Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/xen/mmu.c
10818 views
1
/*
2
* Xen mmu operations
3
*
4
* This file contains the various mmu fetch and update operations.
5
* The most important job they must perform is the mapping between the
6
* domain's pfn and the overall machine mfns.
7
*
8
* Xen allows guests to directly update the pagetable, in a controlled
9
* fashion. In other words, the guest modifies the same pagetable
10
* that the CPU actually uses, which eliminates the overhead of having
11
* a separate shadow pagetable.
12
*
13
* In order to allow this, it falls on the guest domain to map its
14
* notion of a "physical" pfn - which is just a domain-local linear
15
* address - into a real "machine address" which the CPU's MMU can
16
* use.
17
*
18
* A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19
* inserted directly into the pagetable. When creating a new
20
* pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21
* when reading the content back with __(pgd|pmd|pte)_val, it converts
22
* the mfn back into a pfn.
23
*
24
* The other constraint is that all pages which make up a pagetable
25
* must be mapped read-only in the guest. This prevents uncontrolled
26
* guest updates to the pagetable. Xen strictly enforces this, and
27
* will disallow any pagetable update which will end up mapping a
28
* pagetable page RW, and will disallow using any writable page as a
29
* pagetable.
30
*
31
* Naively, when loading %cr3 with the base of a new pagetable, Xen
32
* would need to validate the whole pagetable before going on.
33
* Naturally, this is quite slow. The solution is to "pin" a
34
* pagetable, which enforces all the constraints on the pagetable even
35
* when it is not actively in use. This menas that Xen can be assured
36
* that it is still valid when you do load it into %cr3, and doesn't
37
* need to revalidate it.
38
*
39
* Jeremy Fitzhardinge <[email protected]>, XenSource Inc, 2007
40
*/
41
#include <linux/sched.h>
42
#include <linux/highmem.h>
43
#include <linux/debugfs.h>
44
#include <linux/bug.h>
45
#include <linux/vmalloc.h>
46
#include <linux/module.h>
47
#include <linux/gfp.h>
48
#include <linux/memblock.h>
49
#include <linux/seq_file.h>
50
51
#include <asm/pgtable.h>
52
#include <asm/tlbflush.h>
53
#include <asm/fixmap.h>
54
#include <asm/mmu_context.h>
55
#include <asm/setup.h>
56
#include <asm/paravirt.h>
57
#include <asm/e820.h>
58
#include <asm/linkage.h>
59
#include <asm/page.h>
60
#include <asm/init.h>
61
#include <asm/pat.h>
62
#include <asm/smp.h>
63
64
#include <asm/xen/hypercall.h>
65
#include <asm/xen/hypervisor.h>
66
67
#include <xen/xen.h>
68
#include <xen/page.h>
69
#include <xen/interface/xen.h>
70
#include <xen/interface/hvm/hvm_op.h>
71
#include <xen/interface/version.h>
72
#include <xen/interface/memory.h>
73
#include <xen/hvc-console.h>
74
75
#include "multicalls.h"
76
#include "mmu.h"
77
#include "debugfs.h"
78
79
/*
80
* Protects atomic reservation decrease/increase against concurrent increases.
81
* Also protects non-atomic updates of current_pages and balloon lists.
82
*/
83
DEFINE_SPINLOCK(xen_reservation_lock);
84
85
/*
86
* Identity map, in addition to plain kernel map. This needs to be
87
* large enough to allocate page table pages to allocate the rest.
88
* Each page can map 2MB.
89
*/
90
#define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
91
static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
92
93
#ifdef CONFIG_X86_64
94
/* l3 pud for userspace vsyscall mapping */
95
static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
96
#endif /* CONFIG_X86_64 */
97
98
/*
99
* Note about cr3 (pagetable base) values:
100
*
101
* xen_cr3 contains the current logical cr3 value; it contains the
102
* last set cr3. This may not be the current effective cr3, because
103
* its update may be being lazily deferred. However, a vcpu looking
104
* at its own cr3 can use this value knowing that it everything will
105
* be self-consistent.
106
*
107
* xen_current_cr3 contains the actual vcpu cr3; it is set once the
108
* hypercall to set the vcpu cr3 is complete (so it may be a little
109
* out of date, but it will never be set early). If one vcpu is
110
* looking at another vcpu's cr3 value, it should use this variable.
111
*/
112
DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
113
DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
114
115
116
/*
117
* Just beyond the highest usermode address. STACK_TOP_MAX has a
118
* redzone above it, so round it up to a PGD boundary.
119
*/
120
#define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
121
122
unsigned long arbitrary_virt_to_mfn(void *vaddr)
123
{
124
xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
125
126
return PFN_DOWN(maddr.maddr);
127
}
128
129
xmaddr_t arbitrary_virt_to_machine(void *vaddr)
130
{
131
unsigned long address = (unsigned long)vaddr;
132
unsigned int level;
133
pte_t *pte;
134
unsigned offset;
135
136
/*
137
* if the PFN is in the linear mapped vaddr range, we can just use
138
* the (quick) virt_to_machine() p2m lookup
139
*/
140
if (virt_addr_valid(vaddr))
141
return virt_to_machine(vaddr);
142
143
/* otherwise we have to do a (slower) full page-table walk */
144
145
pte = lookup_address(address, &level);
146
BUG_ON(pte == NULL);
147
offset = address & ~PAGE_MASK;
148
return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
149
}
150
EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
151
152
void make_lowmem_page_readonly(void *vaddr)
153
{
154
pte_t *pte, ptev;
155
unsigned long address = (unsigned long)vaddr;
156
unsigned int level;
157
158
pte = lookup_address(address, &level);
159
if (pte == NULL)
160
return; /* vaddr missing */
161
162
ptev = pte_wrprotect(*pte);
163
164
if (HYPERVISOR_update_va_mapping(address, ptev, 0))
165
BUG();
166
}
167
168
void make_lowmem_page_readwrite(void *vaddr)
169
{
170
pte_t *pte, ptev;
171
unsigned long address = (unsigned long)vaddr;
172
unsigned int level;
173
174
pte = lookup_address(address, &level);
175
if (pte == NULL)
176
return; /* vaddr missing */
177
178
ptev = pte_mkwrite(*pte);
179
180
if (HYPERVISOR_update_va_mapping(address, ptev, 0))
181
BUG();
182
}
183
184
185
static bool xen_page_pinned(void *ptr)
186
{
187
struct page *page = virt_to_page(ptr);
188
189
return PagePinned(page);
190
}
191
192
void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
193
{
194
struct multicall_space mcs;
195
struct mmu_update *u;
196
197
mcs = xen_mc_entry(sizeof(*u));
198
u = mcs.args;
199
200
/* ptep might be kmapped when using 32-bit HIGHPTE */
201
u->ptr = virt_to_machine(ptep).maddr;
202
u->val = pte_val_ma(pteval);
203
204
MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
205
206
xen_mc_issue(PARAVIRT_LAZY_MMU);
207
}
208
EXPORT_SYMBOL_GPL(xen_set_domain_pte);
209
210
static void xen_extend_mmu_update(const struct mmu_update *update)
211
{
212
struct multicall_space mcs;
213
struct mmu_update *u;
214
215
mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
216
217
if (mcs.mc != NULL) {
218
mcs.mc->args[1]++;
219
} else {
220
mcs = __xen_mc_entry(sizeof(*u));
221
MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
222
}
223
224
u = mcs.args;
225
*u = *update;
226
}
227
228
static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
229
{
230
struct mmu_update u;
231
232
preempt_disable();
233
234
xen_mc_batch();
235
236
/* ptr may be ioremapped for 64-bit pagetable setup */
237
u.ptr = arbitrary_virt_to_machine(ptr).maddr;
238
u.val = pmd_val_ma(val);
239
xen_extend_mmu_update(&u);
240
241
xen_mc_issue(PARAVIRT_LAZY_MMU);
242
243
preempt_enable();
244
}
245
246
static void xen_set_pmd(pmd_t *ptr, pmd_t val)
247
{
248
/* If page is not pinned, we can just update the entry
249
directly */
250
if (!xen_page_pinned(ptr)) {
251
*ptr = val;
252
return;
253
}
254
255
xen_set_pmd_hyper(ptr, val);
256
}
257
258
/*
259
* Associate a virtual page frame with a given physical page frame
260
* and protection flags for that frame.
261
*/
262
void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
263
{
264
set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
265
}
266
267
static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
268
{
269
struct mmu_update u;
270
271
if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
272
return false;
273
274
xen_mc_batch();
275
276
u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
277
u.val = pte_val_ma(pteval);
278
xen_extend_mmu_update(&u);
279
280
xen_mc_issue(PARAVIRT_LAZY_MMU);
281
282
return true;
283
}
284
285
static void xen_set_pte(pte_t *ptep, pte_t pteval)
286
{
287
if (!xen_batched_set_pte(ptep, pteval))
288
native_set_pte(ptep, pteval);
289
}
290
291
static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
292
pte_t *ptep, pte_t pteval)
293
{
294
xen_set_pte(ptep, pteval);
295
}
296
297
pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
298
unsigned long addr, pte_t *ptep)
299
{
300
/* Just return the pte as-is. We preserve the bits on commit */
301
return *ptep;
302
}
303
304
void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
305
pte_t *ptep, pte_t pte)
306
{
307
struct mmu_update u;
308
309
xen_mc_batch();
310
311
u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
312
u.val = pte_val_ma(pte);
313
xen_extend_mmu_update(&u);
314
315
xen_mc_issue(PARAVIRT_LAZY_MMU);
316
}
317
318
/* Assume pteval_t is equivalent to all the other *val_t types. */
319
static pteval_t pte_mfn_to_pfn(pteval_t val)
320
{
321
if (val & _PAGE_PRESENT) {
322
unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
323
pteval_t flags = val & PTE_FLAGS_MASK;
324
val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
325
}
326
327
return val;
328
}
329
330
static pteval_t pte_pfn_to_mfn(pteval_t val)
331
{
332
if (val & _PAGE_PRESENT) {
333
unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
334
pteval_t flags = val & PTE_FLAGS_MASK;
335
unsigned long mfn;
336
337
if (!xen_feature(XENFEAT_auto_translated_physmap))
338
mfn = get_phys_to_machine(pfn);
339
else
340
mfn = pfn;
341
/*
342
* If there's no mfn for the pfn, then just create an
343
* empty non-present pte. Unfortunately this loses
344
* information about the original pfn, so
345
* pte_mfn_to_pfn is asymmetric.
346
*/
347
if (unlikely(mfn == INVALID_P2M_ENTRY)) {
348
mfn = 0;
349
flags = 0;
350
} else {
351
/*
352
* Paramount to do this test _after_ the
353
* INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
354
* IDENTITY_FRAME_BIT resolves to true.
355
*/
356
mfn &= ~FOREIGN_FRAME_BIT;
357
if (mfn & IDENTITY_FRAME_BIT) {
358
mfn &= ~IDENTITY_FRAME_BIT;
359
flags |= _PAGE_IOMAP;
360
}
361
}
362
val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
363
}
364
365
return val;
366
}
367
368
static pteval_t iomap_pte(pteval_t val)
369
{
370
if (val & _PAGE_PRESENT) {
371
unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
372
pteval_t flags = val & PTE_FLAGS_MASK;
373
374
/* We assume the pte frame number is a MFN, so
375
just use it as-is. */
376
val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
377
}
378
379
return val;
380
}
381
382
static pteval_t xen_pte_val(pte_t pte)
383
{
384
pteval_t pteval = pte.pte;
385
386
/* If this is a WC pte, convert back from Xen WC to Linux WC */
387
if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
388
WARN_ON(!pat_enabled);
389
pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
390
}
391
392
if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
393
return pteval;
394
395
return pte_mfn_to_pfn(pteval);
396
}
397
PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
398
399
static pgdval_t xen_pgd_val(pgd_t pgd)
400
{
401
return pte_mfn_to_pfn(pgd.pgd);
402
}
403
PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
404
405
/*
406
* Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
407
* are reserved for now, to correspond to the Intel-reserved PAT
408
* types.
409
*
410
* We expect Linux's PAT set as follows:
411
*
412
* Idx PTE flags Linux Xen Default
413
* 0 WB WB WB
414
* 1 PWT WC WT WT
415
* 2 PCD UC- UC- UC-
416
* 3 PCD PWT UC UC UC
417
* 4 PAT WB WC WB
418
* 5 PAT PWT WC WP WT
419
* 6 PAT PCD UC- UC UC-
420
* 7 PAT PCD PWT UC UC UC
421
*/
422
423
void xen_set_pat(u64 pat)
424
{
425
/* We expect Linux to use a PAT setting of
426
* UC UC- WC WB (ignoring the PAT flag) */
427
WARN_ON(pat != 0x0007010600070106ull);
428
}
429
430
static pte_t xen_make_pte(pteval_t pte)
431
{
432
phys_addr_t addr = (pte & PTE_PFN_MASK);
433
434
/* If Linux is trying to set a WC pte, then map to the Xen WC.
435
* If _PAGE_PAT is set, then it probably means it is really
436
* _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
437
* things work out OK...
438
*
439
* (We should never see kernel mappings with _PAGE_PSE set,
440
* but we could see hugetlbfs mappings, I think.).
441
*/
442
if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
443
if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
444
pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
445
}
446
447
/*
448
* Unprivileged domains are allowed to do IOMAPpings for
449
* PCI passthrough, but not map ISA space. The ISA
450
* mappings are just dummy local mappings to keep other
451
* parts of the kernel happy.
452
*/
453
if (unlikely(pte & _PAGE_IOMAP) &&
454
(xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
455
pte = iomap_pte(pte);
456
} else {
457
pte &= ~_PAGE_IOMAP;
458
pte = pte_pfn_to_mfn(pte);
459
}
460
461
return native_make_pte(pte);
462
}
463
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
464
465
#ifdef CONFIG_XEN_DEBUG
466
pte_t xen_make_pte_debug(pteval_t pte)
467
{
468
phys_addr_t addr = (pte & PTE_PFN_MASK);
469
phys_addr_t other_addr;
470
bool io_page = false;
471
pte_t _pte;
472
473
if (pte & _PAGE_IOMAP)
474
io_page = true;
475
476
_pte = xen_make_pte(pte);
477
478
if (!addr)
479
return _pte;
480
481
if (io_page &&
482
(xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
483
other_addr = pfn_to_mfn(addr >> PAGE_SHIFT) << PAGE_SHIFT;
484
WARN_ONCE(addr != other_addr,
485
"0x%lx is using VM_IO, but it is 0x%lx!\n",
486
(unsigned long)addr, (unsigned long)other_addr);
487
} else {
488
pteval_t iomap_set = (_pte.pte & PTE_FLAGS_MASK) & _PAGE_IOMAP;
489
other_addr = (_pte.pte & PTE_PFN_MASK);
490
WARN_ONCE((addr == other_addr) && (!io_page) && (!iomap_set),
491
"0x%lx is missing VM_IO (and wasn't fixed)!\n",
492
(unsigned long)addr);
493
}
494
495
return _pte;
496
}
497
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_debug);
498
#endif
499
500
static pgd_t xen_make_pgd(pgdval_t pgd)
501
{
502
pgd = pte_pfn_to_mfn(pgd);
503
return native_make_pgd(pgd);
504
}
505
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
506
507
static pmdval_t xen_pmd_val(pmd_t pmd)
508
{
509
return pte_mfn_to_pfn(pmd.pmd);
510
}
511
PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
512
513
static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
514
{
515
struct mmu_update u;
516
517
preempt_disable();
518
519
xen_mc_batch();
520
521
/* ptr may be ioremapped for 64-bit pagetable setup */
522
u.ptr = arbitrary_virt_to_machine(ptr).maddr;
523
u.val = pud_val_ma(val);
524
xen_extend_mmu_update(&u);
525
526
xen_mc_issue(PARAVIRT_LAZY_MMU);
527
528
preempt_enable();
529
}
530
531
static void xen_set_pud(pud_t *ptr, pud_t val)
532
{
533
/* If page is not pinned, we can just update the entry
534
directly */
535
if (!xen_page_pinned(ptr)) {
536
*ptr = val;
537
return;
538
}
539
540
xen_set_pud_hyper(ptr, val);
541
}
542
543
#ifdef CONFIG_X86_PAE
544
static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
545
{
546
set_64bit((u64 *)ptep, native_pte_val(pte));
547
}
548
549
static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
550
{
551
if (!xen_batched_set_pte(ptep, native_make_pte(0)))
552
native_pte_clear(mm, addr, ptep);
553
}
554
555
static void xen_pmd_clear(pmd_t *pmdp)
556
{
557
set_pmd(pmdp, __pmd(0));
558
}
559
#endif /* CONFIG_X86_PAE */
560
561
static pmd_t xen_make_pmd(pmdval_t pmd)
562
{
563
pmd = pte_pfn_to_mfn(pmd);
564
return native_make_pmd(pmd);
565
}
566
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
567
568
#if PAGETABLE_LEVELS == 4
569
static pudval_t xen_pud_val(pud_t pud)
570
{
571
return pte_mfn_to_pfn(pud.pud);
572
}
573
PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
574
575
static pud_t xen_make_pud(pudval_t pud)
576
{
577
pud = pte_pfn_to_mfn(pud);
578
579
return native_make_pud(pud);
580
}
581
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
582
583
static pgd_t *xen_get_user_pgd(pgd_t *pgd)
584
{
585
pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
586
unsigned offset = pgd - pgd_page;
587
pgd_t *user_ptr = NULL;
588
589
if (offset < pgd_index(USER_LIMIT)) {
590
struct page *page = virt_to_page(pgd_page);
591
user_ptr = (pgd_t *)page->private;
592
if (user_ptr)
593
user_ptr += offset;
594
}
595
596
return user_ptr;
597
}
598
599
static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
600
{
601
struct mmu_update u;
602
603
u.ptr = virt_to_machine(ptr).maddr;
604
u.val = pgd_val_ma(val);
605
xen_extend_mmu_update(&u);
606
}
607
608
/*
609
* Raw hypercall-based set_pgd, intended for in early boot before
610
* there's a page structure. This implies:
611
* 1. The only existing pagetable is the kernel's
612
* 2. It is always pinned
613
* 3. It has no user pagetable attached to it
614
*/
615
static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
616
{
617
preempt_disable();
618
619
xen_mc_batch();
620
621
__xen_set_pgd_hyper(ptr, val);
622
623
xen_mc_issue(PARAVIRT_LAZY_MMU);
624
625
preempt_enable();
626
}
627
628
static void xen_set_pgd(pgd_t *ptr, pgd_t val)
629
{
630
pgd_t *user_ptr = xen_get_user_pgd(ptr);
631
632
/* If page is not pinned, we can just update the entry
633
directly */
634
if (!xen_page_pinned(ptr)) {
635
*ptr = val;
636
if (user_ptr) {
637
WARN_ON(xen_page_pinned(user_ptr));
638
*user_ptr = val;
639
}
640
return;
641
}
642
643
/* If it's pinned, then we can at least batch the kernel and
644
user updates together. */
645
xen_mc_batch();
646
647
__xen_set_pgd_hyper(ptr, val);
648
if (user_ptr)
649
__xen_set_pgd_hyper(user_ptr, val);
650
651
xen_mc_issue(PARAVIRT_LAZY_MMU);
652
}
653
#endif /* PAGETABLE_LEVELS == 4 */
654
655
/*
656
* (Yet another) pagetable walker. This one is intended for pinning a
657
* pagetable. This means that it walks a pagetable and calls the
658
* callback function on each page it finds making up the page table,
659
* at every level. It walks the entire pagetable, but it only bothers
660
* pinning pte pages which are below limit. In the normal case this
661
* will be STACK_TOP_MAX, but at boot we need to pin up to
662
* FIXADDR_TOP.
663
*
664
* For 32-bit the important bit is that we don't pin beyond there,
665
* because then we start getting into Xen's ptes.
666
*
667
* For 64-bit, we must skip the Xen hole in the middle of the address
668
* space, just after the big x86-64 virtual hole.
669
*/
670
static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
671
int (*func)(struct mm_struct *mm, struct page *,
672
enum pt_level),
673
unsigned long limit)
674
{
675
int flush = 0;
676
unsigned hole_low, hole_high;
677
unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
678
unsigned pgdidx, pudidx, pmdidx;
679
680
/* The limit is the last byte to be touched */
681
limit--;
682
BUG_ON(limit >= FIXADDR_TOP);
683
684
if (xen_feature(XENFEAT_auto_translated_physmap))
685
return 0;
686
687
/*
688
* 64-bit has a great big hole in the middle of the address
689
* space, which contains the Xen mappings. On 32-bit these
690
* will end up making a zero-sized hole and so is a no-op.
691
*/
692
hole_low = pgd_index(USER_LIMIT);
693
hole_high = pgd_index(PAGE_OFFSET);
694
695
pgdidx_limit = pgd_index(limit);
696
#if PTRS_PER_PUD > 1
697
pudidx_limit = pud_index(limit);
698
#else
699
pudidx_limit = 0;
700
#endif
701
#if PTRS_PER_PMD > 1
702
pmdidx_limit = pmd_index(limit);
703
#else
704
pmdidx_limit = 0;
705
#endif
706
707
for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
708
pud_t *pud;
709
710
if (pgdidx >= hole_low && pgdidx < hole_high)
711
continue;
712
713
if (!pgd_val(pgd[pgdidx]))
714
continue;
715
716
pud = pud_offset(&pgd[pgdidx], 0);
717
718
if (PTRS_PER_PUD > 1) /* not folded */
719
flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
720
721
for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
722
pmd_t *pmd;
723
724
if (pgdidx == pgdidx_limit &&
725
pudidx > pudidx_limit)
726
goto out;
727
728
if (pud_none(pud[pudidx]))
729
continue;
730
731
pmd = pmd_offset(&pud[pudidx], 0);
732
733
if (PTRS_PER_PMD > 1) /* not folded */
734
flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
735
736
for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
737
struct page *pte;
738
739
if (pgdidx == pgdidx_limit &&
740
pudidx == pudidx_limit &&
741
pmdidx > pmdidx_limit)
742
goto out;
743
744
if (pmd_none(pmd[pmdidx]))
745
continue;
746
747
pte = pmd_page(pmd[pmdidx]);
748
flush |= (*func)(mm, pte, PT_PTE);
749
}
750
}
751
}
752
753
out:
754
/* Do the top level last, so that the callbacks can use it as
755
a cue to do final things like tlb flushes. */
756
flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
757
758
return flush;
759
}
760
761
static int xen_pgd_walk(struct mm_struct *mm,
762
int (*func)(struct mm_struct *mm, struct page *,
763
enum pt_level),
764
unsigned long limit)
765
{
766
return __xen_pgd_walk(mm, mm->pgd, func, limit);
767
}
768
769
/* If we're using split pte locks, then take the page's lock and
770
return a pointer to it. Otherwise return NULL. */
771
static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
772
{
773
spinlock_t *ptl = NULL;
774
775
#if USE_SPLIT_PTLOCKS
776
ptl = __pte_lockptr(page);
777
spin_lock_nest_lock(ptl, &mm->page_table_lock);
778
#endif
779
780
return ptl;
781
}
782
783
static void xen_pte_unlock(void *v)
784
{
785
spinlock_t *ptl = v;
786
spin_unlock(ptl);
787
}
788
789
static void xen_do_pin(unsigned level, unsigned long pfn)
790
{
791
struct mmuext_op *op;
792
struct multicall_space mcs;
793
794
mcs = __xen_mc_entry(sizeof(*op));
795
op = mcs.args;
796
op->cmd = level;
797
op->arg1.mfn = pfn_to_mfn(pfn);
798
MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
799
}
800
801
static int xen_pin_page(struct mm_struct *mm, struct page *page,
802
enum pt_level level)
803
{
804
unsigned pgfl = TestSetPagePinned(page);
805
int flush;
806
807
if (pgfl)
808
flush = 0; /* already pinned */
809
else if (PageHighMem(page))
810
/* kmaps need flushing if we found an unpinned
811
highpage */
812
flush = 1;
813
else {
814
void *pt = lowmem_page_address(page);
815
unsigned long pfn = page_to_pfn(page);
816
struct multicall_space mcs = __xen_mc_entry(0);
817
spinlock_t *ptl;
818
819
flush = 0;
820
821
/*
822
* We need to hold the pagetable lock between the time
823
* we make the pagetable RO and when we actually pin
824
* it. If we don't, then other users may come in and
825
* attempt to update the pagetable by writing it,
826
* which will fail because the memory is RO but not
827
* pinned, so Xen won't do the trap'n'emulate.
828
*
829
* If we're using split pte locks, we can't hold the
830
* entire pagetable's worth of locks during the
831
* traverse, because we may wrap the preempt count (8
832
* bits). The solution is to mark RO and pin each PTE
833
* page while holding the lock. This means the number
834
* of locks we end up holding is never more than a
835
* batch size (~32 entries, at present).
836
*
837
* If we're not using split pte locks, we needn't pin
838
* the PTE pages independently, because we're
839
* protected by the overall pagetable lock.
840
*/
841
ptl = NULL;
842
if (level == PT_PTE)
843
ptl = xen_pte_lock(page, mm);
844
845
MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
846
pfn_pte(pfn, PAGE_KERNEL_RO),
847
level == PT_PGD ? UVMF_TLB_FLUSH : 0);
848
849
if (ptl) {
850
xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
851
852
/* Queue a deferred unlock for when this batch
853
is completed. */
854
xen_mc_callback(xen_pte_unlock, ptl);
855
}
856
}
857
858
return flush;
859
}
860
861
/* This is called just after a mm has been created, but it has not
862
been used yet. We need to make sure that its pagetable is all
863
read-only, and can be pinned. */
864
static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
865
{
866
xen_mc_batch();
867
868
if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
869
/* re-enable interrupts for flushing */
870
xen_mc_issue(0);
871
872
kmap_flush_unused();
873
874
xen_mc_batch();
875
}
876
877
#ifdef CONFIG_X86_64
878
{
879
pgd_t *user_pgd = xen_get_user_pgd(pgd);
880
881
xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
882
883
if (user_pgd) {
884
xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
885
xen_do_pin(MMUEXT_PIN_L4_TABLE,
886
PFN_DOWN(__pa(user_pgd)));
887
}
888
}
889
#else /* CONFIG_X86_32 */
890
#ifdef CONFIG_X86_PAE
891
/* Need to make sure unshared kernel PMD is pinnable */
892
xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
893
PT_PMD);
894
#endif
895
xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
896
#endif /* CONFIG_X86_64 */
897
xen_mc_issue(0);
898
}
899
900
static void xen_pgd_pin(struct mm_struct *mm)
901
{
902
__xen_pgd_pin(mm, mm->pgd);
903
}
904
905
/*
906
* On save, we need to pin all pagetables to make sure they get their
907
* mfns turned into pfns. Search the list for any unpinned pgds and pin
908
* them (unpinned pgds are not currently in use, probably because the
909
* process is under construction or destruction).
910
*
911
* Expected to be called in stop_machine() ("equivalent to taking
912
* every spinlock in the system"), so the locking doesn't really
913
* matter all that much.
914
*/
915
void xen_mm_pin_all(void)
916
{
917
struct page *page;
918
919
spin_lock(&pgd_lock);
920
921
list_for_each_entry(page, &pgd_list, lru) {
922
if (!PagePinned(page)) {
923
__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
924
SetPageSavePinned(page);
925
}
926
}
927
928
spin_unlock(&pgd_lock);
929
}
930
931
/*
932
* The init_mm pagetable is really pinned as soon as its created, but
933
* that's before we have page structures to store the bits. So do all
934
* the book-keeping now.
935
*/
936
static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
937
enum pt_level level)
938
{
939
SetPagePinned(page);
940
return 0;
941
}
942
943
static void __init xen_mark_init_mm_pinned(void)
944
{
945
xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
946
}
947
948
static int xen_unpin_page(struct mm_struct *mm, struct page *page,
949
enum pt_level level)
950
{
951
unsigned pgfl = TestClearPagePinned(page);
952
953
if (pgfl && !PageHighMem(page)) {
954
void *pt = lowmem_page_address(page);
955
unsigned long pfn = page_to_pfn(page);
956
spinlock_t *ptl = NULL;
957
struct multicall_space mcs;
958
959
/*
960
* Do the converse to pin_page. If we're using split
961
* pte locks, we must be holding the lock for while
962
* the pte page is unpinned but still RO to prevent
963
* concurrent updates from seeing it in this
964
* partially-pinned state.
965
*/
966
if (level == PT_PTE) {
967
ptl = xen_pte_lock(page, mm);
968
969
if (ptl)
970
xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
971
}
972
973
mcs = __xen_mc_entry(0);
974
975
MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
976
pfn_pte(pfn, PAGE_KERNEL),
977
level == PT_PGD ? UVMF_TLB_FLUSH : 0);
978
979
if (ptl) {
980
/* unlock when batch completed */
981
xen_mc_callback(xen_pte_unlock, ptl);
982
}
983
}
984
985
return 0; /* never need to flush on unpin */
986
}
987
988
/* Release a pagetables pages back as normal RW */
989
static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
990
{
991
xen_mc_batch();
992
993
xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
994
995
#ifdef CONFIG_X86_64
996
{
997
pgd_t *user_pgd = xen_get_user_pgd(pgd);
998
999
if (user_pgd) {
1000
xen_do_pin(MMUEXT_UNPIN_TABLE,
1001
PFN_DOWN(__pa(user_pgd)));
1002
xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1003
}
1004
}
1005
#endif
1006
1007
#ifdef CONFIG_X86_PAE
1008
/* Need to make sure unshared kernel PMD is unpinned */
1009
xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1010
PT_PMD);
1011
#endif
1012
1013
__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1014
1015
xen_mc_issue(0);
1016
}
1017
1018
static void xen_pgd_unpin(struct mm_struct *mm)
1019
{
1020
__xen_pgd_unpin(mm, mm->pgd);
1021
}
1022
1023
/*
1024
* On resume, undo any pinning done at save, so that the rest of the
1025
* kernel doesn't see any unexpected pinned pagetables.
1026
*/
1027
void xen_mm_unpin_all(void)
1028
{
1029
struct page *page;
1030
1031
spin_lock(&pgd_lock);
1032
1033
list_for_each_entry(page, &pgd_list, lru) {
1034
if (PageSavePinned(page)) {
1035
BUG_ON(!PagePinned(page));
1036
__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1037
ClearPageSavePinned(page);
1038
}
1039
}
1040
1041
spin_unlock(&pgd_lock);
1042
}
1043
1044
static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1045
{
1046
spin_lock(&next->page_table_lock);
1047
xen_pgd_pin(next);
1048
spin_unlock(&next->page_table_lock);
1049
}
1050
1051
static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1052
{
1053
spin_lock(&mm->page_table_lock);
1054
xen_pgd_pin(mm);
1055
spin_unlock(&mm->page_table_lock);
1056
}
1057
1058
1059
#ifdef CONFIG_SMP
1060
/* Another cpu may still have their %cr3 pointing at the pagetable, so
1061
we need to repoint it somewhere else before we can unpin it. */
1062
static void drop_other_mm_ref(void *info)
1063
{
1064
struct mm_struct *mm = info;
1065
struct mm_struct *active_mm;
1066
1067
active_mm = percpu_read(cpu_tlbstate.active_mm);
1068
1069
if (active_mm == mm && percpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1070
leave_mm(smp_processor_id());
1071
1072
/* If this cpu still has a stale cr3 reference, then make sure
1073
it has been flushed. */
1074
if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1075
load_cr3(swapper_pg_dir);
1076
}
1077
1078
static void xen_drop_mm_ref(struct mm_struct *mm)
1079
{
1080
cpumask_var_t mask;
1081
unsigned cpu;
1082
1083
if (current->active_mm == mm) {
1084
if (current->mm == mm)
1085
load_cr3(swapper_pg_dir);
1086
else
1087
leave_mm(smp_processor_id());
1088
}
1089
1090
/* Get the "official" set of cpus referring to our pagetable. */
1091
if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1092
for_each_online_cpu(cpu) {
1093
if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1094
&& per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1095
continue;
1096
smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1097
}
1098
return;
1099
}
1100
cpumask_copy(mask, mm_cpumask(mm));
1101
1102
/* It's possible that a vcpu may have a stale reference to our
1103
cr3, because its in lazy mode, and it hasn't yet flushed
1104
its set of pending hypercalls yet. In this case, we can
1105
look at its actual current cr3 value, and force it to flush
1106
if needed. */
1107
for_each_online_cpu(cpu) {
1108
if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1109
cpumask_set_cpu(cpu, mask);
1110
}
1111
1112
if (!cpumask_empty(mask))
1113
smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1114
free_cpumask_var(mask);
1115
}
1116
#else
1117
static void xen_drop_mm_ref(struct mm_struct *mm)
1118
{
1119
if (current->active_mm == mm)
1120
load_cr3(swapper_pg_dir);
1121
}
1122
#endif
1123
1124
/*
1125
* While a process runs, Xen pins its pagetables, which means that the
1126
* hypervisor forces it to be read-only, and it controls all updates
1127
* to it. This means that all pagetable updates have to go via the
1128
* hypervisor, which is moderately expensive.
1129
*
1130
* Since we're pulling the pagetable down, we switch to use init_mm,
1131
* unpin old process pagetable and mark it all read-write, which
1132
* allows further operations on it to be simple memory accesses.
1133
*
1134
* The only subtle point is that another CPU may be still using the
1135
* pagetable because of lazy tlb flushing. This means we need need to
1136
* switch all CPUs off this pagetable before we can unpin it.
1137
*/
1138
static void xen_exit_mmap(struct mm_struct *mm)
1139
{
1140
get_cpu(); /* make sure we don't move around */
1141
xen_drop_mm_ref(mm);
1142
put_cpu();
1143
1144
spin_lock(&mm->page_table_lock);
1145
1146
/* pgd may not be pinned in the error exit path of execve */
1147
if (xen_page_pinned(mm->pgd))
1148
xen_pgd_unpin(mm);
1149
1150
spin_unlock(&mm->page_table_lock);
1151
}
1152
1153
static void __init xen_pagetable_setup_start(pgd_t *base)
1154
{
1155
}
1156
1157
static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1158
{
1159
/* reserve the range used */
1160
native_pagetable_reserve(start, end);
1161
1162
/* set as RW the rest */
1163
printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1164
PFN_PHYS(pgt_buf_top));
1165
while (end < PFN_PHYS(pgt_buf_top)) {
1166
make_lowmem_page_readwrite(__va(end));
1167
end += PAGE_SIZE;
1168
}
1169
}
1170
1171
static void xen_post_allocator_init(void);
1172
1173
static void __init xen_pagetable_setup_done(pgd_t *base)
1174
{
1175
xen_setup_shared_info();
1176
xen_post_allocator_init();
1177
}
1178
1179
static void xen_write_cr2(unsigned long cr2)
1180
{
1181
percpu_read(xen_vcpu)->arch.cr2 = cr2;
1182
}
1183
1184
static unsigned long xen_read_cr2(void)
1185
{
1186
return percpu_read(xen_vcpu)->arch.cr2;
1187
}
1188
1189
unsigned long xen_read_cr2_direct(void)
1190
{
1191
return percpu_read(xen_vcpu_info.arch.cr2);
1192
}
1193
1194
static void xen_flush_tlb(void)
1195
{
1196
struct mmuext_op *op;
1197
struct multicall_space mcs;
1198
1199
preempt_disable();
1200
1201
mcs = xen_mc_entry(sizeof(*op));
1202
1203
op = mcs.args;
1204
op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1205
MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1206
1207
xen_mc_issue(PARAVIRT_LAZY_MMU);
1208
1209
preempt_enable();
1210
}
1211
1212
static void xen_flush_tlb_single(unsigned long addr)
1213
{
1214
struct mmuext_op *op;
1215
struct multicall_space mcs;
1216
1217
preempt_disable();
1218
1219
mcs = xen_mc_entry(sizeof(*op));
1220
op = mcs.args;
1221
op->cmd = MMUEXT_INVLPG_LOCAL;
1222
op->arg1.linear_addr = addr & PAGE_MASK;
1223
MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1224
1225
xen_mc_issue(PARAVIRT_LAZY_MMU);
1226
1227
preempt_enable();
1228
}
1229
1230
static void xen_flush_tlb_others(const struct cpumask *cpus,
1231
struct mm_struct *mm, unsigned long va)
1232
{
1233
struct {
1234
struct mmuext_op op;
1235
#ifdef CONFIG_SMP
1236
DECLARE_BITMAP(mask, num_processors);
1237
#else
1238
DECLARE_BITMAP(mask, NR_CPUS);
1239
#endif
1240
} *args;
1241
struct multicall_space mcs;
1242
1243
if (cpumask_empty(cpus))
1244
return; /* nothing to do */
1245
1246
mcs = xen_mc_entry(sizeof(*args));
1247
args = mcs.args;
1248
args->op.arg2.vcpumask = to_cpumask(args->mask);
1249
1250
/* Remove us, and any offline CPUS. */
1251
cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1252
cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1253
1254
if (va == TLB_FLUSH_ALL) {
1255
args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1256
} else {
1257
args->op.cmd = MMUEXT_INVLPG_MULTI;
1258
args->op.arg1.linear_addr = va;
1259
}
1260
1261
MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1262
1263
xen_mc_issue(PARAVIRT_LAZY_MMU);
1264
}
1265
1266
static unsigned long xen_read_cr3(void)
1267
{
1268
return percpu_read(xen_cr3);
1269
}
1270
1271
static void set_current_cr3(void *v)
1272
{
1273
percpu_write(xen_current_cr3, (unsigned long)v);
1274
}
1275
1276
static void __xen_write_cr3(bool kernel, unsigned long cr3)
1277
{
1278
struct mmuext_op *op;
1279
struct multicall_space mcs;
1280
unsigned long mfn;
1281
1282
if (cr3)
1283
mfn = pfn_to_mfn(PFN_DOWN(cr3));
1284
else
1285
mfn = 0;
1286
1287
WARN_ON(mfn == 0 && kernel);
1288
1289
mcs = __xen_mc_entry(sizeof(*op));
1290
1291
op = mcs.args;
1292
op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1293
op->arg1.mfn = mfn;
1294
1295
MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1296
1297
if (kernel) {
1298
percpu_write(xen_cr3, cr3);
1299
1300
/* Update xen_current_cr3 once the batch has actually
1301
been submitted. */
1302
xen_mc_callback(set_current_cr3, (void *)cr3);
1303
}
1304
}
1305
1306
static void xen_write_cr3(unsigned long cr3)
1307
{
1308
BUG_ON(preemptible());
1309
1310
xen_mc_batch(); /* disables interrupts */
1311
1312
/* Update while interrupts are disabled, so its atomic with
1313
respect to ipis */
1314
percpu_write(xen_cr3, cr3);
1315
1316
__xen_write_cr3(true, cr3);
1317
1318
#ifdef CONFIG_X86_64
1319
{
1320
pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1321
if (user_pgd)
1322
__xen_write_cr3(false, __pa(user_pgd));
1323
else
1324
__xen_write_cr3(false, 0);
1325
}
1326
#endif
1327
1328
xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1329
}
1330
1331
static int xen_pgd_alloc(struct mm_struct *mm)
1332
{
1333
pgd_t *pgd = mm->pgd;
1334
int ret = 0;
1335
1336
BUG_ON(PagePinned(virt_to_page(pgd)));
1337
1338
#ifdef CONFIG_X86_64
1339
{
1340
struct page *page = virt_to_page(pgd);
1341
pgd_t *user_pgd;
1342
1343
BUG_ON(page->private != 0);
1344
1345
ret = -ENOMEM;
1346
1347
user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1348
page->private = (unsigned long)user_pgd;
1349
1350
if (user_pgd != NULL) {
1351
user_pgd[pgd_index(VSYSCALL_START)] =
1352
__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1353
ret = 0;
1354
}
1355
1356
BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1357
}
1358
#endif
1359
1360
return ret;
1361
}
1362
1363
static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1364
{
1365
#ifdef CONFIG_X86_64
1366
pgd_t *user_pgd = xen_get_user_pgd(pgd);
1367
1368
if (user_pgd)
1369
free_page((unsigned long)user_pgd);
1370
#endif
1371
}
1372
1373
#ifdef CONFIG_X86_32
1374
static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1375
{
1376
/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1377
if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1378
pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1379
pte_val_ma(pte));
1380
1381
return pte;
1382
}
1383
#else /* CONFIG_X86_64 */
1384
static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1385
{
1386
unsigned long pfn = pte_pfn(pte);
1387
1388
/*
1389
* If the new pfn is within the range of the newly allocated
1390
* kernel pagetable, and it isn't being mapped into an
1391
* early_ioremap fixmap slot as a freshly allocated page, make sure
1392
* it is RO.
1393
*/
1394
if (((!is_early_ioremap_ptep(ptep) &&
1395
pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1396
(is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1397
pte = pte_wrprotect(pte);
1398
1399
return pte;
1400
}
1401
#endif /* CONFIG_X86_64 */
1402
1403
/* Init-time set_pte while constructing initial pagetables, which
1404
doesn't allow RO pagetable pages to be remapped RW */
1405
static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1406
{
1407
pte = mask_rw_pte(ptep, pte);
1408
1409
xen_set_pte(ptep, pte);
1410
}
1411
1412
static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1413
{
1414
struct mmuext_op op;
1415
op.cmd = cmd;
1416
op.arg1.mfn = pfn_to_mfn(pfn);
1417
if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1418
BUG();
1419
}
1420
1421
/* Early in boot, while setting up the initial pagetable, assume
1422
everything is pinned. */
1423
static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1424
{
1425
#ifdef CONFIG_FLATMEM
1426
BUG_ON(mem_map); /* should only be used early */
1427
#endif
1428
make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1429
pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1430
}
1431
1432
/* Used for pmd and pud */
1433
static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1434
{
1435
#ifdef CONFIG_FLATMEM
1436
BUG_ON(mem_map); /* should only be used early */
1437
#endif
1438
make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1439
}
1440
1441
/* Early release_pte assumes that all pts are pinned, since there's
1442
only init_mm and anything attached to that is pinned. */
1443
static void __init xen_release_pte_init(unsigned long pfn)
1444
{
1445
pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1446
make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1447
}
1448
1449
static void __init xen_release_pmd_init(unsigned long pfn)
1450
{
1451
make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1452
}
1453
1454
/* This needs to make sure the new pte page is pinned iff its being
1455
attached to a pinned pagetable. */
1456
static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1457
{
1458
struct page *page = pfn_to_page(pfn);
1459
1460
if (PagePinned(virt_to_page(mm->pgd))) {
1461
SetPagePinned(page);
1462
1463
if (!PageHighMem(page)) {
1464
make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1465
if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1466
pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1467
} else {
1468
/* make sure there are no stray mappings of
1469
this page */
1470
kmap_flush_unused();
1471
}
1472
}
1473
}
1474
1475
static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1476
{
1477
xen_alloc_ptpage(mm, pfn, PT_PTE);
1478
}
1479
1480
static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1481
{
1482
xen_alloc_ptpage(mm, pfn, PT_PMD);
1483
}
1484
1485
/* This should never happen until we're OK to use struct page */
1486
static void xen_release_ptpage(unsigned long pfn, unsigned level)
1487
{
1488
struct page *page = pfn_to_page(pfn);
1489
1490
if (PagePinned(page)) {
1491
if (!PageHighMem(page)) {
1492
if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1493
pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1494
make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1495
}
1496
ClearPagePinned(page);
1497
}
1498
}
1499
1500
static void xen_release_pte(unsigned long pfn)
1501
{
1502
xen_release_ptpage(pfn, PT_PTE);
1503
}
1504
1505
static void xen_release_pmd(unsigned long pfn)
1506
{
1507
xen_release_ptpage(pfn, PT_PMD);
1508
}
1509
1510
#if PAGETABLE_LEVELS == 4
1511
static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1512
{
1513
xen_alloc_ptpage(mm, pfn, PT_PUD);
1514
}
1515
1516
static void xen_release_pud(unsigned long pfn)
1517
{
1518
xen_release_ptpage(pfn, PT_PUD);
1519
}
1520
#endif
1521
1522
void __init xen_reserve_top(void)
1523
{
1524
#ifdef CONFIG_X86_32
1525
unsigned long top = HYPERVISOR_VIRT_START;
1526
struct xen_platform_parameters pp;
1527
1528
if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1529
top = pp.virt_start;
1530
1531
reserve_top_address(-top);
1532
#endif /* CONFIG_X86_32 */
1533
}
1534
1535
/*
1536
* Like __va(), but returns address in the kernel mapping (which is
1537
* all we have until the physical memory mapping has been set up.
1538
*/
1539
static void *__ka(phys_addr_t paddr)
1540
{
1541
#ifdef CONFIG_X86_64
1542
return (void *)(paddr + __START_KERNEL_map);
1543
#else
1544
return __va(paddr);
1545
#endif
1546
}
1547
1548
/* Convert a machine address to physical address */
1549
static unsigned long m2p(phys_addr_t maddr)
1550
{
1551
phys_addr_t paddr;
1552
1553
maddr &= PTE_PFN_MASK;
1554
paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1555
1556
return paddr;
1557
}
1558
1559
/* Convert a machine address to kernel virtual */
1560
static void *m2v(phys_addr_t maddr)
1561
{
1562
return __ka(m2p(maddr));
1563
}
1564
1565
/* Set the page permissions on an identity-mapped pages */
1566
static void set_page_prot(void *addr, pgprot_t prot)
1567
{
1568
unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1569
pte_t pte = pfn_pte(pfn, prot);
1570
1571
if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1572
BUG();
1573
}
1574
1575
static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1576
{
1577
unsigned pmdidx, pteidx;
1578
unsigned ident_pte;
1579
unsigned long pfn;
1580
1581
level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1582
PAGE_SIZE);
1583
1584
ident_pte = 0;
1585
pfn = 0;
1586
for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1587
pte_t *pte_page;
1588
1589
/* Reuse or allocate a page of ptes */
1590
if (pmd_present(pmd[pmdidx]))
1591
pte_page = m2v(pmd[pmdidx].pmd);
1592
else {
1593
/* Check for free pte pages */
1594
if (ident_pte == LEVEL1_IDENT_ENTRIES)
1595
break;
1596
1597
pte_page = &level1_ident_pgt[ident_pte];
1598
ident_pte += PTRS_PER_PTE;
1599
1600
pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1601
}
1602
1603
/* Install mappings */
1604
for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1605
pte_t pte;
1606
1607
#ifdef CONFIG_X86_32
1608
if (pfn > max_pfn_mapped)
1609
max_pfn_mapped = pfn;
1610
#endif
1611
1612
if (!pte_none(pte_page[pteidx]))
1613
continue;
1614
1615
pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1616
pte_page[pteidx] = pte;
1617
}
1618
}
1619
1620
for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1621
set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1622
1623
set_page_prot(pmd, PAGE_KERNEL_RO);
1624
}
1625
1626
void __init xen_setup_machphys_mapping(void)
1627
{
1628
struct xen_machphys_mapping mapping;
1629
unsigned long machine_to_phys_nr_ents;
1630
1631
if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1632
machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1633
machine_to_phys_nr_ents = mapping.max_mfn + 1;
1634
} else {
1635
machine_to_phys_nr_ents = MACH2PHYS_NR_ENTRIES;
1636
}
1637
machine_to_phys_order = fls(machine_to_phys_nr_ents - 1);
1638
}
1639
1640
#ifdef CONFIG_X86_64
1641
static void convert_pfn_mfn(void *v)
1642
{
1643
pte_t *pte = v;
1644
int i;
1645
1646
/* All levels are converted the same way, so just treat them
1647
as ptes. */
1648
for (i = 0; i < PTRS_PER_PTE; i++)
1649
pte[i] = xen_make_pte(pte[i].pte);
1650
}
1651
1652
/*
1653
* Set up the initial kernel pagetable.
1654
*
1655
* We can construct this by grafting the Xen provided pagetable into
1656
* head_64.S's preconstructed pagetables. We copy the Xen L2's into
1657
* level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1658
* means that only the kernel has a physical mapping to start with -
1659
* but that's enough to get __va working. We need to fill in the rest
1660
* of the physical mapping once some sort of allocator has been set
1661
* up.
1662
*/
1663
pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1664
unsigned long max_pfn)
1665
{
1666
pud_t *l3;
1667
pmd_t *l2;
1668
1669
/* max_pfn_mapped is the last pfn mapped in the initial memory
1670
* mappings. Considering that on Xen after the kernel mappings we
1671
* have the mappings of some pages that don't exist in pfn space, we
1672
* set max_pfn_mapped to the last real pfn mapped. */
1673
max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1674
1675
/* Zap identity mapping */
1676
init_level4_pgt[0] = __pgd(0);
1677
1678
/* Pre-constructed entries are in pfn, so convert to mfn */
1679
convert_pfn_mfn(init_level4_pgt);
1680
convert_pfn_mfn(level3_ident_pgt);
1681
convert_pfn_mfn(level3_kernel_pgt);
1682
1683
l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1684
l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1685
1686
memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1687
memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1688
1689
l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1690
l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1691
memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1692
1693
/* Set up identity map */
1694
xen_map_identity_early(level2_ident_pgt, max_pfn);
1695
1696
/* Make pagetable pieces RO */
1697
set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1698
set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1699
set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1700
set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1701
set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1702
set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1703
1704
/* Pin down new L4 */
1705
pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1706
PFN_DOWN(__pa_symbol(init_level4_pgt)));
1707
1708
/* Unpin Xen-provided one */
1709
pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1710
1711
/* Switch over */
1712
pgd = init_level4_pgt;
1713
1714
/*
1715
* At this stage there can be no user pgd, and no page
1716
* structure to attach it to, so make sure we just set kernel
1717
* pgd.
1718
*/
1719
xen_mc_batch();
1720
__xen_write_cr3(true, __pa(pgd));
1721
xen_mc_issue(PARAVIRT_LAZY_CPU);
1722
1723
memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1724
__pa(xen_start_info->pt_base +
1725
xen_start_info->nr_pt_frames * PAGE_SIZE),
1726
"XEN PAGETABLES");
1727
1728
return pgd;
1729
}
1730
#else /* !CONFIG_X86_64 */
1731
static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1732
static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1733
1734
static void __init xen_write_cr3_init(unsigned long cr3)
1735
{
1736
unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1737
1738
BUG_ON(read_cr3() != __pa(initial_page_table));
1739
BUG_ON(cr3 != __pa(swapper_pg_dir));
1740
1741
/*
1742
* We are switching to swapper_pg_dir for the first time (from
1743
* initial_page_table) and therefore need to mark that page
1744
* read-only and then pin it.
1745
*
1746
* Xen disallows sharing of kernel PMDs for PAE
1747
* guests. Therefore we must copy the kernel PMD from
1748
* initial_page_table into a new kernel PMD to be used in
1749
* swapper_pg_dir.
1750
*/
1751
swapper_kernel_pmd =
1752
extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1753
memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1754
sizeof(pmd_t) * PTRS_PER_PMD);
1755
swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1756
__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1757
set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1758
1759
set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1760
xen_write_cr3(cr3);
1761
pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1762
1763
pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1764
PFN_DOWN(__pa(initial_page_table)));
1765
set_page_prot(initial_page_table, PAGE_KERNEL);
1766
set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1767
1768
pv_mmu_ops.write_cr3 = &xen_write_cr3;
1769
}
1770
1771
pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1772
unsigned long max_pfn)
1773
{
1774
pmd_t *kernel_pmd;
1775
1776
initial_kernel_pmd =
1777
extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1778
1779
max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1780
xen_start_info->nr_pt_frames * PAGE_SIZE +
1781
512*1024);
1782
1783
kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1784
memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1785
1786
xen_map_identity_early(initial_kernel_pmd, max_pfn);
1787
1788
memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1789
initial_page_table[KERNEL_PGD_BOUNDARY] =
1790
__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1791
1792
set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1793
set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1794
set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1795
1796
pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1797
1798
pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1799
PFN_DOWN(__pa(initial_page_table)));
1800
xen_write_cr3(__pa(initial_page_table));
1801
1802
memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1803
__pa(xen_start_info->pt_base +
1804
xen_start_info->nr_pt_frames * PAGE_SIZE),
1805
"XEN PAGETABLES");
1806
1807
return initial_page_table;
1808
}
1809
#endif /* CONFIG_X86_64 */
1810
1811
static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1812
1813
static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1814
{
1815
pte_t pte;
1816
1817
phys >>= PAGE_SHIFT;
1818
1819
switch (idx) {
1820
case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1821
#ifdef CONFIG_X86_F00F_BUG
1822
case FIX_F00F_IDT:
1823
#endif
1824
#ifdef CONFIG_X86_32
1825
case FIX_WP_TEST:
1826
case FIX_VDSO:
1827
# ifdef CONFIG_HIGHMEM
1828
case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1829
# endif
1830
#else
1831
case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1832
#endif
1833
case FIX_TEXT_POKE0:
1834
case FIX_TEXT_POKE1:
1835
/* All local page mappings */
1836
pte = pfn_pte(phys, prot);
1837
break;
1838
1839
#ifdef CONFIG_X86_LOCAL_APIC
1840
case FIX_APIC_BASE: /* maps dummy local APIC */
1841
pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1842
break;
1843
#endif
1844
1845
#ifdef CONFIG_X86_IO_APIC
1846
case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1847
/*
1848
* We just don't map the IO APIC - all access is via
1849
* hypercalls. Keep the address in the pte for reference.
1850
*/
1851
pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1852
break;
1853
#endif
1854
1855
case FIX_PARAVIRT_BOOTMAP:
1856
/* This is an MFN, but it isn't an IO mapping from the
1857
IO domain */
1858
pte = mfn_pte(phys, prot);
1859
break;
1860
1861
default:
1862
/* By default, set_fixmap is used for hardware mappings */
1863
pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1864
break;
1865
}
1866
1867
__native_set_fixmap(idx, pte);
1868
1869
#ifdef CONFIG_X86_64
1870
/* Replicate changes to map the vsyscall page into the user
1871
pagetable vsyscall mapping. */
1872
if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1873
unsigned long vaddr = __fix_to_virt(idx);
1874
set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1875
}
1876
#endif
1877
}
1878
1879
void __init xen_ident_map_ISA(void)
1880
{
1881
unsigned long pa;
1882
1883
/*
1884
* If we're dom0, then linear map the ISA machine addresses into
1885
* the kernel's address space.
1886
*/
1887
if (!xen_initial_domain())
1888
return;
1889
1890
xen_raw_printk("Xen: setup ISA identity maps\n");
1891
1892
for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
1893
pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
1894
1895
if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
1896
BUG();
1897
}
1898
1899
xen_flush_tlb();
1900
}
1901
1902
static void __init xen_post_allocator_init(void)
1903
{
1904
#ifdef CONFIG_XEN_DEBUG
1905
pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte_debug);
1906
#endif
1907
pv_mmu_ops.set_pte = xen_set_pte;
1908
pv_mmu_ops.set_pmd = xen_set_pmd;
1909
pv_mmu_ops.set_pud = xen_set_pud;
1910
#if PAGETABLE_LEVELS == 4
1911
pv_mmu_ops.set_pgd = xen_set_pgd;
1912
#endif
1913
1914
/* This will work as long as patching hasn't happened yet
1915
(which it hasn't) */
1916
pv_mmu_ops.alloc_pte = xen_alloc_pte;
1917
pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1918
pv_mmu_ops.release_pte = xen_release_pte;
1919
pv_mmu_ops.release_pmd = xen_release_pmd;
1920
#if PAGETABLE_LEVELS == 4
1921
pv_mmu_ops.alloc_pud = xen_alloc_pud;
1922
pv_mmu_ops.release_pud = xen_release_pud;
1923
#endif
1924
1925
#ifdef CONFIG_X86_64
1926
SetPagePinned(virt_to_page(level3_user_vsyscall));
1927
#endif
1928
xen_mark_init_mm_pinned();
1929
}
1930
1931
static void xen_leave_lazy_mmu(void)
1932
{
1933
preempt_disable();
1934
xen_mc_flush();
1935
paravirt_leave_lazy_mmu();
1936
preempt_enable();
1937
}
1938
1939
static const struct pv_mmu_ops xen_mmu_ops __initconst = {
1940
.read_cr2 = xen_read_cr2,
1941
.write_cr2 = xen_write_cr2,
1942
1943
.read_cr3 = xen_read_cr3,
1944
#ifdef CONFIG_X86_32
1945
.write_cr3 = xen_write_cr3_init,
1946
#else
1947
.write_cr3 = xen_write_cr3,
1948
#endif
1949
1950
.flush_tlb_user = xen_flush_tlb,
1951
.flush_tlb_kernel = xen_flush_tlb,
1952
.flush_tlb_single = xen_flush_tlb_single,
1953
.flush_tlb_others = xen_flush_tlb_others,
1954
1955
.pte_update = paravirt_nop,
1956
.pte_update_defer = paravirt_nop,
1957
1958
.pgd_alloc = xen_pgd_alloc,
1959
.pgd_free = xen_pgd_free,
1960
1961
.alloc_pte = xen_alloc_pte_init,
1962
.release_pte = xen_release_pte_init,
1963
.alloc_pmd = xen_alloc_pmd_init,
1964
.release_pmd = xen_release_pmd_init,
1965
1966
.set_pte = xen_set_pte_init,
1967
.set_pte_at = xen_set_pte_at,
1968
.set_pmd = xen_set_pmd_hyper,
1969
1970
.ptep_modify_prot_start = __ptep_modify_prot_start,
1971
.ptep_modify_prot_commit = __ptep_modify_prot_commit,
1972
1973
.pte_val = PV_CALLEE_SAVE(xen_pte_val),
1974
.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
1975
1976
.make_pte = PV_CALLEE_SAVE(xen_make_pte),
1977
.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
1978
1979
#ifdef CONFIG_X86_PAE
1980
.set_pte_atomic = xen_set_pte_atomic,
1981
.pte_clear = xen_pte_clear,
1982
.pmd_clear = xen_pmd_clear,
1983
#endif /* CONFIG_X86_PAE */
1984
.set_pud = xen_set_pud_hyper,
1985
1986
.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
1987
.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
1988
1989
#if PAGETABLE_LEVELS == 4
1990
.pud_val = PV_CALLEE_SAVE(xen_pud_val),
1991
.make_pud = PV_CALLEE_SAVE(xen_make_pud),
1992
.set_pgd = xen_set_pgd_hyper,
1993
1994
.alloc_pud = xen_alloc_pmd_init,
1995
.release_pud = xen_release_pmd_init,
1996
#endif /* PAGETABLE_LEVELS == 4 */
1997
1998
.activate_mm = xen_activate_mm,
1999
.dup_mmap = xen_dup_mmap,
2000
.exit_mmap = xen_exit_mmap,
2001
2002
.lazy_mode = {
2003
.enter = paravirt_enter_lazy_mmu,
2004
.leave = xen_leave_lazy_mmu,
2005
},
2006
2007
.set_fixmap = xen_set_fixmap,
2008
};
2009
2010
void __init xen_init_mmu_ops(void)
2011
{
2012
x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2013
x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2014
x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2015
pv_mmu_ops = xen_mmu_ops;
2016
2017
memset(dummy_mapping, 0xff, PAGE_SIZE);
2018
}
2019
2020
/* Protected by xen_reservation_lock. */
2021
#define MAX_CONTIG_ORDER 9 /* 2MB */
2022
static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2023
2024
#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2025
static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2026
unsigned long *in_frames,
2027
unsigned long *out_frames)
2028
{
2029
int i;
2030
struct multicall_space mcs;
2031
2032
xen_mc_batch();
2033
for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2034
mcs = __xen_mc_entry(0);
2035
2036
if (in_frames)
2037
in_frames[i] = virt_to_mfn(vaddr);
2038
2039
MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2040
__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2041
2042
if (out_frames)
2043
out_frames[i] = virt_to_pfn(vaddr);
2044
}
2045
xen_mc_issue(0);
2046
}
2047
2048
/*
2049
* Update the pfn-to-mfn mappings for a virtual address range, either to
2050
* point to an array of mfns, or contiguously from a single starting
2051
* mfn.
2052
*/
2053
static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2054
unsigned long *mfns,
2055
unsigned long first_mfn)
2056
{
2057
unsigned i, limit;
2058
unsigned long mfn;
2059
2060
xen_mc_batch();
2061
2062
limit = 1u << order;
2063
for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2064
struct multicall_space mcs;
2065
unsigned flags;
2066
2067
mcs = __xen_mc_entry(0);
2068
if (mfns)
2069
mfn = mfns[i];
2070
else
2071
mfn = first_mfn + i;
2072
2073
if (i < (limit - 1))
2074
flags = 0;
2075
else {
2076
if (order == 0)
2077
flags = UVMF_INVLPG | UVMF_ALL;
2078
else
2079
flags = UVMF_TLB_FLUSH | UVMF_ALL;
2080
}
2081
2082
MULTI_update_va_mapping(mcs.mc, vaddr,
2083
mfn_pte(mfn, PAGE_KERNEL), flags);
2084
2085
set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2086
}
2087
2088
xen_mc_issue(0);
2089
}
2090
2091
/*
2092
* Perform the hypercall to exchange a region of our pfns to point to
2093
* memory with the required contiguous alignment. Takes the pfns as
2094
* input, and populates mfns as output.
2095
*
2096
* Returns a success code indicating whether the hypervisor was able to
2097
* satisfy the request or not.
2098
*/
2099
static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2100
unsigned long *pfns_in,
2101
unsigned long extents_out,
2102
unsigned int order_out,
2103
unsigned long *mfns_out,
2104
unsigned int address_bits)
2105
{
2106
long rc;
2107
int success;
2108
2109
struct xen_memory_exchange exchange = {
2110
.in = {
2111
.nr_extents = extents_in,
2112
.extent_order = order_in,
2113
.extent_start = pfns_in,
2114
.domid = DOMID_SELF
2115
},
2116
.out = {
2117
.nr_extents = extents_out,
2118
.extent_order = order_out,
2119
.extent_start = mfns_out,
2120
.address_bits = address_bits,
2121
.domid = DOMID_SELF
2122
}
2123
};
2124
2125
BUG_ON(extents_in << order_in != extents_out << order_out);
2126
2127
rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2128
success = (exchange.nr_exchanged == extents_in);
2129
2130
BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2131
BUG_ON(success && (rc != 0));
2132
2133
return success;
2134
}
2135
2136
int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2137
unsigned int address_bits)
2138
{
2139
unsigned long *in_frames = discontig_frames, out_frame;
2140
unsigned long flags;
2141
int success;
2142
2143
/*
2144
* Currently an auto-translated guest will not perform I/O, nor will
2145
* it require PAE page directories below 4GB. Therefore any calls to
2146
* this function are redundant and can be ignored.
2147
*/
2148
2149
if (xen_feature(XENFEAT_auto_translated_physmap))
2150
return 0;
2151
2152
if (unlikely(order > MAX_CONTIG_ORDER))
2153
return -ENOMEM;
2154
2155
memset((void *) vstart, 0, PAGE_SIZE << order);
2156
2157
spin_lock_irqsave(&xen_reservation_lock, flags);
2158
2159
/* 1. Zap current PTEs, remembering MFNs. */
2160
xen_zap_pfn_range(vstart, order, in_frames, NULL);
2161
2162
/* 2. Get a new contiguous memory extent. */
2163
out_frame = virt_to_pfn(vstart);
2164
success = xen_exchange_memory(1UL << order, 0, in_frames,
2165
1, order, &out_frame,
2166
address_bits);
2167
2168
/* 3. Map the new extent in place of old pages. */
2169
if (success)
2170
xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2171
else
2172
xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2173
2174
spin_unlock_irqrestore(&xen_reservation_lock, flags);
2175
2176
return success ? 0 : -ENOMEM;
2177
}
2178
EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2179
2180
void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2181
{
2182
unsigned long *out_frames = discontig_frames, in_frame;
2183
unsigned long flags;
2184
int success;
2185
2186
if (xen_feature(XENFEAT_auto_translated_physmap))
2187
return;
2188
2189
if (unlikely(order > MAX_CONTIG_ORDER))
2190
return;
2191
2192
memset((void *) vstart, 0, PAGE_SIZE << order);
2193
2194
spin_lock_irqsave(&xen_reservation_lock, flags);
2195
2196
/* 1. Find start MFN of contiguous extent. */
2197
in_frame = virt_to_mfn(vstart);
2198
2199
/* 2. Zap current PTEs. */
2200
xen_zap_pfn_range(vstart, order, NULL, out_frames);
2201
2202
/* 3. Do the exchange for non-contiguous MFNs. */
2203
success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2204
0, out_frames, 0);
2205
2206
/* 4. Map new pages in place of old pages. */
2207
if (success)
2208
xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2209
else
2210
xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2211
2212
spin_unlock_irqrestore(&xen_reservation_lock, flags);
2213
}
2214
EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2215
2216
#ifdef CONFIG_XEN_PVHVM
2217
static void xen_hvm_exit_mmap(struct mm_struct *mm)
2218
{
2219
struct xen_hvm_pagetable_dying a;
2220
int rc;
2221
2222
a.domid = DOMID_SELF;
2223
a.gpa = __pa(mm->pgd);
2224
rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2225
WARN_ON_ONCE(rc < 0);
2226
}
2227
2228
static int is_pagetable_dying_supported(void)
2229
{
2230
struct xen_hvm_pagetable_dying a;
2231
int rc = 0;
2232
2233
a.domid = DOMID_SELF;
2234
a.gpa = 0x00;
2235
rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2236
if (rc < 0) {
2237
printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2238
return 0;
2239
}
2240
return 1;
2241
}
2242
2243
void __init xen_hvm_init_mmu_ops(void)
2244
{
2245
if (is_pagetable_dying_supported())
2246
pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2247
}
2248
#endif
2249
2250
#define REMAP_BATCH_SIZE 16
2251
2252
struct remap_data {
2253
unsigned long mfn;
2254
pgprot_t prot;
2255
struct mmu_update *mmu_update;
2256
};
2257
2258
static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2259
unsigned long addr, void *data)
2260
{
2261
struct remap_data *rmd = data;
2262
pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2263
2264
rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2265
rmd->mmu_update->val = pte_val_ma(pte);
2266
rmd->mmu_update++;
2267
2268
return 0;
2269
}
2270
2271
int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2272
unsigned long addr,
2273
unsigned long mfn, int nr,
2274
pgprot_t prot, unsigned domid)
2275
{
2276
struct remap_data rmd;
2277
struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2278
int batch;
2279
unsigned long range;
2280
int err = 0;
2281
2282
prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2283
2284
BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2285
(VM_PFNMAP | VM_RESERVED | VM_IO)));
2286
2287
rmd.mfn = mfn;
2288
rmd.prot = prot;
2289
2290
while (nr) {
2291
batch = min(REMAP_BATCH_SIZE, nr);
2292
range = (unsigned long)batch << PAGE_SHIFT;
2293
2294
rmd.mmu_update = mmu_update;
2295
err = apply_to_page_range(vma->vm_mm, addr, range,
2296
remap_area_mfn_pte_fn, &rmd);
2297
if (err)
2298
goto out;
2299
2300
err = -EFAULT;
2301
if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2302
goto out;
2303
2304
nr -= batch;
2305
addr += range;
2306
}
2307
2308
err = 0;
2309
out:
2310
2311
flush_tlb_all();
2312
2313
return err;
2314
}
2315
EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2316
2317
#ifdef CONFIG_XEN_DEBUG_FS
2318
static int p2m_dump_open(struct inode *inode, struct file *filp)
2319
{
2320
return single_open(filp, p2m_dump_show, NULL);
2321
}
2322
2323
static const struct file_operations p2m_dump_fops = {
2324
.open = p2m_dump_open,
2325
.read = seq_read,
2326
.llseek = seq_lseek,
2327
.release = single_release,
2328
};
2329
#endif /* CONFIG_XEN_DEBUG_FS */
2330
2331