Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/block/blk.h
15109 views
1
#ifndef BLK_INTERNAL_H
2
#define BLK_INTERNAL_H
3
4
/* Amount of time in which a process may batch requests */
5
#define BLK_BATCH_TIME (HZ/50UL)
6
7
/* Number of requests a "batching" process may submit */
8
#define BLK_BATCH_REQ 32
9
10
extern struct kmem_cache *blk_requestq_cachep;
11
extern struct kobj_type blk_queue_ktype;
12
13
void init_request_from_bio(struct request *req, struct bio *bio);
14
void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
15
struct bio *bio);
16
int blk_rq_append_bio(struct request_queue *q, struct request *rq,
17
struct bio *bio);
18
void blk_dequeue_request(struct request *rq);
19
void __blk_queue_free_tags(struct request_queue *q);
20
21
void blk_rq_timed_out_timer(unsigned long data);
22
void blk_delete_timer(struct request *);
23
void blk_add_timer(struct request *);
24
void __generic_unplug_device(struct request_queue *);
25
26
/*
27
* Internal atomic flags for request handling
28
*/
29
enum rq_atomic_flags {
30
REQ_ATOM_COMPLETE = 0,
31
};
32
33
/*
34
* EH timer and IO completion will both attempt to 'grab' the request, make
35
* sure that only one of them succeeds
36
*/
37
static inline int blk_mark_rq_complete(struct request *rq)
38
{
39
return test_and_set_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
40
}
41
42
static inline void blk_clear_rq_complete(struct request *rq)
43
{
44
clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
45
}
46
47
/*
48
* Internal elevator interface
49
*/
50
#define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
51
52
void blk_insert_flush(struct request *rq);
53
void blk_abort_flushes(struct request_queue *q);
54
55
static inline struct request *__elv_next_request(struct request_queue *q)
56
{
57
struct request *rq;
58
59
while (1) {
60
if (!list_empty(&q->queue_head)) {
61
rq = list_entry_rq(q->queue_head.next);
62
return rq;
63
}
64
65
/*
66
* Flush request is running and flush request isn't queueable
67
* in the drive, we can hold the queue till flush request is
68
* finished. Even we don't do this, driver can't dispatch next
69
* requests and will requeue them. And this can improve
70
* throughput too. For example, we have request flush1, write1,
71
* flush 2. flush1 is dispatched, then queue is hold, write1
72
* isn't inserted to queue. After flush1 is finished, flush2
73
* will be dispatched. Since disk cache is already clean,
74
* flush2 will be finished very soon, so looks like flush2 is
75
* folded to flush1.
76
* Since the queue is hold, a flag is set to indicate the queue
77
* should be restarted later. Please see flush_end_io() for
78
* details.
79
*/
80
if (q->flush_pending_idx != q->flush_running_idx &&
81
!queue_flush_queueable(q)) {
82
q->flush_queue_delayed = 1;
83
return NULL;
84
}
85
if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags) ||
86
!q->elevator->ops->elevator_dispatch_fn(q, 0))
87
return NULL;
88
}
89
}
90
91
static inline void elv_activate_rq(struct request_queue *q, struct request *rq)
92
{
93
struct elevator_queue *e = q->elevator;
94
95
if (e->ops->elevator_activate_req_fn)
96
e->ops->elevator_activate_req_fn(q, rq);
97
}
98
99
static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq)
100
{
101
struct elevator_queue *e = q->elevator;
102
103
if (e->ops->elevator_deactivate_req_fn)
104
e->ops->elevator_deactivate_req_fn(q, rq);
105
}
106
107
#ifdef CONFIG_FAIL_IO_TIMEOUT
108
int blk_should_fake_timeout(struct request_queue *);
109
ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
110
ssize_t part_timeout_store(struct device *, struct device_attribute *,
111
const char *, size_t);
112
#else
113
static inline int blk_should_fake_timeout(struct request_queue *q)
114
{
115
return 0;
116
}
117
#endif
118
119
struct io_context *current_io_context(gfp_t gfp_flags, int node);
120
121
int ll_back_merge_fn(struct request_queue *q, struct request *req,
122
struct bio *bio);
123
int ll_front_merge_fn(struct request_queue *q, struct request *req,
124
struct bio *bio);
125
int attempt_back_merge(struct request_queue *q, struct request *rq);
126
int attempt_front_merge(struct request_queue *q, struct request *rq);
127
int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
128
struct request *next);
129
void blk_recalc_rq_segments(struct request *rq);
130
void blk_rq_set_mixed_merge(struct request *rq);
131
132
void blk_queue_congestion_threshold(struct request_queue *q);
133
134
int blk_dev_init(void);
135
136
void elv_quiesce_start(struct request_queue *q);
137
void elv_quiesce_end(struct request_queue *q);
138
139
140
/*
141
* Return the threshold (number of used requests) at which the queue is
142
* considered to be congested. It include a little hysteresis to keep the
143
* context switch rate down.
144
*/
145
static inline int queue_congestion_on_threshold(struct request_queue *q)
146
{
147
return q->nr_congestion_on;
148
}
149
150
/*
151
* The threshold at which a queue is considered to be uncongested
152
*/
153
static inline int queue_congestion_off_threshold(struct request_queue *q)
154
{
155
return q->nr_congestion_off;
156
}
157
158
static inline int blk_cpu_to_group(int cpu)
159
{
160
int group = NR_CPUS;
161
#ifdef CONFIG_SCHED_MC
162
const struct cpumask *mask = cpu_coregroup_mask(cpu);
163
group = cpumask_first(mask);
164
#elif defined(CONFIG_SCHED_SMT)
165
group = cpumask_first(topology_thread_cpumask(cpu));
166
#else
167
return cpu;
168
#endif
169
if (likely(group < NR_CPUS))
170
return group;
171
return cpu;
172
}
173
174
/*
175
* Contribute to IO statistics IFF:
176
*
177
* a) it's attached to a gendisk, and
178
* b) the queue had IO stats enabled when this request was started, and
179
* c) it's a file system request or a discard request
180
*/
181
static inline int blk_do_io_stat(struct request *rq)
182
{
183
return rq->rq_disk &&
184
(rq->cmd_flags & REQ_IO_STAT) &&
185
(rq->cmd_type == REQ_TYPE_FS ||
186
(rq->cmd_flags & REQ_DISCARD));
187
}
188
189
#endif
190
191