx)
487
{
488
if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
489
BUG();
490
}
491
#endif
492
493
static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
494
const void *ptr)
495
{
496
xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
497
u64 entry = *(u64 *)ptr;
498
499
preempt_disable();
500
501
xen_mc_flush();
502
if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
503
BUG();
504
505
preempt_enable();
506
}
507
508
static int cvt_gate_to_trap(int vector, const gate_desc *val,
509
struct trap_info *info)
510
{
511
unsigned long addr;
512
513
if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
514
return 0;
515
516
info->vector = vector;
517
518
addr = gate_offset(*val);
519
#ifdef CONFIG_X86_64
520
/*
521
* Look for known traps using IST, and substitute them
522
* appropriately. The debugger ones are the only ones we care
523
* about. Xen will handle faults like double_fault and
524
* machine_check, so we should never see them. Warn if
525
* there's an unexpected IST-using fault handler.
526
*/
527
if (addr == (unsigned long)debug)
528
addr = (unsigned long)xen_debug;
529
else if (addr == (unsigned long)int3)
530
addr = (unsigned long)xen_int3;
531
else if (addr == (unsigned long)stack_segment)
532
addr = (unsigned long)xen_stack_segment;
533
else if (addr == (unsigned long)double_fault ||
534
addr == (unsigned long)nmi) {
535
/* Don't need to handle these */
536
return 0;
537
#ifdef CONFIG_X86_MCE
538
} else if (addr == (unsigned long)machine_check) {
539
return 0;
540
#endif
541
} else {
542
/* Some other trap using IST? */
543
if (WARN_ON(val->ist != 0))
544
return 0;
545
}
546
#endif /* CONFIG_X86_64 */
547
info->address = addr;
548
549
info->cs = gate_segment(*val);
550
info->flags = val->dpl;
551
/* interrupt gates clear IF */
552
if (val->type == GATE_INTERRUPT)
553
info->flags |= 1 << 2;
554
555
return 1;
556
}
557
558
/* Locations of each CPU's IDT */
559
static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
560
561
/* Set an IDT entry. If the entry is part of the current IDT, then
562
also update Xen. */
563
static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
564
{
565
unsigned long p = (unsigned long)&dt[entrynum];
566
unsigned long start, end;
567
568
preempt_disable();
569
570
start = __this_cpu_read(idt_desc.address);
571
end = start + __this_cpu_read(idt_desc.size) + 1;
572
573
xen_mc_flush();
574
575
native_write_idt_entry(dt, entrynum, g);
576
577
if (p >= start && (p + 8) <= end) {
578
struct trap_info info[2];
579
580
info[1].address = 0;
581
582
if (cvt_gate_to_trap(entrynum, g, &info[0]))
583
if (HYPERVISOR_set_trap_table(info))
584
BUG();
585
}
586
587
preempt_enable();
588
}
589
590
static void xen_convert_trap_info(const struct desc_ptr *desc,
591
struct trap_info *traps)
592
{
593
unsigned in, out, count;
594
595
count = (desc->size+1) / sizeof(gate_desc);
596
BUG_ON(count > 256);
597
598
for (in = out = 0; in < count; in++) {
599
gate_desc *entry = (gate_desc*)(desc->address) + in;
600
601
if (cvt_gate_to_trap(in, entry, &traps[out]))
602
out++;
603
}
604
traps[out].address = 0;
605
}
606
607
void xen_copy_trap_info(struct trap_info *traps)
608
{
609
const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
610
611
xen_convert_trap_info(desc, traps);
612
}
613
614
/* Load a new IDT into Xen. In principle this can be per-CPU, so we
615
hold a spinlock to protect the static traps[] array (static because
616
it avoids allocation, and saves stack space). */
617
static void xen_load_idt(const struct desc_ptr *desc)
618
{
619
static DEFINE_SPINLOCK(lock);
620
static struct trap_info traps[257];
621
622
spin_lock(&lock);
623
624
__get_cpu_var(idt_desc) = *desc;
625
626
xen_convert_trap_info(desc, traps);
627
628
xen_mc_flush();
629
if (HYPERVISOR_set_trap_table(traps))
630
BUG();
631
632
spin_unlock(&lock);
633
}
634
635
/* Write a GDT descriptor entry. Ignore LDT descriptors, since
636
they're handled differently. */
637
static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
638
const void *desc, int type)
639
{
640
preempt_disable();
641
642
switch (type) {
643
case DESC_LDT:
644
case DESC_TSS:
645
/* ignore */
646
break;
647
648
default: {
649
xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
650
651
xen_mc_flush();
652
if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
653
BUG();
654
}
655
656
}
657
658
preempt_enable();
659
}
660
661
/*
662
* Version of write_gdt_entry for use at early boot-time needed to
663
* update an entry as simply as possible.
664
*/
665
static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
666
const void *desc, int type)
667
{
668
switch (type) {
669
case DESC_LDT:
670
case DESC_TSS:
671
/* ignore */
672
break;
673
674
default: {
675
xmaddr_t maddr = virt_to_machine(&dt[entry]);
676
677
if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
678
dt[entry] = *(struct desc_struct *)desc;
679
}
680
681
}
682
}
683
684
static void xen_load_sp0(struct tss_struct *tss,
685
struct thread_struct *thread)
686
{
687
struct multicall_space mcs = xen_mc_entry(0);
688
MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
689
xen_mc_issue(PARAVIRT_LAZY_CPU);
690
}
691
692
static void xen_set_iopl_mask(unsigned mask)
693
{
694
struct physdev_set_iopl set_iopl;
695
696
/* Force the change at ring 0. */
697
set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
698
HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
699
}
700
701
static void xen_io_delay(void)
702
{
703
}
704
705
#ifdef CONFIG_X86_LOCAL_APIC
706
static u32 xen_apic_read(u32 reg)
707
{
708
return 0;
709
}
710
711
static void xen_apic_write(u32 reg, u32 val)
712
{
713
/* Warn to see if there's any stray references */
714
WARN_ON(1);
715
}
716
717
static u64 xen_apic_icr_read(void)
718
{
719
return 0;
720
}
721
722
static void xen_apic_icr_write(u32 low, u32 id)
723
{
724
/* Warn to see if there's any stray references */
725
WARN_ON(1);
726
}
727
728
static void xen_apic_wait_icr_idle(void)
729
{
730
return;
731
}
732
733
static u32 xen_safe_apic_wait_icr_idle(void)
734
{
735
return 0;
736
}
737
738
static void set_xen_basic_apic_ops(void)
739
{
740
apic->read = xen_apic_read;
741
apic->write = xen_apic_write;
742
apic->icr_read = xen_apic_icr_read;
743
apic->icr_write = xen_apic_icr_write;
744
apic->wait_icr_idle = xen_apic_wait_icr_idle;
745
apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
746
}
747
748
#endif
749
750
static void xen_clts(void)
751
{
752
struct multicall_space mcs;
753
754
mcs = xen_mc_entry(0);
755
756
MULTI_fpu_taskswitch(mcs.mc, 0);
757
758
xen_mc_issue(PARAVIRT_LAZY_CPU);
759
}
760
761
static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
762
763
static unsigned long xen_read_cr0(void)
764
{
765
unsigned long cr0 = percpu_read(xen_cr0_value);
766
767
if (unlikely(cr0 == 0)) {
768
cr0 = native_read_cr0();
769
percpu_write(xen_cr0_value, cr0);
770
}
771
772
return cr0;
773
}
774
775
static void xen_write_cr0(unsigned long cr0)
776
{
777
struct multicall_space mcs;
778
779
percpu_write(xen_cr0_value, cr0);
780
781
/* Only pay attention to cr0.TS; everything else is
782
ignored. */
783
mcs = xen_mc_entry(0);
784
785
MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
786
787
xen_mc_issue(PARAVIRT_LAZY_CPU);
788
}
789
790
static void xen_write_cr4(unsigned long cr4)
791
{
792
cr4 &= ~X86_CR4_PGE;
793
cr4 &= ~X86_CR4_PSE;
794
795
native_write_cr4(cr4);
796
}
797
798
static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
799
{
800
int ret;
801
802
ret = 0;
803
804
switch (msr) {
805
#ifdef CONFIG_X86_64
806
unsigned which;
807
u64 base;
808
809
case MSR_FS_BASE: which = SEGBASE_FS; goto set;
810
case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
811
case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
812
813
set:
814
base = ((u64)high << 32) | low;
815
if (HYPERVISOR_set_segment_base(which, base) != 0)
816
ret = -EIO;
817
break;
818
#endif
819
820
case MSR_STAR:
821
case MSR_CSTAR:
822
case MSR_LSTAR:
823
case MSR_SYSCALL_MASK:
824
case MSR_IA32_SYSENTER_CS:
825
case MSR_IA32_SYSENTER_ESP:
826
case MSR_IA32_SYSENTER_EIP:
827
/* Fast syscall setup is all done in hypercalls, so
828
these are all ignored. Stub them out here to stop
829
Xen console noise. */
830
break;
831
832
case MSR_IA32_CR_PAT:
833
if (smp_processor_id() == 0)
834
xen_set_pat(((u64)high << 32) | low);
835
break;
836
837
default:
838
ret = native_write_msr_safe(msr, low, high);
839
}
840
841
return ret;
842
}
843
844
void xen_setup_shared_info(void)
845
{
846
if (!xen_feature(XENFEAT_auto_translated_physmap)) {
847
set_fixmap(FIX_PARAVIRT_BOOTMAP,
848
xen_start_info->shared_info);
849
850
HYPERVISOR_shared_info =
851
(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
852
} else
853
HYPERVISOR_shared_info =
854
(struct shared_info *)__va(xen_start_info->shared_info);
855
856
#ifndef CONFIG_SMP
857
/* In UP this is as good a place as any to set up shared info */
858
xen_setup_vcpu_info_placement();
859
#endif
860
861
xen_setup_mfn_list_list();
862
}
863
864
/* This is called once we have the cpu_possible_map */
865
void xen_setup_vcpu_info_placement(void)
866
{
867
int cpu;
868
869
for_each_possible_cpu(cpu)
870
xen_vcpu_setup(cpu);
871
872
/* xen_vcpu_setup managed to place the vcpu_info within the
873
percpu area for all cpus, so make use of it */
874
if (have_vcpu_info_placement) {
875
pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
876
pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
877
pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
878
pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
879
pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
880
}
881
}
882
883
static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
884
unsigned long addr, unsigned len)
885
{
886
char *start, *end, *reloc;
887
unsigned ret;
888
889
start = end = reloc = NULL;
890
891
#define SITE(op, x) \
892
case PARAVIRT_PATCH(op.x): \
893
if (have_vcpu_info_placement) { \
894
start = (char *)xen_##x##_direct; \
895
end = xen_##x##_direct_end; \
896
reloc = xen_##x##_direct_reloc; \
897
} \
898
goto patch_site
899
900
switch (type) {
901
SITE(pv_irq_ops, irq_enable);
902
SITE(pv_irq_ops, irq_disable);
903
SITE(pv_irq_ops, save_fl);
904
SITE(pv_irq_ops, restore_fl);
905
#undef SITE
906
907
patch_site:
908
if (start == NULL || (end-start) > len)
909
goto default_patch;
910
911
ret = paravirt_patch_insns(insnbuf, len, start, end);
912
913
/* Note: because reloc is assigned from something that
914
appears to be an array, gcc assumes it's non-null,
915
but doesn't know its relationship with start and
916
end. */
917
if (reloc > start && reloc < end) {
918
int reloc_off = reloc - start;
919
long *relocp = (long *)(insnbuf + reloc_off);
920
long delta = start - (char *)addr;
921
922
*relocp += delta;
923
}
924
break;
925
926
default_patch:
927
default:
928
ret = paravirt_patch_default(type, clobbers, insnbuf,
929
addr, len);
930
break;
931
}
932
933
return ret;
934
}
935
936
static const struct pv_info xen_info __initconst = {
937
.paravirt_enabled = 1,
938
.shared_kernel_pmd = 0,
939
940
.name = "Xen",
941
};
942
943
static const struct pv_init_ops xen_init_ops __initconst = {
944
.patch = xen_patch,
945
};
946
947
static const struct pv_cpu_ops xen_cpu_ops __initconst = {
948
.cpuid = xen_cpuid,
949
950
.set_debugreg = xen_set_debugreg,
951
.get_debugreg = xen_get_debugreg,
952
953
.clts = xen_clts,
954
955
.read_cr0 = xen_read_cr0,
956
.write_cr0 = xen_write_cr0,
957
958
.read_cr4 = native_read_cr4,
959
.read_cr4_safe = native_read_cr4_safe,
960
.write_cr4 = xen_write_cr4,
961
962
.wbinvd = native_wbinvd,
963
964
.read_msr = native_read_msr_safe,
965
.write_msr = xen_write_msr_safe,
966
.read_tsc = native_read_tsc,
967
.read_pmc = native_read_pmc,
968
969
.iret = xen_iret,
970
.irq_enable_sysexit = xen_sysexit,
971
#ifdef CONFIG_X86_64
972
.usergs_sysret32 = xen_sysret32,
973
.usergs_sysret64 = xen_sysret64,
974
#endif
975
976
.load_tr_desc = paravirt_nop,
977
.set_ldt = xen_set_ldt,
978
.load_gdt = xen_load_gdt,
979
.load_idt = xen_load_idt,
980
.load_tls = xen_load_tls,
981
#ifdef CONFIG_X86_64
982
.load_gs_index = xen_load_gs_index,
983
#endif
984
985
.alloc_ldt = xen_alloc_ldt,
986
.free_ldt = xen_free_ldt,
987
988
.store_gdt = native_store_gdt,
989
.store_idt = native_store_idt,
990
.store_tr = xen_store_tr,
991
992
.write_ldt_entry = xen_write_ldt_entry,
993
.write_gdt_entry = xen_write_gdt_entry,
994
.write_idt_entry = xen_write_idt_entry,
995
.load_sp0 = xen_load_sp0,
996
997
.set_iopl_mask = xen_set_iopl_mask,
998
.io_delay = xen_io_delay,
999
1000
/* Xen takes care of %gs when switching to usermode for us */
1001
.swapgs = paravirt_nop,
1002
1003
.start_context_switch = paravirt_start_context_switch,
1004
.end_context_switch = xen_end_context_switch,
1005
};
1006
1007
static const struct pv_apic_ops xen_apic_ops __initconst = {
1008
#ifdef CONFIG_X86_LOCAL_APIC
1009
.startup_ipi_hook = paravirt_nop,
1010
#endif
1011
};
1012
1013
static void xen_reboot(int reason)
1014
{
1015
struct sched_shutdown r = { .reason = reason };
1016
1017
if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1018
BUG();
1019
}
1020
1021
static void xen_restart(char *msg)
1022
{
1023
xen_reboot(SHUTDOWN_reboot);
1024
}
1025
1026
static void xen_emergency_restart(void)
1027
{
1028
xen_reboot(SHUTDOWN_reboot);
1029
}
1030
1031
static void xen_machine_halt(void)
1032
{
1033
xen_reboot(SHUTDOWN_poweroff);
1034
}
1035
1036
static void xen_machine_power_off(void)
1037
{
1038
if (pm_power_off)
1039
pm_power_off();
1040
xen_reboot(SHUTDOWN_poweroff);
1041
}
1042
1043
static void xen_crash_shutdown(struct pt_regs *regs)
1044
{
1045
xen_reboot(SHUTDOWN_crash);
1046
}
1047
1048
static int
1049
xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1050
{
1051
xen_reboot(SHUTDOWN_crash);
1052
return NOTIFY_DONE;
1053
}
1054
1055
static struct notifier_block xen_panic_block = {
1056
.notifier_call= xen_panic_event,
1057
};
1058
1059
int xen_panic_handler_init(void)
1060
{
1061
atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1062
return 0;
1063
}
1064
1065
static const struct machine_ops xen_machine_ops __initconst = {
1066
.restart = xen_restart,
1067
.halt = xen_machine_halt,
1068
.power_off = xen_machine_power_off,
1069
.shutdown = xen_machine_halt,
1070
.crash_shutdown = xen_crash_shutdown,
1071
.emergency_restart = xen_emergency_restart,
1072
};
1073
1074
/*
1075
* Set up the GDT and segment registers for -fstack-protector. Until
1076
* we do this, we have to be careful not to call any stack-protected
1077
* function, which is most of the kernel.
1078
*/
1079
static void __init xen_setup_stackprotector(void)
1080
{
1081
pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1082
pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1083
1084
setup_stack_canary_segment(0);
1085
switch_to_new_gdt(0);
1086
1087
pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1088
pv_cpu_ops.load_gdt = xen_load_gdt;
1089
}
1090
1091
/* First C function to be called on Xen boot */
1092
asmlinkage void __init xen_start_kernel(void)
1093
{
1094
struct physdev_set_iopl set_iopl;
1095
int rc;
1096
pgd_t *pgd;
1097
1098
if (!xen_start_info)
1099
return;
1100
1101
xen_domain_type = XEN_PV_DOMAIN;
1102
1103
xen_setup_machphys_mapping();
1104
1105
/* Install Xen paravirt ops */
1106
pv_info = xen_info;
1107
pv_init_ops = xen_init_ops;
1108
pv_cpu_ops = xen_cpu_ops;
1109
pv_apic_ops = xen_apic_ops;
1110
1111
x86_init.resources.memory_setup = xen_memory_setup;
1112
x86_init.oem.arch_setup = xen_arch_setup;
1113
x86_init.oem.banner = xen_banner;
1114
1115
xen_init_time_ops();
1116
1117
/*
1118
* Set up some pagetable state before starting to set any ptes.
1119
*/
1120
1121
xen_init_mmu_ops();
1122
1123
/* Prevent unwanted bits from being set in PTEs. */
1124
__supported_pte_mask &= ~_PAGE_GLOBAL;
1125
if (!xen_initial_domain())
1126
__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1127
1128
__supported_pte_mask |= _PAGE_IOMAP;
1129
1130
/*
1131
* Prevent page tables from being allocated in highmem, even
1132
* if CONFIG_HIGHPTE is enabled.
1133
*/
1134
__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1135
1136
/* Work out if we support NX */
1137
x86_configure_nx();
1138
1139
xen_setup_features();
1140
1141
/* Get mfn list */
1142
if (!xen_feature(XENFEAT_auto_translated_physmap))
1143
xen_build_dynamic_phys_to_machine();
1144
1145
/*
1146
* Set up kernel GDT and segment registers, mainly so that
1147
* -fstack-protector code can be executed.
1148
*/
1149
xen_setup_stackprotector();
1150
1151
xen_init_irq_ops();
1152
xen_init_cpuid_mask();
1153
1154
#ifdef CONFIG_X86_LOCAL_APIC
1155
/*
1156
* set up the basic apic ops.
1157
*/
1158
set_xen_basic_apic_ops();
1159
#endif
1160
1161
if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1162
pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1163
pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1164
}
1165
1166
machine_ops = xen_machine_ops;
1167
1168
/*
1169
* The only reliable way to retain the initial address of the
1170
* percpu gdt_page is to remember it here, so we can go and
1171
* mark it RW later, when the initial percpu area is freed.
1172
*/
1173
xen_initial_gdt = &per_cpu(gdt_page, 0);
1174
1175
xen_smp_init();
1176
1177
#ifdef CONFIG_ACPI_NUMA
1178
/*
1179
* The pages we from Xen are not related to machine pages, so
1180
* any NUMA information the kernel tries to get from ACPI will
1181
* be meaningless. Prevent it from trying.
1182
*/
1183
acpi_numa = -1;
1184
#endif
1185
1186
pgd = (pgd_t *)xen_start_info->pt_base;
1187
1188
if (!xen_initial_domain())
1189
__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1190
1191
__supported_pte_mask |= _PAGE_IOMAP;
1192
/* Don't do the full vcpu_info placement stuff until we have a
1193
possible map and a non-dummy shared_info. */
1194
per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1195
1196
local_irq_disable();
1197
early_boot_irqs_disabled = true;
1198
1199
memblock_init();
1200
1201
xen_raw_console_write("mapping kernel into physical memory\n");
1202
pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1203
xen_ident_map_ISA();
1204
1205
/* Allocate and initialize top and mid mfn levels for p2m structure */
1206
xen_build_mfn_list_list();
1207
1208
/* keep using Xen gdt for now; no urgent need to change it */
1209
1210
#ifdef CONFIG_X86_32
1211
pv_info.kernel_rpl = 1;
1212
if (xen_feature(XENFEAT_supervisor_mode_kernel))
1213
pv_info.kernel_rpl = 0;
1214
#else
1215
pv_info.kernel_rpl = 0;
1216
#endif
1217
/* set the limit of our address space */
1218
xen_reserve_top();
1219
1220
/* We used to do this in xen_arch_setup, but that is too late on AMD
1221
* were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1222
* which pokes 0xcf8 port.
1223
*/
1224
set_iopl.iopl = 1;
1225
rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1226
if (rc != 0)
1227
xen_raw_printk("physdev_op failed %d\n", rc);
1228
1229
#ifdef CONFIG_X86_32
1230
/* set up basic CPUID stuff */
1231
cpu_detect(&new_cpu_data);
1232
new_cpu_data.hard_math = 1;
1233
new_cpu_data.wp_works_ok = 1;
1234
new_cpu_data.x86_capability[0] = cpuid_edx(1);
1235
#endif
1236
1237
/* Poke various useful things into boot_params */
1238
boot_params.hdr.type_of_loader = (9 << 4) | 0;
1239
boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1240
? __pa(xen_start_info->mod_start) : 0;
1241
boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1242
boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1243
1244
if (!xen_initial_domain()) {
1245
add_preferred_console("xenboot", 0, NULL);
1246
add_preferred_console("tty", 0, NULL);
1247
add_preferred_console("hvc", 0, NULL);
1248
if (pci_xen)
1249
x86_init.pci.arch_init = pci_xen_init;
1250
} else {
1251
/* Make sure ACS will be enabled */
1252
pci_request_acs();
1253
}
1254
1255
1256
xen_raw_console_write("about to get started...\n");
1257
1258
xen_setup_runstate_info(0);
1259
1260
/* Start the world */
1261
#ifdef CONFIG_X86_32
1262
i386_start_kernel();
1263
#else
1264
x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1265
#endif
1266
}
1267
1268
static int init_hvm_pv_info(int *major, int *minor)
1269
{
1270
uint32_t eax, ebx, ecx, edx, pages, msr, base;
1271
u64 pfn;
1272
1273
base = xen_cpuid_base();
1274
cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1275
1276
*major = eax >> 16;
1277
*minor = eax & 0xffff;
1278
printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1279
1280
cpuid(base + 2, &pages, &msr, &ecx, &edx);
1281
1282
pfn = __pa(hypercall_page);
1283
wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1284
1285
xen_setup_features();
1286
1287
pv_info.name = "Xen HVM";
1288
1289
xen_domain_type = XEN_HVM_DOMAIN;
1290
1291
return 0;
1292
}
1293
1294
void __ref xen_hvm_init_shared_info(void)
1295
{
1296
int cpu;
1297
struct xen_add_to_physmap xatp;
1298
static struct shared_info *shared_info_page = 0;
1299
1300
if (!shared_info_page)
1301
shared_info_page = (struct shared_info *)
1302
extend_brk(PAGE_SIZE, PAGE_SIZE);
1303
xatp.domid = DOMID_SELF;
1304
xatp.idx = 0;
1305
xatp.space = XENMAPSPACE_shared_info;
1306
xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1307
if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1308
BUG();
1309
1310
HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1311
1312
/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1313
* page, we use it in the event channel upcall and in some pvclock
1314
* related functions. We don't need the vcpu_info placement
1315
* optimizations because we don't use any pv_mmu or pv_irq op on
1316
* HVM.
1317
* When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1318
* online but xen_hvm_init_shared_info is run at resume time too and
1319
* in that case multiple vcpus might be online. */
1320
for_each_online_cpu(cpu) {
1321
per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1322
}
1323
}
1324
1325
#ifdef CONFIG_XEN_PVHVM
1326
static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1327
unsigned long action, void *hcpu)
1328
{
1329
int cpu = (long)hcpu;
1330
switch (action) {
1331
case CPU_UP_PREPARE:
1332
per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1333
if (xen_have_vector_callback)
1334
xen_init_lock_cpu(cpu);
1335
break;
1336
default:
1337
break;
1338
}
1339
return NOTIFY_OK;
1340
}
1341
1342
static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1343
.notifier_call = xen_hvm_cpu_notify,
1344
};
1345
1346
static void __init xen_hvm_guest_init(void)
1347
{
1348
int r;
1349
int major, minor;
1350
1351
r = init_hvm_pv_info(&major, &minor);
1352
if (r < 0)
1353
return;
1354
1355
xen_hvm_init_shared_info();
1356
1357
if (xen_feature(XENFEAT_hvm_callback_vector))
1358
xen_have_vector_callback = 1;
1359
xen_hvm_smp_init();
1360
register_cpu_notifier(&xen_hvm_cpu_notifier);
1361
xen_unplug_emulated_devices();
1362
have_vcpu_info_placement = 0;
1363
x86_init.irqs.intr_init = xen_init_IRQ;
1364
xen_hvm_init_time_ops();
1365
xen_hvm_init_mmu_ops();
1366
}
1367
1368
static bool __init xen_hvm_platform(void)
1369
{
1370
if (xen_pv_domain())
1371
return false;
1372
1373
if (!xen_cpuid_base())
1374
return false;
1375
1376
return true;
1377
}
1378
1379
bool xen_hvm_need_lapic(void)
1380
{
1381
if (xen_pv_domain())
1382
return false;
1383
if (!xen_hvm_domain())
1384
return false;
1385
if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1386
return false;
1387
return true;
1388
}
1389
EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1390
1391
const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1392
.name = "Xen HVM",
1393
.detect = xen_hvm_platform,
1394
.init_platform = xen_hvm_guest_init,
1395
};
1396
EXPORT_SYMBOL(x86_hyper_xen_hvm);
1397
#endif
1398
1399