Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/block/blk-throttle.c
15109 views
1
/*
2
* Interface for controlling IO bandwidth on a request queue
3
*
4
* Copyright (C) 2010 Vivek Goyal <[email protected]>
5
*/
6
7
#include <linux/module.h>
8
#include <linux/slab.h>
9
#include <linux/blkdev.h>
10
#include <linux/bio.h>
11
#include <linux/blktrace_api.h>
12
#include "blk-cgroup.h"
13
14
/* Max dispatch from a group in 1 round */
15
static int throtl_grp_quantum = 8;
16
17
/* Total max dispatch from all groups in one round */
18
static int throtl_quantum = 32;
19
20
/* Throttling is performed over 100ms slice and after that slice is renewed */
21
static unsigned long throtl_slice = HZ/10; /* 100 ms */
22
23
/* A workqueue to queue throttle related work */
24
static struct workqueue_struct *kthrotld_workqueue;
25
static void throtl_schedule_delayed_work(struct throtl_data *td,
26
unsigned long delay);
27
28
struct throtl_rb_root {
29
struct rb_root rb;
30
struct rb_node *left;
31
unsigned int count;
32
unsigned long min_disptime;
33
};
34
35
#define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
36
.count = 0, .min_disptime = 0}
37
38
#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
39
40
struct throtl_grp {
41
/* List of throtl groups on the request queue*/
42
struct hlist_node tg_node;
43
44
/* active throtl group service_tree member */
45
struct rb_node rb_node;
46
47
/*
48
* Dispatch time in jiffies. This is the estimated time when group
49
* will unthrottle and is ready to dispatch more bio. It is used as
50
* key to sort active groups in service tree.
51
*/
52
unsigned long disptime;
53
54
struct blkio_group blkg;
55
atomic_t ref;
56
unsigned int flags;
57
58
/* Two lists for READ and WRITE */
59
struct bio_list bio_lists[2];
60
61
/* Number of queued bios on READ and WRITE lists */
62
unsigned int nr_queued[2];
63
64
/* bytes per second rate limits */
65
uint64_t bps[2];
66
67
/* IOPS limits */
68
unsigned int iops[2];
69
70
/* Number of bytes disptached in current slice */
71
uint64_t bytes_disp[2];
72
/* Number of bio's dispatched in current slice */
73
unsigned int io_disp[2];
74
75
/* When did we start a new slice */
76
unsigned long slice_start[2];
77
unsigned long slice_end[2];
78
79
/* Some throttle limits got updated for the group */
80
int limits_changed;
81
82
struct rcu_head rcu_head;
83
};
84
85
struct throtl_data
86
{
87
/* List of throtl groups */
88
struct hlist_head tg_list;
89
90
/* service tree for active throtl groups */
91
struct throtl_rb_root tg_service_tree;
92
93
struct throtl_grp *root_tg;
94
struct request_queue *queue;
95
96
/* Total Number of queued bios on READ and WRITE lists */
97
unsigned int nr_queued[2];
98
99
/*
100
* number of total undestroyed groups
101
*/
102
unsigned int nr_undestroyed_grps;
103
104
/* Work for dispatching throttled bios */
105
struct delayed_work throtl_work;
106
107
int limits_changed;
108
};
109
110
enum tg_state_flags {
111
THROTL_TG_FLAG_on_rr = 0, /* on round-robin busy list */
112
};
113
114
#define THROTL_TG_FNS(name) \
115
static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \
116
{ \
117
(tg)->flags |= (1 << THROTL_TG_FLAG_##name); \
118
} \
119
static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \
120
{ \
121
(tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \
122
} \
123
static inline int throtl_tg_##name(const struct throtl_grp *tg) \
124
{ \
125
return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \
126
}
127
128
THROTL_TG_FNS(on_rr);
129
130
#define throtl_log_tg(td, tg, fmt, args...) \
131
blk_add_trace_msg((td)->queue, "throtl %s " fmt, \
132
blkg_path(&(tg)->blkg), ##args); \
133
134
#define throtl_log(td, fmt, args...) \
135
blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
136
137
static inline struct throtl_grp *tg_of_blkg(struct blkio_group *blkg)
138
{
139
if (blkg)
140
return container_of(blkg, struct throtl_grp, blkg);
141
142
return NULL;
143
}
144
145
static inline int total_nr_queued(struct throtl_data *td)
146
{
147
return (td->nr_queued[0] + td->nr_queued[1]);
148
}
149
150
static inline struct throtl_grp *throtl_ref_get_tg(struct throtl_grp *tg)
151
{
152
atomic_inc(&tg->ref);
153
return tg;
154
}
155
156
static void throtl_free_tg(struct rcu_head *head)
157
{
158
struct throtl_grp *tg;
159
160
tg = container_of(head, struct throtl_grp, rcu_head);
161
free_percpu(tg->blkg.stats_cpu);
162
kfree(tg);
163
}
164
165
static void throtl_put_tg(struct throtl_grp *tg)
166
{
167
BUG_ON(atomic_read(&tg->ref) <= 0);
168
if (!atomic_dec_and_test(&tg->ref))
169
return;
170
171
/*
172
* A group is freed in rcu manner. But having an rcu lock does not
173
* mean that one can access all the fields of blkg and assume these
174
* are valid. For example, don't try to follow throtl_data and
175
* request queue links.
176
*
177
* Having a reference to blkg under an rcu allows acess to only
178
* values local to groups like group stats and group rate limits
179
*/
180
call_rcu(&tg->rcu_head, throtl_free_tg);
181
}
182
183
static void throtl_init_group(struct throtl_grp *tg)
184
{
185
INIT_HLIST_NODE(&tg->tg_node);
186
RB_CLEAR_NODE(&tg->rb_node);
187
bio_list_init(&tg->bio_lists[0]);
188
bio_list_init(&tg->bio_lists[1]);
189
tg->limits_changed = false;
190
191
/* Practically unlimited BW */
192
tg->bps[0] = tg->bps[1] = -1;
193
tg->iops[0] = tg->iops[1] = -1;
194
195
/*
196
* Take the initial reference that will be released on destroy
197
* This can be thought of a joint reference by cgroup and
198
* request queue which will be dropped by either request queue
199
* exit or cgroup deletion path depending on who is exiting first.
200
*/
201
atomic_set(&tg->ref, 1);
202
}
203
204
/* Should be called with rcu read lock held (needed for blkcg) */
205
static void
206
throtl_add_group_to_td_list(struct throtl_data *td, struct throtl_grp *tg)
207
{
208
hlist_add_head(&tg->tg_node, &td->tg_list);
209
td->nr_undestroyed_grps++;
210
}
211
212
static void
213
__throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg)
214
{
215
struct backing_dev_info *bdi = &td->queue->backing_dev_info;
216
unsigned int major, minor;
217
218
if (!tg || tg->blkg.dev)
219
return;
220
221
/*
222
* Fill in device details for a group which might not have been
223
* filled at group creation time as queue was being instantiated
224
* and driver had not attached a device yet
225
*/
226
if (bdi->dev && dev_name(bdi->dev)) {
227
sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
228
tg->blkg.dev = MKDEV(major, minor);
229
}
230
}
231
232
/*
233
* Should be called with without queue lock held. Here queue lock will be
234
* taken rarely. It will be taken only once during life time of a group
235
* if need be
236
*/
237
static void
238
throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg)
239
{
240
if (!tg || tg->blkg.dev)
241
return;
242
243
spin_lock_irq(td->queue->queue_lock);
244
__throtl_tg_fill_dev_details(td, tg);
245
spin_unlock_irq(td->queue->queue_lock);
246
}
247
248
static void throtl_init_add_tg_lists(struct throtl_data *td,
249
struct throtl_grp *tg, struct blkio_cgroup *blkcg)
250
{
251
__throtl_tg_fill_dev_details(td, tg);
252
253
/* Add group onto cgroup list */
254
blkiocg_add_blkio_group(blkcg, &tg->blkg, (void *)td,
255
tg->blkg.dev, BLKIO_POLICY_THROTL);
256
257
tg->bps[READ] = blkcg_get_read_bps(blkcg, tg->blkg.dev);
258
tg->bps[WRITE] = blkcg_get_write_bps(blkcg, tg->blkg.dev);
259
tg->iops[READ] = blkcg_get_read_iops(blkcg, tg->blkg.dev);
260
tg->iops[WRITE] = blkcg_get_write_iops(blkcg, tg->blkg.dev);
261
262
throtl_add_group_to_td_list(td, tg);
263
}
264
265
/* Should be called without queue lock and outside of rcu period */
266
static struct throtl_grp *throtl_alloc_tg(struct throtl_data *td)
267
{
268
struct throtl_grp *tg = NULL;
269
int ret;
270
271
tg = kzalloc_node(sizeof(*tg), GFP_ATOMIC, td->queue->node);
272
if (!tg)
273
return NULL;
274
275
ret = blkio_alloc_blkg_stats(&tg->blkg);
276
277
if (ret) {
278
kfree(tg);
279
return NULL;
280
}
281
282
throtl_init_group(tg);
283
return tg;
284
}
285
286
static struct
287
throtl_grp *throtl_find_tg(struct throtl_data *td, struct blkio_cgroup *blkcg)
288
{
289
struct throtl_grp *tg = NULL;
290
void *key = td;
291
292
/*
293
* This is the common case when there are no blkio cgroups.
294
* Avoid lookup in this case
295
*/
296
if (blkcg == &blkio_root_cgroup)
297
tg = td->root_tg;
298
else
299
tg = tg_of_blkg(blkiocg_lookup_group(blkcg, key));
300
301
__throtl_tg_fill_dev_details(td, tg);
302
return tg;
303
}
304
305
/*
306
* This function returns with queue lock unlocked in case of error, like
307
* request queue is no more
308
*/
309
static struct throtl_grp * throtl_get_tg(struct throtl_data *td)
310
{
311
struct throtl_grp *tg = NULL, *__tg = NULL;
312
struct blkio_cgroup *blkcg;
313
struct request_queue *q = td->queue;
314
315
rcu_read_lock();
316
blkcg = task_blkio_cgroup(current);
317
tg = throtl_find_tg(td, blkcg);
318
if (tg) {
319
rcu_read_unlock();
320
return tg;
321
}
322
323
/*
324
* Need to allocate a group. Allocation of group also needs allocation
325
* of per cpu stats which in-turn takes a mutex() and can block. Hence
326
* we need to drop rcu lock and queue_lock before we call alloc
327
*
328
* Take the request queue reference to make sure queue does not
329
* go away once we return from allocation.
330
*/
331
blk_get_queue(q);
332
rcu_read_unlock();
333
spin_unlock_irq(q->queue_lock);
334
335
tg = throtl_alloc_tg(td);
336
/*
337
* We might have slept in group allocation. Make sure queue is not
338
* dead
339
*/
340
if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
341
blk_put_queue(q);
342
if (tg)
343
kfree(tg);
344
345
return ERR_PTR(-ENODEV);
346
}
347
blk_put_queue(q);
348
349
/* Group allocated and queue is still alive. take the lock */
350
spin_lock_irq(q->queue_lock);
351
352
/*
353
* Initialize the new group. After sleeping, read the blkcg again.
354
*/
355
rcu_read_lock();
356
blkcg = task_blkio_cgroup(current);
357
358
/*
359
* If some other thread already allocated the group while we were
360
* not holding queue lock, free up the group
361
*/
362
__tg = throtl_find_tg(td, blkcg);
363
364
if (__tg) {
365
kfree(tg);
366
rcu_read_unlock();
367
return __tg;
368
}
369
370
/* Group allocation failed. Account the IO to root group */
371
if (!tg) {
372
tg = td->root_tg;
373
return tg;
374
}
375
376
throtl_init_add_tg_lists(td, tg, blkcg);
377
rcu_read_unlock();
378
return tg;
379
}
380
381
static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
382
{
383
/* Service tree is empty */
384
if (!root->count)
385
return NULL;
386
387
if (!root->left)
388
root->left = rb_first(&root->rb);
389
390
if (root->left)
391
return rb_entry_tg(root->left);
392
393
return NULL;
394
}
395
396
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
397
{
398
rb_erase(n, root);
399
RB_CLEAR_NODE(n);
400
}
401
402
static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
403
{
404
if (root->left == n)
405
root->left = NULL;
406
rb_erase_init(n, &root->rb);
407
--root->count;
408
}
409
410
static void update_min_dispatch_time(struct throtl_rb_root *st)
411
{
412
struct throtl_grp *tg;
413
414
tg = throtl_rb_first(st);
415
if (!tg)
416
return;
417
418
st->min_disptime = tg->disptime;
419
}
420
421
static void
422
tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
423
{
424
struct rb_node **node = &st->rb.rb_node;
425
struct rb_node *parent = NULL;
426
struct throtl_grp *__tg;
427
unsigned long key = tg->disptime;
428
int left = 1;
429
430
while (*node != NULL) {
431
parent = *node;
432
__tg = rb_entry_tg(parent);
433
434
if (time_before(key, __tg->disptime))
435
node = &parent->rb_left;
436
else {
437
node = &parent->rb_right;
438
left = 0;
439
}
440
}
441
442
if (left)
443
st->left = &tg->rb_node;
444
445
rb_link_node(&tg->rb_node, parent, node);
446
rb_insert_color(&tg->rb_node, &st->rb);
447
}
448
449
static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
450
{
451
struct throtl_rb_root *st = &td->tg_service_tree;
452
453
tg_service_tree_add(st, tg);
454
throtl_mark_tg_on_rr(tg);
455
st->count++;
456
}
457
458
static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
459
{
460
if (!throtl_tg_on_rr(tg))
461
__throtl_enqueue_tg(td, tg);
462
}
463
464
static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
465
{
466
throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
467
throtl_clear_tg_on_rr(tg);
468
}
469
470
static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
471
{
472
if (throtl_tg_on_rr(tg))
473
__throtl_dequeue_tg(td, tg);
474
}
475
476
static void throtl_schedule_next_dispatch(struct throtl_data *td)
477
{
478
struct throtl_rb_root *st = &td->tg_service_tree;
479
480
/*
481
* If there are more bios pending, schedule more work.
482
*/
483
if (!total_nr_queued(td))
484
return;
485
486
BUG_ON(!st->count);
487
488
update_min_dispatch_time(st);
489
490
if (time_before_eq(st->min_disptime, jiffies))
491
throtl_schedule_delayed_work(td, 0);
492
else
493
throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
494
}
495
496
static inline void
497
throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
498
{
499
tg->bytes_disp[rw] = 0;
500
tg->io_disp[rw] = 0;
501
tg->slice_start[rw] = jiffies;
502
tg->slice_end[rw] = jiffies + throtl_slice;
503
throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
504
rw == READ ? 'R' : 'W', tg->slice_start[rw],
505
tg->slice_end[rw], jiffies);
506
}
507
508
static inline void throtl_set_slice_end(struct throtl_data *td,
509
struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
510
{
511
tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
512
}
513
514
static inline void throtl_extend_slice(struct throtl_data *td,
515
struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
516
{
517
tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
518
throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
519
rw == READ ? 'R' : 'W', tg->slice_start[rw],
520
tg->slice_end[rw], jiffies);
521
}
522
523
/* Determine if previously allocated or extended slice is complete or not */
524
static bool
525
throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
526
{
527
if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
528
return 0;
529
530
return 1;
531
}
532
533
/* Trim the used slices and adjust slice start accordingly */
534
static inline void
535
throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
536
{
537
unsigned long nr_slices, time_elapsed, io_trim;
538
u64 bytes_trim, tmp;
539
540
BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
541
542
/*
543
* If bps are unlimited (-1), then time slice don't get
544
* renewed. Don't try to trim the slice if slice is used. A new
545
* slice will start when appropriate.
546
*/
547
if (throtl_slice_used(td, tg, rw))
548
return;
549
550
/*
551
* A bio has been dispatched. Also adjust slice_end. It might happen
552
* that initially cgroup limit was very low resulting in high
553
* slice_end, but later limit was bumped up and bio was dispached
554
* sooner, then we need to reduce slice_end. A high bogus slice_end
555
* is bad because it does not allow new slice to start.
556
*/
557
558
throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
559
560
time_elapsed = jiffies - tg->slice_start[rw];
561
562
nr_slices = time_elapsed / throtl_slice;
563
564
if (!nr_slices)
565
return;
566
tmp = tg->bps[rw] * throtl_slice * nr_slices;
567
do_div(tmp, HZ);
568
bytes_trim = tmp;
569
570
io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
571
572
if (!bytes_trim && !io_trim)
573
return;
574
575
if (tg->bytes_disp[rw] >= bytes_trim)
576
tg->bytes_disp[rw] -= bytes_trim;
577
else
578
tg->bytes_disp[rw] = 0;
579
580
if (tg->io_disp[rw] >= io_trim)
581
tg->io_disp[rw] -= io_trim;
582
else
583
tg->io_disp[rw] = 0;
584
585
tg->slice_start[rw] += nr_slices * throtl_slice;
586
587
throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
588
" start=%lu end=%lu jiffies=%lu",
589
rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
590
tg->slice_start[rw], tg->slice_end[rw], jiffies);
591
}
592
593
static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
594
struct bio *bio, unsigned long *wait)
595
{
596
bool rw = bio_data_dir(bio);
597
unsigned int io_allowed;
598
unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
599
u64 tmp;
600
601
jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
602
603
/* Slice has just started. Consider one slice interval */
604
if (!jiffy_elapsed)
605
jiffy_elapsed_rnd = throtl_slice;
606
607
jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
608
609
/*
610
* jiffy_elapsed_rnd should not be a big value as minimum iops can be
611
* 1 then at max jiffy elapsed should be equivalent of 1 second as we
612
* will allow dispatch after 1 second and after that slice should
613
* have been trimmed.
614
*/
615
616
tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
617
do_div(tmp, HZ);
618
619
if (tmp > UINT_MAX)
620
io_allowed = UINT_MAX;
621
else
622
io_allowed = tmp;
623
624
if (tg->io_disp[rw] + 1 <= io_allowed) {
625
if (wait)
626
*wait = 0;
627
return 1;
628
}
629
630
/* Calc approx time to dispatch */
631
jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
632
633
if (jiffy_wait > jiffy_elapsed)
634
jiffy_wait = jiffy_wait - jiffy_elapsed;
635
else
636
jiffy_wait = 1;
637
638
if (wait)
639
*wait = jiffy_wait;
640
return 0;
641
}
642
643
static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
644
struct bio *bio, unsigned long *wait)
645
{
646
bool rw = bio_data_dir(bio);
647
u64 bytes_allowed, extra_bytes, tmp;
648
unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
649
650
jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
651
652
/* Slice has just started. Consider one slice interval */
653
if (!jiffy_elapsed)
654
jiffy_elapsed_rnd = throtl_slice;
655
656
jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
657
658
tmp = tg->bps[rw] * jiffy_elapsed_rnd;
659
do_div(tmp, HZ);
660
bytes_allowed = tmp;
661
662
if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
663
if (wait)
664
*wait = 0;
665
return 1;
666
}
667
668
/* Calc approx time to dispatch */
669
extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
670
jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
671
672
if (!jiffy_wait)
673
jiffy_wait = 1;
674
675
/*
676
* This wait time is without taking into consideration the rounding
677
* up we did. Add that time also.
678
*/
679
jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
680
if (wait)
681
*wait = jiffy_wait;
682
return 0;
683
}
684
685
static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
686
if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
687
return 1;
688
return 0;
689
}
690
691
/*
692
* Returns whether one can dispatch a bio or not. Also returns approx number
693
* of jiffies to wait before this bio is with-in IO rate and can be dispatched
694
*/
695
static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
696
struct bio *bio, unsigned long *wait)
697
{
698
bool rw = bio_data_dir(bio);
699
unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
700
701
/*
702
* Currently whole state machine of group depends on first bio
703
* queued in the group bio list. So one should not be calling
704
* this function with a different bio if there are other bios
705
* queued.
706
*/
707
BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
708
709
/* If tg->bps = -1, then BW is unlimited */
710
if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
711
if (wait)
712
*wait = 0;
713
return 1;
714
}
715
716
/*
717
* If previous slice expired, start a new one otherwise renew/extend
718
* existing slice to make sure it is at least throtl_slice interval
719
* long since now.
720
*/
721
if (throtl_slice_used(td, tg, rw))
722
throtl_start_new_slice(td, tg, rw);
723
else {
724
if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
725
throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
726
}
727
728
if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
729
&& tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
730
if (wait)
731
*wait = 0;
732
return 1;
733
}
734
735
max_wait = max(bps_wait, iops_wait);
736
737
if (wait)
738
*wait = max_wait;
739
740
if (time_before(tg->slice_end[rw], jiffies + max_wait))
741
throtl_extend_slice(td, tg, rw, jiffies + max_wait);
742
743
return 0;
744
}
745
746
static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
747
{
748
bool rw = bio_data_dir(bio);
749
bool sync = bio->bi_rw & REQ_SYNC;
750
751
/* Charge the bio to the group */
752
tg->bytes_disp[rw] += bio->bi_size;
753
tg->io_disp[rw]++;
754
755
blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, rw, sync);
756
}
757
758
static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
759
struct bio *bio)
760
{
761
bool rw = bio_data_dir(bio);
762
763
bio_list_add(&tg->bio_lists[rw], bio);
764
/* Take a bio reference on tg */
765
throtl_ref_get_tg(tg);
766
tg->nr_queued[rw]++;
767
td->nr_queued[rw]++;
768
throtl_enqueue_tg(td, tg);
769
}
770
771
static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
772
{
773
unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
774
struct bio *bio;
775
776
if ((bio = bio_list_peek(&tg->bio_lists[READ])))
777
tg_may_dispatch(td, tg, bio, &read_wait);
778
779
if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
780
tg_may_dispatch(td, tg, bio, &write_wait);
781
782
min_wait = min(read_wait, write_wait);
783
disptime = jiffies + min_wait;
784
785
/* Update dispatch time */
786
throtl_dequeue_tg(td, tg);
787
tg->disptime = disptime;
788
throtl_enqueue_tg(td, tg);
789
}
790
791
static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
792
bool rw, struct bio_list *bl)
793
{
794
struct bio *bio;
795
796
bio = bio_list_pop(&tg->bio_lists[rw]);
797
tg->nr_queued[rw]--;
798
/* Drop bio reference on tg */
799
throtl_put_tg(tg);
800
801
BUG_ON(td->nr_queued[rw] <= 0);
802
td->nr_queued[rw]--;
803
804
throtl_charge_bio(tg, bio);
805
bio_list_add(bl, bio);
806
bio->bi_rw |= REQ_THROTTLED;
807
808
throtl_trim_slice(td, tg, rw);
809
}
810
811
static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
812
struct bio_list *bl)
813
{
814
unsigned int nr_reads = 0, nr_writes = 0;
815
unsigned int max_nr_reads = throtl_grp_quantum*3/4;
816
unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
817
struct bio *bio;
818
819
/* Try to dispatch 75% READS and 25% WRITES */
820
821
while ((bio = bio_list_peek(&tg->bio_lists[READ]))
822
&& tg_may_dispatch(td, tg, bio, NULL)) {
823
824
tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
825
nr_reads++;
826
827
if (nr_reads >= max_nr_reads)
828
break;
829
}
830
831
while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
832
&& tg_may_dispatch(td, tg, bio, NULL)) {
833
834
tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
835
nr_writes++;
836
837
if (nr_writes >= max_nr_writes)
838
break;
839
}
840
841
return nr_reads + nr_writes;
842
}
843
844
static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
845
{
846
unsigned int nr_disp = 0;
847
struct throtl_grp *tg;
848
struct throtl_rb_root *st = &td->tg_service_tree;
849
850
while (1) {
851
tg = throtl_rb_first(st);
852
853
if (!tg)
854
break;
855
856
if (time_before(jiffies, tg->disptime))
857
break;
858
859
throtl_dequeue_tg(td, tg);
860
861
nr_disp += throtl_dispatch_tg(td, tg, bl);
862
863
if (tg->nr_queued[0] || tg->nr_queued[1]) {
864
tg_update_disptime(td, tg);
865
throtl_enqueue_tg(td, tg);
866
}
867
868
if (nr_disp >= throtl_quantum)
869
break;
870
}
871
872
return nr_disp;
873
}
874
875
static void throtl_process_limit_change(struct throtl_data *td)
876
{
877
struct throtl_grp *tg;
878
struct hlist_node *pos, *n;
879
880
if (!td->limits_changed)
881
return;
882
883
xchg(&td->limits_changed, false);
884
885
throtl_log(td, "limits changed");
886
887
hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
888
if (!tg->limits_changed)
889
continue;
890
891
if (!xchg(&tg->limits_changed, false))
892
continue;
893
894
throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
895
" riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
896
tg->iops[READ], tg->iops[WRITE]);
897
898
/*
899
* Restart the slices for both READ and WRITES. It
900
* might happen that a group's limit are dropped
901
* suddenly and we don't want to account recently
902
* dispatched IO with new low rate
903
*/
904
throtl_start_new_slice(td, tg, 0);
905
throtl_start_new_slice(td, tg, 1);
906
907
if (throtl_tg_on_rr(tg))
908
tg_update_disptime(td, tg);
909
}
910
}
911
912
/* Dispatch throttled bios. Should be called without queue lock held. */
913
static int throtl_dispatch(struct request_queue *q)
914
{
915
struct throtl_data *td = q->td;
916
unsigned int nr_disp = 0;
917
struct bio_list bio_list_on_stack;
918
struct bio *bio;
919
struct blk_plug plug;
920
921
spin_lock_irq(q->queue_lock);
922
923
throtl_process_limit_change(td);
924
925
if (!total_nr_queued(td))
926
goto out;
927
928
bio_list_init(&bio_list_on_stack);
929
930
throtl_log(td, "dispatch nr_queued=%d read=%u write=%u",
931
total_nr_queued(td), td->nr_queued[READ],
932
td->nr_queued[WRITE]);
933
934
nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
935
936
if (nr_disp)
937
throtl_log(td, "bios disp=%u", nr_disp);
938
939
throtl_schedule_next_dispatch(td);
940
out:
941
spin_unlock_irq(q->queue_lock);
942
943
/*
944
* If we dispatched some requests, unplug the queue to make sure
945
* immediate dispatch
946
*/
947
if (nr_disp) {
948
blk_start_plug(&plug);
949
while((bio = bio_list_pop(&bio_list_on_stack)))
950
generic_make_request(bio);
951
blk_finish_plug(&plug);
952
}
953
return nr_disp;
954
}
955
956
void blk_throtl_work(struct work_struct *work)
957
{
958
struct throtl_data *td = container_of(work, struct throtl_data,
959
throtl_work.work);
960
struct request_queue *q = td->queue;
961
962
throtl_dispatch(q);
963
}
964
965
/* Call with queue lock held */
966
static void
967
throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
968
{
969
970
struct delayed_work *dwork = &td->throtl_work;
971
972
/* schedule work if limits changed even if no bio is queued */
973
if (total_nr_queued(td) > 0 || td->limits_changed) {
974
/*
975
* We might have a work scheduled to be executed in future.
976
* Cancel that and schedule a new one.
977
*/
978
__cancel_delayed_work(dwork);
979
queue_delayed_work(kthrotld_workqueue, dwork, delay);
980
throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
981
delay, jiffies);
982
}
983
}
984
985
static void
986
throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg)
987
{
988
/* Something wrong if we are trying to remove same group twice */
989
BUG_ON(hlist_unhashed(&tg->tg_node));
990
991
hlist_del_init(&tg->tg_node);
992
993
/*
994
* Put the reference taken at the time of creation so that when all
995
* queues are gone, group can be destroyed.
996
*/
997
throtl_put_tg(tg);
998
td->nr_undestroyed_grps--;
999
}
1000
1001
static void throtl_release_tgs(struct throtl_data *td)
1002
{
1003
struct hlist_node *pos, *n;
1004
struct throtl_grp *tg;
1005
1006
hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
1007
/*
1008
* If cgroup removal path got to blk_group first and removed
1009
* it from cgroup list, then it will take care of destroying
1010
* cfqg also.
1011
*/
1012
if (!blkiocg_del_blkio_group(&tg->blkg))
1013
throtl_destroy_tg(td, tg);
1014
}
1015
}
1016
1017
static void throtl_td_free(struct throtl_data *td)
1018
{
1019
kfree(td);
1020
}
1021
1022
/*
1023
* Blk cgroup controller notification saying that blkio_group object is being
1024
* delinked as associated cgroup object is going away. That also means that
1025
* no new IO will come in this group. So get rid of this group as soon as
1026
* any pending IO in the group is finished.
1027
*
1028
* This function is called under rcu_read_lock(). key is the rcu protected
1029
* pointer. That means "key" is a valid throtl_data pointer as long as we are
1030
* rcu read lock.
1031
*
1032
* "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1033
* it should not be NULL as even if queue was going away, cgroup deltion
1034
* path got to it first.
1035
*/
1036
void throtl_unlink_blkio_group(void *key, struct blkio_group *blkg)
1037
{
1038
unsigned long flags;
1039
struct throtl_data *td = key;
1040
1041
spin_lock_irqsave(td->queue->queue_lock, flags);
1042
throtl_destroy_tg(td, tg_of_blkg(blkg));
1043
spin_unlock_irqrestore(td->queue->queue_lock, flags);
1044
}
1045
1046
static void throtl_update_blkio_group_common(struct throtl_data *td,
1047
struct throtl_grp *tg)
1048
{
1049
xchg(&tg->limits_changed, true);
1050
xchg(&td->limits_changed, true);
1051
/* Schedule a work now to process the limit change */
1052
throtl_schedule_delayed_work(td, 0);
1053
}
1054
1055
/*
1056
* For all update functions, key should be a valid pointer because these
1057
* update functions are called under blkcg_lock, that means, blkg is
1058
* valid and in turn key is valid. queue exit path can not race because
1059
* of blkcg_lock
1060
*
1061
* Can not take queue lock in update functions as queue lock under blkcg_lock
1062
* is not allowed. Under other paths we take blkcg_lock under queue_lock.
1063
*/
1064
static void throtl_update_blkio_group_read_bps(void *key,
1065
struct blkio_group *blkg, u64 read_bps)
1066
{
1067
struct throtl_data *td = key;
1068
struct throtl_grp *tg = tg_of_blkg(blkg);
1069
1070
tg->bps[READ] = read_bps;
1071
throtl_update_blkio_group_common(td, tg);
1072
}
1073
1074
static void throtl_update_blkio_group_write_bps(void *key,
1075
struct blkio_group *blkg, u64 write_bps)
1076
{
1077
struct throtl_data *td = key;
1078
struct throtl_grp *tg = tg_of_blkg(blkg);
1079
1080
tg->bps[WRITE] = write_bps;
1081
throtl_update_blkio_group_common(td, tg);
1082
}
1083
1084
static void throtl_update_blkio_group_read_iops(void *key,
1085
struct blkio_group *blkg, unsigned int read_iops)
1086
{
1087
struct throtl_data *td = key;
1088
struct throtl_grp *tg = tg_of_blkg(blkg);
1089
1090
tg->iops[READ] = read_iops;
1091
throtl_update_blkio_group_common(td, tg);
1092
}
1093
1094
static void throtl_update_blkio_group_write_iops(void *key,
1095
struct blkio_group *blkg, unsigned int write_iops)
1096
{
1097
struct throtl_data *td = key;
1098
struct throtl_grp *tg = tg_of_blkg(blkg);
1099
1100
tg->iops[WRITE] = write_iops;
1101
throtl_update_blkio_group_common(td, tg);
1102
}
1103
1104
static void throtl_shutdown_wq(struct request_queue *q)
1105
{
1106
struct throtl_data *td = q->td;
1107
1108
cancel_delayed_work_sync(&td->throtl_work);
1109
}
1110
1111
static struct blkio_policy_type blkio_policy_throtl = {
1112
.ops = {
1113
.blkio_unlink_group_fn = throtl_unlink_blkio_group,
1114
.blkio_update_group_read_bps_fn =
1115
throtl_update_blkio_group_read_bps,
1116
.blkio_update_group_write_bps_fn =
1117
throtl_update_blkio_group_write_bps,
1118
.blkio_update_group_read_iops_fn =
1119
throtl_update_blkio_group_read_iops,
1120
.blkio_update_group_write_iops_fn =
1121
throtl_update_blkio_group_write_iops,
1122
},
1123
.plid = BLKIO_POLICY_THROTL,
1124
};
1125
1126
int blk_throtl_bio(struct request_queue *q, struct bio **biop)
1127
{
1128
struct throtl_data *td = q->td;
1129
struct throtl_grp *tg;
1130
struct bio *bio = *biop;
1131
bool rw = bio_data_dir(bio), update_disptime = true;
1132
struct blkio_cgroup *blkcg;
1133
1134
if (bio->bi_rw & REQ_THROTTLED) {
1135
bio->bi_rw &= ~REQ_THROTTLED;
1136
return 0;
1137
}
1138
1139
/*
1140
* A throtl_grp pointer retrieved under rcu can be used to access
1141
* basic fields like stats and io rates. If a group has no rules,
1142
* just update the dispatch stats in lockless manner and return.
1143
*/
1144
1145
rcu_read_lock();
1146
blkcg = task_blkio_cgroup(current);
1147
tg = throtl_find_tg(td, blkcg);
1148
if (tg) {
1149
throtl_tg_fill_dev_details(td, tg);
1150
1151
if (tg_no_rule_group(tg, rw)) {
1152
blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size,
1153
rw, bio->bi_rw & REQ_SYNC);
1154
rcu_read_unlock();
1155
return 0;
1156
}
1157
}
1158
rcu_read_unlock();
1159
1160
/*
1161
* Either group has not been allocated yet or it is not an unlimited
1162
* IO group
1163
*/
1164
1165
spin_lock_irq(q->queue_lock);
1166
tg = throtl_get_tg(td);
1167
1168
if (IS_ERR(tg)) {
1169
if (PTR_ERR(tg) == -ENODEV) {
1170
/*
1171
* Queue is gone. No queue lock held here.
1172
*/
1173
return -ENODEV;
1174
}
1175
}
1176
1177
if (tg->nr_queued[rw]) {
1178
/*
1179
* There is already another bio queued in same dir. No
1180
* need to update dispatch time.
1181
*/
1182
update_disptime = false;
1183
goto queue_bio;
1184
1185
}
1186
1187
/* Bio is with-in rate limit of group */
1188
if (tg_may_dispatch(td, tg, bio, NULL)) {
1189
throtl_charge_bio(tg, bio);
1190
1191
/*
1192
* We need to trim slice even when bios are not being queued
1193
* otherwise it might happen that a bio is not queued for
1194
* a long time and slice keeps on extending and trim is not
1195
* called for a long time. Now if limits are reduced suddenly
1196
* we take into account all the IO dispatched so far at new
1197
* low rate and * newly queued IO gets a really long dispatch
1198
* time.
1199
*
1200
* So keep on trimming slice even if bio is not queued.
1201
*/
1202
throtl_trim_slice(td, tg, rw);
1203
goto out;
1204
}
1205
1206
queue_bio:
1207
throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1208
" iodisp=%u iops=%u queued=%d/%d",
1209
rw == READ ? 'R' : 'W',
1210
tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1211
tg->io_disp[rw], tg->iops[rw],
1212
tg->nr_queued[READ], tg->nr_queued[WRITE]);
1213
1214
throtl_add_bio_tg(q->td, tg, bio);
1215
*biop = NULL;
1216
1217
if (update_disptime) {
1218
tg_update_disptime(td, tg);
1219
throtl_schedule_next_dispatch(td);
1220
}
1221
1222
out:
1223
spin_unlock_irq(q->queue_lock);
1224
return 0;
1225
}
1226
1227
int blk_throtl_init(struct request_queue *q)
1228
{
1229
struct throtl_data *td;
1230
struct throtl_grp *tg;
1231
1232
td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1233
if (!td)
1234
return -ENOMEM;
1235
1236
INIT_HLIST_HEAD(&td->tg_list);
1237
td->tg_service_tree = THROTL_RB_ROOT;
1238
td->limits_changed = false;
1239
INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1240
1241
/* alloc and Init root group. */
1242
td->queue = q;
1243
tg = throtl_alloc_tg(td);
1244
1245
if (!tg) {
1246
kfree(td);
1247
return -ENOMEM;
1248
}
1249
1250
td->root_tg = tg;
1251
1252
rcu_read_lock();
1253
throtl_init_add_tg_lists(td, tg, &blkio_root_cgroup);
1254
rcu_read_unlock();
1255
1256
/* Attach throtl data to request queue */
1257
q->td = td;
1258
return 0;
1259
}
1260
1261
void blk_throtl_exit(struct request_queue *q)
1262
{
1263
struct throtl_data *td = q->td;
1264
bool wait = false;
1265
1266
BUG_ON(!td);
1267
1268
throtl_shutdown_wq(q);
1269
1270
spin_lock_irq(q->queue_lock);
1271
throtl_release_tgs(td);
1272
1273
/* If there are other groups */
1274
if (td->nr_undestroyed_grps > 0)
1275
wait = true;
1276
1277
spin_unlock_irq(q->queue_lock);
1278
1279
/*
1280
* Wait for tg->blkg->key accessors to exit their grace periods.
1281
* Do this wait only if there are other undestroyed groups out
1282
* there (other than root group). This can happen if cgroup deletion
1283
* path claimed the responsibility of cleaning up a group before
1284
* queue cleanup code get to the group.
1285
*
1286
* Do not call synchronize_rcu() unconditionally as there are drivers
1287
* which create/delete request queue hundreds of times during scan/boot
1288
* and synchronize_rcu() can take significant time and slow down boot.
1289
*/
1290
if (wait)
1291
synchronize_rcu();
1292
1293
/*
1294
* Just being safe to make sure after previous flush if some body did
1295
* update limits through cgroup and another work got queued, cancel
1296
* it.
1297
*/
1298
throtl_shutdown_wq(q);
1299
throtl_td_free(td);
1300
}
1301
1302
static int __init throtl_init(void)
1303
{
1304
kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1305
if (!kthrotld_workqueue)
1306
panic("Failed to create kthrotld\n");
1307
1308
blkio_policy_register(&blkio_policy_throtl);
1309
return 0;
1310
}
1311
1312
module_init(throtl_init);
1313
1314