Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/xtensa/kernel/vectors.S
10817 views
1
/*
2
* arch/xtensa/kernel/vectors.S
3
*
4
* This file contains all exception vectors (user, kernel, and double),
5
* as well as the window vectors (overflow and underflow), and the debug
6
* vector. These are the primary vectors executed by the processor if an
7
* exception occurs.
8
*
9
* This file is subject to the terms and conditions of the GNU General
10
* Public License. See the file "COPYING" in the main directory of
11
* this archive for more details.
12
*
13
* Copyright (C) 2005 Tensilica, Inc.
14
*
15
* Chris Zankel <[email protected]>
16
*
17
*/
18
19
/*
20
* We use a two-level table approach. The user and kernel exception vectors
21
* use a first-level dispatch table to dispatch the exception to a registered
22
* fast handler or the default handler, if no fast handler was registered.
23
* The default handler sets up a C-stack and dispatches the exception to a
24
* registerd C handler in the second-level dispatch table.
25
*
26
* Fast handler entry condition:
27
*
28
* a0: trashed, original value saved on stack (PT_AREG0)
29
* a1: a1
30
* a2: new stack pointer, original value in depc
31
* a3: dispatch table
32
* depc: a2, original value saved on stack (PT_DEPC)
33
* excsave_1: a3
34
*
35
* The value for PT_DEPC saved to stack also functions as a boolean to
36
* indicate that the exception is either a double or a regular exception:
37
*
38
* PT_DEPC >= VALID_DOUBLE_EXCEPTION_ADDRESS: double exception
39
* < VALID_DOUBLE_EXCEPTION_ADDRESS: regular exception
40
*
41
* Note: Neither the kernel nor the user exception handler generate literals.
42
*
43
*/
44
45
#include <linux/linkage.h>
46
#include <asm/ptrace.h>
47
#include <asm/current.h>
48
#include <asm/asm-offsets.h>
49
#include <asm/pgtable.h>
50
#include <asm/processor.h>
51
#include <asm/page.h>
52
#include <asm/thread_info.h>
53
54
#define WINDOW_VECTORS_SIZE 0x180
55
56
57
/*
58
* User exception vector. (Exceptions with PS.UM == 1, PS.EXCM == 0)
59
*
60
* We get here when an exception occurred while we were in userland.
61
* We switch to the kernel stack and jump to the first level handler
62
* associated to the exception cause.
63
*
64
* Note: the saved kernel stack pointer (EXC_TABLE_KSTK) is already
65
* decremented by PT_USER_SIZE.
66
*/
67
68
.section .UserExceptionVector.text, "ax"
69
70
ENTRY(_UserExceptionVector)
71
72
xsr a3, EXCSAVE_1 # save a3 and get dispatch table
73
wsr a2, DEPC # save a2
74
l32i a2, a3, EXC_TABLE_KSTK # load kernel stack to a2
75
s32i a0, a2, PT_AREG0 # save a0 to ESF
76
rsr a0, EXCCAUSE # retrieve exception cause
77
s32i a0, a2, PT_DEPC # mark it as a regular exception
78
addx4 a0, a0, a3 # find entry in table
79
l32i a0, a0, EXC_TABLE_FAST_USER # load handler
80
jx a0
81
82
/*
83
* Kernel exception vector. (Exceptions with PS.UM == 0, PS.EXCM == 0)
84
*
85
* We get this exception when we were already in kernel space.
86
* We decrement the current stack pointer (kernel) by PT_SIZE and
87
* jump to the first-level handler associated with the exception cause.
88
*
89
* Note: we need to preserve space for the spill region.
90
*/
91
92
.section .KernelExceptionVector.text, "ax"
93
94
ENTRY(_KernelExceptionVector)
95
96
xsr a3, EXCSAVE_1 # save a3, and get dispatch table
97
wsr a2, DEPC # save a2
98
addi a2, a1, -16-PT_SIZE # adjust stack pointer
99
s32i a0, a2, PT_AREG0 # save a0 to ESF
100
rsr a0, EXCCAUSE # retrieve exception cause
101
s32i a0, a2, PT_DEPC # mark it as a regular exception
102
addx4 a0, a0, a3 # find entry in table
103
l32i a0, a0, EXC_TABLE_FAST_KERNEL # load handler address
104
jx a0
105
106
107
/*
108
* Double exception vector (Exceptions with PS.EXCM == 1)
109
* We get this exception when another exception occurs while were are
110
* already in an exception, such as window overflow/underflow exception,
111
* or 'expected' exceptions, for example memory exception when we were trying
112
* to read data from an invalid address in user space.
113
*
114
* Note that this vector is never invoked for level-1 interrupts, because such
115
* interrupts are disabled (masked) when PS.EXCM is set.
116
*
117
* We decode the exception and take the appropriate action. However, the
118
* double exception vector is much more careful, because a lot more error
119
* cases go through the double exception vector than through the user and
120
* kernel exception vectors.
121
*
122
* Occasionally, the kernel expects a double exception to occur. This usually
123
* happens when accessing user-space memory with the user's permissions
124
* (l32e/s32e instructions). The kernel state, though, is not always suitable
125
* for immediate transfer of control to handle_double, where "normal" exception
126
* processing occurs. Also in kernel mode, TLB misses can occur if accessing
127
* vmalloc memory, possibly requiring repair in a double exception handler.
128
*
129
* The variable at TABLE_FIXUP offset from the pointer in EXCSAVE_1 doubles as
130
* a boolean variable and a pointer to a fixup routine. If the variable
131
* EXC_TABLE_FIXUP is non-zero, this handler jumps to that address. A value of
132
* zero indicates to use the default kernel/user exception handler.
133
* There is only one exception, when the value is identical to the exc_table
134
* label, the kernel is in trouble. This mechanism is used to protect critical
135
* sections, mainly when the handler writes to the stack to assert the stack
136
* pointer is valid. Once the fixup/default handler leaves that area, the
137
* EXC_TABLE_FIXUP variable is reset to the fixup handler or zero.
138
*
139
* Procedures wishing to use this mechanism should set EXC_TABLE_FIXUP to the
140
* nonzero address of a fixup routine before it could cause a double exception
141
* and reset it before it returns.
142
*
143
* Some other things to take care of when a fast exception handler doesn't
144
* specify a particular fixup handler but wants to use the default handlers:
145
*
146
* - The original stack pointer (in a1) must not be modified. The fast
147
* exception handler should only use a2 as the stack pointer.
148
*
149
* - If the fast handler manipulates the stack pointer (in a2), it has to
150
* register a valid fixup handler and cannot use the default handlers.
151
*
152
* - The handler can use any other generic register from a3 to a15, but it
153
* must save the content of these registers to stack (PT_AREG3...PT_AREGx)
154
*
155
* - These registers must be saved before a double exception can occur.
156
*
157
* - If we ever implement handling signals while in double exceptions, the
158
* number of registers a fast handler has saved (excluding a0 and a1) must
159
* be written to PT_AREG1. (1 if only a3 is used, 2 for a3 and a4, etc. )
160
*
161
* The fixup handlers are special handlers:
162
*
163
* - Fixup entry conditions differ from regular exceptions:
164
*
165
* a0: DEPC
166
* a1: a1
167
* a2: trashed, original value in EXC_TABLE_DOUBLE_A2
168
* a3: exctable
169
* depc: a0
170
* excsave_1: a3
171
*
172
* - When the kernel enters the fixup handler, it still assumes it is in a
173
* critical section, so EXC_TABLE_FIXUP variable is set to exc_table.
174
* The fixup handler, therefore, has to re-register itself as the fixup
175
* handler before it returns from the double exception.
176
*
177
* - Fixup handler can share the same exception frame with the fast handler.
178
* The kernel stack pointer is not changed when entering the fixup handler.
179
*
180
* - Fixup handlers can jump to the default kernel and user exception
181
* handlers. Before it jumps, though, it has to setup a exception frame
182
* on stack. Because the default handler resets the register fixup handler
183
* the fixup handler must make sure that the default handler returns to
184
* it instead of the exception address, so it can re-register itself as
185
* the fixup handler.
186
*
187
* In case of a critical condition where the kernel cannot recover, we jump
188
* to unrecoverable_exception with the following entry conditions.
189
* All registers a0...a15 are unchanged from the last exception, except:
190
*
191
* a0: last address before we jumped to the unrecoverable_exception.
192
* excsave_1: a0
193
*
194
*
195
* See the handle_alloca_user and spill_registers routines for example clients.
196
*
197
* FIXME: Note: we currently don't allow signal handling coming from a double
198
* exception, so the item markt with (*) is not required.
199
*/
200
201
.section .DoubleExceptionVector.text, "ax"
202
.begin literal_prefix .DoubleExceptionVector
203
204
ENTRY(_DoubleExceptionVector)
205
206
/* Deliberately destroy excsave (don't assume it's value was valid). */
207
208
wsr a3, EXCSAVE_1 # save a3
209
210
/* Check for kernel double exception (usually fatal). */
211
212
rsr a3, PS
213
_bbci.l a3, PS_UM_BIT, .Lksp
214
215
/* Check if we are currently handling a window exception. */
216
/* Note: We don't need to indicate that we enter a critical section. */
217
218
xsr a0, DEPC # get DEPC, save a0
219
220
movi a3, XCHAL_WINDOW_VECTORS_VADDR
221
_bltu a0, a3, .Lfixup
222
addi a3, a3, WINDOW_VECTORS_SIZE
223
_bgeu a0, a3, .Lfixup
224
225
/* Window overflow/underflow exception. Get stack pointer. */
226
227
mov a3, a2
228
movi a2, exc_table
229
l32i a2, a2, EXC_TABLE_KSTK
230
231
/* Check for overflow/underflow exception, jump if overflow. */
232
233
_bbci.l a0, 6, .Lovfl
234
235
/* a0: depc, a1: a1, a2: kstk, a3: a2, depc: a0, excsave: a3 */
236
237
/* Restart window underflow exception.
238
* We return to the instruction in user space that caused the window
239
* underflow exception. Therefore, we change window base to the value
240
* before we entered the window underflow exception and prepare the
241
* registers to return as if we were coming from a regular exception
242
* by changing depc (in a0).
243
* Note: We can trash the current window frame (a0...a3) and depc!
244
*/
245
246
wsr a2, DEPC # save stack pointer temporarily
247
rsr a0, PS
248
extui a0, a0, PS_OWB_SHIFT, 4
249
wsr a0, WINDOWBASE
250
rsync
251
252
/* We are now in the previous window frame. Save registers again. */
253
254
xsr a2, DEPC # save a2 and get stack pointer
255
s32i a0, a2, PT_AREG0
256
257
wsr a3, EXCSAVE_1 # save a3
258
movi a3, exc_table
259
260
rsr a0, EXCCAUSE
261
s32i a0, a2, PT_DEPC # mark it as a regular exception
262
addx4 a0, a0, a3
263
l32i a0, a0, EXC_TABLE_FAST_USER
264
jx a0
265
266
.Lfixup:/* Check for a fixup handler or if we were in a critical section. */
267
268
/* a0: depc, a1: a1, a2: a2, a3: trashed, depc: a0, excsave1: a3 */
269
270
movi a3, exc_table
271
s32i a2, a3, EXC_TABLE_DOUBLE_SAVE # temporary variable
272
273
/* Enter critical section. */
274
275
l32i a2, a3, EXC_TABLE_FIXUP
276
s32i a3, a3, EXC_TABLE_FIXUP
277
beq a2, a3, .Lunrecoverable_fixup # critical!
278
beqz a2, .Ldflt # no handler was registered
279
280
/* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave: a3 */
281
282
jx a2
283
284
.Ldflt: /* Get stack pointer. */
285
286
l32i a3, a3, EXC_TABLE_DOUBLE_SAVE
287
addi a2, a3, -PT_USER_SIZE
288
289
.Lovfl: /* Jump to default handlers. */
290
291
/* a0: depc, a1: a1, a2: kstk, a3: a2, depc: a0, excsave: a3 */
292
293
xsr a3, DEPC
294
s32i a0, a2, PT_DEPC
295
s32i a3, a2, PT_AREG0
296
297
/* a0: avail, a1: a1, a2: kstk, a3: avail, depc: a2, excsave: a3 */
298
299
movi a3, exc_table
300
rsr a0, EXCCAUSE
301
addx4 a0, a0, a3
302
l32i a0, a0, EXC_TABLE_FAST_USER
303
jx a0
304
305
/*
306
* We only allow the ITLB miss exception if we are in kernel space.
307
* All other exceptions are unexpected and thus unrecoverable!
308
*/
309
310
#ifdef CONFIG_MMU
311
.extern fast_second_level_miss_double_kernel
312
313
.Lksp: /* a0: a0, a1: a1, a2: a2, a3: trashed, depc: depc, excsave: a3 */
314
315
rsr a3, EXCCAUSE
316
beqi a3, EXCCAUSE_ITLB_MISS, 1f
317
addi a3, a3, -EXCCAUSE_DTLB_MISS
318
bnez a3, .Lunrecoverable
319
1: movi a3, fast_second_level_miss_double_kernel
320
jx a3
321
#else
322
.equ .Lksp, .Lunrecoverable
323
#endif
324
325
/* Critical! We can't handle this situation. PANIC! */
326
327
.extern unrecoverable_exception
328
329
.Lunrecoverable_fixup:
330
l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
331
xsr a0, DEPC
332
333
.Lunrecoverable:
334
rsr a3, EXCSAVE_1
335
wsr a0, EXCSAVE_1
336
movi a0, unrecoverable_exception
337
callx0 a0
338
339
.end literal_prefix
340
341
342
/*
343
* Debug interrupt vector
344
*
345
* There is not much space here, so simply jump to another handler.
346
* EXCSAVE[DEBUGLEVEL] has been set to that handler.
347
*/
348
349
.section .DebugInterruptVector.text, "ax"
350
351
ENTRY(_DebugInterruptVector)
352
xsr a0, EXCSAVE + XCHAL_DEBUGLEVEL
353
jx a0
354
355
356
357
/* Window overflow and underflow handlers.
358
* The handlers must be 64 bytes apart, first starting with the underflow
359
* handlers underflow-4 to underflow-12, then the overflow handlers
360
* overflow-4 to overflow-12.
361
*
362
* Note: We rerun the underflow handlers if we hit an exception, so
363
* we try to access any page that would cause a page fault early.
364
*/
365
366
.section .WindowVectors.text, "ax"
367
368
369
/* 4-Register Window Overflow Vector (Handler) */
370
371
.align 64
372
.global _WindowOverflow4
373
_WindowOverflow4:
374
s32e a0, a5, -16
375
s32e a1, a5, -12
376
s32e a2, a5, -8
377
s32e a3, a5, -4
378
rfwo
379
380
381
/* 4-Register Window Underflow Vector (Handler) */
382
383
.align 64
384
.global _WindowUnderflow4
385
_WindowUnderflow4:
386
l32e a0, a5, -16
387
l32e a1, a5, -12
388
l32e a2, a5, -8
389
l32e a3, a5, -4
390
rfwu
391
392
393
/* 8-Register Window Overflow Vector (Handler) */
394
395
.align 64
396
.global _WindowOverflow8
397
_WindowOverflow8:
398
s32e a0, a9, -16
399
l32e a0, a1, -12
400
s32e a2, a9, -8
401
s32e a1, a9, -12
402
s32e a3, a9, -4
403
s32e a4, a0, -32
404
s32e a5, a0, -28
405
s32e a6, a0, -24
406
s32e a7, a0, -20
407
rfwo
408
409
/* 8-Register Window Underflow Vector (Handler) */
410
411
.align 64
412
.global _WindowUnderflow8
413
_WindowUnderflow8:
414
l32e a1, a9, -12
415
l32e a0, a9, -16
416
l32e a7, a1, -12
417
l32e a2, a9, -8
418
l32e a4, a7, -32
419
l32e a3, a9, -4
420
l32e a5, a7, -28
421
l32e a6, a7, -24
422
l32e a7, a7, -20
423
rfwu
424
425
426
/* 12-Register Window Overflow Vector (Handler) */
427
428
.align 64
429
.global _WindowOverflow12
430
_WindowOverflow12:
431
s32e a0, a13, -16
432
l32e a0, a1, -12
433
s32e a1, a13, -12
434
s32e a2, a13, -8
435
s32e a3, a13, -4
436
s32e a4, a0, -48
437
s32e a5, a0, -44
438
s32e a6, a0, -40
439
s32e a7, a0, -36
440
s32e a8, a0, -32
441
s32e a9, a0, -28
442
s32e a10, a0, -24
443
s32e a11, a0, -20
444
rfwo
445
446
/* 12-Register Window Underflow Vector (Handler) */
447
448
.align 64
449
.global _WindowUnderflow12
450
_WindowUnderflow12:
451
l32e a1, a13, -12
452
l32e a0, a13, -16
453
l32e a11, a1, -12
454
l32e a2, a13, -8
455
l32e a4, a11, -48
456
l32e a8, a11, -32
457
l32e a3, a13, -4
458
l32e a5, a11, -44
459
l32e a6, a11, -40
460
l32e a7, a11, -36
461
l32e a9, a11, -28
462
l32e a10, a11, -24
463
l32e a11, a11, -20
464
rfwu
465
466
.text
467
468
469
470