Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/block/cfq-iosched.c
15109 views
1
/*
2
* CFQ, or complete fairness queueing, disk scheduler.
3
*
4
* Based on ideas from a previously unfinished io
5
* scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6
*
7
* Copyright (C) 2003 Jens Axboe <[email protected]>
8
*/
9
#include <linux/module.h>
10
#include <linux/slab.h>
11
#include <linux/blkdev.h>
12
#include <linux/elevator.h>
13
#include <linux/jiffies.h>
14
#include <linux/rbtree.h>
15
#include <linux/ioprio.h>
16
#include <linux/blktrace_api.h>
17
#include "cfq.h"
18
19
/*
20
* tunables
21
*/
22
/* max queue in one round of service */
23
static const int cfq_quantum = 8;
24
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25
/* maximum backwards seek, in KiB */
26
static const int cfq_back_max = 16 * 1024;
27
/* penalty of a backwards seek */
28
static const int cfq_back_penalty = 2;
29
static const int cfq_slice_sync = HZ / 10;
30
static int cfq_slice_async = HZ / 25;
31
static const int cfq_slice_async_rq = 2;
32
static int cfq_slice_idle = HZ / 125;
33
static int cfq_group_idle = HZ / 125;
34
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35
static const int cfq_hist_divisor = 4;
36
37
/*
38
* offset from end of service tree
39
*/
40
#define CFQ_IDLE_DELAY (HZ / 5)
41
42
/*
43
* below this threshold, we consider thinktime immediate
44
*/
45
#define CFQ_MIN_TT (2)
46
47
#define CFQ_SLICE_SCALE (5)
48
#define CFQ_HW_QUEUE_MIN (5)
49
#define CFQ_SERVICE_SHIFT 12
50
51
#define CFQQ_SEEK_THR (sector_t)(8 * 100)
52
#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53
#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54
#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
55
56
#define RQ_CIC(rq) \
57
((struct cfq_io_context *) (rq)->elevator_private[0])
58
#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59
#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
60
61
static struct kmem_cache *cfq_pool;
62
static struct kmem_cache *cfq_ioc_pool;
63
64
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65
static struct completion *ioc_gone;
66
static DEFINE_SPINLOCK(ioc_gone_lock);
67
68
static DEFINE_SPINLOCK(cic_index_lock);
69
static DEFINE_IDA(cic_index_ida);
70
71
#define CFQ_PRIO_LISTS IOPRIO_BE_NR
72
#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73
#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
75
#define sample_valid(samples) ((samples) > 80)
76
#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
77
78
/*
79
* Most of our rbtree usage is for sorting with min extraction, so
80
* if we cache the leftmost node we don't have to walk down the tree
81
* to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82
* move this into the elevator for the rq sorting as well.
83
*/
84
struct cfq_rb_root {
85
struct rb_root rb;
86
struct rb_node *left;
87
unsigned count;
88
unsigned total_weight;
89
u64 min_vdisktime;
90
};
91
#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92
.count = 0, .min_vdisktime = 0, }
93
94
/*
95
* Per process-grouping structure
96
*/
97
struct cfq_queue {
98
/* reference count */
99
int ref;
100
/* various state flags, see below */
101
unsigned int flags;
102
/* parent cfq_data */
103
struct cfq_data *cfqd;
104
/* service_tree member */
105
struct rb_node rb_node;
106
/* service_tree key */
107
unsigned long rb_key;
108
/* prio tree member */
109
struct rb_node p_node;
110
/* prio tree root we belong to, if any */
111
struct rb_root *p_root;
112
/* sorted list of pending requests */
113
struct rb_root sort_list;
114
/* if fifo isn't expired, next request to serve */
115
struct request *next_rq;
116
/* requests queued in sort_list */
117
int queued[2];
118
/* currently allocated requests */
119
int allocated[2];
120
/* fifo list of requests in sort_list */
121
struct list_head fifo;
122
123
/* time when queue got scheduled in to dispatch first request. */
124
unsigned long dispatch_start;
125
unsigned int allocated_slice;
126
unsigned int slice_dispatch;
127
/* time when first request from queue completed and slice started. */
128
unsigned long slice_start;
129
unsigned long slice_end;
130
long slice_resid;
131
132
/* pending metadata requests */
133
int meta_pending;
134
/* number of requests that are on the dispatch list or inside driver */
135
int dispatched;
136
137
/* io prio of this group */
138
unsigned short ioprio, org_ioprio;
139
unsigned short ioprio_class, org_ioprio_class;
140
141
pid_t pid;
142
143
u32 seek_history;
144
sector_t last_request_pos;
145
146
struct cfq_rb_root *service_tree;
147
struct cfq_queue *new_cfqq;
148
struct cfq_group *cfqg;
149
/* Number of sectors dispatched from queue in single dispatch round */
150
unsigned long nr_sectors;
151
};
152
153
/*
154
* First index in the service_trees.
155
* IDLE is handled separately, so it has negative index
156
*/
157
enum wl_prio_t {
158
BE_WORKLOAD = 0,
159
RT_WORKLOAD = 1,
160
IDLE_WORKLOAD = 2,
161
CFQ_PRIO_NR,
162
};
163
164
/*
165
* Second index in the service_trees.
166
*/
167
enum wl_type_t {
168
ASYNC_WORKLOAD = 0,
169
SYNC_NOIDLE_WORKLOAD = 1,
170
SYNC_WORKLOAD = 2
171
};
172
173
/* This is per cgroup per device grouping structure */
174
struct cfq_group {
175
/* group service_tree member */
176
struct rb_node rb_node;
177
178
/* group service_tree key */
179
u64 vdisktime;
180
unsigned int weight;
181
unsigned int new_weight;
182
bool needs_update;
183
184
/* number of cfqq currently on this group */
185
int nr_cfqq;
186
187
/*
188
* Per group busy queues average. Useful for workload slice calc. We
189
* create the array for each prio class but at run time it is used
190
* only for RT and BE class and slot for IDLE class remains unused.
191
* This is primarily done to avoid confusion and a gcc warning.
192
*/
193
unsigned int busy_queues_avg[CFQ_PRIO_NR];
194
/*
195
* rr lists of queues with requests. We maintain service trees for
196
* RT and BE classes. These trees are subdivided in subclasses
197
* of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
198
* class there is no subclassification and all the cfq queues go on
199
* a single tree service_tree_idle.
200
* Counts are embedded in the cfq_rb_root
201
*/
202
struct cfq_rb_root service_trees[2][3];
203
struct cfq_rb_root service_tree_idle;
204
205
unsigned long saved_workload_slice;
206
enum wl_type_t saved_workload;
207
enum wl_prio_t saved_serving_prio;
208
struct blkio_group blkg;
209
#ifdef CONFIG_CFQ_GROUP_IOSCHED
210
struct hlist_node cfqd_node;
211
int ref;
212
#endif
213
/* number of requests that are on the dispatch list or inside driver */
214
int dispatched;
215
};
216
217
/*
218
* Per block device queue structure
219
*/
220
struct cfq_data {
221
struct request_queue *queue;
222
/* Root service tree for cfq_groups */
223
struct cfq_rb_root grp_service_tree;
224
struct cfq_group root_group;
225
226
/*
227
* The priority currently being served
228
*/
229
enum wl_prio_t serving_prio;
230
enum wl_type_t serving_type;
231
unsigned long workload_expires;
232
struct cfq_group *serving_group;
233
234
/*
235
* Each priority tree is sorted by next_request position. These
236
* trees are used when determining if two or more queues are
237
* interleaving requests (see cfq_close_cooperator).
238
*/
239
struct rb_root prio_trees[CFQ_PRIO_LISTS];
240
241
unsigned int busy_queues;
242
unsigned int busy_sync_queues;
243
244
int rq_in_driver;
245
int rq_in_flight[2];
246
247
/*
248
* queue-depth detection
249
*/
250
int rq_queued;
251
int hw_tag;
252
/*
253
* hw_tag can be
254
* -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255
* 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
256
* 0 => no NCQ
257
*/
258
int hw_tag_est_depth;
259
unsigned int hw_tag_samples;
260
261
/*
262
* idle window management
263
*/
264
struct timer_list idle_slice_timer;
265
struct work_struct unplug_work;
266
267
struct cfq_queue *active_queue;
268
struct cfq_io_context *active_cic;
269
270
/*
271
* async queue for each priority case
272
*/
273
struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
274
struct cfq_queue *async_idle_cfqq;
275
276
sector_t last_position;
277
278
/*
279
* tunables, see top of file
280
*/
281
unsigned int cfq_quantum;
282
unsigned int cfq_fifo_expire[2];
283
unsigned int cfq_back_penalty;
284
unsigned int cfq_back_max;
285
unsigned int cfq_slice[2];
286
unsigned int cfq_slice_async_rq;
287
unsigned int cfq_slice_idle;
288
unsigned int cfq_group_idle;
289
unsigned int cfq_latency;
290
291
unsigned int cic_index;
292
struct list_head cic_list;
293
294
/*
295
* Fallback dummy cfqq for extreme OOM conditions
296
*/
297
struct cfq_queue oom_cfqq;
298
299
unsigned long last_delayed_sync;
300
301
/* List of cfq groups being managed on this device*/
302
struct hlist_head cfqg_list;
303
304
/* Number of groups which are on blkcg->blkg_list */
305
unsigned int nr_blkcg_linked_grps;
306
};
307
308
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
309
310
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
311
enum wl_prio_t prio,
312
enum wl_type_t type)
313
{
314
if (!cfqg)
315
return NULL;
316
317
if (prio == IDLE_WORKLOAD)
318
return &cfqg->service_tree_idle;
319
320
return &cfqg->service_trees[prio][type];
321
}
322
323
enum cfqq_state_flags {
324
CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
325
CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
326
CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
327
CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
328
CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
329
CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
330
CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
331
CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
332
CFQ_CFQQ_FLAG_sync, /* synchronous queue */
333
CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
334
CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
335
CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
336
CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
337
};
338
339
#define CFQ_CFQQ_FNS(name) \
340
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
341
{ \
342
(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
343
} \
344
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
345
{ \
346
(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
347
} \
348
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
349
{ \
350
return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
351
}
352
353
CFQ_CFQQ_FNS(on_rr);
354
CFQ_CFQQ_FNS(wait_request);
355
CFQ_CFQQ_FNS(must_dispatch);
356
CFQ_CFQQ_FNS(must_alloc_slice);
357
CFQ_CFQQ_FNS(fifo_expire);
358
CFQ_CFQQ_FNS(idle_window);
359
CFQ_CFQQ_FNS(prio_changed);
360
CFQ_CFQQ_FNS(slice_new);
361
CFQ_CFQQ_FNS(sync);
362
CFQ_CFQQ_FNS(coop);
363
CFQ_CFQQ_FNS(split_coop);
364
CFQ_CFQQ_FNS(deep);
365
CFQ_CFQQ_FNS(wait_busy);
366
#undef CFQ_CFQQ_FNS
367
368
#ifdef CONFIG_CFQ_GROUP_IOSCHED
369
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
370
blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
371
cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
372
blkg_path(&(cfqq)->cfqg->blkg), ##args)
373
374
#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
375
blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
376
blkg_path(&(cfqg)->blkg), ##args) \
377
378
#else
379
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
380
blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
381
#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
382
#endif
383
#define cfq_log(cfqd, fmt, args...) \
384
blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
385
386
/* Traverses through cfq group service trees */
387
#define for_each_cfqg_st(cfqg, i, j, st) \
388
for (i = 0; i <= IDLE_WORKLOAD; i++) \
389
for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
390
: &cfqg->service_tree_idle; \
391
(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
392
(i == IDLE_WORKLOAD && j == 0); \
393
j++, st = i < IDLE_WORKLOAD ? \
394
&cfqg->service_trees[i][j]: NULL) \
395
396
397
static inline bool iops_mode(struct cfq_data *cfqd)
398
{
399
/*
400
* If we are not idling on queues and it is a NCQ drive, parallel
401
* execution of requests is on and measuring time is not possible
402
* in most of the cases until and unless we drive shallower queue
403
* depths and that becomes a performance bottleneck. In such cases
404
* switch to start providing fairness in terms of number of IOs.
405
*/
406
if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
407
return true;
408
else
409
return false;
410
}
411
412
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
413
{
414
if (cfq_class_idle(cfqq))
415
return IDLE_WORKLOAD;
416
if (cfq_class_rt(cfqq))
417
return RT_WORKLOAD;
418
return BE_WORKLOAD;
419
}
420
421
422
static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
423
{
424
if (!cfq_cfqq_sync(cfqq))
425
return ASYNC_WORKLOAD;
426
if (!cfq_cfqq_idle_window(cfqq))
427
return SYNC_NOIDLE_WORKLOAD;
428
return SYNC_WORKLOAD;
429
}
430
431
static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
432
struct cfq_data *cfqd,
433
struct cfq_group *cfqg)
434
{
435
if (wl == IDLE_WORKLOAD)
436
return cfqg->service_tree_idle.count;
437
438
return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
439
+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
440
+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
441
}
442
443
static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
444
struct cfq_group *cfqg)
445
{
446
return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
447
+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
448
}
449
450
static void cfq_dispatch_insert(struct request_queue *, struct request *);
451
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
452
struct io_context *, gfp_t);
453
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
454
struct io_context *);
455
456
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
457
bool is_sync)
458
{
459
return cic->cfqq[is_sync];
460
}
461
462
static inline void cic_set_cfqq(struct cfq_io_context *cic,
463
struct cfq_queue *cfqq, bool is_sync)
464
{
465
cic->cfqq[is_sync] = cfqq;
466
}
467
468
#define CIC_DEAD_KEY 1ul
469
#define CIC_DEAD_INDEX_SHIFT 1
470
471
static inline void *cfqd_dead_key(struct cfq_data *cfqd)
472
{
473
return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
474
}
475
476
static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
477
{
478
struct cfq_data *cfqd = cic->key;
479
480
if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
481
return NULL;
482
483
return cfqd;
484
}
485
486
/*
487
* We regard a request as SYNC, if it's either a read or has the SYNC bit
488
* set (in which case it could also be direct WRITE).
489
*/
490
static inline bool cfq_bio_sync(struct bio *bio)
491
{
492
return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
493
}
494
495
/*
496
* scheduler run of queue, if there are requests pending and no one in the
497
* driver that will restart queueing
498
*/
499
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
500
{
501
if (cfqd->busy_queues) {
502
cfq_log(cfqd, "schedule dispatch");
503
kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
504
}
505
}
506
507
/*
508
* Scale schedule slice based on io priority. Use the sync time slice only
509
* if a queue is marked sync and has sync io queued. A sync queue with async
510
* io only, should not get full sync slice length.
511
*/
512
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
513
unsigned short prio)
514
{
515
const int base_slice = cfqd->cfq_slice[sync];
516
517
WARN_ON(prio >= IOPRIO_BE_NR);
518
519
return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
520
}
521
522
static inline int
523
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
524
{
525
return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
526
}
527
528
static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
529
{
530
u64 d = delta << CFQ_SERVICE_SHIFT;
531
532
d = d * BLKIO_WEIGHT_DEFAULT;
533
do_div(d, cfqg->weight);
534
return d;
535
}
536
537
static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
538
{
539
s64 delta = (s64)(vdisktime - min_vdisktime);
540
if (delta > 0)
541
min_vdisktime = vdisktime;
542
543
return min_vdisktime;
544
}
545
546
static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
547
{
548
s64 delta = (s64)(vdisktime - min_vdisktime);
549
if (delta < 0)
550
min_vdisktime = vdisktime;
551
552
return min_vdisktime;
553
}
554
555
static void update_min_vdisktime(struct cfq_rb_root *st)
556
{
557
struct cfq_group *cfqg;
558
559
if (st->left) {
560
cfqg = rb_entry_cfqg(st->left);
561
st->min_vdisktime = max_vdisktime(st->min_vdisktime,
562
cfqg->vdisktime);
563
}
564
}
565
566
/*
567
* get averaged number of queues of RT/BE priority.
568
* average is updated, with a formula that gives more weight to higher numbers,
569
* to quickly follows sudden increases and decrease slowly
570
*/
571
572
static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
573
struct cfq_group *cfqg, bool rt)
574
{
575
unsigned min_q, max_q;
576
unsigned mult = cfq_hist_divisor - 1;
577
unsigned round = cfq_hist_divisor / 2;
578
unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
579
580
min_q = min(cfqg->busy_queues_avg[rt], busy);
581
max_q = max(cfqg->busy_queues_avg[rt], busy);
582
cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
583
cfq_hist_divisor;
584
return cfqg->busy_queues_avg[rt];
585
}
586
587
static inline unsigned
588
cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
589
{
590
struct cfq_rb_root *st = &cfqd->grp_service_tree;
591
592
return cfq_target_latency * cfqg->weight / st->total_weight;
593
}
594
595
static inline unsigned
596
cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
597
{
598
unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
599
if (cfqd->cfq_latency) {
600
/*
601
* interested queues (we consider only the ones with the same
602
* priority class in the cfq group)
603
*/
604
unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
605
cfq_class_rt(cfqq));
606
unsigned sync_slice = cfqd->cfq_slice[1];
607
unsigned expect_latency = sync_slice * iq;
608
unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
609
610
if (expect_latency > group_slice) {
611
unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
612
/* scale low_slice according to IO priority
613
* and sync vs async */
614
unsigned low_slice =
615
min(slice, base_low_slice * slice / sync_slice);
616
/* the adapted slice value is scaled to fit all iqs
617
* into the target latency */
618
slice = max(slice * group_slice / expect_latency,
619
low_slice);
620
}
621
}
622
return slice;
623
}
624
625
static inline void
626
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
627
{
628
unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
629
630
cfqq->slice_start = jiffies;
631
cfqq->slice_end = jiffies + slice;
632
cfqq->allocated_slice = slice;
633
cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
634
}
635
636
/*
637
* We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
638
* isn't valid until the first request from the dispatch is activated
639
* and the slice time set.
640
*/
641
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
642
{
643
if (cfq_cfqq_slice_new(cfqq))
644
return false;
645
if (time_before(jiffies, cfqq->slice_end))
646
return false;
647
648
return true;
649
}
650
651
/*
652
* Lifted from AS - choose which of rq1 and rq2 that is best served now.
653
* We choose the request that is closest to the head right now. Distance
654
* behind the head is penalized and only allowed to a certain extent.
655
*/
656
static struct request *
657
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
658
{
659
sector_t s1, s2, d1 = 0, d2 = 0;
660
unsigned long back_max;
661
#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
662
#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
663
unsigned wrap = 0; /* bit mask: requests behind the disk head? */
664
665
if (rq1 == NULL || rq1 == rq2)
666
return rq2;
667
if (rq2 == NULL)
668
return rq1;
669
670
if (rq_is_sync(rq1) != rq_is_sync(rq2))
671
return rq_is_sync(rq1) ? rq1 : rq2;
672
673
if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_META)
674
return rq1->cmd_flags & REQ_META ? rq1 : rq2;
675
676
s1 = blk_rq_pos(rq1);
677
s2 = blk_rq_pos(rq2);
678
679
/*
680
* by definition, 1KiB is 2 sectors
681
*/
682
back_max = cfqd->cfq_back_max * 2;
683
684
/*
685
* Strict one way elevator _except_ in the case where we allow
686
* short backward seeks which are biased as twice the cost of a
687
* similar forward seek.
688
*/
689
if (s1 >= last)
690
d1 = s1 - last;
691
else if (s1 + back_max >= last)
692
d1 = (last - s1) * cfqd->cfq_back_penalty;
693
else
694
wrap |= CFQ_RQ1_WRAP;
695
696
if (s2 >= last)
697
d2 = s2 - last;
698
else if (s2 + back_max >= last)
699
d2 = (last - s2) * cfqd->cfq_back_penalty;
700
else
701
wrap |= CFQ_RQ2_WRAP;
702
703
/* Found required data */
704
705
/*
706
* By doing switch() on the bit mask "wrap" we avoid having to
707
* check two variables for all permutations: --> faster!
708
*/
709
switch (wrap) {
710
case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
711
if (d1 < d2)
712
return rq1;
713
else if (d2 < d1)
714
return rq2;
715
else {
716
if (s1 >= s2)
717
return rq1;
718
else
719
return rq2;
720
}
721
722
case CFQ_RQ2_WRAP:
723
return rq1;
724
case CFQ_RQ1_WRAP:
725
return rq2;
726
case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
727
default:
728
/*
729
* Since both rqs are wrapped,
730
* start with the one that's further behind head
731
* (--> only *one* back seek required),
732
* since back seek takes more time than forward.
733
*/
734
if (s1 <= s2)
735
return rq1;
736
else
737
return rq2;
738
}
739
}
740
741
/*
742
* The below is leftmost cache rbtree addon
743
*/
744
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
745
{
746
/* Service tree is empty */
747
if (!root->count)
748
return NULL;
749
750
if (!root->left)
751
root->left = rb_first(&root->rb);
752
753
if (root->left)
754
return rb_entry(root->left, struct cfq_queue, rb_node);
755
756
return NULL;
757
}
758
759
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
760
{
761
if (!root->left)
762
root->left = rb_first(&root->rb);
763
764
if (root->left)
765
return rb_entry_cfqg(root->left);
766
767
return NULL;
768
}
769
770
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
771
{
772
rb_erase(n, root);
773
RB_CLEAR_NODE(n);
774
}
775
776
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
777
{
778
if (root->left == n)
779
root->left = NULL;
780
rb_erase_init(n, &root->rb);
781
--root->count;
782
}
783
784
/*
785
* would be nice to take fifo expire time into account as well
786
*/
787
static struct request *
788
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
789
struct request *last)
790
{
791
struct rb_node *rbnext = rb_next(&last->rb_node);
792
struct rb_node *rbprev = rb_prev(&last->rb_node);
793
struct request *next = NULL, *prev = NULL;
794
795
BUG_ON(RB_EMPTY_NODE(&last->rb_node));
796
797
if (rbprev)
798
prev = rb_entry_rq(rbprev);
799
800
if (rbnext)
801
next = rb_entry_rq(rbnext);
802
else {
803
rbnext = rb_first(&cfqq->sort_list);
804
if (rbnext && rbnext != &last->rb_node)
805
next = rb_entry_rq(rbnext);
806
}
807
808
return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
809
}
810
811
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
812
struct cfq_queue *cfqq)
813
{
814
/*
815
* just an approximation, should be ok.
816
*/
817
return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
818
cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
819
}
820
821
static inline s64
822
cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
823
{
824
return cfqg->vdisktime - st->min_vdisktime;
825
}
826
827
static void
828
__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
829
{
830
struct rb_node **node = &st->rb.rb_node;
831
struct rb_node *parent = NULL;
832
struct cfq_group *__cfqg;
833
s64 key = cfqg_key(st, cfqg);
834
int left = 1;
835
836
while (*node != NULL) {
837
parent = *node;
838
__cfqg = rb_entry_cfqg(parent);
839
840
if (key < cfqg_key(st, __cfqg))
841
node = &parent->rb_left;
842
else {
843
node = &parent->rb_right;
844
left = 0;
845
}
846
}
847
848
if (left)
849
st->left = &cfqg->rb_node;
850
851
rb_link_node(&cfqg->rb_node, parent, node);
852
rb_insert_color(&cfqg->rb_node, &st->rb);
853
}
854
855
static void
856
cfq_update_group_weight(struct cfq_group *cfqg)
857
{
858
BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
859
if (cfqg->needs_update) {
860
cfqg->weight = cfqg->new_weight;
861
cfqg->needs_update = false;
862
}
863
}
864
865
static void
866
cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
867
{
868
BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
869
870
cfq_update_group_weight(cfqg);
871
__cfq_group_service_tree_add(st, cfqg);
872
st->total_weight += cfqg->weight;
873
}
874
875
static void
876
cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
877
{
878
struct cfq_rb_root *st = &cfqd->grp_service_tree;
879
struct cfq_group *__cfqg;
880
struct rb_node *n;
881
882
cfqg->nr_cfqq++;
883
if (!RB_EMPTY_NODE(&cfqg->rb_node))
884
return;
885
886
/*
887
* Currently put the group at the end. Later implement something
888
* so that groups get lesser vtime based on their weights, so that
889
* if group does not loose all if it was not continuously backlogged.
890
*/
891
n = rb_last(&st->rb);
892
if (n) {
893
__cfqg = rb_entry_cfqg(n);
894
cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
895
} else
896
cfqg->vdisktime = st->min_vdisktime;
897
cfq_group_service_tree_add(st, cfqg);
898
}
899
900
static void
901
cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
902
{
903
st->total_weight -= cfqg->weight;
904
if (!RB_EMPTY_NODE(&cfqg->rb_node))
905
cfq_rb_erase(&cfqg->rb_node, st);
906
}
907
908
static void
909
cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
910
{
911
struct cfq_rb_root *st = &cfqd->grp_service_tree;
912
913
BUG_ON(cfqg->nr_cfqq < 1);
914
cfqg->nr_cfqq--;
915
916
/* If there are other cfq queues under this group, don't delete it */
917
if (cfqg->nr_cfqq)
918
return;
919
920
cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
921
cfq_group_service_tree_del(st, cfqg);
922
cfqg->saved_workload_slice = 0;
923
cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
924
}
925
926
static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
927
unsigned int *unaccounted_time)
928
{
929
unsigned int slice_used;
930
931
/*
932
* Queue got expired before even a single request completed or
933
* got expired immediately after first request completion.
934
*/
935
if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
936
/*
937
* Also charge the seek time incurred to the group, otherwise
938
* if there are mutiple queues in the group, each can dispatch
939
* a single request on seeky media and cause lots of seek time
940
* and group will never know it.
941
*/
942
slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
943
1);
944
} else {
945
slice_used = jiffies - cfqq->slice_start;
946
if (slice_used > cfqq->allocated_slice) {
947
*unaccounted_time = slice_used - cfqq->allocated_slice;
948
slice_used = cfqq->allocated_slice;
949
}
950
if (time_after(cfqq->slice_start, cfqq->dispatch_start))
951
*unaccounted_time += cfqq->slice_start -
952
cfqq->dispatch_start;
953
}
954
955
return slice_used;
956
}
957
958
static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
959
struct cfq_queue *cfqq)
960
{
961
struct cfq_rb_root *st = &cfqd->grp_service_tree;
962
unsigned int used_sl, charge, unaccounted_sl = 0;
963
int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
964
- cfqg->service_tree_idle.count;
965
966
BUG_ON(nr_sync < 0);
967
used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
968
969
if (iops_mode(cfqd))
970
charge = cfqq->slice_dispatch;
971
else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
972
charge = cfqq->allocated_slice;
973
974
/* Can't update vdisktime while group is on service tree */
975
cfq_group_service_tree_del(st, cfqg);
976
cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
977
/* If a new weight was requested, update now, off tree */
978
cfq_group_service_tree_add(st, cfqg);
979
980
/* This group is being expired. Save the context */
981
if (time_after(cfqd->workload_expires, jiffies)) {
982
cfqg->saved_workload_slice = cfqd->workload_expires
983
- jiffies;
984
cfqg->saved_workload = cfqd->serving_type;
985
cfqg->saved_serving_prio = cfqd->serving_prio;
986
} else
987
cfqg->saved_workload_slice = 0;
988
989
cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
990
st->min_vdisktime);
991
cfq_log_cfqq(cfqq->cfqd, cfqq,
992
"sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
993
used_sl, cfqq->slice_dispatch, charge,
994
iops_mode(cfqd), cfqq->nr_sectors);
995
cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
996
unaccounted_sl);
997
cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
998
}
999
1000
#ifdef CONFIG_CFQ_GROUP_IOSCHED
1001
static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1002
{
1003
if (blkg)
1004
return container_of(blkg, struct cfq_group, blkg);
1005
return NULL;
1006
}
1007
1008
void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1009
unsigned int weight)
1010
{
1011
struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1012
cfqg->new_weight = weight;
1013
cfqg->needs_update = true;
1014
}
1015
1016
static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1017
struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1018
{
1019
struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1020
unsigned int major, minor;
1021
1022
/*
1023
* Add group onto cgroup list. It might happen that bdi->dev is
1024
* not initialized yet. Initialize this new group without major
1025
* and minor info and this info will be filled in once a new thread
1026
* comes for IO.
1027
*/
1028
if (bdi->dev) {
1029
sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1030
cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1031
(void *)cfqd, MKDEV(major, minor));
1032
} else
1033
cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1034
(void *)cfqd, 0);
1035
1036
cfqd->nr_blkcg_linked_grps++;
1037
cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1038
1039
/* Add group on cfqd list */
1040
hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1041
}
1042
1043
/*
1044
* Should be called from sleepable context. No request queue lock as per
1045
* cpu stats are allocated dynamically and alloc_percpu needs to be called
1046
* from sleepable context.
1047
*/
1048
static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1049
{
1050
struct cfq_group *cfqg = NULL;
1051
int i, j, ret;
1052
struct cfq_rb_root *st;
1053
1054
cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1055
if (!cfqg)
1056
return NULL;
1057
1058
for_each_cfqg_st(cfqg, i, j, st)
1059
*st = CFQ_RB_ROOT;
1060
RB_CLEAR_NODE(&cfqg->rb_node);
1061
1062
/*
1063
* Take the initial reference that will be released on destroy
1064
* This can be thought of a joint reference by cgroup and
1065
* elevator which will be dropped by either elevator exit
1066
* or cgroup deletion path depending on who is exiting first.
1067
*/
1068
cfqg->ref = 1;
1069
1070
ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1071
if (ret) {
1072
kfree(cfqg);
1073
return NULL;
1074
}
1075
1076
return cfqg;
1077
}
1078
1079
static struct cfq_group *
1080
cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1081
{
1082
struct cfq_group *cfqg = NULL;
1083
void *key = cfqd;
1084
struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1085
unsigned int major, minor;
1086
1087
/*
1088
* This is the common case when there are no blkio cgroups.
1089
* Avoid lookup in this case
1090
*/
1091
if (blkcg == &blkio_root_cgroup)
1092
cfqg = &cfqd->root_group;
1093
else
1094
cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1095
1096
if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1097
sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1098
cfqg->blkg.dev = MKDEV(major, minor);
1099
}
1100
1101
return cfqg;
1102
}
1103
1104
/*
1105
* Search for the cfq group current task belongs to. request_queue lock must
1106
* be held.
1107
*/
1108
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1109
{
1110
struct blkio_cgroup *blkcg;
1111
struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1112
struct request_queue *q = cfqd->queue;
1113
1114
rcu_read_lock();
1115
blkcg = task_blkio_cgroup(current);
1116
cfqg = cfq_find_cfqg(cfqd, blkcg);
1117
if (cfqg) {
1118
rcu_read_unlock();
1119
return cfqg;
1120
}
1121
1122
/*
1123
* Need to allocate a group. Allocation of group also needs allocation
1124
* of per cpu stats which in-turn takes a mutex() and can block. Hence
1125
* we need to drop rcu lock and queue_lock before we call alloc.
1126
*
1127
* Not taking any queue reference here and assuming that queue is
1128
* around by the time we return. CFQ queue allocation code does
1129
* the same. It might be racy though.
1130
*/
1131
1132
rcu_read_unlock();
1133
spin_unlock_irq(q->queue_lock);
1134
1135
cfqg = cfq_alloc_cfqg(cfqd);
1136
1137
spin_lock_irq(q->queue_lock);
1138
1139
rcu_read_lock();
1140
blkcg = task_blkio_cgroup(current);
1141
1142
/*
1143
* If some other thread already allocated the group while we were
1144
* not holding queue lock, free up the group
1145
*/
1146
__cfqg = cfq_find_cfqg(cfqd, blkcg);
1147
1148
if (__cfqg) {
1149
kfree(cfqg);
1150
rcu_read_unlock();
1151
return __cfqg;
1152
}
1153
1154
if (!cfqg)
1155
cfqg = &cfqd->root_group;
1156
1157
cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1158
rcu_read_unlock();
1159
return cfqg;
1160
}
1161
1162
static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1163
{
1164
cfqg->ref++;
1165
return cfqg;
1166
}
1167
1168
static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1169
{
1170
/* Currently, all async queues are mapped to root group */
1171
if (!cfq_cfqq_sync(cfqq))
1172
cfqg = &cfqq->cfqd->root_group;
1173
1174
cfqq->cfqg = cfqg;
1175
/* cfqq reference on cfqg */
1176
cfqq->cfqg->ref++;
1177
}
1178
1179
static void cfq_put_cfqg(struct cfq_group *cfqg)
1180
{
1181
struct cfq_rb_root *st;
1182
int i, j;
1183
1184
BUG_ON(cfqg->ref <= 0);
1185
cfqg->ref--;
1186
if (cfqg->ref)
1187
return;
1188
for_each_cfqg_st(cfqg, i, j, st)
1189
BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1190
free_percpu(cfqg->blkg.stats_cpu);
1191
kfree(cfqg);
1192
}
1193
1194
static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1195
{
1196
/* Something wrong if we are trying to remove same group twice */
1197
BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1198
1199
hlist_del_init(&cfqg->cfqd_node);
1200
1201
/*
1202
* Put the reference taken at the time of creation so that when all
1203
* queues are gone, group can be destroyed.
1204
*/
1205
cfq_put_cfqg(cfqg);
1206
}
1207
1208
static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1209
{
1210
struct hlist_node *pos, *n;
1211
struct cfq_group *cfqg;
1212
1213
hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1214
/*
1215
* If cgroup removal path got to blk_group first and removed
1216
* it from cgroup list, then it will take care of destroying
1217
* cfqg also.
1218
*/
1219
if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1220
cfq_destroy_cfqg(cfqd, cfqg);
1221
}
1222
}
1223
1224
/*
1225
* Blk cgroup controller notification saying that blkio_group object is being
1226
* delinked as associated cgroup object is going away. That also means that
1227
* no new IO will come in this group. So get rid of this group as soon as
1228
* any pending IO in the group is finished.
1229
*
1230
* This function is called under rcu_read_lock(). key is the rcu protected
1231
* pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1232
* read lock.
1233
*
1234
* "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1235
* it should not be NULL as even if elevator was exiting, cgroup deltion
1236
* path got to it first.
1237
*/
1238
void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1239
{
1240
unsigned long flags;
1241
struct cfq_data *cfqd = key;
1242
1243
spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1244
cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1245
spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1246
}
1247
1248
#else /* GROUP_IOSCHED */
1249
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1250
{
1251
return &cfqd->root_group;
1252
}
1253
1254
static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1255
{
1256
return cfqg;
1257
}
1258
1259
static inline void
1260
cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1261
cfqq->cfqg = cfqg;
1262
}
1263
1264
static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1265
static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1266
1267
#endif /* GROUP_IOSCHED */
1268
1269
/*
1270
* The cfqd->service_trees holds all pending cfq_queue's that have
1271
* requests waiting to be processed. It is sorted in the order that
1272
* we will service the queues.
1273
*/
1274
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1275
bool add_front)
1276
{
1277
struct rb_node **p, *parent;
1278
struct cfq_queue *__cfqq;
1279
unsigned long rb_key;
1280
struct cfq_rb_root *service_tree;
1281
int left;
1282
int new_cfqq = 1;
1283
1284
service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1285
cfqq_type(cfqq));
1286
if (cfq_class_idle(cfqq)) {
1287
rb_key = CFQ_IDLE_DELAY;
1288
parent = rb_last(&service_tree->rb);
1289
if (parent && parent != &cfqq->rb_node) {
1290
__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1291
rb_key += __cfqq->rb_key;
1292
} else
1293
rb_key += jiffies;
1294
} else if (!add_front) {
1295
/*
1296
* Get our rb key offset. Subtract any residual slice
1297
* value carried from last service. A negative resid
1298
* count indicates slice overrun, and this should position
1299
* the next service time further away in the tree.
1300
*/
1301
rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1302
rb_key -= cfqq->slice_resid;
1303
cfqq->slice_resid = 0;
1304
} else {
1305
rb_key = -HZ;
1306
__cfqq = cfq_rb_first(service_tree);
1307
rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1308
}
1309
1310
if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1311
new_cfqq = 0;
1312
/*
1313
* same position, nothing more to do
1314
*/
1315
if (rb_key == cfqq->rb_key &&
1316
cfqq->service_tree == service_tree)
1317
return;
1318
1319
cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1320
cfqq->service_tree = NULL;
1321
}
1322
1323
left = 1;
1324
parent = NULL;
1325
cfqq->service_tree = service_tree;
1326
p = &service_tree->rb.rb_node;
1327
while (*p) {
1328
struct rb_node **n;
1329
1330
parent = *p;
1331
__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1332
1333
/*
1334
* sort by key, that represents service time.
1335
*/
1336
if (time_before(rb_key, __cfqq->rb_key))
1337
n = &(*p)->rb_left;
1338
else {
1339
n = &(*p)->rb_right;
1340
left = 0;
1341
}
1342
1343
p = n;
1344
}
1345
1346
if (left)
1347
service_tree->left = &cfqq->rb_node;
1348
1349
cfqq->rb_key = rb_key;
1350
rb_link_node(&cfqq->rb_node, parent, p);
1351
rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1352
service_tree->count++;
1353
if (add_front || !new_cfqq)
1354
return;
1355
cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1356
}
1357
1358
static struct cfq_queue *
1359
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1360
sector_t sector, struct rb_node **ret_parent,
1361
struct rb_node ***rb_link)
1362
{
1363
struct rb_node **p, *parent;
1364
struct cfq_queue *cfqq = NULL;
1365
1366
parent = NULL;
1367
p = &root->rb_node;
1368
while (*p) {
1369
struct rb_node **n;
1370
1371
parent = *p;
1372
cfqq = rb_entry(parent, struct cfq_queue, p_node);
1373
1374
/*
1375
* Sort strictly based on sector. Smallest to the left,
1376
* largest to the right.
1377
*/
1378
if (sector > blk_rq_pos(cfqq->next_rq))
1379
n = &(*p)->rb_right;
1380
else if (sector < blk_rq_pos(cfqq->next_rq))
1381
n = &(*p)->rb_left;
1382
else
1383
break;
1384
p = n;
1385
cfqq = NULL;
1386
}
1387
1388
*ret_parent = parent;
1389
if (rb_link)
1390
*rb_link = p;
1391
return cfqq;
1392
}
1393
1394
static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1395
{
1396
struct rb_node **p, *parent;
1397
struct cfq_queue *__cfqq;
1398
1399
if (cfqq->p_root) {
1400
rb_erase(&cfqq->p_node, cfqq->p_root);
1401
cfqq->p_root = NULL;
1402
}
1403
1404
if (cfq_class_idle(cfqq))
1405
return;
1406
if (!cfqq->next_rq)
1407
return;
1408
1409
cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1410
__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1411
blk_rq_pos(cfqq->next_rq), &parent, &p);
1412
if (!__cfqq) {
1413
rb_link_node(&cfqq->p_node, parent, p);
1414
rb_insert_color(&cfqq->p_node, cfqq->p_root);
1415
} else
1416
cfqq->p_root = NULL;
1417
}
1418
1419
/*
1420
* Update cfqq's position in the service tree.
1421
*/
1422
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1423
{
1424
/*
1425
* Resorting requires the cfqq to be on the RR list already.
1426
*/
1427
if (cfq_cfqq_on_rr(cfqq)) {
1428
cfq_service_tree_add(cfqd, cfqq, 0);
1429
cfq_prio_tree_add(cfqd, cfqq);
1430
}
1431
}
1432
1433
/*
1434
* add to busy list of queues for service, trying to be fair in ordering
1435
* the pending list according to last request service
1436
*/
1437
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1438
{
1439
cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1440
BUG_ON(cfq_cfqq_on_rr(cfqq));
1441
cfq_mark_cfqq_on_rr(cfqq);
1442
cfqd->busy_queues++;
1443
if (cfq_cfqq_sync(cfqq))
1444
cfqd->busy_sync_queues++;
1445
1446
cfq_resort_rr_list(cfqd, cfqq);
1447
}
1448
1449
/*
1450
* Called when the cfqq no longer has requests pending, remove it from
1451
* the service tree.
1452
*/
1453
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1454
{
1455
cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1456
BUG_ON(!cfq_cfqq_on_rr(cfqq));
1457
cfq_clear_cfqq_on_rr(cfqq);
1458
1459
if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1460
cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1461
cfqq->service_tree = NULL;
1462
}
1463
if (cfqq->p_root) {
1464
rb_erase(&cfqq->p_node, cfqq->p_root);
1465
cfqq->p_root = NULL;
1466
}
1467
1468
cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1469
BUG_ON(!cfqd->busy_queues);
1470
cfqd->busy_queues--;
1471
if (cfq_cfqq_sync(cfqq))
1472
cfqd->busy_sync_queues--;
1473
}
1474
1475
/*
1476
* rb tree support functions
1477
*/
1478
static void cfq_del_rq_rb(struct request *rq)
1479
{
1480
struct cfq_queue *cfqq = RQ_CFQQ(rq);
1481
const int sync = rq_is_sync(rq);
1482
1483
BUG_ON(!cfqq->queued[sync]);
1484
cfqq->queued[sync]--;
1485
1486
elv_rb_del(&cfqq->sort_list, rq);
1487
1488
if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1489
/*
1490
* Queue will be deleted from service tree when we actually
1491
* expire it later. Right now just remove it from prio tree
1492
* as it is empty.
1493
*/
1494
if (cfqq->p_root) {
1495
rb_erase(&cfqq->p_node, cfqq->p_root);
1496
cfqq->p_root = NULL;
1497
}
1498
}
1499
}
1500
1501
static void cfq_add_rq_rb(struct request *rq)
1502
{
1503
struct cfq_queue *cfqq = RQ_CFQQ(rq);
1504
struct cfq_data *cfqd = cfqq->cfqd;
1505
struct request *__alias, *prev;
1506
1507
cfqq->queued[rq_is_sync(rq)]++;
1508
1509
/*
1510
* looks a little odd, but the first insert might return an alias.
1511
* if that happens, put the alias on the dispatch list
1512
*/
1513
while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1514
cfq_dispatch_insert(cfqd->queue, __alias);
1515
1516
if (!cfq_cfqq_on_rr(cfqq))
1517
cfq_add_cfqq_rr(cfqd, cfqq);
1518
1519
/*
1520
* check if this request is a better next-serve candidate
1521
*/
1522
prev = cfqq->next_rq;
1523
cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1524
1525
/*
1526
* adjust priority tree position, if ->next_rq changes
1527
*/
1528
if (prev != cfqq->next_rq)
1529
cfq_prio_tree_add(cfqd, cfqq);
1530
1531
BUG_ON(!cfqq->next_rq);
1532
}
1533
1534
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1535
{
1536
elv_rb_del(&cfqq->sort_list, rq);
1537
cfqq->queued[rq_is_sync(rq)]--;
1538
cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1539
rq_data_dir(rq), rq_is_sync(rq));
1540
cfq_add_rq_rb(rq);
1541
cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1542
&cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1543
rq_is_sync(rq));
1544
}
1545
1546
static struct request *
1547
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1548
{
1549
struct task_struct *tsk = current;
1550
struct cfq_io_context *cic;
1551
struct cfq_queue *cfqq;
1552
1553
cic = cfq_cic_lookup(cfqd, tsk->io_context);
1554
if (!cic)
1555
return NULL;
1556
1557
cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1558
if (cfqq) {
1559
sector_t sector = bio->bi_sector + bio_sectors(bio);
1560
1561
return elv_rb_find(&cfqq->sort_list, sector);
1562
}
1563
1564
return NULL;
1565
}
1566
1567
static void cfq_activate_request(struct request_queue *q, struct request *rq)
1568
{
1569
struct cfq_data *cfqd = q->elevator->elevator_data;
1570
1571
cfqd->rq_in_driver++;
1572
cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1573
cfqd->rq_in_driver);
1574
1575
cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1576
}
1577
1578
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1579
{
1580
struct cfq_data *cfqd = q->elevator->elevator_data;
1581
1582
WARN_ON(!cfqd->rq_in_driver);
1583
cfqd->rq_in_driver--;
1584
cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1585
cfqd->rq_in_driver);
1586
}
1587
1588
static void cfq_remove_request(struct request *rq)
1589
{
1590
struct cfq_queue *cfqq = RQ_CFQQ(rq);
1591
1592
if (cfqq->next_rq == rq)
1593
cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1594
1595
list_del_init(&rq->queuelist);
1596
cfq_del_rq_rb(rq);
1597
1598
cfqq->cfqd->rq_queued--;
1599
cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1600
rq_data_dir(rq), rq_is_sync(rq));
1601
if (rq->cmd_flags & REQ_META) {
1602
WARN_ON(!cfqq->meta_pending);
1603
cfqq->meta_pending--;
1604
}
1605
}
1606
1607
static int cfq_merge(struct request_queue *q, struct request **req,
1608
struct bio *bio)
1609
{
1610
struct cfq_data *cfqd = q->elevator->elevator_data;
1611
struct request *__rq;
1612
1613
__rq = cfq_find_rq_fmerge(cfqd, bio);
1614
if (__rq && elv_rq_merge_ok(__rq, bio)) {
1615
*req = __rq;
1616
return ELEVATOR_FRONT_MERGE;
1617
}
1618
1619
return ELEVATOR_NO_MERGE;
1620
}
1621
1622
static void cfq_merged_request(struct request_queue *q, struct request *req,
1623
int type)
1624
{
1625
if (type == ELEVATOR_FRONT_MERGE) {
1626
struct cfq_queue *cfqq = RQ_CFQQ(req);
1627
1628
cfq_reposition_rq_rb(cfqq, req);
1629
}
1630
}
1631
1632
static void cfq_bio_merged(struct request_queue *q, struct request *req,
1633
struct bio *bio)
1634
{
1635
cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1636
bio_data_dir(bio), cfq_bio_sync(bio));
1637
}
1638
1639
static void
1640
cfq_merged_requests(struct request_queue *q, struct request *rq,
1641
struct request *next)
1642
{
1643
struct cfq_queue *cfqq = RQ_CFQQ(rq);
1644
/*
1645
* reposition in fifo if next is older than rq
1646
*/
1647
if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1648
time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1649
list_move(&rq->queuelist, &next->queuelist);
1650
rq_set_fifo_time(rq, rq_fifo_time(next));
1651
}
1652
1653
if (cfqq->next_rq == next)
1654
cfqq->next_rq = rq;
1655
cfq_remove_request(next);
1656
cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1657
rq_data_dir(next), rq_is_sync(next));
1658
}
1659
1660
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1661
struct bio *bio)
1662
{
1663
struct cfq_data *cfqd = q->elevator->elevator_data;
1664
struct cfq_io_context *cic;
1665
struct cfq_queue *cfqq;
1666
1667
/*
1668
* Disallow merge of a sync bio into an async request.
1669
*/
1670
if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1671
return false;
1672
1673
/*
1674
* Lookup the cfqq that this bio will be queued with. Allow
1675
* merge only if rq is queued there.
1676
*/
1677
cic = cfq_cic_lookup(cfqd, current->io_context);
1678
if (!cic)
1679
return false;
1680
1681
cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1682
return cfqq == RQ_CFQQ(rq);
1683
}
1684
1685
static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1686
{
1687
del_timer(&cfqd->idle_slice_timer);
1688
cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1689
}
1690
1691
static void __cfq_set_active_queue(struct cfq_data *cfqd,
1692
struct cfq_queue *cfqq)
1693
{
1694
if (cfqq) {
1695
cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1696
cfqd->serving_prio, cfqd->serving_type);
1697
cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1698
cfqq->slice_start = 0;
1699
cfqq->dispatch_start = jiffies;
1700
cfqq->allocated_slice = 0;
1701
cfqq->slice_end = 0;
1702
cfqq->slice_dispatch = 0;
1703
cfqq->nr_sectors = 0;
1704
1705
cfq_clear_cfqq_wait_request(cfqq);
1706
cfq_clear_cfqq_must_dispatch(cfqq);
1707
cfq_clear_cfqq_must_alloc_slice(cfqq);
1708
cfq_clear_cfqq_fifo_expire(cfqq);
1709
cfq_mark_cfqq_slice_new(cfqq);
1710
1711
cfq_del_timer(cfqd, cfqq);
1712
}
1713
1714
cfqd->active_queue = cfqq;
1715
}
1716
1717
/*
1718
* current cfqq expired its slice (or was too idle), select new one
1719
*/
1720
static void
1721
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1722
bool timed_out)
1723
{
1724
cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1725
1726
if (cfq_cfqq_wait_request(cfqq))
1727
cfq_del_timer(cfqd, cfqq);
1728
1729
cfq_clear_cfqq_wait_request(cfqq);
1730
cfq_clear_cfqq_wait_busy(cfqq);
1731
1732
/*
1733
* If this cfqq is shared between multiple processes, check to
1734
* make sure that those processes are still issuing I/Os within
1735
* the mean seek distance. If not, it may be time to break the
1736
* queues apart again.
1737
*/
1738
if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1739
cfq_mark_cfqq_split_coop(cfqq);
1740
1741
/*
1742
* store what was left of this slice, if the queue idled/timed out
1743
*/
1744
if (timed_out) {
1745
if (cfq_cfqq_slice_new(cfqq))
1746
cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1747
else
1748
cfqq->slice_resid = cfqq->slice_end - jiffies;
1749
cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1750
}
1751
1752
cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1753
1754
if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1755
cfq_del_cfqq_rr(cfqd, cfqq);
1756
1757
cfq_resort_rr_list(cfqd, cfqq);
1758
1759
if (cfqq == cfqd->active_queue)
1760
cfqd->active_queue = NULL;
1761
1762
if (cfqd->active_cic) {
1763
put_io_context(cfqd->active_cic->ioc);
1764
cfqd->active_cic = NULL;
1765
}
1766
}
1767
1768
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1769
{
1770
struct cfq_queue *cfqq = cfqd->active_queue;
1771
1772
if (cfqq)
1773
__cfq_slice_expired(cfqd, cfqq, timed_out);
1774
}
1775
1776
/*
1777
* Get next queue for service. Unless we have a queue preemption,
1778
* we'll simply select the first cfqq in the service tree.
1779
*/
1780
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1781
{
1782
struct cfq_rb_root *service_tree =
1783
service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1784
cfqd->serving_type);
1785
1786
if (!cfqd->rq_queued)
1787
return NULL;
1788
1789
/* There is nothing to dispatch */
1790
if (!service_tree)
1791
return NULL;
1792
if (RB_EMPTY_ROOT(&service_tree->rb))
1793
return NULL;
1794
return cfq_rb_first(service_tree);
1795
}
1796
1797
static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1798
{
1799
struct cfq_group *cfqg;
1800
struct cfq_queue *cfqq;
1801
int i, j;
1802
struct cfq_rb_root *st;
1803
1804
if (!cfqd->rq_queued)
1805
return NULL;
1806
1807
cfqg = cfq_get_next_cfqg(cfqd);
1808
if (!cfqg)
1809
return NULL;
1810
1811
for_each_cfqg_st(cfqg, i, j, st)
1812
if ((cfqq = cfq_rb_first(st)) != NULL)
1813
return cfqq;
1814
return NULL;
1815
}
1816
1817
/*
1818
* Get and set a new active queue for service.
1819
*/
1820
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1821
struct cfq_queue *cfqq)
1822
{
1823
if (!cfqq)
1824
cfqq = cfq_get_next_queue(cfqd);
1825
1826
__cfq_set_active_queue(cfqd, cfqq);
1827
return cfqq;
1828
}
1829
1830
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1831
struct request *rq)
1832
{
1833
if (blk_rq_pos(rq) >= cfqd->last_position)
1834
return blk_rq_pos(rq) - cfqd->last_position;
1835
else
1836
return cfqd->last_position - blk_rq_pos(rq);
1837
}
1838
1839
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1840
struct request *rq)
1841
{
1842
return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1843
}
1844
1845
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1846
struct cfq_queue *cur_cfqq)
1847
{
1848
struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1849
struct rb_node *parent, *node;
1850
struct cfq_queue *__cfqq;
1851
sector_t sector = cfqd->last_position;
1852
1853
if (RB_EMPTY_ROOT(root))
1854
return NULL;
1855
1856
/*
1857
* First, if we find a request starting at the end of the last
1858
* request, choose it.
1859
*/
1860
__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1861
if (__cfqq)
1862
return __cfqq;
1863
1864
/*
1865
* If the exact sector wasn't found, the parent of the NULL leaf
1866
* will contain the closest sector.
1867
*/
1868
__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1869
if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1870
return __cfqq;
1871
1872
if (blk_rq_pos(__cfqq->next_rq) < sector)
1873
node = rb_next(&__cfqq->p_node);
1874
else
1875
node = rb_prev(&__cfqq->p_node);
1876
if (!node)
1877
return NULL;
1878
1879
__cfqq = rb_entry(node, struct cfq_queue, p_node);
1880
if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1881
return __cfqq;
1882
1883
return NULL;
1884
}
1885
1886
/*
1887
* cfqd - obvious
1888
* cur_cfqq - passed in so that we don't decide that the current queue is
1889
* closely cooperating with itself.
1890
*
1891
* So, basically we're assuming that that cur_cfqq has dispatched at least
1892
* one request, and that cfqd->last_position reflects a position on the disk
1893
* associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1894
* assumption.
1895
*/
1896
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1897
struct cfq_queue *cur_cfqq)
1898
{
1899
struct cfq_queue *cfqq;
1900
1901
if (cfq_class_idle(cur_cfqq))
1902
return NULL;
1903
if (!cfq_cfqq_sync(cur_cfqq))
1904
return NULL;
1905
if (CFQQ_SEEKY(cur_cfqq))
1906
return NULL;
1907
1908
/*
1909
* Don't search priority tree if it's the only queue in the group.
1910
*/
1911
if (cur_cfqq->cfqg->nr_cfqq == 1)
1912
return NULL;
1913
1914
/*
1915
* We should notice if some of the queues are cooperating, eg
1916
* working closely on the same area of the disk. In that case,
1917
* we can group them together and don't waste time idling.
1918
*/
1919
cfqq = cfqq_close(cfqd, cur_cfqq);
1920
if (!cfqq)
1921
return NULL;
1922
1923
/* If new queue belongs to different cfq_group, don't choose it */
1924
if (cur_cfqq->cfqg != cfqq->cfqg)
1925
return NULL;
1926
1927
/*
1928
* It only makes sense to merge sync queues.
1929
*/
1930
if (!cfq_cfqq_sync(cfqq))
1931
return NULL;
1932
if (CFQQ_SEEKY(cfqq))
1933
return NULL;
1934
1935
/*
1936
* Do not merge queues of different priority classes
1937
*/
1938
if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1939
return NULL;
1940
1941
return cfqq;
1942
}
1943
1944
/*
1945
* Determine whether we should enforce idle window for this queue.
1946
*/
1947
1948
static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1949
{
1950
enum wl_prio_t prio = cfqq_prio(cfqq);
1951
struct cfq_rb_root *service_tree = cfqq->service_tree;
1952
1953
BUG_ON(!service_tree);
1954
BUG_ON(!service_tree->count);
1955
1956
if (!cfqd->cfq_slice_idle)
1957
return false;
1958
1959
/* We never do for idle class queues. */
1960
if (prio == IDLE_WORKLOAD)
1961
return false;
1962
1963
/* We do for queues that were marked with idle window flag. */
1964
if (cfq_cfqq_idle_window(cfqq) &&
1965
!(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1966
return true;
1967
1968
/*
1969
* Otherwise, we do only if they are the last ones
1970
* in their service tree.
1971
*/
1972
if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1973
return true;
1974
cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1975
service_tree->count);
1976
return false;
1977
}
1978
1979
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1980
{
1981
struct cfq_queue *cfqq = cfqd->active_queue;
1982
struct cfq_io_context *cic;
1983
unsigned long sl, group_idle = 0;
1984
1985
/*
1986
* SSD device without seek penalty, disable idling. But only do so
1987
* for devices that support queuing, otherwise we still have a problem
1988
* with sync vs async workloads.
1989
*/
1990
if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1991
return;
1992
1993
WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1994
WARN_ON(cfq_cfqq_slice_new(cfqq));
1995
1996
/*
1997
* idle is disabled, either manually or by past process history
1998
*/
1999
if (!cfq_should_idle(cfqd, cfqq)) {
2000
/* no queue idling. Check for group idling */
2001
if (cfqd->cfq_group_idle)
2002
group_idle = cfqd->cfq_group_idle;
2003
else
2004
return;
2005
}
2006
2007
/*
2008
* still active requests from this queue, don't idle
2009
*/
2010
if (cfqq->dispatched)
2011
return;
2012
2013
/*
2014
* task has exited, don't wait
2015
*/
2016
cic = cfqd->active_cic;
2017
if (!cic || !atomic_read(&cic->ioc->nr_tasks))
2018
return;
2019
2020
/*
2021
* If our average think time is larger than the remaining time
2022
* slice, then don't idle. This avoids overrunning the allotted
2023
* time slice.
2024
*/
2025
if (sample_valid(cic->ttime_samples) &&
2026
(cfqq->slice_end - jiffies < cic->ttime_mean)) {
2027
cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2028
cic->ttime_mean);
2029
return;
2030
}
2031
2032
/* There are other queues in the group, don't do group idle */
2033
if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2034
return;
2035
2036
cfq_mark_cfqq_wait_request(cfqq);
2037
2038
if (group_idle)
2039
sl = cfqd->cfq_group_idle;
2040
else
2041
sl = cfqd->cfq_slice_idle;
2042
2043
mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2044
cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2045
cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2046
group_idle ? 1 : 0);
2047
}
2048
2049
/*
2050
* Move request from internal lists to the request queue dispatch list.
2051
*/
2052
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2053
{
2054
struct cfq_data *cfqd = q->elevator->elevator_data;
2055
struct cfq_queue *cfqq = RQ_CFQQ(rq);
2056
2057
cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2058
2059
cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2060
cfq_remove_request(rq);
2061
cfqq->dispatched++;
2062
(RQ_CFQG(rq))->dispatched++;
2063
elv_dispatch_sort(q, rq);
2064
2065
cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2066
cfqq->nr_sectors += blk_rq_sectors(rq);
2067
cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2068
rq_data_dir(rq), rq_is_sync(rq));
2069
}
2070
2071
/*
2072
* return expired entry, or NULL to just start from scratch in rbtree
2073
*/
2074
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2075
{
2076
struct request *rq = NULL;
2077
2078
if (cfq_cfqq_fifo_expire(cfqq))
2079
return NULL;
2080
2081
cfq_mark_cfqq_fifo_expire(cfqq);
2082
2083
if (list_empty(&cfqq->fifo))
2084
return NULL;
2085
2086
rq = rq_entry_fifo(cfqq->fifo.next);
2087
if (time_before(jiffies, rq_fifo_time(rq)))
2088
rq = NULL;
2089
2090
cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2091
return rq;
2092
}
2093
2094
static inline int
2095
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2096
{
2097
const int base_rq = cfqd->cfq_slice_async_rq;
2098
2099
WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2100
2101
return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2102
}
2103
2104
/*
2105
* Must be called with the queue_lock held.
2106
*/
2107
static int cfqq_process_refs(struct cfq_queue *cfqq)
2108
{
2109
int process_refs, io_refs;
2110
2111
io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2112
process_refs = cfqq->ref - io_refs;
2113
BUG_ON(process_refs < 0);
2114
return process_refs;
2115
}
2116
2117
static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2118
{
2119
int process_refs, new_process_refs;
2120
struct cfq_queue *__cfqq;
2121
2122
/*
2123
* If there are no process references on the new_cfqq, then it is
2124
* unsafe to follow the ->new_cfqq chain as other cfqq's in the
2125
* chain may have dropped their last reference (not just their
2126
* last process reference).
2127
*/
2128
if (!cfqq_process_refs(new_cfqq))
2129
return;
2130
2131
/* Avoid a circular list and skip interim queue merges */
2132
while ((__cfqq = new_cfqq->new_cfqq)) {
2133
if (__cfqq == cfqq)
2134
return;
2135
new_cfqq = __cfqq;
2136
}
2137
2138
process_refs = cfqq_process_refs(cfqq);
2139
new_process_refs = cfqq_process_refs(new_cfqq);
2140
/*
2141
* If the process for the cfqq has gone away, there is no
2142
* sense in merging the queues.
2143
*/
2144
if (process_refs == 0 || new_process_refs == 0)
2145
return;
2146
2147
/*
2148
* Merge in the direction of the lesser amount of work.
2149
*/
2150
if (new_process_refs >= process_refs) {
2151
cfqq->new_cfqq = new_cfqq;
2152
new_cfqq->ref += process_refs;
2153
} else {
2154
new_cfqq->new_cfqq = cfqq;
2155
cfqq->ref += new_process_refs;
2156
}
2157
}
2158
2159
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2160
struct cfq_group *cfqg, enum wl_prio_t prio)
2161
{
2162
struct cfq_queue *queue;
2163
int i;
2164
bool key_valid = false;
2165
unsigned long lowest_key = 0;
2166
enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2167
2168
for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2169
/* select the one with lowest rb_key */
2170
queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2171
if (queue &&
2172
(!key_valid || time_before(queue->rb_key, lowest_key))) {
2173
lowest_key = queue->rb_key;
2174
cur_best = i;
2175
key_valid = true;
2176
}
2177
}
2178
2179
return cur_best;
2180
}
2181
2182
static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2183
{
2184
unsigned slice;
2185
unsigned count;
2186
struct cfq_rb_root *st;
2187
unsigned group_slice;
2188
enum wl_prio_t original_prio = cfqd->serving_prio;
2189
2190
/* Choose next priority. RT > BE > IDLE */
2191
if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2192
cfqd->serving_prio = RT_WORKLOAD;
2193
else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2194
cfqd->serving_prio = BE_WORKLOAD;
2195
else {
2196
cfqd->serving_prio = IDLE_WORKLOAD;
2197
cfqd->workload_expires = jiffies + 1;
2198
return;
2199
}
2200
2201
if (original_prio != cfqd->serving_prio)
2202
goto new_workload;
2203
2204
/*
2205
* For RT and BE, we have to choose also the type
2206
* (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2207
* expiration time
2208
*/
2209
st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2210
count = st->count;
2211
2212
/*
2213
* check workload expiration, and that we still have other queues ready
2214
*/
2215
if (count && !time_after(jiffies, cfqd->workload_expires))
2216
return;
2217
2218
new_workload:
2219
/* otherwise select new workload type */
2220
cfqd->serving_type =
2221
cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2222
st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2223
count = st->count;
2224
2225
/*
2226
* the workload slice is computed as a fraction of target latency
2227
* proportional to the number of queues in that workload, over
2228
* all the queues in the same priority class
2229
*/
2230
group_slice = cfq_group_slice(cfqd, cfqg);
2231
2232
slice = group_slice * count /
2233
max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2234
cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2235
2236
if (cfqd->serving_type == ASYNC_WORKLOAD) {
2237
unsigned int tmp;
2238
2239
/*
2240
* Async queues are currently system wide. Just taking
2241
* proportion of queues with-in same group will lead to higher
2242
* async ratio system wide as generally root group is going
2243
* to have higher weight. A more accurate thing would be to
2244
* calculate system wide asnc/sync ratio.
2245
*/
2246
tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2247
tmp = tmp/cfqd->busy_queues;
2248
slice = min_t(unsigned, slice, tmp);
2249
2250
/* async workload slice is scaled down according to
2251
* the sync/async slice ratio. */
2252
slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2253
} else
2254
/* sync workload slice is at least 2 * cfq_slice_idle */
2255
slice = max(slice, 2 * cfqd->cfq_slice_idle);
2256
2257
slice = max_t(unsigned, slice, CFQ_MIN_TT);
2258
cfq_log(cfqd, "workload slice:%d", slice);
2259
cfqd->workload_expires = jiffies + slice;
2260
}
2261
2262
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2263
{
2264
struct cfq_rb_root *st = &cfqd->grp_service_tree;
2265
struct cfq_group *cfqg;
2266
2267
if (RB_EMPTY_ROOT(&st->rb))
2268
return NULL;
2269
cfqg = cfq_rb_first_group(st);
2270
update_min_vdisktime(st);
2271
return cfqg;
2272
}
2273
2274
static void cfq_choose_cfqg(struct cfq_data *cfqd)
2275
{
2276
struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2277
2278
cfqd->serving_group = cfqg;
2279
2280
/* Restore the workload type data */
2281
if (cfqg->saved_workload_slice) {
2282
cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2283
cfqd->serving_type = cfqg->saved_workload;
2284
cfqd->serving_prio = cfqg->saved_serving_prio;
2285
} else
2286
cfqd->workload_expires = jiffies - 1;
2287
2288
choose_service_tree(cfqd, cfqg);
2289
}
2290
2291
/*
2292
* Select a queue for service. If we have a current active queue,
2293
* check whether to continue servicing it, or retrieve and set a new one.
2294
*/
2295
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2296
{
2297
struct cfq_queue *cfqq, *new_cfqq = NULL;
2298
2299
cfqq = cfqd->active_queue;
2300
if (!cfqq)
2301
goto new_queue;
2302
2303
if (!cfqd->rq_queued)
2304
return NULL;
2305
2306
/*
2307
* We were waiting for group to get backlogged. Expire the queue
2308
*/
2309
if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2310
goto expire;
2311
2312
/*
2313
* The active queue has run out of time, expire it and select new.
2314
*/
2315
if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2316
/*
2317
* If slice had not expired at the completion of last request
2318
* we might not have turned on wait_busy flag. Don't expire
2319
* the queue yet. Allow the group to get backlogged.
2320
*
2321
* The very fact that we have used the slice, that means we
2322
* have been idling all along on this queue and it should be
2323
* ok to wait for this request to complete.
2324
*/
2325
if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2326
&& cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2327
cfqq = NULL;
2328
goto keep_queue;
2329
} else
2330
goto check_group_idle;
2331
}
2332
2333
/*
2334
* The active queue has requests and isn't expired, allow it to
2335
* dispatch.
2336
*/
2337
if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2338
goto keep_queue;
2339
2340
/*
2341
* If another queue has a request waiting within our mean seek
2342
* distance, let it run. The expire code will check for close
2343
* cooperators and put the close queue at the front of the service
2344
* tree. If possible, merge the expiring queue with the new cfqq.
2345
*/
2346
new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2347
if (new_cfqq) {
2348
if (!cfqq->new_cfqq)
2349
cfq_setup_merge(cfqq, new_cfqq);
2350
goto expire;
2351
}
2352
2353
/*
2354
* No requests pending. If the active queue still has requests in
2355
* flight or is idling for a new request, allow either of these
2356
* conditions to happen (or time out) before selecting a new queue.
2357
*/
2358
if (timer_pending(&cfqd->idle_slice_timer)) {
2359
cfqq = NULL;
2360
goto keep_queue;
2361
}
2362
2363
/*
2364
* This is a deep seek queue, but the device is much faster than
2365
* the queue can deliver, don't idle
2366
**/
2367
if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2368
(cfq_cfqq_slice_new(cfqq) ||
2369
(cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2370
cfq_clear_cfqq_deep(cfqq);
2371
cfq_clear_cfqq_idle_window(cfqq);
2372
}
2373
2374
if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2375
cfqq = NULL;
2376
goto keep_queue;
2377
}
2378
2379
/*
2380
* If group idle is enabled and there are requests dispatched from
2381
* this group, wait for requests to complete.
2382
*/
2383
check_group_idle:
2384
if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2385
&& cfqq->cfqg->dispatched) {
2386
cfqq = NULL;
2387
goto keep_queue;
2388
}
2389
2390
expire:
2391
cfq_slice_expired(cfqd, 0);
2392
new_queue:
2393
/*
2394
* Current queue expired. Check if we have to switch to a new
2395
* service tree
2396
*/
2397
if (!new_cfqq)
2398
cfq_choose_cfqg(cfqd);
2399
2400
cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2401
keep_queue:
2402
return cfqq;
2403
}
2404
2405
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2406
{
2407
int dispatched = 0;
2408
2409
while (cfqq->next_rq) {
2410
cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2411
dispatched++;
2412
}
2413
2414
BUG_ON(!list_empty(&cfqq->fifo));
2415
2416
/* By default cfqq is not expired if it is empty. Do it explicitly */
2417
__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2418
return dispatched;
2419
}
2420
2421
/*
2422
* Drain our current requests. Used for barriers and when switching
2423
* io schedulers on-the-fly.
2424
*/
2425
static int cfq_forced_dispatch(struct cfq_data *cfqd)
2426
{
2427
struct cfq_queue *cfqq;
2428
int dispatched = 0;
2429
2430
/* Expire the timeslice of the current active queue first */
2431
cfq_slice_expired(cfqd, 0);
2432
while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2433
__cfq_set_active_queue(cfqd, cfqq);
2434
dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2435
}
2436
2437
BUG_ON(cfqd->busy_queues);
2438
2439
cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2440
return dispatched;
2441
}
2442
2443
static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2444
struct cfq_queue *cfqq)
2445
{
2446
/* the queue hasn't finished any request, can't estimate */
2447
if (cfq_cfqq_slice_new(cfqq))
2448
return true;
2449
if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2450
cfqq->slice_end))
2451
return true;
2452
2453
return false;
2454
}
2455
2456
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2457
{
2458
unsigned int max_dispatch;
2459
2460
/*
2461
* Drain async requests before we start sync IO
2462
*/
2463
if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2464
return false;
2465
2466
/*
2467
* If this is an async queue and we have sync IO in flight, let it wait
2468
*/
2469
if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2470
return false;
2471
2472
max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2473
if (cfq_class_idle(cfqq))
2474
max_dispatch = 1;
2475
2476
/*
2477
* Does this cfqq already have too much IO in flight?
2478
*/
2479
if (cfqq->dispatched >= max_dispatch) {
2480
bool promote_sync = false;
2481
/*
2482
* idle queue must always only have a single IO in flight
2483
*/
2484
if (cfq_class_idle(cfqq))
2485
return false;
2486
2487
/*
2488
* If there is only one sync queue
2489
* we can ignore async queue here and give the sync
2490
* queue no dispatch limit. The reason is a sync queue can
2491
* preempt async queue, limiting the sync queue doesn't make
2492
* sense. This is useful for aiostress test.
2493
*/
2494
if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2495
promote_sync = true;
2496
2497
/*
2498
* We have other queues, don't allow more IO from this one
2499
*/
2500
if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2501
!promote_sync)
2502
return false;
2503
2504
/*
2505
* Sole queue user, no limit
2506
*/
2507
if (cfqd->busy_queues == 1 || promote_sync)
2508
max_dispatch = -1;
2509
else
2510
/*
2511
* Normally we start throttling cfqq when cfq_quantum/2
2512
* requests have been dispatched. But we can drive
2513
* deeper queue depths at the beginning of slice
2514
* subjected to upper limit of cfq_quantum.
2515
* */
2516
max_dispatch = cfqd->cfq_quantum;
2517
}
2518
2519
/*
2520
* Async queues must wait a bit before being allowed dispatch.
2521
* We also ramp up the dispatch depth gradually for async IO,
2522
* based on the last sync IO we serviced
2523
*/
2524
if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2525
unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2526
unsigned int depth;
2527
2528
depth = last_sync / cfqd->cfq_slice[1];
2529
if (!depth && !cfqq->dispatched)
2530
depth = 1;
2531
if (depth < max_dispatch)
2532
max_dispatch = depth;
2533
}
2534
2535
/*
2536
* If we're below the current max, allow a dispatch
2537
*/
2538
return cfqq->dispatched < max_dispatch;
2539
}
2540
2541
/*
2542
* Dispatch a request from cfqq, moving them to the request queue
2543
* dispatch list.
2544
*/
2545
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2546
{
2547
struct request *rq;
2548
2549
BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2550
2551
if (!cfq_may_dispatch(cfqd, cfqq))
2552
return false;
2553
2554
/*
2555
* follow expired path, else get first next available
2556
*/
2557
rq = cfq_check_fifo(cfqq);
2558
if (!rq)
2559
rq = cfqq->next_rq;
2560
2561
/*
2562
* insert request into driver dispatch list
2563
*/
2564
cfq_dispatch_insert(cfqd->queue, rq);
2565
2566
if (!cfqd->active_cic) {
2567
struct cfq_io_context *cic = RQ_CIC(rq);
2568
2569
atomic_long_inc(&cic->ioc->refcount);
2570
cfqd->active_cic = cic;
2571
}
2572
2573
return true;
2574
}
2575
2576
/*
2577
* Find the cfqq that we need to service and move a request from that to the
2578
* dispatch list
2579
*/
2580
static int cfq_dispatch_requests(struct request_queue *q, int force)
2581
{
2582
struct cfq_data *cfqd = q->elevator->elevator_data;
2583
struct cfq_queue *cfqq;
2584
2585
if (!cfqd->busy_queues)
2586
return 0;
2587
2588
if (unlikely(force))
2589
return cfq_forced_dispatch(cfqd);
2590
2591
cfqq = cfq_select_queue(cfqd);
2592
if (!cfqq)
2593
return 0;
2594
2595
/*
2596
* Dispatch a request from this cfqq, if it is allowed
2597
*/
2598
if (!cfq_dispatch_request(cfqd, cfqq))
2599
return 0;
2600
2601
cfqq->slice_dispatch++;
2602
cfq_clear_cfqq_must_dispatch(cfqq);
2603
2604
/*
2605
* expire an async queue immediately if it has used up its slice. idle
2606
* queue always expire after 1 dispatch round.
2607
*/
2608
if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2609
cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2610
cfq_class_idle(cfqq))) {
2611
cfqq->slice_end = jiffies + 1;
2612
cfq_slice_expired(cfqd, 0);
2613
}
2614
2615
cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2616
return 1;
2617
}
2618
2619
/*
2620
* task holds one reference to the queue, dropped when task exits. each rq
2621
* in-flight on this queue also holds a reference, dropped when rq is freed.
2622
*
2623
* Each cfq queue took a reference on the parent group. Drop it now.
2624
* queue lock must be held here.
2625
*/
2626
static void cfq_put_queue(struct cfq_queue *cfqq)
2627
{
2628
struct cfq_data *cfqd = cfqq->cfqd;
2629
struct cfq_group *cfqg;
2630
2631
BUG_ON(cfqq->ref <= 0);
2632
2633
cfqq->ref--;
2634
if (cfqq->ref)
2635
return;
2636
2637
cfq_log_cfqq(cfqd, cfqq, "put_queue");
2638
BUG_ON(rb_first(&cfqq->sort_list));
2639
BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2640
cfqg = cfqq->cfqg;
2641
2642
if (unlikely(cfqd->active_queue == cfqq)) {
2643
__cfq_slice_expired(cfqd, cfqq, 0);
2644
cfq_schedule_dispatch(cfqd);
2645
}
2646
2647
BUG_ON(cfq_cfqq_on_rr(cfqq));
2648
kmem_cache_free(cfq_pool, cfqq);
2649
cfq_put_cfqg(cfqg);
2650
}
2651
2652
/*
2653
* Call func for each cic attached to this ioc.
2654
*/
2655
static void
2656
call_for_each_cic(struct io_context *ioc,
2657
void (*func)(struct io_context *, struct cfq_io_context *))
2658
{
2659
struct cfq_io_context *cic;
2660
struct hlist_node *n;
2661
2662
rcu_read_lock();
2663
2664
hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2665
func(ioc, cic);
2666
2667
rcu_read_unlock();
2668
}
2669
2670
static void cfq_cic_free_rcu(struct rcu_head *head)
2671
{
2672
struct cfq_io_context *cic;
2673
2674
cic = container_of(head, struct cfq_io_context, rcu_head);
2675
2676
kmem_cache_free(cfq_ioc_pool, cic);
2677
elv_ioc_count_dec(cfq_ioc_count);
2678
2679
if (ioc_gone) {
2680
/*
2681
* CFQ scheduler is exiting, grab exit lock and check
2682
* the pending io context count. If it hits zero,
2683
* complete ioc_gone and set it back to NULL
2684
*/
2685
spin_lock(&ioc_gone_lock);
2686
if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2687
complete(ioc_gone);
2688
ioc_gone = NULL;
2689
}
2690
spin_unlock(&ioc_gone_lock);
2691
}
2692
}
2693
2694
static void cfq_cic_free(struct cfq_io_context *cic)
2695
{
2696
call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2697
}
2698
2699
static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2700
{
2701
unsigned long flags;
2702
unsigned long dead_key = (unsigned long) cic->key;
2703
2704
BUG_ON(!(dead_key & CIC_DEAD_KEY));
2705
2706
spin_lock_irqsave(&ioc->lock, flags);
2707
radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2708
hlist_del_rcu(&cic->cic_list);
2709
spin_unlock_irqrestore(&ioc->lock, flags);
2710
2711
cfq_cic_free(cic);
2712
}
2713
2714
/*
2715
* Must be called with rcu_read_lock() held or preemption otherwise disabled.
2716
* Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2717
* and ->trim() which is called with the task lock held
2718
*/
2719
static void cfq_free_io_context(struct io_context *ioc)
2720
{
2721
/*
2722
* ioc->refcount is zero here, or we are called from elv_unregister(),
2723
* so no more cic's are allowed to be linked into this ioc. So it
2724
* should be ok to iterate over the known list, we will see all cic's
2725
* since no new ones are added.
2726
*/
2727
call_for_each_cic(ioc, cic_free_func);
2728
}
2729
2730
static void cfq_put_cooperator(struct cfq_queue *cfqq)
2731
{
2732
struct cfq_queue *__cfqq, *next;
2733
2734
/*
2735
* If this queue was scheduled to merge with another queue, be
2736
* sure to drop the reference taken on that queue (and others in
2737
* the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2738
*/
2739
__cfqq = cfqq->new_cfqq;
2740
while (__cfqq) {
2741
if (__cfqq == cfqq) {
2742
WARN(1, "cfqq->new_cfqq loop detected\n");
2743
break;
2744
}
2745
next = __cfqq->new_cfqq;
2746
cfq_put_queue(__cfqq);
2747
__cfqq = next;
2748
}
2749
}
2750
2751
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2752
{
2753
if (unlikely(cfqq == cfqd->active_queue)) {
2754
__cfq_slice_expired(cfqd, cfqq, 0);
2755
cfq_schedule_dispatch(cfqd);
2756
}
2757
2758
cfq_put_cooperator(cfqq);
2759
2760
cfq_put_queue(cfqq);
2761
}
2762
2763
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2764
struct cfq_io_context *cic)
2765
{
2766
struct io_context *ioc = cic->ioc;
2767
2768
list_del_init(&cic->queue_list);
2769
2770
/*
2771
* Make sure dead mark is seen for dead queues
2772
*/
2773
smp_wmb();
2774
cic->key = cfqd_dead_key(cfqd);
2775
2776
rcu_read_lock();
2777
if (rcu_dereference(ioc->ioc_data) == cic) {
2778
rcu_read_unlock();
2779
spin_lock(&ioc->lock);
2780
rcu_assign_pointer(ioc->ioc_data, NULL);
2781
spin_unlock(&ioc->lock);
2782
} else
2783
rcu_read_unlock();
2784
2785
if (cic->cfqq[BLK_RW_ASYNC]) {
2786
cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2787
cic->cfqq[BLK_RW_ASYNC] = NULL;
2788
}
2789
2790
if (cic->cfqq[BLK_RW_SYNC]) {
2791
cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2792
cic->cfqq[BLK_RW_SYNC] = NULL;
2793
}
2794
}
2795
2796
static void cfq_exit_single_io_context(struct io_context *ioc,
2797
struct cfq_io_context *cic)
2798
{
2799
struct cfq_data *cfqd = cic_to_cfqd(cic);
2800
2801
if (cfqd) {
2802
struct request_queue *q = cfqd->queue;
2803
unsigned long flags;
2804
2805
spin_lock_irqsave(q->queue_lock, flags);
2806
2807
/*
2808
* Ensure we get a fresh copy of the ->key to prevent
2809
* race between exiting task and queue
2810
*/
2811
smp_read_barrier_depends();
2812
if (cic->key == cfqd)
2813
__cfq_exit_single_io_context(cfqd, cic);
2814
2815
spin_unlock_irqrestore(q->queue_lock, flags);
2816
}
2817
}
2818
2819
/*
2820
* The process that ioc belongs to has exited, we need to clean up
2821
* and put the internal structures we have that belongs to that process.
2822
*/
2823
static void cfq_exit_io_context(struct io_context *ioc)
2824
{
2825
call_for_each_cic(ioc, cfq_exit_single_io_context);
2826
}
2827
2828
static struct cfq_io_context *
2829
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2830
{
2831
struct cfq_io_context *cic;
2832
2833
cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2834
cfqd->queue->node);
2835
if (cic) {
2836
cic->last_end_request = jiffies;
2837
INIT_LIST_HEAD(&cic->queue_list);
2838
INIT_HLIST_NODE(&cic->cic_list);
2839
cic->dtor = cfq_free_io_context;
2840
cic->exit = cfq_exit_io_context;
2841
elv_ioc_count_inc(cfq_ioc_count);
2842
}
2843
2844
return cic;
2845
}
2846
2847
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2848
{
2849
struct task_struct *tsk = current;
2850
int ioprio_class;
2851
2852
if (!cfq_cfqq_prio_changed(cfqq))
2853
return;
2854
2855
ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2856
switch (ioprio_class) {
2857
default:
2858
printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2859
case IOPRIO_CLASS_NONE:
2860
/*
2861
* no prio set, inherit CPU scheduling settings
2862
*/
2863
cfqq->ioprio = task_nice_ioprio(tsk);
2864
cfqq->ioprio_class = task_nice_ioclass(tsk);
2865
break;
2866
case IOPRIO_CLASS_RT:
2867
cfqq->ioprio = task_ioprio(ioc);
2868
cfqq->ioprio_class = IOPRIO_CLASS_RT;
2869
break;
2870
case IOPRIO_CLASS_BE:
2871
cfqq->ioprio = task_ioprio(ioc);
2872
cfqq->ioprio_class = IOPRIO_CLASS_BE;
2873
break;
2874
case IOPRIO_CLASS_IDLE:
2875
cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2876
cfqq->ioprio = 7;
2877
cfq_clear_cfqq_idle_window(cfqq);
2878
break;
2879
}
2880
2881
/*
2882
* keep track of original prio settings in case we have to temporarily
2883
* elevate the priority of this queue
2884
*/
2885
cfqq->org_ioprio = cfqq->ioprio;
2886
cfqq->org_ioprio_class = cfqq->ioprio_class;
2887
cfq_clear_cfqq_prio_changed(cfqq);
2888
}
2889
2890
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2891
{
2892
struct cfq_data *cfqd = cic_to_cfqd(cic);
2893
struct cfq_queue *cfqq;
2894
unsigned long flags;
2895
2896
if (unlikely(!cfqd))
2897
return;
2898
2899
spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2900
2901
cfqq = cic->cfqq[BLK_RW_ASYNC];
2902
if (cfqq) {
2903
struct cfq_queue *new_cfqq;
2904
new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2905
GFP_ATOMIC);
2906
if (new_cfqq) {
2907
cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2908
cfq_put_queue(cfqq);
2909
}
2910
}
2911
2912
cfqq = cic->cfqq[BLK_RW_SYNC];
2913
if (cfqq)
2914
cfq_mark_cfqq_prio_changed(cfqq);
2915
2916
spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2917
}
2918
2919
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2920
{
2921
call_for_each_cic(ioc, changed_ioprio);
2922
ioc->ioprio_changed = 0;
2923
}
2924
2925
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2926
pid_t pid, bool is_sync)
2927
{
2928
RB_CLEAR_NODE(&cfqq->rb_node);
2929
RB_CLEAR_NODE(&cfqq->p_node);
2930
INIT_LIST_HEAD(&cfqq->fifo);
2931
2932
cfqq->ref = 0;
2933
cfqq->cfqd = cfqd;
2934
2935
cfq_mark_cfqq_prio_changed(cfqq);
2936
2937
if (is_sync) {
2938
if (!cfq_class_idle(cfqq))
2939
cfq_mark_cfqq_idle_window(cfqq);
2940
cfq_mark_cfqq_sync(cfqq);
2941
}
2942
cfqq->pid = pid;
2943
}
2944
2945
#ifdef CONFIG_CFQ_GROUP_IOSCHED
2946
static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2947
{
2948
struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2949
struct cfq_data *cfqd = cic_to_cfqd(cic);
2950
unsigned long flags;
2951
struct request_queue *q;
2952
2953
if (unlikely(!cfqd))
2954
return;
2955
2956
q = cfqd->queue;
2957
2958
spin_lock_irqsave(q->queue_lock, flags);
2959
2960
if (sync_cfqq) {
2961
/*
2962
* Drop reference to sync queue. A new sync queue will be
2963
* assigned in new group upon arrival of a fresh request.
2964
*/
2965
cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2966
cic_set_cfqq(cic, NULL, 1);
2967
cfq_put_queue(sync_cfqq);
2968
}
2969
2970
spin_unlock_irqrestore(q->queue_lock, flags);
2971
}
2972
2973
static void cfq_ioc_set_cgroup(struct io_context *ioc)
2974
{
2975
call_for_each_cic(ioc, changed_cgroup);
2976
ioc->cgroup_changed = 0;
2977
}
2978
#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2979
2980
static struct cfq_queue *
2981
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2982
struct io_context *ioc, gfp_t gfp_mask)
2983
{
2984
struct cfq_queue *cfqq, *new_cfqq = NULL;
2985
struct cfq_io_context *cic;
2986
struct cfq_group *cfqg;
2987
2988
retry:
2989
cfqg = cfq_get_cfqg(cfqd);
2990
cic = cfq_cic_lookup(cfqd, ioc);
2991
/* cic always exists here */
2992
cfqq = cic_to_cfqq(cic, is_sync);
2993
2994
/*
2995
* Always try a new alloc if we fell back to the OOM cfqq
2996
* originally, since it should just be a temporary situation.
2997
*/
2998
if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2999
cfqq = NULL;
3000
if (new_cfqq) {
3001
cfqq = new_cfqq;
3002
new_cfqq = NULL;
3003
} else if (gfp_mask & __GFP_WAIT) {
3004
spin_unlock_irq(cfqd->queue->queue_lock);
3005
new_cfqq = kmem_cache_alloc_node(cfq_pool,
3006
gfp_mask | __GFP_ZERO,
3007
cfqd->queue->node);
3008
spin_lock_irq(cfqd->queue->queue_lock);
3009
if (new_cfqq)
3010
goto retry;
3011
} else {
3012
cfqq = kmem_cache_alloc_node(cfq_pool,
3013
gfp_mask | __GFP_ZERO,
3014
cfqd->queue->node);
3015
}
3016
3017
if (cfqq) {
3018
cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3019
cfq_init_prio_data(cfqq, ioc);
3020
cfq_link_cfqq_cfqg(cfqq, cfqg);
3021
cfq_log_cfqq(cfqd, cfqq, "alloced");
3022
} else
3023
cfqq = &cfqd->oom_cfqq;
3024
}
3025
3026
if (new_cfqq)
3027
kmem_cache_free(cfq_pool, new_cfqq);
3028
3029
return cfqq;
3030
}
3031
3032
static struct cfq_queue **
3033
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3034
{
3035
switch (ioprio_class) {
3036
case IOPRIO_CLASS_RT:
3037
return &cfqd->async_cfqq[0][ioprio];
3038
case IOPRIO_CLASS_BE:
3039
return &cfqd->async_cfqq[1][ioprio];
3040
case IOPRIO_CLASS_IDLE:
3041
return &cfqd->async_idle_cfqq;
3042
default:
3043
BUG();
3044
}
3045
}
3046
3047
static struct cfq_queue *
3048
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
3049
gfp_t gfp_mask)
3050
{
3051
const int ioprio = task_ioprio(ioc);
3052
const int ioprio_class = task_ioprio_class(ioc);
3053
struct cfq_queue **async_cfqq = NULL;
3054
struct cfq_queue *cfqq = NULL;
3055
3056
if (!is_sync) {
3057
async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3058
cfqq = *async_cfqq;
3059
}
3060
3061
if (!cfqq)
3062
cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
3063
3064
/*
3065
* pin the queue now that it's allocated, scheduler exit will prune it
3066
*/
3067
if (!is_sync && !(*async_cfqq)) {
3068
cfqq->ref++;
3069
*async_cfqq = cfqq;
3070
}
3071
3072
cfqq->ref++;
3073
return cfqq;
3074
}
3075
3076
/*
3077
* We drop cfq io contexts lazily, so we may find a dead one.
3078
*/
3079
static void
3080
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3081
struct cfq_io_context *cic)
3082
{
3083
unsigned long flags;
3084
3085
WARN_ON(!list_empty(&cic->queue_list));
3086
BUG_ON(cic->key != cfqd_dead_key(cfqd));
3087
3088
spin_lock_irqsave(&ioc->lock, flags);
3089
3090
BUG_ON(rcu_dereference_check(ioc->ioc_data,
3091
lockdep_is_held(&ioc->lock)) == cic);
3092
3093
radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3094
hlist_del_rcu(&cic->cic_list);
3095
spin_unlock_irqrestore(&ioc->lock, flags);
3096
3097
cfq_cic_free(cic);
3098
}
3099
3100
static struct cfq_io_context *
3101
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3102
{
3103
struct cfq_io_context *cic;
3104
unsigned long flags;
3105
3106
if (unlikely(!ioc))
3107
return NULL;
3108
3109
rcu_read_lock();
3110
3111
/*
3112
* we maintain a last-hit cache, to avoid browsing over the tree
3113
*/
3114
cic = rcu_dereference(ioc->ioc_data);
3115
if (cic && cic->key == cfqd) {
3116
rcu_read_unlock();
3117
return cic;
3118
}
3119
3120
do {
3121
cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3122
rcu_read_unlock();
3123
if (!cic)
3124
break;
3125
if (unlikely(cic->key != cfqd)) {
3126
cfq_drop_dead_cic(cfqd, ioc, cic);
3127
rcu_read_lock();
3128
continue;
3129
}
3130
3131
spin_lock_irqsave(&ioc->lock, flags);
3132
rcu_assign_pointer(ioc->ioc_data, cic);
3133
spin_unlock_irqrestore(&ioc->lock, flags);
3134
break;
3135
} while (1);
3136
3137
return cic;
3138
}
3139
3140
/*
3141
* Add cic into ioc, using cfqd as the search key. This enables us to lookup
3142
* the process specific cfq io context when entered from the block layer.
3143
* Also adds the cic to a per-cfqd list, used when this queue is removed.
3144
*/
3145
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3146
struct cfq_io_context *cic, gfp_t gfp_mask)
3147
{
3148
unsigned long flags;
3149
int ret;
3150
3151
ret = radix_tree_preload(gfp_mask);
3152
if (!ret) {
3153
cic->ioc = ioc;
3154
cic->key = cfqd;
3155
3156
spin_lock_irqsave(&ioc->lock, flags);
3157
ret = radix_tree_insert(&ioc->radix_root,
3158
cfqd->cic_index, cic);
3159
if (!ret)
3160
hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3161
spin_unlock_irqrestore(&ioc->lock, flags);
3162
3163
radix_tree_preload_end();
3164
3165
if (!ret) {
3166
spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3167
list_add(&cic->queue_list, &cfqd->cic_list);
3168
spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3169
}
3170
}
3171
3172
if (ret)
3173
printk(KERN_ERR "cfq: cic link failed!\n");
3174
3175
return ret;
3176
}
3177
3178
/*
3179
* Setup general io context and cfq io context. There can be several cfq
3180
* io contexts per general io context, if this process is doing io to more
3181
* than one device managed by cfq.
3182
*/
3183
static struct cfq_io_context *
3184
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3185
{
3186
struct io_context *ioc = NULL;
3187
struct cfq_io_context *cic;
3188
3189
might_sleep_if(gfp_mask & __GFP_WAIT);
3190
3191
ioc = get_io_context(gfp_mask, cfqd->queue->node);
3192
if (!ioc)
3193
return NULL;
3194
3195
cic = cfq_cic_lookup(cfqd, ioc);
3196
if (cic)
3197
goto out;
3198
3199
cic = cfq_alloc_io_context(cfqd, gfp_mask);
3200
if (cic == NULL)
3201
goto err;
3202
3203
if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3204
goto err_free;
3205
3206
out:
3207
smp_read_barrier_depends();
3208
if (unlikely(ioc->ioprio_changed))
3209
cfq_ioc_set_ioprio(ioc);
3210
3211
#ifdef CONFIG_CFQ_GROUP_IOSCHED
3212
if (unlikely(ioc->cgroup_changed))
3213
cfq_ioc_set_cgroup(ioc);
3214
#endif
3215
return cic;
3216
err_free:
3217
cfq_cic_free(cic);
3218
err:
3219
put_io_context(ioc);
3220
return NULL;
3221
}
3222
3223
static void
3224
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3225
{
3226
unsigned long elapsed = jiffies - cic->last_end_request;
3227
unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3228
3229
cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3230
cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3231
cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3232
}
3233
3234
static void
3235
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3236
struct request *rq)
3237
{
3238
sector_t sdist = 0;
3239
sector_t n_sec = blk_rq_sectors(rq);
3240
if (cfqq->last_request_pos) {
3241
if (cfqq->last_request_pos < blk_rq_pos(rq))
3242
sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3243
else
3244
sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3245
}
3246
3247
cfqq->seek_history <<= 1;
3248
if (blk_queue_nonrot(cfqd->queue))
3249
cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3250
else
3251
cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3252
}
3253
3254
/*
3255
* Disable idle window if the process thinks too long or seeks so much that
3256
* it doesn't matter
3257
*/
3258
static void
3259
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3260
struct cfq_io_context *cic)
3261
{
3262
int old_idle, enable_idle;
3263
3264
/*
3265
* Don't idle for async or idle io prio class
3266
*/
3267
if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3268
return;
3269
3270
enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3271
3272
if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3273
cfq_mark_cfqq_deep(cfqq);
3274
3275
if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3276
enable_idle = 0;
3277
else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3278
(!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3279
enable_idle = 0;
3280
else if (sample_valid(cic->ttime_samples)) {
3281
if (cic->ttime_mean > cfqd->cfq_slice_idle)
3282
enable_idle = 0;
3283
else
3284
enable_idle = 1;
3285
}
3286
3287
if (old_idle != enable_idle) {
3288
cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3289
if (enable_idle)
3290
cfq_mark_cfqq_idle_window(cfqq);
3291
else
3292
cfq_clear_cfqq_idle_window(cfqq);
3293
}
3294
}
3295
3296
/*
3297
* Check if new_cfqq should preempt the currently active queue. Return 0 for
3298
* no or if we aren't sure, a 1 will cause a preempt.
3299
*/
3300
static bool
3301
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3302
struct request *rq)
3303
{
3304
struct cfq_queue *cfqq;
3305
3306
cfqq = cfqd->active_queue;
3307
if (!cfqq)
3308
return false;
3309
3310
if (cfq_class_idle(new_cfqq))
3311
return false;
3312
3313
if (cfq_class_idle(cfqq))
3314
return true;
3315
3316
/*
3317
* Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3318
*/
3319
if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3320
return false;
3321
3322
/*
3323
* if the new request is sync, but the currently running queue is
3324
* not, let the sync request have priority.
3325
*/
3326
if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3327
return true;
3328
3329
if (new_cfqq->cfqg != cfqq->cfqg)
3330
return false;
3331
3332
if (cfq_slice_used(cfqq))
3333
return true;
3334
3335
/* Allow preemption only if we are idling on sync-noidle tree */
3336
if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3337
cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3338
new_cfqq->service_tree->count == 2 &&
3339
RB_EMPTY_ROOT(&cfqq->sort_list))
3340
return true;
3341
3342
/*
3343
* So both queues are sync. Let the new request get disk time if
3344
* it's a metadata request and the current queue is doing regular IO.
3345
*/
3346
if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
3347
return true;
3348
3349
/*
3350
* Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3351
*/
3352
if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3353
return true;
3354
3355
/* An idle queue should not be idle now for some reason */
3356
if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3357
return true;
3358
3359
if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3360
return false;
3361
3362
/*
3363
* if this request is as-good as one we would expect from the
3364
* current cfqq, let it preempt
3365
*/
3366
if (cfq_rq_close(cfqd, cfqq, rq))
3367
return true;
3368
3369
return false;
3370
}
3371
3372
/*
3373
* cfqq preempts the active queue. if we allowed preempt with no slice left,
3374
* let it have half of its nominal slice.
3375
*/
3376
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3377
{
3378
struct cfq_queue *old_cfqq = cfqd->active_queue;
3379
3380
cfq_log_cfqq(cfqd, cfqq, "preempt");
3381
cfq_slice_expired(cfqd, 1);
3382
3383
/*
3384
* workload type is changed, don't save slice, otherwise preempt
3385
* doesn't happen
3386
*/
3387
if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3388
cfqq->cfqg->saved_workload_slice = 0;
3389
3390
/*
3391
* Put the new queue at the front of the of the current list,
3392
* so we know that it will be selected next.
3393
*/
3394
BUG_ON(!cfq_cfqq_on_rr(cfqq));
3395
3396
cfq_service_tree_add(cfqd, cfqq, 1);
3397
3398
cfqq->slice_end = 0;
3399
cfq_mark_cfqq_slice_new(cfqq);
3400
}
3401
3402
/*
3403
* Called when a new fs request (rq) is added (to cfqq). Check if there's
3404
* something we should do about it
3405
*/
3406
static void
3407
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3408
struct request *rq)
3409
{
3410
struct cfq_io_context *cic = RQ_CIC(rq);
3411
3412
cfqd->rq_queued++;
3413
if (rq->cmd_flags & REQ_META)
3414
cfqq->meta_pending++;
3415
3416
cfq_update_io_thinktime(cfqd, cic);
3417
cfq_update_io_seektime(cfqd, cfqq, rq);
3418
cfq_update_idle_window(cfqd, cfqq, cic);
3419
3420
cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3421
3422
if (cfqq == cfqd->active_queue) {
3423
/*
3424
* Remember that we saw a request from this process, but
3425
* don't start queuing just yet. Otherwise we risk seeing lots
3426
* of tiny requests, because we disrupt the normal plugging
3427
* and merging. If the request is already larger than a single
3428
* page, let it rip immediately. For that case we assume that
3429
* merging is already done. Ditto for a busy system that
3430
* has other work pending, don't risk delaying until the
3431
* idle timer unplug to continue working.
3432
*/
3433
if (cfq_cfqq_wait_request(cfqq)) {
3434
if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3435
cfqd->busy_queues > 1) {
3436
cfq_del_timer(cfqd, cfqq);
3437
cfq_clear_cfqq_wait_request(cfqq);
3438
__blk_run_queue(cfqd->queue);
3439
} else {
3440
cfq_blkiocg_update_idle_time_stats(
3441
&cfqq->cfqg->blkg);
3442
cfq_mark_cfqq_must_dispatch(cfqq);
3443
}
3444
}
3445
} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3446
/*
3447
* not the active queue - expire current slice if it is
3448
* idle and has expired it's mean thinktime or this new queue
3449
* has some old slice time left and is of higher priority or
3450
* this new queue is RT and the current one is BE
3451
*/
3452
cfq_preempt_queue(cfqd, cfqq);
3453
__blk_run_queue(cfqd->queue);
3454
}
3455
}
3456
3457
static void cfq_insert_request(struct request_queue *q, struct request *rq)
3458
{
3459
struct cfq_data *cfqd = q->elevator->elevator_data;
3460
struct cfq_queue *cfqq = RQ_CFQQ(rq);
3461
3462
cfq_log_cfqq(cfqd, cfqq, "insert_request");
3463
cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3464
3465
rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3466
list_add_tail(&rq->queuelist, &cfqq->fifo);
3467
cfq_add_rq_rb(rq);
3468
cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3469
&cfqd->serving_group->blkg, rq_data_dir(rq),
3470
rq_is_sync(rq));
3471
cfq_rq_enqueued(cfqd, cfqq, rq);
3472
}
3473
3474
/*
3475
* Update hw_tag based on peak queue depth over 50 samples under
3476
* sufficient load.
3477
*/
3478
static void cfq_update_hw_tag(struct cfq_data *cfqd)
3479
{
3480
struct cfq_queue *cfqq = cfqd->active_queue;
3481
3482
if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3483
cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3484
3485
if (cfqd->hw_tag == 1)
3486
return;
3487
3488
if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3489
cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3490
return;
3491
3492
/*
3493
* If active queue hasn't enough requests and can idle, cfq might not
3494
* dispatch sufficient requests to hardware. Don't zero hw_tag in this
3495
* case
3496
*/
3497
if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3498
cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3499
CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3500
return;
3501
3502
if (cfqd->hw_tag_samples++ < 50)
3503
return;
3504
3505
if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3506
cfqd->hw_tag = 1;
3507
else
3508
cfqd->hw_tag = 0;
3509
}
3510
3511
static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3512
{
3513
struct cfq_io_context *cic = cfqd->active_cic;
3514
3515
/* If the queue already has requests, don't wait */
3516
if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3517
return false;
3518
3519
/* If there are other queues in the group, don't wait */
3520
if (cfqq->cfqg->nr_cfqq > 1)
3521
return false;
3522
3523
if (cfq_slice_used(cfqq))
3524
return true;
3525
3526
/* if slice left is less than think time, wait busy */
3527
if (cic && sample_valid(cic->ttime_samples)
3528
&& (cfqq->slice_end - jiffies < cic->ttime_mean))
3529
return true;
3530
3531
/*
3532
* If think times is less than a jiffy than ttime_mean=0 and above
3533
* will not be true. It might happen that slice has not expired yet
3534
* but will expire soon (4-5 ns) during select_queue(). To cover the
3535
* case where think time is less than a jiffy, mark the queue wait
3536
* busy if only 1 jiffy is left in the slice.
3537
*/
3538
if (cfqq->slice_end - jiffies == 1)
3539
return true;
3540
3541
return false;
3542
}
3543
3544
static void cfq_completed_request(struct request_queue *q, struct request *rq)
3545
{
3546
struct cfq_queue *cfqq = RQ_CFQQ(rq);
3547
struct cfq_data *cfqd = cfqq->cfqd;
3548
const int sync = rq_is_sync(rq);
3549
unsigned long now;
3550
3551
now = jiffies;
3552
cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3553
!!(rq->cmd_flags & REQ_NOIDLE));
3554
3555
cfq_update_hw_tag(cfqd);
3556
3557
WARN_ON(!cfqd->rq_in_driver);
3558
WARN_ON(!cfqq->dispatched);
3559
cfqd->rq_in_driver--;
3560
cfqq->dispatched--;
3561
(RQ_CFQG(rq))->dispatched--;
3562
cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3563
rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3564
rq_data_dir(rq), rq_is_sync(rq));
3565
3566
cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3567
3568
if (sync) {
3569
RQ_CIC(rq)->last_end_request = now;
3570
if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3571
cfqd->last_delayed_sync = now;
3572
}
3573
3574
/*
3575
* If this is the active queue, check if it needs to be expired,
3576
* or if we want to idle in case it has no pending requests.
3577
*/
3578
if (cfqd->active_queue == cfqq) {
3579
const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3580
3581
if (cfq_cfqq_slice_new(cfqq)) {
3582
cfq_set_prio_slice(cfqd, cfqq);
3583
cfq_clear_cfqq_slice_new(cfqq);
3584
}
3585
3586
/*
3587
* Should we wait for next request to come in before we expire
3588
* the queue.
3589
*/
3590
if (cfq_should_wait_busy(cfqd, cfqq)) {
3591
unsigned long extend_sl = cfqd->cfq_slice_idle;
3592
if (!cfqd->cfq_slice_idle)
3593
extend_sl = cfqd->cfq_group_idle;
3594
cfqq->slice_end = jiffies + extend_sl;
3595
cfq_mark_cfqq_wait_busy(cfqq);
3596
cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3597
}
3598
3599
/*
3600
* Idling is not enabled on:
3601
* - expired queues
3602
* - idle-priority queues
3603
* - async queues
3604
* - queues with still some requests queued
3605
* - when there is a close cooperator
3606
*/
3607
if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3608
cfq_slice_expired(cfqd, 1);
3609
else if (sync && cfqq_empty &&
3610
!cfq_close_cooperator(cfqd, cfqq)) {
3611
cfq_arm_slice_timer(cfqd);
3612
}
3613
}
3614
3615
if (!cfqd->rq_in_driver)
3616
cfq_schedule_dispatch(cfqd);
3617
}
3618
3619
/*
3620
* we temporarily boost lower priority queues if they are holding fs exclusive
3621
* resources. they are boosted to normal prio (CLASS_BE/4)
3622
*/
3623
static void cfq_prio_boost(struct cfq_queue *cfqq)
3624
{
3625
if (has_fs_excl()) {
3626
/*
3627
* boost idle prio on transactions that would lock out other
3628
* users of the filesystem
3629
*/
3630
if (cfq_class_idle(cfqq))
3631
cfqq->ioprio_class = IOPRIO_CLASS_BE;
3632
if (cfqq->ioprio > IOPRIO_NORM)
3633
cfqq->ioprio = IOPRIO_NORM;
3634
} else {
3635
/*
3636
* unboost the queue (if needed)
3637
*/
3638
cfqq->ioprio_class = cfqq->org_ioprio_class;
3639
cfqq->ioprio = cfqq->org_ioprio;
3640
}
3641
}
3642
3643
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3644
{
3645
if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3646
cfq_mark_cfqq_must_alloc_slice(cfqq);
3647
return ELV_MQUEUE_MUST;
3648
}
3649
3650
return ELV_MQUEUE_MAY;
3651
}
3652
3653
static int cfq_may_queue(struct request_queue *q, int rw)
3654
{
3655
struct cfq_data *cfqd = q->elevator->elevator_data;
3656
struct task_struct *tsk = current;
3657
struct cfq_io_context *cic;
3658
struct cfq_queue *cfqq;
3659
3660
/*
3661
* don't force setup of a queue from here, as a call to may_queue
3662
* does not necessarily imply that a request actually will be queued.
3663
* so just lookup a possibly existing queue, or return 'may queue'
3664
* if that fails
3665
*/
3666
cic = cfq_cic_lookup(cfqd, tsk->io_context);
3667
if (!cic)
3668
return ELV_MQUEUE_MAY;
3669
3670
cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3671
if (cfqq) {
3672
cfq_init_prio_data(cfqq, cic->ioc);
3673
cfq_prio_boost(cfqq);
3674
3675
return __cfq_may_queue(cfqq);
3676
}
3677
3678
return ELV_MQUEUE_MAY;
3679
}
3680
3681
/*
3682
* queue lock held here
3683
*/
3684
static void cfq_put_request(struct request *rq)
3685
{
3686
struct cfq_queue *cfqq = RQ_CFQQ(rq);
3687
3688
if (cfqq) {
3689
const int rw = rq_data_dir(rq);
3690
3691
BUG_ON(!cfqq->allocated[rw]);
3692
cfqq->allocated[rw]--;
3693
3694
put_io_context(RQ_CIC(rq)->ioc);
3695
3696
rq->elevator_private[0] = NULL;
3697
rq->elevator_private[1] = NULL;
3698
3699
/* Put down rq reference on cfqg */
3700
cfq_put_cfqg(RQ_CFQG(rq));
3701
rq->elevator_private[2] = NULL;
3702
3703
cfq_put_queue(cfqq);
3704
}
3705
}
3706
3707
static struct cfq_queue *
3708
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3709
struct cfq_queue *cfqq)
3710
{
3711
cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3712
cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3713
cfq_mark_cfqq_coop(cfqq->new_cfqq);
3714
cfq_put_queue(cfqq);
3715
return cic_to_cfqq(cic, 1);
3716
}
3717
3718
/*
3719
* Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3720
* was the last process referring to said cfqq.
3721
*/
3722
static struct cfq_queue *
3723
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3724
{
3725
if (cfqq_process_refs(cfqq) == 1) {
3726
cfqq->pid = current->pid;
3727
cfq_clear_cfqq_coop(cfqq);
3728
cfq_clear_cfqq_split_coop(cfqq);
3729
return cfqq;
3730
}
3731
3732
cic_set_cfqq(cic, NULL, 1);
3733
3734
cfq_put_cooperator(cfqq);
3735
3736
cfq_put_queue(cfqq);
3737
return NULL;
3738
}
3739
/*
3740
* Allocate cfq data structures associated with this request.
3741
*/
3742
static int
3743
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3744
{
3745
struct cfq_data *cfqd = q->elevator->elevator_data;
3746
struct cfq_io_context *cic;
3747
const int rw = rq_data_dir(rq);
3748
const bool is_sync = rq_is_sync(rq);
3749
struct cfq_queue *cfqq;
3750
unsigned long flags;
3751
3752
might_sleep_if(gfp_mask & __GFP_WAIT);
3753
3754
cic = cfq_get_io_context(cfqd, gfp_mask);
3755
3756
spin_lock_irqsave(q->queue_lock, flags);
3757
3758
if (!cic)
3759
goto queue_fail;
3760
3761
new_queue:
3762
cfqq = cic_to_cfqq(cic, is_sync);
3763
if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3764
cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3765
cic_set_cfqq(cic, cfqq, is_sync);
3766
} else {
3767
/*
3768
* If the queue was seeky for too long, break it apart.
3769
*/
3770
if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3771
cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3772
cfqq = split_cfqq(cic, cfqq);
3773
if (!cfqq)
3774
goto new_queue;
3775
}
3776
3777
/*
3778
* Check to see if this queue is scheduled to merge with
3779
* another, closely cooperating queue. The merging of
3780
* queues happens here as it must be done in process context.
3781
* The reference on new_cfqq was taken in merge_cfqqs.
3782
*/
3783
if (cfqq->new_cfqq)
3784
cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3785
}
3786
3787
cfqq->allocated[rw]++;
3788
3789
cfqq->ref++;
3790
rq->elevator_private[0] = cic;
3791
rq->elevator_private[1] = cfqq;
3792
rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3793
spin_unlock_irqrestore(q->queue_lock, flags);
3794
return 0;
3795
3796
queue_fail:
3797
cfq_schedule_dispatch(cfqd);
3798
spin_unlock_irqrestore(q->queue_lock, flags);
3799
cfq_log(cfqd, "set_request fail");
3800
return 1;
3801
}
3802
3803
static void cfq_kick_queue(struct work_struct *work)
3804
{
3805
struct cfq_data *cfqd =
3806
container_of(work, struct cfq_data, unplug_work);
3807
struct request_queue *q = cfqd->queue;
3808
3809
spin_lock_irq(q->queue_lock);
3810
__blk_run_queue(cfqd->queue);
3811
spin_unlock_irq(q->queue_lock);
3812
}
3813
3814
/*
3815
* Timer running if the active_queue is currently idling inside its time slice
3816
*/
3817
static void cfq_idle_slice_timer(unsigned long data)
3818
{
3819
struct cfq_data *cfqd = (struct cfq_data *) data;
3820
struct cfq_queue *cfqq;
3821
unsigned long flags;
3822
int timed_out = 1;
3823
3824
cfq_log(cfqd, "idle timer fired");
3825
3826
spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3827
3828
cfqq = cfqd->active_queue;
3829
if (cfqq) {
3830
timed_out = 0;
3831
3832
/*
3833
* We saw a request before the queue expired, let it through
3834
*/
3835
if (cfq_cfqq_must_dispatch(cfqq))
3836
goto out_kick;
3837
3838
/*
3839
* expired
3840
*/
3841
if (cfq_slice_used(cfqq))
3842
goto expire;
3843
3844
/*
3845
* only expire and reinvoke request handler, if there are
3846
* other queues with pending requests
3847
*/
3848
if (!cfqd->busy_queues)
3849
goto out_cont;
3850
3851
/*
3852
* not expired and it has a request pending, let it dispatch
3853
*/
3854
if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3855
goto out_kick;
3856
3857
/*
3858
* Queue depth flag is reset only when the idle didn't succeed
3859
*/
3860
cfq_clear_cfqq_deep(cfqq);
3861
}
3862
expire:
3863
cfq_slice_expired(cfqd, timed_out);
3864
out_kick:
3865
cfq_schedule_dispatch(cfqd);
3866
out_cont:
3867
spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3868
}
3869
3870
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3871
{
3872
del_timer_sync(&cfqd->idle_slice_timer);
3873
cancel_work_sync(&cfqd->unplug_work);
3874
}
3875
3876
static void cfq_put_async_queues(struct cfq_data *cfqd)
3877
{
3878
int i;
3879
3880
for (i = 0; i < IOPRIO_BE_NR; i++) {
3881
if (cfqd->async_cfqq[0][i])
3882
cfq_put_queue(cfqd->async_cfqq[0][i]);
3883
if (cfqd->async_cfqq[1][i])
3884
cfq_put_queue(cfqd->async_cfqq[1][i]);
3885
}
3886
3887
if (cfqd->async_idle_cfqq)
3888
cfq_put_queue(cfqd->async_idle_cfqq);
3889
}
3890
3891
static void cfq_exit_queue(struct elevator_queue *e)
3892
{
3893
struct cfq_data *cfqd = e->elevator_data;
3894
struct request_queue *q = cfqd->queue;
3895
bool wait = false;
3896
3897
cfq_shutdown_timer_wq(cfqd);
3898
3899
spin_lock_irq(q->queue_lock);
3900
3901
if (cfqd->active_queue)
3902
__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3903
3904
while (!list_empty(&cfqd->cic_list)) {
3905
struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3906
struct cfq_io_context,
3907
queue_list);
3908
3909
__cfq_exit_single_io_context(cfqd, cic);
3910
}
3911
3912
cfq_put_async_queues(cfqd);
3913
cfq_release_cfq_groups(cfqd);
3914
3915
/*
3916
* If there are groups which we could not unlink from blkcg list,
3917
* wait for a rcu period for them to be freed.
3918
*/
3919
if (cfqd->nr_blkcg_linked_grps)
3920
wait = true;
3921
3922
spin_unlock_irq(q->queue_lock);
3923
3924
cfq_shutdown_timer_wq(cfqd);
3925
3926
spin_lock(&cic_index_lock);
3927
ida_remove(&cic_index_ida, cfqd->cic_index);
3928
spin_unlock(&cic_index_lock);
3929
3930
/*
3931
* Wait for cfqg->blkg->key accessors to exit their grace periods.
3932
* Do this wait only if there are other unlinked groups out
3933
* there. This can happen if cgroup deletion path claimed the
3934
* responsibility of cleaning up a group before queue cleanup code
3935
* get to the group.
3936
*
3937
* Do not call synchronize_rcu() unconditionally as there are drivers
3938
* which create/delete request queue hundreds of times during scan/boot
3939
* and synchronize_rcu() can take significant time and slow down boot.
3940
*/
3941
if (wait)
3942
synchronize_rcu();
3943
3944
#ifdef CONFIG_CFQ_GROUP_IOSCHED
3945
/* Free up per cpu stats for root group */
3946
free_percpu(cfqd->root_group.blkg.stats_cpu);
3947
#endif
3948
kfree(cfqd);
3949
}
3950
3951
static int cfq_alloc_cic_index(void)
3952
{
3953
int index, error;
3954
3955
do {
3956
if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3957
return -ENOMEM;
3958
3959
spin_lock(&cic_index_lock);
3960
error = ida_get_new(&cic_index_ida, &index);
3961
spin_unlock(&cic_index_lock);
3962
if (error && error != -EAGAIN)
3963
return error;
3964
} while (error);
3965
3966
return index;
3967
}
3968
3969
static void *cfq_init_queue(struct request_queue *q)
3970
{
3971
struct cfq_data *cfqd;
3972
int i, j;
3973
struct cfq_group *cfqg;
3974
struct cfq_rb_root *st;
3975
3976
i = cfq_alloc_cic_index();
3977
if (i < 0)
3978
return NULL;
3979
3980
cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3981
if (!cfqd) {
3982
spin_lock(&cic_index_lock);
3983
ida_remove(&cic_index_ida, i);
3984
spin_unlock(&cic_index_lock);
3985
return NULL;
3986
}
3987
3988
/*
3989
* Don't need take queue_lock in the routine, since we are
3990
* initializing the ioscheduler, and nobody is using cfqd
3991
*/
3992
cfqd->cic_index = i;
3993
3994
/* Init root service tree */
3995
cfqd->grp_service_tree = CFQ_RB_ROOT;
3996
3997
/* Init root group */
3998
cfqg = &cfqd->root_group;
3999
for_each_cfqg_st(cfqg, i, j, st)
4000
*st = CFQ_RB_ROOT;
4001
RB_CLEAR_NODE(&cfqg->rb_node);
4002
4003
/* Give preference to root group over other groups */
4004
cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
4005
4006
#ifdef CONFIG_CFQ_GROUP_IOSCHED
4007
/*
4008
* Set root group reference to 2. One reference will be dropped when
4009
* all groups on cfqd->cfqg_list are being deleted during queue exit.
4010
* Other reference will remain there as we don't want to delete this
4011
* group as it is statically allocated and gets destroyed when
4012
* throtl_data goes away.
4013
*/
4014
cfqg->ref = 2;
4015
4016
if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
4017
kfree(cfqg);
4018
kfree(cfqd);
4019
return NULL;
4020
}
4021
4022
rcu_read_lock();
4023
4024
cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4025
(void *)cfqd, 0);
4026
rcu_read_unlock();
4027
cfqd->nr_blkcg_linked_grps++;
4028
4029
/* Add group on cfqd->cfqg_list */
4030
hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
4031
#endif
4032
/*
4033
* Not strictly needed (since RB_ROOT just clears the node and we
4034
* zeroed cfqd on alloc), but better be safe in case someone decides
4035
* to add magic to the rb code
4036
*/
4037
for (i = 0; i < CFQ_PRIO_LISTS; i++)
4038
cfqd->prio_trees[i] = RB_ROOT;
4039
4040
/*
4041
* Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4042
* Grab a permanent reference to it, so that the normal code flow
4043
* will not attempt to free it.
4044
*/
4045
cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4046
cfqd->oom_cfqq.ref++;
4047
cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
4048
4049
INIT_LIST_HEAD(&cfqd->cic_list);
4050
4051
cfqd->queue = q;
4052
4053
init_timer(&cfqd->idle_slice_timer);
4054
cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4055
cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4056
4057
INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4058
4059
cfqd->cfq_quantum = cfq_quantum;
4060
cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4061
cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4062
cfqd->cfq_back_max = cfq_back_max;
4063
cfqd->cfq_back_penalty = cfq_back_penalty;
4064
cfqd->cfq_slice[0] = cfq_slice_async;
4065
cfqd->cfq_slice[1] = cfq_slice_sync;
4066
cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4067
cfqd->cfq_slice_idle = cfq_slice_idle;
4068
cfqd->cfq_group_idle = cfq_group_idle;
4069
cfqd->cfq_latency = 1;
4070
cfqd->hw_tag = -1;
4071
/*
4072
* we optimistically start assuming sync ops weren't delayed in last
4073
* second, in order to have larger depth for async operations.
4074
*/
4075
cfqd->last_delayed_sync = jiffies - HZ;
4076
return cfqd;
4077
}
4078
4079
static void cfq_slab_kill(void)
4080
{
4081
/*
4082
* Caller already ensured that pending RCU callbacks are completed,
4083
* so we should have no busy allocations at this point.
4084
*/
4085
if (cfq_pool)
4086
kmem_cache_destroy(cfq_pool);
4087
if (cfq_ioc_pool)
4088
kmem_cache_destroy(cfq_ioc_pool);
4089
}
4090
4091
static int __init cfq_slab_setup(void)
4092
{
4093
cfq_pool = KMEM_CACHE(cfq_queue, 0);
4094
if (!cfq_pool)
4095
goto fail;
4096
4097
cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
4098
if (!cfq_ioc_pool)
4099
goto fail;
4100
4101
return 0;
4102
fail:
4103
cfq_slab_kill();
4104
return -ENOMEM;
4105
}
4106
4107
/*
4108
* sysfs parts below -->
4109
*/
4110
static ssize_t
4111
cfq_var_show(unsigned int var, char *page)
4112
{
4113
return sprintf(page, "%d\n", var);
4114
}
4115
4116
static ssize_t
4117
cfq_var_store(unsigned int *var, const char *page, size_t count)
4118
{
4119
char *p = (char *) page;
4120
4121
*var = simple_strtoul(p, &p, 10);
4122
return count;
4123
}
4124
4125
#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4126
static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4127
{ \
4128
struct cfq_data *cfqd = e->elevator_data; \
4129
unsigned int __data = __VAR; \
4130
if (__CONV) \
4131
__data = jiffies_to_msecs(__data); \
4132
return cfq_var_show(__data, (page)); \
4133
}
4134
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4135
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4136
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4137
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4138
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4139
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4140
SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4141
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4142
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4143
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4144
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4145
#undef SHOW_FUNCTION
4146
4147
#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4148
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4149
{ \
4150
struct cfq_data *cfqd = e->elevator_data; \
4151
unsigned int __data; \
4152
int ret = cfq_var_store(&__data, (page), count); \
4153
if (__data < (MIN)) \
4154
__data = (MIN); \
4155
else if (__data > (MAX)) \
4156
__data = (MAX); \
4157
if (__CONV) \
4158
*(__PTR) = msecs_to_jiffies(__data); \
4159
else \
4160
*(__PTR) = __data; \
4161
return ret; \
4162
}
4163
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4164
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4165
UINT_MAX, 1);
4166
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4167
UINT_MAX, 1);
4168
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4169
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4170
UINT_MAX, 0);
4171
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4172
STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4173
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4174
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4175
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4176
UINT_MAX, 0);
4177
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4178
#undef STORE_FUNCTION
4179
4180
#define CFQ_ATTR(name) \
4181
__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4182
4183
static struct elv_fs_entry cfq_attrs[] = {
4184
CFQ_ATTR(quantum),
4185
CFQ_ATTR(fifo_expire_sync),
4186
CFQ_ATTR(fifo_expire_async),
4187
CFQ_ATTR(back_seek_max),
4188
CFQ_ATTR(back_seek_penalty),
4189
CFQ_ATTR(slice_sync),
4190
CFQ_ATTR(slice_async),
4191
CFQ_ATTR(slice_async_rq),
4192
CFQ_ATTR(slice_idle),
4193
CFQ_ATTR(group_idle),
4194
CFQ_ATTR(low_latency),
4195
__ATTR_NULL
4196
};
4197
4198
static struct elevator_type iosched_cfq = {
4199
.ops = {
4200
.elevator_merge_fn = cfq_merge,
4201
.elevator_merged_fn = cfq_merged_request,
4202
.elevator_merge_req_fn = cfq_merged_requests,
4203
.elevator_allow_merge_fn = cfq_allow_merge,
4204
.elevator_bio_merged_fn = cfq_bio_merged,
4205
.elevator_dispatch_fn = cfq_dispatch_requests,
4206
.elevator_add_req_fn = cfq_insert_request,
4207
.elevator_activate_req_fn = cfq_activate_request,
4208
.elevator_deactivate_req_fn = cfq_deactivate_request,
4209
.elevator_completed_req_fn = cfq_completed_request,
4210
.elevator_former_req_fn = elv_rb_former_request,
4211
.elevator_latter_req_fn = elv_rb_latter_request,
4212
.elevator_set_req_fn = cfq_set_request,
4213
.elevator_put_req_fn = cfq_put_request,
4214
.elevator_may_queue_fn = cfq_may_queue,
4215
.elevator_init_fn = cfq_init_queue,
4216
.elevator_exit_fn = cfq_exit_queue,
4217
.trim = cfq_free_io_context,
4218
},
4219
.elevator_attrs = cfq_attrs,
4220
.elevator_name = "cfq",
4221
.elevator_owner = THIS_MODULE,
4222
};
4223
4224
#ifdef CONFIG_CFQ_GROUP_IOSCHED
4225
static struct blkio_policy_type blkio_policy_cfq = {
4226
.ops = {
4227
.blkio_unlink_group_fn = cfq_unlink_blkio_group,
4228
.blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4229
},
4230
.plid = BLKIO_POLICY_PROP,
4231
};
4232
#else
4233
static struct blkio_policy_type blkio_policy_cfq;
4234
#endif
4235
4236
static int __init cfq_init(void)
4237
{
4238
/*
4239
* could be 0 on HZ < 1000 setups
4240
*/
4241
if (!cfq_slice_async)
4242
cfq_slice_async = 1;
4243
if (!cfq_slice_idle)
4244
cfq_slice_idle = 1;
4245
4246
#ifdef CONFIG_CFQ_GROUP_IOSCHED
4247
if (!cfq_group_idle)
4248
cfq_group_idle = 1;
4249
#else
4250
cfq_group_idle = 0;
4251
#endif
4252
if (cfq_slab_setup())
4253
return -ENOMEM;
4254
4255
elv_register(&iosched_cfq);
4256
blkio_policy_register(&blkio_policy_cfq);
4257
4258
return 0;
4259
}
4260
4261
static void __exit cfq_exit(void)
4262
{
4263
DECLARE_COMPLETION_ONSTACK(all_gone);
4264
blkio_policy_unregister(&blkio_policy_cfq);
4265
elv_unregister(&iosched_cfq);
4266
ioc_gone = &all_gone;
4267
/* ioc_gone's update must be visible before reading ioc_count */
4268
smp_wmb();
4269
4270
/*
4271
* this also protects us from entering cfq_slab_kill() with
4272
* pending RCU callbacks
4273
*/
4274
if (elv_ioc_count_read(cfq_ioc_count))
4275
wait_for_completion(&all_gone);
4276
ida_destroy(&cic_index_ida);
4277
cfq_slab_kill();
4278
}
4279
4280
module_init(cfq_init);
4281
module_exit(cfq_exit);
4282
4283
MODULE_AUTHOR("Jens Axboe");
4284
MODULE_LICENSE("GPL");
4285
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
4286
4287