Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/acpi/processor_idle.c
15109 views
1
/*
2
* processor_idle - idle state submodule to the ACPI processor driver
3
*
4
* Copyright (C) 2001, 2002 Andy Grover <[email protected]>
5
* Copyright (C) 2001, 2002 Paul Diefenbaugh <[email protected]>
6
* Copyright (C) 2004, 2005 Dominik Brodowski <[email protected]>
7
* Copyright (C) 2004 Anil S Keshavamurthy <[email protected]>
8
* - Added processor hotplug support
9
* Copyright (C) 2005 Venkatesh Pallipadi <[email protected]>
10
* - Added support for C3 on SMP
11
*
12
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13
*
14
* This program is free software; you can redistribute it and/or modify
15
* it under the terms of the GNU General Public License as published by
16
* the Free Software Foundation; either version 2 of the License, or (at
17
* your option) any later version.
18
*
19
* This program is distributed in the hope that it will be useful, but
20
* WITHOUT ANY WARRANTY; without even the implied warranty of
21
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22
* General Public License for more details.
23
*
24
* You should have received a copy of the GNU General Public License along
25
* with this program; if not, write to the Free Software Foundation, Inc.,
26
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27
*
28
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29
*/
30
31
#include <linux/kernel.h>
32
#include <linux/module.h>
33
#include <linux/init.h>
34
#include <linux/cpufreq.h>
35
#include <linux/slab.h>
36
#include <linux/acpi.h>
37
#include <linux/dmi.h>
38
#include <linux/moduleparam.h>
39
#include <linux/sched.h> /* need_resched() */
40
#include <linux/pm_qos_params.h>
41
#include <linux/clockchips.h>
42
#include <linux/cpuidle.h>
43
#include <linux/irqflags.h>
44
45
/*
46
* Include the apic definitions for x86 to have the APIC timer related defines
47
* available also for UP (on SMP it gets magically included via linux/smp.h).
48
* asm/acpi.h is not an option, as it would require more include magic. Also
49
* creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50
*/
51
#ifdef CONFIG_X86
52
#include <asm/apic.h>
53
#endif
54
55
#include <asm/io.h>
56
#include <asm/uaccess.h>
57
58
#include <acpi/acpi_bus.h>
59
#include <acpi/processor.h>
60
#include <asm/processor.h>
61
62
#define PREFIX "ACPI: "
63
64
#define ACPI_PROCESSOR_CLASS "processor"
65
#define _COMPONENT ACPI_PROCESSOR_COMPONENT
66
ACPI_MODULE_NAME("processor_idle");
67
#define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68
#define C2_OVERHEAD 1 /* 1us */
69
#define C3_OVERHEAD 1 /* 1us */
70
#define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
71
72
static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
73
module_param(max_cstate, uint, 0000);
74
static unsigned int nocst __read_mostly;
75
module_param(nocst, uint, 0000);
76
static int bm_check_disable __read_mostly;
77
module_param(bm_check_disable, uint, 0000);
78
79
static unsigned int latency_factor __read_mostly = 2;
80
module_param(latency_factor, uint, 0644);
81
82
static int disabled_by_idle_boot_param(void)
83
{
84
return boot_option_idle_override == IDLE_POLL ||
85
boot_option_idle_override == IDLE_FORCE_MWAIT ||
86
boot_option_idle_override == IDLE_HALT;
87
}
88
89
/*
90
* IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
91
* For now disable this. Probably a bug somewhere else.
92
*
93
* To skip this limit, boot/load with a large max_cstate limit.
94
*/
95
static int set_max_cstate(const struct dmi_system_id *id)
96
{
97
if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
98
return 0;
99
100
printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
101
" Override with \"processor.max_cstate=%d\"\n", id->ident,
102
(long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
103
104
max_cstate = (long)id->driver_data;
105
106
return 0;
107
}
108
109
/* Actually this shouldn't be __cpuinitdata, would be better to fix the
110
callers to only run once -AK */
111
static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
112
{ set_max_cstate, "Clevo 5600D", {
113
DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
114
DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
115
(void *)2},
116
{ set_max_cstate, "Pavilion zv5000", {
117
DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
118
DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
119
(void *)1},
120
{ set_max_cstate, "Asus L8400B", {
121
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
122
DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
123
(void *)1},
124
{},
125
};
126
127
128
/*
129
* Callers should disable interrupts before the call and enable
130
* interrupts after return.
131
*/
132
static void acpi_safe_halt(void)
133
{
134
current_thread_info()->status &= ~TS_POLLING;
135
/*
136
* TS_POLLING-cleared state must be visible before we
137
* test NEED_RESCHED:
138
*/
139
smp_mb();
140
if (!need_resched()) {
141
safe_halt();
142
local_irq_disable();
143
}
144
current_thread_info()->status |= TS_POLLING;
145
}
146
147
#ifdef ARCH_APICTIMER_STOPS_ON_C3
148
149
/*
150
* Some BIOS implementations switch to C3 in the published C2 state.
151
* This seems to be a common problem on AMD boxen, but other vendors
152
* are affected too. We pick the most conservative approach: we assume
153
* that the local APIC stops in both C2 and C3.
154
*/
155
static void lapic_timer_check_state(int state, struct acpi_processor *pr,
156
struct acpi_processor_cx *cx)
157
{
158
struct acpi_processor_power *pwr = &pr->power;
159
u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
160
161
if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
162
return;
163
164
if (amd_e400_c1e_detected)
165
type = ACPI_STATE_C1;
166
167
/*
168
* Check, if one of the previous states already marked the lapic
169
* unstable
170
*/
171
if (pwr->timer_broadcast_on_state < state)
172
return;
173
174
if (cx->type >= type)
175
pr->power.timer_broadcast_on_state = state;
176
}
177
178
static void __lapic_timer_propagate_broadcast(void *arg)
179
{
180
struct acpi_processor *pr = (struct acpi_processor *) arg;
181
unsigned long reason;
182
183
reason = pr->power.timer_broadcast_on_state < INT_MAX ?
184
CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
185
186
clockevents_notify(reason, &pr->id);
187
}
188
189
static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
190
{
191
smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
192
(void *)pr, 1);
193
}
194
195
/* Power(C) State timer broadcast control */
196
static void lapic_timer_state_broadcast(struct acpi_processor *pr,
197
struct acpi_processor_cx *cx,
198
int broadcast)
199
{
200
int state = cx - pr->power.states;
201
202
if (state >= pr->power.timer_broadcast_on_state) {
203
unsigned long reason;
204
205
reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
206
CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
207
clockevents_notify(reason, &pr->id);
208
}
209
}
210
211
#else
212
213
static void lapic_timer_check_state(int state, struct acpi_processor *pr,
214
struct acpi_processor_cx *cstate) { }
215
static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
216
static void lapic_timer_state_broadcast(struct acpi_processor *pr,
217
struct acpi_processor_cx *cx,
218
int broadcast)
219
{
220
}
221
222
#endif
223
224
/*
225
* Suspend / resume control
226
*/
227
static int acpi_idle_suspend;
228
static u32 saved_bm_rld;
229
230
static void acpi_idle_bm_rld_save(void)
231
{
232
acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
233
}
234
static void acpi_idle_bm_rld_restore(void)
235
{
236
u32 resumed_bm_rld;
237
238
acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
239
240
if (resumed_bm_rld != saved_bm_rld)
241
acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
242
}
243
244
int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
245
{
246
if (acpi_idle_suspend == 1)
247
return 0;
248
249
acpi_idle_bm_rld_save();
250
acpi_idle_suspend = 1;
251
return 0;
252
}
253
254
int acpi_processor_resume(struct acpi_device * device)
255
{
256
if (acpi_idle_suspend == 0)
257
return 0;
258
259
acpi_idle_bm_rld_restore();
260
acpi_idle_suspend = 0;
261
return 0;
262
}
263
264
#if defined(CONFIG_X86)
265
static void tsc_check_state(int state)
266
{
267
switch (boot_cpu_data.x86_vendor) {
268
case X86_VENDOR_AMD:
269
case X86_VENDOR_INTEL:
270
/*
271
* AMD Fam10h TSC will tick in all
272
* C/P/S0/S1 states when this bit is set.
273
*/
274
if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
275
return;
276
277
/*FALL THROUGH*/
278
default:
279
/* TSC could halt in idle, so notify users */
280
if (state > ACPI_STATE_C1)
281
mark_tsc_unstable("TSC halts in idle");
282
}
283
}
284
#else
285
static void tsc_check_state(int state) { return; }
286
#endif
287
288
static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
289
{
290
291
if (!pr)
292
return -EINVAL;
293
294
if (!pr->pblk)
295
return -ENODEV;
296
297
/* if info is obtained from pblk/fadt, type equals state */
298
pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
299
pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
300
301
#ifndef CONFIG_HOTPLUG_CPU
302
/*
303
* Check for P_LVL2_UP flag before entering C2 and above on
304
* an SMP system.
305
*/
306
if ((num_online_cpus() > 1) &&
307
!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
308
return -ENODEV;
309
#endif
310
311
/* determine C2 and C3 address from pblk */
312
pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
313
pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
314
315
/* determine latencies from FADT */
316
pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
317
pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
318
319
/*
320
* FADT specified C2 latency must be less than or equal to
321
* 100 microseconds.
322
*/
323
if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
324
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
325
"C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
326
/* invalidate C2 */
327
pr->power.states[ACPI_STATE_C2].address = 0;
328
}
329
330
/*
331
* FADT supplied C3 latency must be less than or equal to
332
* 1000 microseconds.
333
*/
334
if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
335
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
336
"C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
337
/* invalidate C3 */
338
pr->power.states[ACPI_STATE_C3].address = 0;
339
}
340
341
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
342
"lvl2[0x%08x] lvl3[0x%08x]\n",
343
pr->power.states[ACPI_STATE_C2].address,
344
pr->power.states[ACPI_STATE_C3].address));
345
346
return 0;
347
}
348
349
static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
350
{
351
if (!pr->power.states[ACPI_STATE_C1].valid) {
352
/* set the first C-State to C1 */
353
/* all processors need to support C1 */
354
pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
355
pr->power.states[ACPI_STATE_C1].valid = 1;
356
pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
357
}
358
/* the C0 state only exists as a filler in our array */
359
pr->power.states[ACPI_STATE_C0].valid = 1;
360
return 0;
361
}
362
363
static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
364
{
365
acpi_status status = 0;
366
u64 count;
367
int current_count;
368
int i;
369
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
370
union acpi_object *cst;
371
372
373
if (nocst)
374
return -ENODEV;
375
376
current_count = 0;
377
378
status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
379
if (ACPI_FAILURE(status)) {
380
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
381
return -ENODEV;
382
}
383
384
cst = buffer.pointer;
385
386
/* There must be at least 2 elements */
387
if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
388
printk(KERN_ERR PREFIX "not enough elements in _CST\n");
389
status = -EFAULT;
390
goto end;
391
}
392
393
count = cst->package.elements[0].integer.value;
394
395
/* Validate number of power states. */
396
if (count < 1 || count != cst->package.count - 1) {
397
printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
398
status = -EFAULT;
399
goto end;
400
}
401
402
/* Tell driver that at least _CST is supported. */
403
pr->flags.has_cst = 1;
404
405
for (i = 1; i <= count; i++) {
406
union acpi_object *element;
407
union acpi_object *obj;
408
struct acpi_power_register *reg;
409
struct acpi_processor_cx cx;
410
411
memset(&cx, 0, sizeof(cx));
412
413
element = &(cst->package.elements[i]);
414
if (element->type != ACPI_TYPE_PACKAGE)
415
continue;
416
417
if (element->package.count != 4)
418
continue;
419
420
obj = &(element->package.elements[0]);
421
422
if (obj->type != ACPI_TYPE_BUFFER)
423
continue;
424
425
reg = (struct acpi_power_register *)obj->buffer.pointer;
426
427
if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
428
(reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
429
continue;
430
431
/* There should be an easy way to extract an integer... */
432
obj = &(element->package.elements[1]);
433
if (obj->type != ACPI_TYPE_INTEGER)
434
continue;
435
436
cx.type = obj->integer.value;
437
/*
438
* Some buggy BIOSes won't list C1 in _CST -
439
* Let acpi_processor_get_power_info_default() handle them later
440
*/
441
if (i == 1 && cx.type != ACPI_STATE_C1)
442
current_count++;
443
444
cx.address = reg->address;
445
cx.index = current_count + 1;
446
447
cx.entry_method = ACPI_CSTATE_SYSTEMIO;
448
if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
449
if (acpi_processor_ffh_cstate_probe
450
(pr->id, &cx, reg) == 0) {
451
cx.entry_method = ACPI_CSTATE_FFH;
452
} else if (cx.type == ACPI_STATE_C1) {
453
/*
454
* C1 is a special case where FIXED_HARDWARE
455
* can be handled in non-MWAIT way as well.
456
* In that case, save this _CST entry info.
457
* Otherwise, ignore this info and continue.
458
*/
459
cx.entry_method = ACPI_CSTATE_HALT;
460
snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
461
} else {
462
continue;
463
}
464
if (cx.type == ACPI_STATE_C1 &&
465
(boot_option_idle_override == IDLE_NOMWAIT)) {
466
/*
467
* In most cases the C1 space_id obtained from
468
* _CST object is FIXED_HARDWARE access mode.
469
* But when the option of idle=halt is added,
470
* the entry_method type should be changed from
471
* CSTATE_FFH to CSTATE_HALT.
472
* When the option of idle=nomwait is added,
473
* the C1 entry_method type should be
474
* CSTATE_HALT.
475
*/
476
cx.entry_method = ACPI_CSTATE_HALT;
477
snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
478
}
479
} else {
480
snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
481
cx.address);
482
}
483
484
if (cx.type == ACPI_STATE_C1) {
485
cx.valid = 1;
486
}
487
488
obj = &(element->package.elements[2]);
489
if (obj->type != ACPI_TYPE_INTEGER)
490
continue;
491
492
cx.latency = obj->integer.value;
493
494
obj = &(element->package.elements[3]);
495
if (obj->type != ACPI_TYPE_INTEGER)
496
continue;
497
498
cx.power = obj->integer.value;
499
500
current_count++;
501
memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
502
503
/*
504
* We support total ACPI_PROCESSOR_MAX_POWER - 1
505
* (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
506
*/
507
if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
508
printk(KERN_WARNING
509
"Limiting number of power states to max (%d)\n",
510
ACPI_PROCESSOR_MAX_POWER);
511
printk(KERN_WARNING
512
"Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
513
break;
514
}
515
}
516
517
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
518
current_count));
519
520
/* Validate number of power states discovered */
521
if (current_count < 2)
522
status = -EFAULT;
523
524
end:
525
kfree(buffer.pointer);
526
527
return status;
528
}
529
530
static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
531
struct acpi_processor_cx *cx)
532
{
533
static int bm_check_flag = -1;
534
static int bm_control_flag = -1;
535
536
537
if (!cx->address)
538
return;
539
540
/*
541
* PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
542
* DMA transfers are used by any ISA device to avoid livelock.
543
* Note that we could disable Type-F DMA (as recommended by
544
* the erratum), but this is known to disrupt certain ISA
545
* devices thus we take the conservative approach.
546
*/
547
else if (errata.piix4.fdma) {
548
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
549
"C3 not supported on PIIX4 with Type-F DMA\n"));
550
return;
551
}
552
553
/* All the logic here assumes flags.bm_check is same across all CPUs */
554
if (bm_check_flag == -1) {
555
/* Determine whether bm_check is needed based on CPU */
556
acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
557
bm_check_flag = pr->flags.bm_check;
558
bm_control_flag = pr->flags.bm_control;
559
} else {
560
pr->flags.bm_check = bm_check_flag;
561
pr->flags.bm_control = bm_control_flag;
562
}
563
564
if (pr->flags.bm_check) {
565
if (!pr->flags.bm_control) {
566
if (pr->flags.has_cst != 1) {
567
/* bus mastering control is necessary */
568
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
569
"C3 support requires BM control\n"));
570
return;
571
} else {
572
/* Here we enter C3 without bus mastering */
573
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
574
"C3 support without BM control\n"));
575
}
576
}
577
} else {
578
/*
579
* WBINVD should be set in fadt, for C3 state to be
580
* supported on when bm_check is not required.
581
*/
582
if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
583
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
584
"Cache invalidation should work properly"
585
" for C3 to be enabled on SMP systems\n"));
586
return;
587
}
588
}
589
590
/*
591
* Otherwise we've met all of our C3 requirements.
592
* Normalize the C3 latency to expidite policy. Enable
593
* checking of bus mastering status (bm_check) so we can
594
* use this in our C3 policy
595
*/
596
cx->valid = 1;
597
598
cx->latency_ticks = cx->latency;
599
/*
600
* On older chipsets, BM_RLD needs to be set
601
* in order for Bus Master activity to wake the
602
* system from C3. Newer chipsets handle DMA
603
* during C3 automatically and BM_RLD is a NOP.
604
* In either case, the proper way to
605
* handle BM_RLD is to set it and leave it set.
606
*/
607
acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
608
609
return;
610
}
611
612
static int acpi_processor_power_verify(struct acpi_processor *pr)
613
{
614
unsigned int i;
615
unsigned int working = 0;
616
617
pr->power.timer_broadcast_on_state = INT_MAX;
618
619
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
620
struct acpi_processor_cx *cx = &pr->power.states[i];
621
622
switch (cx->type) {
623
case ACPI_STATE_C1:
624
cx->valid = 1;
625
break;
626
627
case ACPI_STATE_C2:
628
if (!cx->address)
629
break;
630
cx->valid = 1;
631
cx->latency_ticks = cx->latency; /* Normalize latency */
632
break;
633
634
case ACPI_STATE_C3:
635
acpi_processor_power_verify_c3(pr, cx);
636
break;
637
}
638
if (!cx->valid)
639
continue;
640
641
lapic_timer_check_state(i, pr, cx);
642
tsc_check_state(cx->type);
643
working++;
644
}
645
646
lapic_timer_propagate_broadcast(pr);
647
648
return (working);
649
}
650
651
static int acpi_processor_get_power_info(struct acpi_processor *pr)
652
{
653
unsigned int i;
654
int result;
655
656
657
/* NOTE: the idle thread may not be running while calling
658
* this function */
659
660
/* Zero initialize all the C-states info. */
661
memset(pr->power.states, 0, sizeof(pr->power.states));
662
663
result = acpi_processor_get_power_info_cst(pr);
664
if (result == -ENODEV)
665
result = acpi_processor_get_power_info_fadt(pr);
666
667
if (result)
668
return result;
669
670
acpi_processor_get_power_info_default(pr);
671
672
pr->power.count = acpi_processor_power_verify(pr);
673
674
/*
675
* if one state of type C2 or C3 is available, mark this
676
* CPU as being "idle manageable"
677
*/
678
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
679
if (pr->power.states[i].valid) {
680
pr->power.count = i;
681
if (pr->power.states[i].type >= ACPI_STATE_C2)
682
pr->flags.power = 1;
683
}
684
}
685
686
return 0;
687
}
688
689
/**
690
* acpi_idle_bm_check - checks if bus master activity was detected
691
*/
692
static int acpi_idle_bm_check(void)
693
{
694
u32 bm_status = 0;
695
696
if (bm_check_disable)
697
return 0;
698
699
acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
700
if (bm_status)
701
acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
702
/*
703
* PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
704
* the true state of bus mastering activity; forcing us to
705
* manually check the BMIDEA bit of each IDE channel.
706
*/
707
else if (errata.piix4.bmisx) {
708
if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
709
|| (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
710
bm_status = 1;
711
}
712
return bm_status;
713
}
714
715
/**
716
* acpi_idle_do_entry - a helper function that does C2 and C3 type entry
717
* @cx: cstate data
718
*
719
* Caller disables interrupt before call and enables interrupt after return.
720
*/
721
static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
722
{
723
/* Don't trace irqs off for idle */
724
stop_critical_timings();
725
if (cx->entry_method == ACPI_CSTATE_FFH) {
726
/* Call into architectural FFH based C-state */
727
acpi_processor_ffh_cstate_enter(cx);
728
} else if (cx->entry_method == ACPI_CSTATE_HALT) {
729
acpi_safe_halt();
730
} else {
731
/* IO port based C-state */
732
inb(cx->address);
733
/* Dummy wait op - must do something useless after P_LVL2 read
734
because chipsets cannot guarantee that STPCLK# signal
735
gets asserted in time to freeze execution properly. */
736
inl(acpi_gbl_FADT.xpm_timer_block.address);
737
}
738
start_critical_timings();
739
}
740
741
/**
742
* acpi_idle_enter_c1 - enters an ACPI C1 state-type
743
* @dev: the target CPU
744
* @state: the state data
745
*
746
* This is equivalent to the HALT instruction.
747
*/
748
static int acpi_idle_enter_c1(struct cpuidle_device *dev,
749
struct cpuidle_state *state)
750
{
751
ktime_t kt1, kt2;
752
s64 idle_time;
753
struct acpi_processor *pr;
754
struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
755
756
pr = __this_cpu_read(processors);
757
758
if (unlikely(!pr))
759
return 0;
760
761
local_irq_disable();
762
763
/* Do not access any ACPI IO ports in suspend path */
764
if (acpi_idle_suspend) {
765
local_irq_enable();
766
cpu_relax();
767
return 0;
768
}
769
770
lapic_timer_state_broadcast(pr, cx, 1);
771
kt1 = ktime_get_real();
772
acpi_idle_do_entry(cx);
773
kt2 = ktime_get_real();
774
idle_time = ktime_to_us(ktime_sub(kt2, kt1));
775
776
local_irq_enable();
777
cx->usage++;
778
lapic_timer_state_broadcast(pr, cx, 0);
779
780
return idle_time;
781
}
782
783
/**
784
* acpi_idle_enter_simple - enters an ACPI state without BM handling
785
* @dev: the target CPU
786
* @state: the state data
787
*/
788
static int acpi_idle_enter_simple(struct cpuidle_device *dev,
789
struct cpuidle_state *state)
790
{
791
struct acpi_processor *pr;
792
struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
793
ktime_t kt1, kt2;
794
s64 idle_time_ns;
795
s64 idle_time;
796
797
pr = __this_cpu_read(processors);
798
799
if (unlikely(!pr))
800
return 0;
801
802
if (acpi_idle_suspend)
803
return(acpi_idle_enter_c1(dev, state));
804
805
local_irq_disable();
806
807
if (cx->entry_method != ACPI_CSTATE_FFH) {
808
current_thread_info()->status &= ~TS_POLLING;
809
/*
810
* TS_POLLING-cleared state must be visible before we test
811
* NEED_RESCHED:
812
*/
813
smp_mb();
814
815
if (unlikely(need_resched())) {
816
current_thread_info()->status |= TS_POLLING;
817
local_irq_enable();
818
return 0;
819
}
820
}
821
822
/*
823
* Must be done before busmaster disable as we might need to
824
* access HPET !
825
*/
826
lapic_timer_state_broadcast(pr, cx, 1);
827
828
if (cx->type == ACPI_STATE_C3)
829
ACPI_FLUSH_CPU_CACHE();
830
831
kt1 = ktime_get_real();
832
/* Tell the scheduler that we are going deep-idle: */
833
sched_clock_idle_sleep_event();
834
acpi_idle_do_entry(cx);
835
kt2 = ktime_get_real();
836
idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
837
idle_time = idle_time_ns;
838
do_div(idle_time, NSEC_PER_USEC);
839
840
/* Tell the scheduler how much we idled: */
841
sched_clock_idle_wakeup_event(idle_time_ns);
842
843
local_irq_enable();
844
if (cx->entry_method != ACPI_CSTATE_FFH)
845
current_thread_info()->status |= TS_POLLING;
846
847
cx->usage++;
848
849
lapic_timer_state_broadcast(pr, cx, 0);
850
cx->time += idle_time;
851
return idle_time;
852
}
853
854
static int c3_cpu_count;
855
static DEFINE_SPINLOCK(c3_lock);
856
857
/**
858
* acpi_idle_enter_bm - enters C3 with proper BM handling
859
* @dev: the target CPU
860
* @state: the state data
861
*
862
* If BM is detected, the deepest non-C3 idle state is entered instead.
863
*/
864
static int acpi_idle_enter_bm(struct cpuidle_device *dev,
865
struct cpuidle_state *state)
866
{
867
struct acpi_processor *pr;
868
struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
869
ktime_t kt1, kt2;
870
s64 idle_time_ns;
871
s64 idle_time;
872
873
874
pr = __this_cpu_read(processors);
875
876
if (unlikely(!pr))
877
return 0;
878
879
if (acpi_idle_suspend)
880
return(acpi_idle_enter_c1(dev, state));
881
882
if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
883
if (dev->safe_state) {
884
dev->last_state = dev->safe_state;
885
return dev->safe_state->enter(dev, dev->safe_state);
886
} else {
887
local_irq_disable();
888
acpi_safe_halt();
889
local_irq_enable();
890
return 0;
891
}
892
}
893
894
local_irq_disable();
895
896
if (cx->entry_method != ACPI_CSTATE_FFH) {
897
current_thread_info()->status &= ~TS_POLLING;
898
/*
899
* TS_POLLING-cleared state must be visible before we test
900
* NEED_RESCHED:
901
*/
902
smp_mb();
903
904
if (unlikely(need_resched())) {
905
current_thread_info()->status |= TS_POLLING;
906
local_irq_enable();
907
return 0;
908
}
909
}
910
911
acpi_unlazy_tlb(smp_processor_id());
912
913
/* Tell the scheduler that we are going deep-idle: */
914
sched_clock_idle_sleep_event();
915
/*
916
* Must be done before busmaster disable as we might need to
917
* access HPET !
918
*/
919
lapic_timer_state_broadcast(pr, cx, 1);
920
921
kt1 = ktime_get_real();
922
/*
923
* disable bus master
924
* bm_check implies we need ARB_DIS
925
* !bm_check implies we need cache flush
926
* bm_control implies whether we can do ARB_DIS
927
*
928
* That leaves a case where bm_check is set and bm_control is
929
* not set. In that case we cannot do much, we enter C3
930
* without doing anything.
931
*/
932
if (pr->flags.bm_check && pr->flags.bm_control) {
933
spin_lock(&c3_lock);
934
c3_cpu_count++;
935
/* Disable bus master arbitration when all CPUs are in C3 */
936
if (c3_cpu_count == num_online_cpus())
937
acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
938
spin_unlock(&c3_lock);
939
} else if (!pr->flags.bm_check) {
940
ACPI_FLUSH_CPU_CACHE();
941
}
942
943
acpi_idle_do_entry(cx);
944
945
/* Re-enable bus master arbitration */
946
if (pr->flags.bm_check && pr->flags.bm_control) {
947
spin_lock(&c3_lock);
948
acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
949
c3_cpu_count--;
950
spin_unlock(&c3_lock);
951
}
952
kt2 = ktime_get_real();
953
idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
954
idle_time = idle_time_ns;
955
do_div(idle_time, NSEC_PER_USEC);
956
957
/* Tell the scheduler how much we idled: */
958
sched_clock_idle_wakeup_event(idle_time_ns);
959
960
local_irq_enable();
961
if (cx->entry_method != ACPI_CSTATE_FFH)
962
current_thread_info()->status |= TS_POLLING;
963
964
cx->usage++;
965
966
lapic_timer_state_broadcast(pr, cx, 0);
967
cx->time += idle_time;
968
return idle_time;
969
}
970
971
struct cpuidle_driver acpi_idle_driver = {
972
.name = "acpi_idle",
973
.owner = THIS_MODULE,
974
};
975
976
/**
977
* acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
978
* @pr: the ACPI processor
979
*/
980
static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
981
{
982
int i, count = CPUIDLE_DRIVER_STATE_START;
983
struct acpi_processor_cx *cx;
984
struct cpuidle_state *state;
985
struct cpuidle_device *dev = &pr->power.dev;
986
987
if (!pr->flags.power_setup_done)
988
return -EINVAL;
989
990
if (pr->flags.power == 0) {
991
return -EINVAL;
992
}
993
994
dev->cpu = pr->id;
995
for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
996
dev->states[i].name[0] = '\0';
997
dev->states[i].desc[0] = '\0';
998
}
999
1000
if (max_cstate == 0)
1001
max_cstate = 1;
1002
1003
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1004
cx = &pr->power.states[i];
1005
state = &dev->states[count];
1006
1007
if (!cx->valid)
1008
continue;
1009
1010
#ifdef CONFIG_HOTPLUG_CPU
1011
if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1012
!pr->flags.has_cst &&
1013
!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1014
continue;
1015
#endif
1016
cpuidle_set_statedata(state, cx);
1017
1018
snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1019
strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1020
state->exit_latency = cx->latency;
1021
state->target_residency = cx->latency * latency_factor;
1022
1023
state->flags = 0;
1024
switch (cx->type) {
1025
case ACPI_STATE_C1:
1026
if (cx->entry_method == ACPI_CSTATE_FFH)
1027
state->flags |= CPUIDLE_FLAG_TIME_VALID;
1028
1029
state->enter = acpi_idle_enter_c1;
1030
dev->safe_state = state;
1031
break;
1032
1033
case ACPI_STATE_C2:
1034
state->flags |= CPUIDLE_FLAG_TIME_VALID;
1035
state->enter = acpi_idle_enter_simple;
1036
dev->safe_state = state;
1037
break;
1038
1039
case ACPI_STATE_C3:
1040
state->flags |= CPUIDLE_FLAG_TIME_VALID;
1041
state->enter = pr->flags.bm_check ?
1042
acpi_idle_enter_bm :
1043
acpi_idle_enter_simple;
1044
break;
1045
}
1046
1047
count++;
1048
if (count == CPUIDLE_STATE_MAX)
1049
break;
1050
}
1051
1052
dev->state_count = count;
1053
1054
if (!count)
1055
return -EINVAL;
1056
1057
return 0;
1058
}
1059
1060
int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1061
{
1062
int ret = 0;
1063
1064
if (disabled_by_idle_boot_param())
1065
return 0;
1066
1067
if (!pr)
1068
return -EINVAL;
1069
1070
if (nocst) {
1071
return -ENODEV;
1072
}
1073
1074
if (!pr->flags.power_setup_done)
1075
return -ENODEV;
1076
1077
cpuidle_pause_and_lock();
1078
cpuidle_disable_device(&pr->power.dev);
1079
acpi_processor_get_power_info(pr);
1080
if (pr->flags.power) {
1081
acpi_processor_setup_cpuidle(pr);
1082
ret = cpuidle_enable_device(&pr->power.dev);
1083
}
1084
cpuidle_resume_and_unlock();
1085
1086
return ret;
1087
}
1088
1089
int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1090
struct acpi_device *device)
1091
{
1092
acpi_status status = 0;
1093
static int first_run;
1094
1095
if (disabled_by_idle_boot_param())
1096
return 0;
1097
1098
if (!first_run) {
1099
dmi_check_system(processor_power_dmi_table);
1100
max_cstate = acpi_processor_cstate_check(max_cstate);
1101
if (max_cstate < ACPI_C_STATES_MAX)
1102
printk(KERN_NOTICE
1103
"ACPI: processor limited to max C-state %d\n",
1104
max_cstate);
1105
first_run++;
1106
}
1107
1108
if (!pr)
1109
return -EINVAL;
1110
1111
if (acpi_gbl_FADT.cst_control && !nocst) {
1112
status =
1113
acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1114
if (ACPI_FAILURE(status)) {
1115
ACPI_EXCEPTION((AE_INFO, status,
1116
"Notifying BIOS of _CST ability failed"));
1117
}
1118
}
1119
1120
acpi_processor_get_power_info(pr);
1121
pr->flags.power_setup_done = 1;
1122
1123
/*
1124
* Install the idle handler if processor power management is supported.
1125
* Note that we use previously set idle handler will be used on
1126
* platforms that only support C1.
1127
*/
1128
if (pr->flags.power) {
1129
acpi_processor_setup_cpuidle(pr);
1130
if (cpuidle_register_device(&pr->power.dev))
1131
return -EIO;
1132
}
1133
return 0;
1134
}
1135
1136
int acpi_processor_power_exit(struct acpi_processor *pr,
1137
struct acpi_device *device)
1138
{
1139
if (disabled_by_idle_boot_param())
1140
return 0;
1141
1142
cpuidle_unregister_device(&pr->power.dev);
1143
pr->flags.power_setup_done = 0;
1144
1145
return 0;
1146
}
1147
1148