Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/ata/libata-core.c
15109 views
1
/*
2
* libata-core.c - helper library for ATA
3
*
4
* Maintained by: Jeff Garzik <[email protected]>
5
* Please ALWAYS copy [email protected]
6
* on emails.
7
*
8
* Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9
* Copyright 2003-2004 Jeff Garzik
10
*
11
*
12
* This program is free software; you can redistribute it and/or modify
13
* it under the terms of the GNU General Public License as published by
14
* the Free Software Foundation; either version 2, or (at your option)
15
* any later version.
16
*
17
* This program is distributed in the hope that it will be useful,
18
* but WITHOUT ANY WARRANTY; without even the implied warranty of
19
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20
* GNU General Public License for more details.
21
*
22
* You should have received a copy of the GNU General Public License
23
* along with this program; see the file COPYING. If not, write to
24
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25
*
26
*
27
* libata documentation is available via 'make {ps|pdf}docs',
28
* as Documentation/DocBook/libata.*
29
*
30
* Hardware documentation available from http://www.t13.org/ and
31
* http://www.sata-io.org/
32
*
33
* Standards documents from:
34
* http://www.t13.org (ATA standards, PCI DMA IDE spec)
35
* http://www.t10.org (SCSI MMC - for ATAPI MMC)
36
* http://www.sata-io.org (SATA)
37
* http://www.compactflash.org (CF)
38
* http://www.qic.org (QIC157 - Tape and DSC)
39
* http://www.ce-ata.org (CE-ATA: not supported)
40
*
41
*/
42
43
#include <linux/kernel.h>
44
#include <linux/module.h>
45
#include <linux/pci.h>
46
#include <linux/init.h>
47
#include <linux/list.h>
48
#include <linux/mm.h>
49
#include <linux/spinlock.h>
50
#include <linux/blkdev.h>
51
#include <linux/delay.h>
52
#include <linux/timer.h>
53
#include <linux/interrupt.h>
54
#include <linux/completion.h>
55
#include <linux/suspend.h>
56
#include <linux/workqueue.h>
57
#include <linux/scatterlist.h>
58
#include <linux/io.h>
59
#include <linux/async.h>
60
#include <linux/log2.h>
61
#include <linux/slab.h>
62
#include <scsi/scsi.h>
63
#include <scsi/scsi_cmnd.h>
64
#include <scsi/scsi_host.h>
65
#include <linux/libata.h>
66
#include <asm/byteorder.h>
67
#include <linux/cdrom.h>
68
#include <linux/ratelimit.h>
69
70
#include "libata.h"
71
#include "libata-transport.h"
72
73
/* debounce timing parameters in msecs { interval, duration, timeout } */
74
const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
75
const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
76
const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
77
78
const struct ata_port_operations ata_base_port_ops = {
79
.prereset = ata_std_prereset,
80
.postreset = ata_std_postreset,
81
.error_handler = ata_std_error_handler,
82
};
83
84
const struct ata_port_operations sata_port_ops = {
85
.inherits = &ata_base_port_ops,
86
87
.qc_defer = ata_std_qc_defer,
88
.hardreset = sata_std_hardreset,
89
};
90
91
static unsigned int ata_dev_init_params(struct ata_device *dev,
92
u16 heads, u16 sectors);
93
static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
94
static void ata_dev_xfermask(struct ata_device *dev);
95
static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
96
97
unsigned int ata_print_id = 1;
98
99
struct ata_force_param {
100
const char *name;
101
unsigned int cbl;
102
int spd_limit;
103
unsigned long xfer_mask;
104
unsigned int horkage_on;
105
unsigned int horkage_off;
106
unsigned int lflags;
107
};
108
109
struct ata_force_ent {
110
int port;
111
int device;
112
struct ata_force_param param;
113
};
114
115
static struct ata_force_ent *ata_force_tbl;
116
static int ata_force_tbl_size;
117
118
static char ata_force_param_buf[PAGE_SIZE] __initdata;
119
/* param_buf is thrown away after initialization, disallow read */
120
module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
121
MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
122
123
static int atapi_enabled = 1;
124
module_param(atapi_enabled, int, 0444);
125
MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
126
127
static int atapi_dmadir = 0;
128
module_param(atapi_dmadir, int, 0444);
129
MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
130
131
int atapi_passthru16 = 1;
132
module_param(atapi_passthru16, int, 0444);
133
MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
134
135
int libata_fua = 0;
136
module_param_named(fua, libata_fua, int, 0444);
137
MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
138
139
static int ata_ignore_hpa;
140
module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
141
MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
142
143
static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
144
module_param_named(dma, libata_dma_mask, int, 0444);
145
MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
146
147
static int ata_probe_timeout;
148
module_param(ata_probe_timeout, int, 0444);
149
MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
150
151
int libata_noacpi = 0;
152
module_param_named(noacpi, libata_noacpi, int, 0444);
153
MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
154
155
int libata_allow_tpm = 0;
156
module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
157
MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
158
159
static int atapi_an;
160
module_param(atapi_an, int, 0444);
161
MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
162
163
MODULE_AUTHOR("Jeff Garzik");
164
MODULE_DESCRIPTION("Library module for ATA devices");
165
MODULE_LICENSE("GPL");
166
MODULE_VERSION(DRV_VERSION);
167
168
169
static bool ata_sstatus_online(u32 sstatus)
170
{
171
return (sstatus & 0xf) == 0x3;
172
}
173
174
/**
175
* ata_link_next - link iteration helper
176
* @link: the previous link, NULL to start
177
* @ap: ATA port containing links to iterate
178
* @mode: iteration mode, one of ATA_LITER_*
179
*
180
* LOCKING:
181
* Host lock or EH context.
182
*
183
* RETURNS:
184
* Pointer to the next link.
185
*/
186
struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187
enum ata_link_iter_mode mode)
188
{
189
BUG_ON(mode != ATA_LITER_EDGE &&
190
mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191
192
/* NULL link indicates start of iteration */
193
if (!link)
194
switch (mode) {
195
case ATA_LITER_EDGE:
196
case ATA_LITER_PMP_FIRST:
197
if (sata_pmp_attached(ap))
198
return ap->pmp_link;
199
/* fall through */
200
case ATA_LITER_HOST_FIRST:
201
return &ap->link;
202
}
203
204
/* we just iterated over the host link, what's next? */
205
if (link == &ap->link)
206
switch (mode) {
207
case ATA_LITER_HOST_FIRST:
208
if (sata_pmp_attached(ap))
209
return ap->pmp_link;
210
/* fall through */
211
case ATA_LITER_PMP_FIRST:
212
if (unlikely(ap->slave_link))
213
return ap->slave_link;
214
/* fall through */
215
case ATA_LITER_EDGE:
216
return NULL;
217
}
218
219
/* slave_link excludes PMP */
220
if (unlikely(link == ap->slave_link))
221
return NULL;
222
223
/* we were over a PMP link */
224
if (++link < ap->pmp_link + ap->nr_pmp_links)
225
return link;
226
227
if (mode == ATA_LITER_PMP_FIRST)
228
return &ap->link;
229
230
return NULL;
231
}
232
233
/**
234
* ata_dev_next - device iteration helper
235
* @dev: the previous device, NULL to start
236
* @link: ATA link containing devices to iterate
237
* @mode: iteration mode, one of ATA_DITER_*
238
*
239
* LOCKING:
240
* Host lock or EH context.
241
*
242
* RETURNS:
243
* Pointer to the next device.
244
*/
245
struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
246
enum ata_dev_iter_mode mode)
247
{
248
BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
249
mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
250
251
/* NULL dev indicates start of iteration */
252
if (!dev)
253
switch (mode) {
254
case ATA_DITER_ENABLED:
255
case ATA_DITER_ALL:
256
dev = link->device;
257
goto check;
258
case ATA_DITER_ENABLED_REVERSE:
259
case ATA_DITER_ALL_REVERSE:
260
dev = link->device + ata_link_max_devices(link) - 1;
261
goto check;
262
}
263
264
next:
265
/* move to the next one */
266
switch (mode) {
267
case ATA_DITER_ENABLED:
268
case ATA_DITER_ALL:
269
if (++dev < link->device + ata_link_max_devices(link))
270
goto check;
271
return NULL;
272
case ATA_DITER_ENABLED_REVERSE:
273
case ATA_DITER_ALL_REVERSE:
274
if (--dev >= link->device)
275
goto check;
276
return NULL;
277
}
278
279
check:
280
if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
281
!ata_dev_enabled(dev))
282
goto next;
283
return dev;
284
}
285
286
/**
287
* ata_dev_phys_link - find physical link for a device
288
* @dev: ATA device to look up physical link for
289
*
290
* Look up physical link which @dev is attached to. Note that
291
* this is different from @dev->link only when @dev is on slave
292
* link. For all other cases, it's the same as @dev->link.
293
*
294
* LOCKING:
295
* Don't care.
296
*
297
* RETURNS:
298
* Pointer to the found physical link.
299
*/
300
struct ata_link *ata_dev_phys_link(struct ata_device *dev)
301
{
302
struct ata_port *ap = dev->link->ap;
303
304
if (!ap->slave_link)
305
return dev->link;
306
if (!dev->devno)
307
return &ap->link;
308
return ap->slave_link;
309
}
310
311
/**
312
* ata_force_cbl - force cable type according to libata.force
313
* @ap: ATA port of interest
314
*
315
* Force cable type according to libata.force and whine about it.
316
* The last entry which has matching port number is used, so it
317
* can be specified as part of device force parameters. For
318
* example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
319
* same effect.
320
*
321
* LOCKING:
322
* EH context.
323
*/
324
void ata_force_cbl(struct ata_port *ap)
325
{
326
int i;
327
328
for (i = ata_force_tbl_size - 1; i >= 0; i--) {
329
const struct ata_force_ent *fe = &ata_force_tbl[i];
330
331
if (fe->port != -1 && fe->port != ap->print_id)
332
continue;
333
334
if (fe->param.cbl == ATA_CBL_NONE)
335
continue;
336
337
ap->cbl = fe->param.cbl;
338
ata_port_printk(ap, KERN_NOTICE,
339
"FORCE: cable set to %s\n", fe->param.name);
340
return;
341
}
342
}
343
344
/**
345
* ata_force_link_limits - force link limits according to libata.force
346
* @link: ATA link of interest
347
*
348
* Force link flags and SATA spd limit according to libata.force
349
* and whine about it. When only the port part is specified
350
* (e.g. 1:), the limit applies to all links connected to both
351
* the host link and all fan-out ports connected via PMP. If the
352
* device part is specified as 0 (e.g. 1.00:), it specifies the
353
* first fan-out link not the host link. Device number 15 always
354
* points to the host link whether PMP is attached or not. If the
355
* controller has slave link, device number 16 points to it.
356
*
357
* LOCKING:
358
* EH context.
359
*/
360
static void ata_force_link_limits(struct ata_link *link)
361
{
362
bool did_spd = false;
363
int linkno = link->pmp;
364
int i;
365
366
if (ata_is_host_link(link))
367
linkno += 15;
368
369
for (i = ata_force_tbl_size - 1; i >= 0; i--) {
370
const struct ata_force_ent *fe = &ata_force_tbl[i];
371
372
if (fe->port != -1 && fe->port != link->ap->print_id)
373
continue;
374
375
if (fe->device != -1 && fe->device != linkno)
376
continue;
377
378
/* only honor the first spd limit */
379
if (!did_spd && fe->param.spd_limit) {
380
link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
381
ata_link_printk(link, KERN_NOTICE,
382
"FORCE: PHY spd limit set to %s\n",
383
fe->param.name);
384
did_spd = true;
385
}
386
387
/* let lflags stack */
388
if (fe->param.lflags) {
389
link->flags |= fe->param.lflags;
390
ata_link_printk(link, KERN_NOTICE,
391
"FORCE: link flag 0x%x forced -> 0x%x\n",
392
fe->param.lflags, link->flags);
393
}
394
}
395
}
396
397
/**
398
* ata_force_xfermask - force xfermask according to libata.force
399
* @dev: ATA device of interest
400
*
401
* Force xfer_mask according to libata.force and whine about it.
402
* For consistency with link selection, device number 15 selects
403
* the first device connected to the host link.
404
*
405
* LOCKING:
406
* EH context.
407
*/
408
static void ata_force_xfermask(struct ata_device *dev)
409
{
410
int devno = dev->link->pmp + dev->devno;
411
int alt_devno = devno;
412
int i;
413
414
/* allow n.15/16 for devices attached to host port */
415
if (ata_is_host_link(dev->link))
416
alt_devno += 15;
417
418
for (i = ata_force_tbl_size - 1; i >= 0; i--) {
419
const struct ata_force_ent *fe = &ata_force_tbl[i];
420
unsigned long pio_mask, mwdma_mask, udma_mask;
421
422
if (fe->port != -1 && fe->port != dev->link->ap->print_id)
423
continue;
424
425
if (fe->device != -1 && fe->device != devno &&
426
fe->device != alt_devno)
427
continue;
428
429
if (!fe->param.xfer_mask)
430
continue;
431
432
ata_unpack_xfermask(fe->param.xfer_mask,
433
&pio_mask, &mwdma_mask, &udma_mask);
434
if (udma_mask)
435
dev->udma_mask = udma_mask;
436
else if (mwdma_mask) {
437
dev->udma_mask = 0;
438
dev->mwdma_mask = mwdma_mask;
439
} else {
440
dev->udma_mask = 0;
441
dev->mwdma_mask = 0;
442
dev->pio_mask = pio_mask;
443
}
444
445
ata_dev_printk(dev, KERN_NOTICE,
446
"FORCE: xfer_mask set to %s\n", fe->param.name);
447
return;
448
}
449
}
450
451
/**
452
* ata_force_horkage - force horkage according to libata.force
453
* @dev: ATA device of interest
454
*
455
* Force horkage according to libata.force and whine about it.
456
* For consistency with link selection, device number 15 selects
457
* the first device connected to the host link.
458
*
459
* LOCKING:
460
* EH context.
461
*/
462
static void ata_force_horkage(struct ata_device *dev)
463
{
464
int devno = dev->link->pmp + dev->devno;
465
int alt_devno = devno;
466
int i;
467
468
/* allow n.15/16 for devices attached to host port */
469
if (ata_is_host_link(dev->link))
470
alt_devno += 15;
471
472
for (i = 0; i < ata_force_tbl_size; i++) {
473
const struct ata_force_ent *fe = &ata_force_tbl[i];
474
475
if (fe->port != -1 && fe->port != dev->link->ap->print_id)
476
continue;
477
478
if (fe->device != -1 && fe->device != devno &&
479
fe->device != alt_devno)
480
continue;
481
482
if (!(~dev->horkage & fe->param.horkage_on) &&
483
!(dev->horkage & fe->param.horkage_off))
484
continue;
485
486
dev->horkage |= fe->param.horkage_on;
487
dev->horkage &= ~fe->param.horkage_off;
488
489
ata_dev_printk(dev, KERN_NOTICE,
490
"FORCE: horkage modified (%s)\n", fe->param.name);
491
}
492
}
493
494
/**
495
* atapi_cmd_type - Determine ATAPI command type from SCSI opcode
496
* @opcode: SCSI opcode
497
*
498
* Determine ATAPI command type from @opcode.
499
*
500
* LOCKING:
501
* None.
502
*
503
* RETURNS:
504
* ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505
*/
506
int atapi_cmd_type(u8 opcode)
507
{
508
switch (opcode) {
509
case GPCMD_READ_10:
510
case GPCMD_READ_12:
511
return ATAPI_READ;
512
513
case GPCMD_WRITE_10:
514
case GPCMD_WRITE_12:
515
case GPCMD_WRITE_AND_VERIFY_10:
516
return ATAPI_WRITE;
517
518
case GPCMD_READ_CD:
519
case GPCMD_READ_CD_MSF:
520
return ATAPI_READ_CD;
521
522
case ATA_16:
523
case ATA_12:
524
if (atapi_passthru16)
525
return ATAPI_PASS_THRU;
526
/* fall thru */
527
default:
528
return ATAPI_MISC;
529
}
530
}
531
532
/**
533
* ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
534
* @tf: Taskfile to convert
535
* @pmp: Port multiplier port
536
* @is_cmd: This FIS is for command
537
* @fis: Buffer into which data will output
538
*
539
* Converts a standard ATA taskfile to a Serial ATA
540
* FIS structure (Register - Host to Device).
541
*
542
* LOCKING:
543
* Inherited from caller.
544
*/
545
void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
546
{
547
fis[0] = 0x27; /* Register - Host to Device FIS */
548
fis[1] = pmp & 0xf; /* Port multiplier number*/
549
if (is_cmd)
550
fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
551
552
fis[2] = tf->command;
553
fis[3] = tf->feature;
554
555
fis[4] = tf->lbal;
556
fis[5] = tf->lbam;
557
fis[6] = tf->lbah;
558
fis[7] = tf->device;
559
560
fis[8] = tf->hob_lbal;
561
fis[9] = tf->hob_lbam;
562
fis[10] = tf->hob_lbah;
563
fis[11] = tf->hob_feature;
564
565
fis[12] = tf->nsect;
566
fis[13] = tf->hob_nsect;
567
fis[14] = 0;
568
fis[15] = tf->ctl;
569
570
fis[16] = 0;
571
fis[17] = 0;
572
fis[18] = 0;
573
fis[19] = 0;
574
}
575
576
/**
577
* ata_tf_from_fis - Convert SATA FIS to ATA taskfile
578
* @fis: Buffer from which data will be input
579
* @tf: Taskfile to output
580
*
581
* Converts a serial ATA FIS structure to a standard ATA taskfile.
582
*
583
* LOCKING:
584
* Inherited from caller.
585
*/
586
587
void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
588
{
589
tf->command = fis[2]; /* status */
590
tf->feature = fis[3]; /* error */
591
592
tf->lbal = fis[4];
593
tf->lbam = fis[5];
594
tf->lbah = fis[6];
595
tf->device = fis[7];
596
597
tf->hob_lbal = fis[8];
598
tf->hob_lbam = fis[9];
599
tf->hob_lbah = fis[10];
600
601
tf->nsect = fis[12];
602
tf->hob_nsect = fis[13];
603
}
604
605
static const u8 ata_rw_cmds[] = {
606
/* pio multi */
607
ATA_CMD_READ_MULTI,
608
ATA_CMD_WRITE_MULTI,
609
ATA_CMD_READ_MULTI_EXT,
610
ATA_CMD_WRITE_MULTI_EXT,
611
0,
612
0,
613
0,
614
ATA_CMD_WRITE_MULTI_FUA_EXT,
615
/* pio */
616
ATA_CMD_PIO_READ,
617
ATA_CMD_PIO_WRITE,
618
ATA_CMD_PIO_READ_EXT,
619
ATA_CMD_PIO_WRITE_EXT,
620
0,
621
0,
622
0,
623
0,
624
/* dma */
625
ATA_CMD_READ,
626
ATA_CMD_WRITE,
627
ATA_CMD_READ_EXT,
628
ATA_CMD_WRITE_EXT,
629
0,
630
0,
631
0,
632
ATA_CMD_WRITE_FUA_EXT
633
};
634
635
/**
636
* ata_rwcmd_protocol - set taskfile r/w commands and protocol
637
* @tf: command to examine and configure
638
* @dev: device tf belongs to
639
*
640
* Examine the device configuration and tf->flags to calculate
641
* the proper read/write commands and protocol to use.
642
*
643
* LOCKING:
644
* caller.
645
*/
646
static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
647
{
648
u8 cmd;
649
650
int index, fua, lba48, write;
651
652
fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
653
lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
654
write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
655
656
if (dev->flags & ATA_DFLAG_PIO) {
657
tf->protocol = ATA_PROT_PIO;
658
index = dev->multi_count ? 0 : 8;
659
} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
660
/* Unable to use DMA due to host limitation */
661
tf->protocol = ATA_PROT_PIO;
662
index = dev->multi_count ? 0 : 8;
663
} else {
664
tf->protocol = ATA_PROT_DMA;
665
index = 16;
666
}
667
668
cmd = ata_rw_cmds[index + fua + lba48 + write];
669
if (cmd) {
670
tf->command = cmd;
671
return 0;
672
}
673
return -1;
674
}
675
676
/**
677
* ata_tf_read_block - Read block address from ATA taskfile
678
* @tf: ATA taskfile of interest
679
* @dev: ATA device @tf belongs to
680
*
681
* LOCKING:
682
* None.
683
*
684
* Read block address from @tf. This function can handle all
685
* three address formats - LBA, LBA48 and CHS. tf->protocol and
686
* flags select the address format to use.
687
*
688
* RETURNS:
689
* Block address read from @tf.
690
*/
691
u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
692
{
693
u64 block = 0;
694
695
if (tf->flags & ATA_TFLAG_LBA) {
696
if (tf->flags & ATA_TFLAG_LBA48) {
697
block |= (u64)tf->hob_lbah << 40;
698
block |= (u64)tf->hob_lbam << 32;
699
block |= (u64)tf->hob_lbal << 24;
700
} else
701
block |= (tf->device & 0xf) << 24;
702
703
block |= tf->lbah << 16;
704
block |= tf->lbam << 8;
705
block |= tf->lbal;
706
} else {
707
u32 cyl, head, sect;
708
709
cyl = tf->lbam | (tf->lbah << 8);
710
head = tf->device & 0xf;
711
sect = tf->lbal;
712
713
if (!sect) {
714
ata_dev_printk(dev, KERN_WARNING, "device reported "
715
"invalid CHS sector 0\n");
716
sect = 1; /* oh well */
717
}
718
719
block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
720
}
721
722
return block;
723
}
724
725
/**
726
* ata_build_rw_tf - Build ATA taskfile for given read/write request
727
* @tf: Target ATA taskfile
728
* @dev: ATA device @tf belongs to
729
* @block: Block address
730
* @n_block: Number of blocks
731
* @tf_flags: RW/FUA etc...
732
* @tag: tag
733
*
734
* LOCKING:
735
* None.
736
*
737
* Build ATA taskfile @tf for read/write request described by
738
* @block, @n_block, @tf_flags and @tag on @dev.
739
*
740
* RETURNS:
741
*
742
* 0 on success, -ERANGE if the request is too large for @dev,
743
* -EINVAL if the request is invalid.
744
*/
745
int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
746
u64 block, u32 n_block, unsigned int tf_flags,
747
unsigned int tag)
748
{
749
tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
750
tf->flags |= tf_flags;
751
752
if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
753
/* yay, NCQ */
754
if (!lba_48_ok(block, n_block))
755
return -ERANGE;
756
757
tf->protocol = ATA_PROT_NCQ;
758
tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
759
760
if (tf->flags & ATA_TFLAG_WRITE)
761
tf->command = ATA_CMD_FPDMA_WRITE;
762
else
763
tf->command = ATA_CMD_FPDMA_READ;
764
765
tf->nsect = tag << 3;
766
tf->hob_feature = (n_block >> 8) & 0xff;
767
tf->feature = n_block & 0xff;
768
769
tf->hob_lbah = (block >> 40) & 0xff;
770
tf->hob_lbam = (block >> 32) & 0xff;
771
tf->hob_lbal = (block >> 24) & 0xff;
772
tf->lbah = (block >> 16) & 0xff;
773
tf->lbam = (block >> 8) & 0xff;
774
tf->lbal = block & 0xff;
775
776
tf->device = 1 << 6;
777
if (tf->flags & ATA_TFLAG_FUA)
778
tf->device |= 1 << 7;
779
} else if (dev->flags & ATA_DFLAG_LBA) {
780
tf->flags |= ATA_TFLAG_LBA;
781
782
if (lba_28_ok(block, n_block)) {
783
/* use LBA28 */
784
tf->device |= (block >> 24) & 0xf;
785
} else if (lba_48_ok(block, n_block)) {
786
if (!(dev->flags & ATA_DFLAG_LBA48))
787
return -ERANGE;
788
789
/* use LBA48 */
790
tf->flags |= ATA_TFLAG_LBA48;
791
792
tf->hob_nsect = (n_block >> 8) & 0xff;
793
794
tf->hob_lbah = (block >> 40) & 0xff;
795
tf->hob_lbam = (block >> 32) & 0xff;
796
tf->hob_lbal = (block >> 24) & 0xff;
797
} else
798
/* request too large even for LBA48 */
799
return -ERANGE;
800
801
if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
802
return -EINVAL;
803
804
tf->nsect = n_block & 0xff;
805
806
tf->lbah = (block >> 16) & 0xff;
807
tf->lbam = (block >> 8) & 0xff;
808
tf->lbal = block & 0xff;
809
810
tf->device |= ATA_LBA;
811
} else {
812
/* CHS */
813
u32 sect, head, cyl, track;
814
815
/* The request -may- be too large for CHS addressing. */
816
if (!lba_28_ok(block, n_block))
817
return -ERANGE;
818
819
if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
820
return -EINVAL;
821
822
/* Convert LBA to CHS */
823
track = (u32)block / dev->sectors;
824
cyl = track / dev->heads;
825
head = track % dev->heads;
826
sect = (u32)block % dev->sectors + 1;
827
828
DPRINTK("block %u track %u cyl %u head %u sect %u\n",
829
(u32)block, track, cyl, head, sect);
830
831
/* Check whether the converted CHS can fit.
832
Cylinder: 0-65535
833
Head: 0-15
834
Sector: 1-255*/
835
if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
836
return -ERANGE;
837
838
tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
839
tf->lbal = sect;
840
tf->lbam = cyl;
841
tf->lbah = cyl >> 8;
842
tf->device |= head;
843
}
844
845
return 0;
846
}
847
848
/**
849
* ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
850
* @pio_mask: pio_mask
851
* @mwdma_mask: mwdma_mask
852
* @udma_mask: udma_mask
853
*
854
* Pack @pio_mask, @mwdma_mask and @udma_mask into a single
855
* unsigned int xfer_mask.
856
*
857
* LOCKING:
858
* None.
859
*
860
* RETURNS:
861
* Packed xfer_mask.
862
*/
863
unsigned long ata_pack_xfermask(unsigned long pio_mask,
864
unsigned long mwdma_mask,
865
unsigned long udma_mask)
866
{
867
return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
868
((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
869
((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
870
}
871
872
/**
873
* ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
874
* @xfer_mask: xfer_mask to unpack
875
* @pio_mask: resulting pio_mask
876
* @mwdma_mask: resulting mwdma_mask
877
* @udma_mask: resulting udma_mask
878
*
879
* Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
880
* Any NULL distination masks will be ignored.
881
*/
882
void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
883
unsigned long *mwdma_mask, unsigned long *udma_mask)
884
{
885
if (pio_mask)
886
*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
887
if (mwdma_mask)
888
*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
889
if (udma_mask)
890
*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
891
}
892
893
static const struct ata_xfer_ent {
894
int shift, bits;
895
u8 base;
896
} ata_xfer_tbl[] = {
897
{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
898
{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
899
{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
900
{ -1, },
901
};
902
903
/**
904
* ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
905
* @xfer_mask: xfer_mask of interest
906
*
907
* Return matching XFER_* value for @xfer_mask. Only the highest
908
* bit of @xfer_mask is considered.
909
*
910
* LOCKING:
911
* None.
912
*
913
* RETURNS:
914
* Matching XFER_* value, 0xff if no match found.
915
*/
916
u8 ata_xfer_mask2mode(unsigned long xfer_mask)
917
{
918
int highbit = fls(xfer_mask) - 1;
919
const struct ata_xfer_ent *ent;
920
921
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
922
if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
923
return ent->base + highbit - ent->shift;
924
return 0xff;
925
}
926
927
/**
928
* ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
929
* @xfer_mode: XFER_* of interest
930
*
931
* Return matching xfer_mask for @xfer_mode.
932
*
933
* LOCKING:
934
* None.
935
*
936
* RETURNS:
937
* Matching xfer_mask, 0 if no match found.
938
*/
939
unsigned long ata_xfer_mode2mask(u8 xfer_mode)
940
{
941
const struct ata_xfer_ent *ent;
942
943
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
944
if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
945
return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
946
& ~((1 << ent->shift) - 1);
947
return 0;
948
}
949
950
/**
951
* ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
952
* @xfer_mode: XFER_* of interest
953
*
954
* Return matching xfer_shift for @xfer_mode.
955
*
956
* LOCKING:
957
* None.
958
*
959
* RETURNS:
960
* Matching xfer_shift, -1 if no match found.
961
*/
962
int ata_xfer_mode2shift(unsigned long xfer_mode)
963
{
964
const struct ata_xfer_ent *ent;
965
966
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
967
if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
968
return ent->shift;
969
return -1;
970
}
971
972
/**
973
* ata_mode_string - convert xfer_mask to string
974
* @xfer_mask: mask of bits supported; only highest bit counts.
975
*
976
* Determine string which represents the highest speed
977
* (highest bit in @modemask).
978
*
979
* LOCKING:
980
* None.
981
*
982
* RETURNS:
983
* Constant C string representing highest speed listed in
984
* @mode_mask, or the constant C string "<n/a>".
985
*/
986
const char *ata_mode_string(unsigned long xfer_mask)
987
{
988
static const char * const xfer_mode_str[] = {
989
"PIO0",
990
"PIO1",
991
"PIO2",
992
"PIO3",
993
"PIO4",
994
"PIO5",
995
"PIO6",
996
"MWDMA0",
997
"MWDMA1",
998
"MWDMA2",
999
"MWDMA3",
1000
"MWDMA4",
1001
"UDMA/16",
1002
"UDMA/25",
1003
"UDMA/33",
1004
"UDMA/44",
1005
"UDMA/66",
1006
"UDMA/100",
1007
"UDMA/133",
1008
"UDMA7",
1009
};
1010
int highbit;
1011
1012
highbit = fls(xfer_mask) - 1;
1013
if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1014
return xfer_mode_str[highbit];
1015
return "<n/a>";
1016
}
1017
1018
const char *sata_spd_string(unsigned int spd)
1019
{
1020
static const char * const spd_str[] = {
1021
"1.5 Gbps",
1022
"3.0 Gbps",
1023
"6.0 Gbps",
1024
};
1025
1026
if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027
return "<unknown>";
1028
return spd_str[spd - 1];
1029
}
1030
1031
/**
1032
* ata_dev_classify - determine device type based on ATA-spec signature
1033
* @tf: ATA taskfile register set for device to be identified
1034
*
1035
* Determine from taskfile register contents whether a device is
1036
* ATA or ATAPI, as per "Signature and persistence" section
1037
* of ATA/PI spec (volume 1, sect 5.14).
1038
*
1039
* LOCKING:
1040
* None.
1041
*
1042
* RETURNS:
1043
* Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1044
* %ATA_DEV_UNKNOWN the event of failure.
1045
*/
1046
unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1047
{
1048
/* Apple's open source Darwin code hints that some devices only
1049
* put a proper signature into the LBA mid/high registers,
1050
* So, we only check those. It's sufficient for uniqueness.
1051
*
1052
* ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053
* signatures for ATA and ATAPI devices attached on SerialATA,
1054
* 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1055
* spec has never mentioned about using different signatures
1056
* for ATA/ATAPI devices. Then, Serial ATA II: Port
1057
* Multiplier specification began to use 0x69/0x96 to identify
1058
* port multpliers and 0x3c/0xc3 to identify SEMB device.
1059
* ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060
* 0x69/0x96 shortly and described them as reserved for
1061
* SerialATA.
1062
*
1063
* We follow the current spec and consider that 0x69/0x96
1064
* identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065
* Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066
* SEMB signature. This is worked around in
1067
* ata_dev_read_id().
1068
*/
1069
if ((tf->lbam == 0) && (tf->lbah == 0)) {
1070
DPRINTK("found ATA device by sig\n");
1071
return ATA_DEV_ATA;
1072
}
1073
1074
if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1075
DPRINTK("found ATAPI device by sig\n");
1076
return ATA_DEV_ATAPI;
1077
}
1078
1079
if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1080
DPRINTK("found PMP device by sig\n");
1081
return ATA_DEV_PMP;
1082
}
1083
1084
if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1085
DPRINTK("found SEMB device by sig (could be ATA device)\n");
1086
return ATA_DEV_SEMB;
1087
}
1088
1089
DPRINTK("unknown device\n");
1090
return ATA_DEV_UNKNOWN;
1091
}
1092
1093
/**
1094
* ata_id_string - Convert IDENTIFY DEVICE page into string
1095
* @id: IDENTIFY DEVICE results we will examine
1096
* @s: string into which data is output
1097
* @ofs: offset into identify device page
1098
* @len: length of string to return. must be an even number.
1099
*
1100
* The strings in the IDENTIFY DEVICE page are broken up into
1101
* 16-bit chunks. Run through the string, and output each
1102
* 8-bit chunk linearly, regardless of platform.
1103
*
1104
* LOCKING:
1105
* caller.
1106
*/
1107
1108
void ata_id_string(const u16 *id, unsigned char *s,
1109
unsigned int ofs, unsigned int len)
1110
{
1111
unsigned int c;
1112
1113
BUG_ON(len & 1);
1114
1115
while (len > 0) {
1116
c = id[ofs] >> 8;
1117
*s = c;
1118
s++;
1119
1120
c = id[ofs] & 0xff;
1121
*s = c;
1122
s++;
1123
1124
ofs++;
1125
len -= 2;
1126
}
1127
}
1128
1129
/**
1130
* ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1131
* @id: IDENTIFY DEVICE results we will examine
1132
* @s: string into which data is output
1133
* @ofs: offset into identify device page
1134
* @len: length of string to return. must be an odd number.
1135
*
1136
* This function is identical to ata_id_string except that it
1137
* trims trailing spaces and terminates the resulting string with
1138
* null. @len must be actual maximum length (even number) + 1.
1139
*
1140
* LOCKING:
1141
* caller.
1142
*/
1143
void ata_id_c_string(const u16 *id, unsigned char *s,
1144
unsigned int ofs, unsigned int len)
1145
{
1146
unsigned char *p;
1147
1148
ata_id_string(id, s, ofs, len - 1);
1149
1150
p = s + strnlen(s, len - 1);
1151
while (p > s && p[-1] == ' ')
1152
p--;
1153
*p = '\0';
1154
}
1155
1156
static u64 ata_id_n_sectors(const u16 *id)
1157
{
1158
if (ata_id_has_lba(id)) {
1159
if (ata_id_has_lba48(id))
1160
return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1161
else
1162
return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1163
} else {
1164
if (ata_id_current_chs_valid(id))
1165
return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1166
id[ATA_ID_CUR_SECTORS];
1167
else
1168
return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1169
id[ATA_ID_SECTORS];
1170
}
1171
}
1172
1173
u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1174
{
1175
u64 sectors = 0;
1176
1177
sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1178
sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1179
sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1180
sectors |= (tf->lbah & 0xff) << 16;
1181
sectors |= (tf->lbam & 0xff) << 8;
1182
sectors |= (tf->lbal & 0xff);
1183
1184
return sectors;
1185
}
1186
1187
u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1188
{
1189
u64 sectors = 0;
1190
1191
sectors |= (tf->device & 0x0f) << 24;
1192
sectors |= (tf->lbah & 0xff) << 16;
1193
sectors |= (tf->lbam & 0xff) << 8;
1194
sectors |= (tf->lbal & 0xff);
1195
1196
return sectors;
1197
}
1198
1199
/**
1200
* ata_read_native_max_address - Read native max address
1201
* @dev: target device
1202
* @max_sectors: out parameter for the result native max address
1203
*
1204
* Perform an LBA48 or LBA28 native size query upon the device in
1205
* question.
1206
*
1207
* RETURNS:
1208
* 0 on success, -EACCES if command is aborted by the drive.
1209
* -EIO on other errors.
1210
*/
1211
static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1212
{
1213
unsigned int err_mask;
1214
struct ata_taskfile tf;
1215
int lba48 = ata_id_has_lba48(dev->id);
1216
1217
ata_tf_init(dev, &tf);
1218
1219
/* always clear all address registers */
1220
tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1221
1222
if (lba48) {
1223
tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1224
tf.flags |= ATA_TFLAG_LBA48;
1225
} else
1226
tf.command = ATA_CMD_READ_NATIVE_MAX;
1227
1228
tf.protocol |= ATA_PROT_NODATA;
1229
tf.device |= ATA_LBA;
1230
1231
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1232
if (err_mask) {
1233
ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1234
"max address (err_mask=0x%x)\n", err_mask);
1235
if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1236
return -EACCES;
1237
return -EIO;
1238
}
1239
1240
if (lba48)
1241
*max_sectors = ata_tf_to_lba48(&tf) + 1;
1242
else
1243
*max_sectors = ata_tf_to_lba(&tf) + 1;
1244
if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1245
(*max_sectors)--;
1246
return 0;
1247
}
1248
1249
/**
1250
* ata_set_max_sectors - Set max sectors
1251
* @dev: target device
1252
* @new_sectors: new max sectors value to set for the device
1253
*
1254
* Set max sectors of @dev to @new_sectors.
1255
*
1256
* RETURNS:
1257
* 0 on success, -EACCES if command is aborted or denied (due to
1258
* previous non-volatile SET_MAX) by the drive. -EIO on other
1259
* errors.
1260
*/
1261
static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1262
{
1263
unsigned int err_mask;
1264
struct ata_taskfile tf;
1265
int lba48 = ata_id_has_lba48(dev->id);
1266
1267
new_sectors--;
1268
1269
ata_tf_init(dev, &tf);
1270
1271
tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1272
1273
if (lba48) {
1274
tf.command = ATA_CMD_SET_MAX_EXT;
1275
tf.flags |= ATA_TFLAG_LBA48;
1276
1277
tf.hob_lbal = (new_sectors >> 24) & 0xff;
1278
tf.hob_lbam = (new_sectors >> 32) & 0xff;
1279
tf.hob_lbah = (new_sectors >> 40) & 0xff;
1280
} else {
1281
tf.command = ATA_CMD_SET_MAX;
1282
1283
tf.device |= (new_sectors >> 24) & 0xf;
1284
}
1285
1286
tf.protocol |= ATA_PROT_NODATA;
1287
tf.device |= ATA_LBA;
1288
1289
tf.lbal = (new_sectors >> 0) & 0xff;
1290
tf.lbam = (new_sectors >> 8) & 0xff;
1291
tf.lbah = (new_sectors >> 16) & 0xff;
1292
1293
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1294
if (err_mask) {
1295
ata_dev_printk(dev, KERN_WARNING, "failed to set "
1296
"max address (err_mask=0x%x)\n", err_mask);
1297
if (err_mask == AC_ERR_DEV &&
1298
(tf.feature & (ATA_ABORTED | ATA_IDNF)))
1299
return -EACCES;
1300
return -EIO;
1301
}
1302
1303
return 0;
1304
}
1305
1306
/**
1307
* ata_hpa_resize - Resize a device with an HPA set
1308
* @dev: Device to resize
1309
*
1310
* Read the size of an LBA28 or LBA48 disk with HPA features and resize
1311
* it if required to the full size of the media. The caller must check
1312
* the drive has the HPA feature set enabled.
1313
*
1314
* RETURNS:
1315
* 0 on success, -errno on failure.
1316
*/
1317
static int ata_hpa_resize(struct ata_device *dev)
1318
{
1319
struct ata_eh_context *ehc = &dev->link->eh_context;
1320
int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1321
bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1322
u64 sectors = ata_id_n_sectors(dev->id);
1323
u64 native_sectors;
1324
int rc;
1325
1326
/* do we need to do it? */
1327
if (dev->class != ATA_DEV_ATA ||
1328
!ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1329
(dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1330
return 0;
1331
1332
/* read native max address */
1333
rc = ata_read_native_max_address(dev, &native_sectors);
1334
if (rc) {
1335
/* If device aborted the command or HPA isn't going to
1336
* be unlocked, skip HPA resizing.
1337
*/
1338
if (rc == -EACCES || !unlock_hpa) {
1339
ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1340
"broken, skipping HPA handling\n");
1341
dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1342
1343
/* we can continue if device aborted the command */
1344
if (rc == -EACCES)
1345
rc = 0;
1346
}
1347
1348
return rc;
1349
}
1350
dev->n_native_sectors = native_sectors;
1351
1352
/* nothing to do? */
1353
if (native_sectors <= sectors || !unlock_hpa) {
1354
if (!print_info || native_sectors == sectors)
1355
return 0;
1356
1357
if (native_sectors > sectors)
1358
ata_dev_printk(dev, KERN_INFO,
1359
"HPA detected: current %llu, native %llu\n",
1360
(unsigned long long)sectors,
1361
(unsigned long long)native_sectors);
1362
else if (native_sectors < sectors)
1363
ata_dev_printk(dev, KERN_WARNING,
1364
"native sectors (%llu) is smaller than "
1365
"sectors (%llu)\n",
1366
(unsigned long long)native_sectors,
1367
(unsigned long long)sectors);
1368
return 0;
1369
}
1370
1371
/* let's unlock HPA */
1372
rc = ata_set_max_sectors(dev, native_sectors);
1373
if (rc == -EACCES) {
1374
/* if device aborted the command, skip HPA resizing */
1375
ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1376
"(%llu -> %llu), skipping HPA handling\n",
1377
(unsigned long long)sectors,
1378
(unsigned long long)native_sectors);
1379
dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1380
return 0;
1381
} else if (rc)
1382
return rc;
1383
1384
/* re-read IDENTIFY data */
1385
rc = ata_dev_reread_id(dev, 0);
1386
if (rc) {
1387
ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1388
"data after HPA resizing\n");
1389
return rc;
1390
}
1391
1392
if (print_info) {
1393
u64 new_sectors = ata_id_n_sectors(dev->id);
1394
ata_dev_printk(dev, KERN_INFO,
1395
"HPA unlocked: %llu -> %llu, native %llu\n",
1396
(unsigned long long)sectors,
1397
(unsigned long long)new_sectors,
1398
(unsigned long long)native_sectors);
1399
}
1400
1401
return 0;
1402
}
1403
1404
/**
1405
* ata_dump_id - IDENTIFY DEVICE info debugging output
1406
* @id: IDENTIFY DEVICE page to dump
1407
*
1408
* Dump selected 16-bit words from the given IDENTIFY DEVICE
1409
* page.
1410
*
1411
* LOCKING:
1412
* caller.
1413
*/
1414
1415
static inline void ata_dump_id(const u16 *id)
1416
{
1417
DPRINTK("49==0x%04x "
1418
"53==0x%04x "
1419
"63==0x%04x "
1420
"64==0x%04x "
1421
"75==0x%04x \n",
1422
id[49],
1423
id[53],
1424
id[63],
1425
id[64],
1426
id[75]);
1427
DPRINTK("80==0x%04x "
1428
"81==0x%04x "
1429
"82==0x%04x "
1430
"83==0x%04x "
1431
"84==0x%04x \n",
1432
id[80],
1433
id[81],
1434
id[82],
1435
id[83],
1436
id[84]);
1437
DPRINTK("88==0x%04x "
1438
"93==0x%04x\n",
1439
id[88],
1440
id[93]);
1441
}
1442
1443
/**
1444
* ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1445
* @id: IDENTIFY data to compute xfer mask from
1446
*
1447
* Compute the xfermask for this device. This is not as trivial
1448
* as it seems if we must consider early devices correctly.
1449
*
1450
* FIXME: pre IDE drive timing (do we care ?).
1451
*
1452
* LOCKING:
1453
* None.
1454
*
1455
* RETURNS:
1456
* Computed xfermask
1457
*/
1458
unsigned long ata_id_xfermask(const u16 *id)
1459
{
1460
unsigned long pio_mask, mwdma_mask, udma_mask;
1461
1462
/* Usual case. Word 53 indicates word 64 is valid */
1463
if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1464
pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1465
pio_mask <<= 3;
1466
pio_mask |= 0x7;
1467
} else {
1468
/* If word 64 isn't valid then Word 51 high byte holds
1469
* the PIO timing number for the maximum. Turn it into
1470
* a mask.
1471
*/
1472
u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1473
if (mode < 5) /* Valid PIO range */
1474
pio_mask = (2 << mode) - 1;
1475
else
1476
pio_mask = 1;
1477
1478
/* But wait.. there's more. Design your standards by
1479
* committee and you too can get a free iordy field to
1480
* process. However its the speeds not the modes that
1481
* are supported... Note drivers using the timing API
1482
* will get this right anyway
1483
*/
1484
}
1485
1486
mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1487
1488
if (ata_id_is_cfa(id)) {
1489
/*
1490
* Process compact flash extended modes
1491
*/
1492
int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1493
int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1494
1495
if (pio)
1496
pio_mask |= (1 << 5);
1497
if (pio > 1)
1498
pio_mask |= (1 << 6);
1499
if (dma)
1500
mwdma_mask |= (1 << 3);
1501
if (dma > 1)
1502
mwdma_mask |= (1 << 4);
1503
}
1504
1505
udma_mask = 0;
1506
if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1507
udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1508
1509
return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1510
}
1511
1512
static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1513
{
1514
struct completion *waiting = qc->private_data;
1515
1516
complete(waiting);
1517
}
1518
1519
/**
1520
* ata_exec_internal_sg - execute libata internal command
1521
* @dev: Device to which the command is sent
1522
* @tf: Taskfile registers for the command and the result
1523
* @cdb: CDB for packet command
1524
* @dma_dir: Data tranfer direction of the command
1525
* @sgl: sg list for the data buffer of the command
1526
* @n_elem: Number of sg entries
1527
* @timeout: Timeout in msecs (0 for default)
1528
*
1529
* Executes libata internal command with timeout. @tf contains
1530
* command on entry and result on return. Timeout and error
1531
* conditions are reported via return value. No recovery action
1532
* is taken after a command times out. It's caller's duty to
1533
* clean up after timeout.
1534
*
1535
* LOCKING:
1536
* None. Should be called with kernel context, might sleep.
1537
*
1538
* RETURNS:
1539
* Zero on success, AC_ERR_* mask on failure
1540
*/
1541
unsigned ata_exec_internal_sg(struct ata_device *dev,
1542
struct ata_taskfile *tf, const u8 *cdb,
1543
int dma_dir, struct scatterlist *sgl,
1544
unsigned int n_elem, unsigned long timeout)
1545
{
1546
struct ata_link *link = dev->link;
1547
struct ata_port *ap = link->ap;
1548
u8 command = tf->command;
1549
int auto_timeout = 0;
1550
struct ata_queued_cmd *qc;
1551
unsigned int tag, preempted_tag;
1552
u32 preempted_sactive, preempted_qc_active;
1553
int preempted_nr_active_links;
1554
DECLARE_COMPLETION_ONSTACK(wait);
1555
unsigned long flags;
1556
unsigned int err_mask;
1557
int rc;
1558
1559
spin_lock_irqsave(ap->lock, flags);
1560
1561
/* no internal command while frozen */
1562
if (ap->pflags & ATA_PFLAG_FROZEN) {
1563
spin_unlock_irqrestore(ap->lock, flags);
1564
return AC_ERR_SYSTEM;
1565
}
1566
1567
/* initialize internal qc */
1568
1569
/* XXX: Tag 0 is used for drivers with legacy EH as some
1570
* drivers choke if any other tag is given. This breaks
1571
* ata_tag_internal() test for those drivers. Don't use new
1572
* EH stuff without converting to it.
1573
*/
1574
if (ap->ops->error_handler)
1575
tag = ATA_TAG_INTERNAL;
1576
else
1577
tag = 0;
1578
1579
if (test_and_set_bit(tag, &ap->qc_allocated))
1580
BUG();
1581
qc = __ata_qc_from_tag(ap, tag);
1582
1583
qc->tag = tag;
1584
qc->scsicmd = NULL;
1585
qc->ap = ap;
1586
qc->dev = dev;
1587
ata_qc_reinit(qc);
1588
1589
preempted_tag = link->active_tag;
1590
preempted_sactive = link->sactive;
1591
preempted_qc_active = ap->qc_active;
1592
preempted_nr_active_links = ap->nr_active_links;
1593
link->active_tag = ATA_TAG_POISON;
1594
link->sactive = 0;
1595
ap->qc_active = 0;
1596
ap->nr_active_links = 0;
1597
1598
/* prepare & issue qc */
1599
qc->tf = *tf;
1600
if (cdb)
1601
memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1602
qc->flags |= ATA_QCFLAG_RESULT_TF;
1603
qc->dma_dir = dma_dir;
1604
if (dma_dir != DMA_NONE) {
1605
unsigned int i, buflen = 0;
1606
struct scatterlist *sg;
1607
1608
for_each_sg(sgl, sg, n_elem, i)
1609
buflen += sg->length;
1610
1611
ata_sg_init(qc, sgl, n_elem);
1612
qc->nbytes = buflen;
1613
}
1614
1615
qc->private_data = &wait;
1616
qc->complete_fn = ata_qc_complete_internal;
1617
1618
ata_qc_issue(qc);
1619
1620
spin_unlock_irqrestore(ap->lock, flags);
1621
1622
if (!timeout) {
1623
if (ata_probe_timeout)
1624
timeout = ata_probe_timeout * 1000;
1625
else {
1626
timeout = ata_internal_cmd_timeout(dev, command);
1627
auto_timeout = 1;
1628
}
1629
}
1630
1631
if (ap->ops->error_handler)
1632
ata_eh_release(ap);
1633
1634
rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1635
1636
if (ap->ops->error_handler)
1637
ata_eh_acquire(ap);
1638
1639
ata_sff_flush_pio_task(ap);
1640
1641
if (!rc) {
1642
spin_lock_irqsave(ap->lock, flags);
1643
1644
/* We're racing with irq here. If we lose, the
1645
* following test prevents us from completing the qc
1646
* twice. If we win, the port is frozen and will be
1647
* cleaned up by ->post_internal_cmd().
1648
*/
1649
if (qc->flags & ATA_QCFLAG_ACTIVE) {
1650
qc->err_mask |= AC_ERR_TIMEOUT;
1651
1652
if (ap->ops->error_handler)
1653
ata_port_freeze(ap);
1654
else
1655
ata_qc_complete(qc);
1656
1657
if (ata_msg_warn(ap))
1658
ata_dev_printk(dev, KERN_WARNING,
1659
"qc timeout (cmd 0x%x)\n", command);
1660
}
1661
1662
spin_unlock_irqrestore(ap->lock, flags);
1663
}
1664
1665
/* do post_internal_cmd */
1666
if (ap->ops->post_internal_cmd)
1667
ap->ops->post_internal_cmd(qc);
1668
1669
/* perform minimal error analysis */
1670
if (qc->flags & ATA_QCFLAG_FAILED) {
1671
if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1672
qc->err_mask |= AC_ERR_DEV;
1673
1674
if (!qc->err_mask)
1675
qc->err_mask |= AC_ERR_OTHER;
1676
1677
if (qc->err_mask & ~AC_ERR_OTHER)
1678
qc->err_mask &= ~AC_ERR_OTHER;
1679
}
1680
1681
/* finish up */
1682
spin_lock_irqsave(ap->lock, flags);
1683
1684
*tf = qc->result_tf;
1685
err_mask = qc->err_mask;
1686
1687
ata_qc_free(qc);
1688
link->active_tag = preempted_tag;
1689
link->sactive = preempted_sactive;
1690
ap->qc_active = preempted_qc_active;
1691
ap->nr_active_links = preempted_nr_active_links;
1692
1693
spin_unlock_irqrestore(ap->lock, flags);
1694
1695
if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1696
ata_internal_cmd_timed_out(dev, command);
1697
1698
return err_mask;
1699
}
1700
1701
/**
1702
* ata_exec_internal - execute libata internal command
1703
* @dev: Device to which the command is sent
1704
* @tf: Taskfile registers for the command and the result
1705
* @cdb: CDB for packet command
1706
* @dma_dir: Data tranfer direction of the command
1707
* @buf: Data buffer of the command
1708
* @buflen: Length of data buffer
1709
* @timeout: Timeout in msecs (0 for default)
1710
*
1711
* Wrapper around ata_exec_internal_sg() which takes simple
1712
* buffer instead of sg list.
1713
*
1714
* LOCKING:
1715
* None. Should be called with kernel context, might sleep.
1716
*
1717
* RETURNS:
1718
* Zero on success, AC_ERR_* mask on failure
1719
*/
1720
unsigned ata_exec_internal(struct ata_device *dev,
1721
struct ata_taskfile *tf, const u8 *cdb,
1722
int dma_dir, void *buf, unsigned int buflen,
1723
unsigned long timeout)
1724
{
1725
struct scatterlist *psg = NULL, sg;
1726
unsigned int n_elem = 0;
1727
1728
if (dma_dir != DMA_NONE) {
1729
WARN_ON(!buf);
1730
sg_init_one(&sg, buf, buflen);
1731
psg = &sg;
1732
n_elem++;
1733
}
1734
1735
return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1736
timeout);
1737
}
1738
1739
/**
1740
* ata_do_simple_cmd - execute simple internal command
1741
* @dev: Device to which the command is sent
1742
* @cmd: Opcode to execute
1743
*
1744
* Execute a 'simple' command, that only consists of the opcode
1745
* 'cmd' itself, without filling any other registers
1746
*
1747
* LOCKING:
1748
* Kernel thread context (may sleep).
1749
*
1750
* RETURNS:
1751
* Zero on success, AC_ERR_* mask on failure
1752
*/
1753
unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1754
{
1755
struct ata_taskfile tf;
1756
1757
ata_tf_init(dev, &tf);
1758
1759
tf.command = cmd;
1760
tf.flags |= ATA_TFLAG_DEVICE;
1761
tf.protocol = ATA_PROT_NODATA;
1762
1763
return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1764
}
1765
1766
/**
1767
* ata_pio_need_iordy - check if iordy needed
1768
* @adev: ATA device
1769
*
1770
* Check if the current speed of the device requires IORDY. Used
1771
* by various controllers for chip configuration.
1772
*/
1773
unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1774
{
1775
/* Don't set IORDY if we're preparing for reset. IORDY may
1776
* lead to controller lock up on certain controllers if the
1777
* port is not occupied. See bko#11703 for details.
1778
*/
1779
if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1780
return 0;
1781
/* Controller doesn't support IORDY. Probably a pointless
1782
* check as the caller should know this.
1783
*/
1784
if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1785
return 0;
1786
/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1787
if (ata_id_is_cfa(adev->id)
1788
&& (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1789
return 0;
1790
/* PIO3 and higher it is mandatory */
1791
if (adev->pio_mode > XFER_PIO_2)
1792
return 1;
1793
/* We turn it on when possible */
1794
if (ata_id_has_iordy(adev->id))
1795
return 1;
1796
return 0;
1797
}
1798
1799
/**
1800
* ata_pio_mask_no_iordy - Return the non IORDY mask
1801
* @adev: ATA device
1802
*
1803
* Compute the highest mode possible if we are not using iordy. Return
1804
* -1 if no iordy mode is available.
1805
*/
1806
static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1807
{
1808
/* If we have no drive specific rule, then PIO 2 is non IORDY */
1809
if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1810
u16 pio = adev->id[ATA_ID_EIDE_PIO];
1811
/* Is the speed faster than the drive allows non IORDY ? */
1812
if (pio) {
1813
/* This is cycle times not frequency - watch the logic! */
1814
if (pio > 240) /* PIO2 is 240nS per cycle */
1815
return 3 << ATA_SHIFT_PIO;
1816
return 7 << ATA_SHIFT_PIO;
1817
}
1818
}
1819
return 3 << ATA_SHIFT_PIO;
1820
}
1821
1822
/**
1823
* ata_do_dev_read_id - default ID read method
1824
* @dev: device
1825
* @tf: proposed taskfile
1826
* @id: data buffer
1827
*
1828
* Issue the identify taskfile and hand back the buffer containing
1829
* identify data. For some RAID controllers and for pre ATA devices
1830
* this function is wrapped or replaced by the driver
1831
*/
1832
unsigned int ata_do_dev_read_id(struct ata_device *dev,
1833
struct ata_taskfile *tf, u16 *id)
1834
{
1835
return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1836
id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1837
}
1838
1839
/**
1840
* ata_dev_read_id - Read ID data from the specified device
1841
* @dev: target device
1842
* @p_class: pointer to class of the target device (may be changed)
1843
* @flags: ATA_READID_* flags
1844
* @id: buffer to read IDENTIFY data into
1845
*
1846
* Read ID data from the specified device. ATA_CMD_ID_ATA is
1847
* performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1848
* devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1849
* for pre-ATA4 drives.
1850
*
1851
* FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1852
* now we abort if we hit that case.
1853
*
1854
* LOCKING:
1855
* Kernel thread context (may sleep)
1856
*
1857
* RETURNS:
1858
* 0 on success, -errno otherwise.
1859
*/
1860
int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1861
unsigned int flags, u16 *id)
1862
{
1863
struct ata_port *ap = dev->link->ap;
1864
unsigned int class = *p_class;
1865
struct ata_taskfile tf;
1866
unsigned int err_mask = 0;
1867
const char *reason;
1868
bool is_semb = class == ATA_DEV_SEMB;
1869
int may_fallback = 1, tried_spinup = 0;
1870
int rc;
1871
1872
if (ata_msg_ctl(ap))
1873
ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1874
1875
retry:
1876
ata_tf_init(dev, &tf);
1877
1878
switch (class) {
1879
case ATA_DEV_SEMB:
1880
class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1881
case ATA_DEV_ATA:
1882
tf.command = ATA_CMD_ID_ATA;
1883
break;
1884
case ATA_DEV_ATAPI:
1885
tf.command = ATA_CMD_ID_ATAPI;
1886
break;
1887
default:
1888
rc = -ENODEV;
1889
reason = "unsupported class";
1890
goto err_out;
1891
}
1892
1893
tf.protocol = ATA_PROT_PIO;
1894
1895
/* Some devices choke if TF registers contain garbage. Make
1896
* sure those are properly initialized.
1897
*/
1898
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1899
1900
/* Device presence detection is unreliable on some
1901
* controllers. Always poll IDENTIFY if available.
1902
*/
1903
tf.flags |= ATA_TFLAG_POLLING;
1904
1905
if (ap->ops->read_id)
1906
err_mask = ap->ops->read_id(dev, &tf, id);
1907
else
1908
err_mask = ata_do_dev_read_id(dev, &tf, id);
1909
1910
if (err_mask) {
1911
if (err_mask & AC_ERR_NODEV_HINT) {
1912
ata_dev_printk(dev, KERN_DEBUG,
1913
"NODEV after polling detection\n");
1914
return -ENOENT;
1915
}
1916
1917
if (is_semb) {
1918
ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
1919
"device w/ SEMB sig, disabled\n");
1920
/* SEMB is not supported yet */
1921
*p_class = ATA_DEV_SEMB_UNSUP;
1922
return 0;
1923
}
1924
1925
if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1926
/* Device or controller might have reported
1927
* the wrong device class. Give a shot at the
1928
* other IDENTIFY if the current one is
1929
* aborted by the device.
1930
*/
1931
if (may_fallback) {
1932
may_fallback = 0;
1933
1934
if (class == ATA_DEV_ATA)
1935
class = ATA_DEV_ATAPI;
1936
else
1937
class = ATA_DEV_ATA;
1938
goto retry;
1939
}
1940
1941
/* Control reaches here iff the device aborted
1942
* both flavors of IDENTIFYs which happens
1943
* sometimes with phantom devices.
1944
*/
1945
ata_dev_printk(dev, KERN_DEBUG,
1946
"both IDENTIFYs aborted, assuming NODEV\n");
1947
return -ENOENT;
1948
}
1949
1950
rc = -EIO;
1951
reason = "I/O error";
1952
goto err_out;
1953
}
1954
1955
if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1956
ata_dev_printk(dev, KERN_DEBUG, "dumping IDENTIFY data, "
1957
"class=%d may_fallback=%d tried_spinup=%d\n",
1958
class, may_fallback, tried_spinup);
1959
print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1960
16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1961
}
1962
1963
/* Falling back doesn't make sense if ID data was read
1964
* successfully at least once.
1965
*/
1966
may_fallback = 0;
1967
1968
swap_buf_le16(id, ATA_ID_WORDS);
1969
1970
/* sanity check */
1971
rc = -EINVAL;
1972
reason = "device reports invalid type";
1973
1974
if (class == ATA_DEV_ATA) {
1975
if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1976
goto err_out;
1977
} else {
1978
if (ata_id_is_ata(id))
1979
goto err_out;
1980
}
1981
1982
if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1983
tried_spinup = 1;
1984
/*
1985
* Drive powered-up in standby mode, and requires a specific
1986
* SET_FEATURES spin-up subcommand before it will accept
1987
* anything other than the original IDENTIFY command.
1988
*/
1989
err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1990
if (err_mask && id[2] != 0x738c) {
1991
rc = -EIO;
1992
reason = "SPINUP failed";
1993
goto err_out;
1994
}
1995
/*
1996
* If the drive initially returned incomplete IDENTIFY info,
1997
* we now must reissue the IDENTIFY command.
1998
*/
1999
if (id[2] == 0x37c8)
2000
goto retry;
2001
}
2002
2003
if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2004
/*
2005
* The exact sequence expected by certain pre-ATA4 drives is:
2006
* SRST RESET
2007
* IDENTIFY (optional in early ATA)
2008
* INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2009
* anything else..
2010
* Some drives were very specific about that exact sequence.
2011
*
2012
* Note that ATA4 says lba is mandatory so the second check
2013
* should never trigger.
2014
*/
2015
if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2016
err_mask = ata_dev_init_params(dev, id[3], id[6]);
2017
if (err_mask) {
2018
rc = -EIO;
2019
reason = "INIT_DEV_PARAMS failed";
2020
goto err_out;
2021
}
2022
2023
/* current CHS translation info (id[53-58]) might be
2024
* changed. reread the identify device info.
2025
*/
2026
flags &= ~ATA_READID_POSTRESET;
2027
goto retry;
2028
}
2029
}
2030
2031
*p_class = class;
2032
2033
return 0;
2034
2035
err_out:
2036
if (ata_msg_warn(ap))
2037
ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2038
"(%s, err_mask=0x%x)\n", reason, err_mask);
2039
return rc;
2040
}
2041
2042
static int ata_do_link_spd_horkage(struct ata_device *dev)
2043
{
2044
struct ata_link *plink = ata_dev_phys_link(dev);
2045
u32 target, target_limit;
2046
2047
if (!sata_scr_valid(plink))
2048
return 0;
2049
2050
if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2051
target = 1;
2052
else
2053
return 0;
2054
2055
target_limit = (1 << target) - 1;
2056
2057
/* if already on stricter limit, no need to push further */
2058
if (plink->sata_spd_limit <= target_limit)
2059
return 0;
2060
2061
plink->sata_spd_limit = target_limit;
2062
2063
/* Request another EH round by returning -EAGAIN if link is
2064
* going faster than the target speed. Forward progress is
2065
* guaranteed by setting sata_spd_limit to target_limit above.
2066
*/
2067
if (plink->sata_spd > target) {
2068
ata_dev_printk(dev, KERN_INFO,
2069
"applying link speed limit horkage to %s\n",
2070
sata_spd_string(target));
2071
return -EAGAIN;
2072
}
2073
return 0;
2074
}
2075
2076
static inline u8 ata_dev_knobble(struct ata_device *dev)
2077
{
2078
struct ata_port *ap = dev->link->ap;
2079
2080
if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2081
return 0;
2082
2083
return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2084
}
2085
2086
static int ata_dev_config_ncq(struct ata_device *dev,
2087
char *desc, size_t desc_sz)
2088
{
2089
struct ata_port *ap = dev->link->ap;
2090
int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2091
unsigned int err_mask;
2092
char *aa_desc = "";
2093
2094
if (!ata_id_has_ncq(dev->id)) {
2095
desc[0] = '\0';
2096
return 0;
2097
}
2098
if (dev->horkage & ATA_HORKAGE_NONCQ) {
2099
snprintf(desc, desc_sz, "NCQ (not used)");
2100
return 0;
2101
}
2102
if (ap->flags & ATA_FLAG_NCQ) {
2103
hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2104
dev->flags |= ATA_DFLAG_NCQ;
2105
}
2106
2107
if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2108
(ap->flags & ATA_FLAG_FPDMA_AA) &&
2109
ata_id_has_fpdma_aa(dev->id)) {
2110
err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2111
SATA_FPDMA_AA);
2112
if (err_mask) {
2113
ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
2114
"(error_mask=0x%x)\n", err_mask);
2115
if (err_mask != AC_ERR_DEV) {
2116
dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2117
return -EIO;
2118
}
2119
} else
2120
aa_desc = ", AA";
2121
}
2122
2123
if (hdepth >= ddepth)
2124
snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2125
else
2126
snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2127
ddepth, aa_desc);
2128
return 0;
2129
}
2130
2131
/**
2132
* ata_dev_configure - Configure the specified ATA/ATAPI device
2133
* @dev: Target device to configure
2134
*
2135
* Configure @dev according to @dev->id. Generic and low-level
2136
* driver specific fixups are also applied.
2137
*
2138
* LOCKING:
2139
* Kernel thread context (may sleep)
2140
*
2141
* RETURNS:
2142
* 0 on success, -errno otherwise
2143
*/
2144
int ata_dev_configure(struct ata_device *dev)
2145
{
2146
struct ata_port *ap = dev->link->ap;
2147
struct ata_eh_context *ehc = &dev->link->eh_context;
2148
int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2149
const u16 *id = dev->id;
2150
unsigned long xfer_mask;
2151
char revbuf[7]; /* XYZ-99\0 */
2152
char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2153
char modelbuf[ATA_ID_PROD_LEN+1];
2154
int rc;
2155
2156
if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2157
ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2158
__func__);
2159
return 0;
2160
}
2161
2162
if (ata_msg_probe(ap))
2163
ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2164
2165
/* set horkage */
2166
dev->horkage |= ata_dev_blacklisted(dev);
2167
ata_force_horkage(dev);
2168
2169
if (dev->horkage & ATA_HORKAGE_DISABLE) {
2170
ata_dev_printk(dev, KERN_INFO,
2171
"unsupported device, disabling\n");
2172
ata_dev_disable(dev);
2173
return 0;
2174
}
2175
2176
if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2177
dev->class == ATA_DEV_ATAPI) {
2178
ata_dev_printk(dev, KERN_WARNING,
2179
"WARNING: ATAPI is %s, device ignored.\n",
2180
atapi_enabled ? "not supported with this driver"
2181
: "disabled");
2182
ata_dev_disable(dev);
2183
return 0;
2184
}
2185
2186
rc = ata_do_link_spd_horkage(dev);
2187
if (rc)
2188
return rc;
2189
2190
/* let ACPI work its magic */
2191
rc = ata_acpi_on_devcfg(dev);
2192
if (rc)
2193
return rc;
2194
2195
/* massage HPA, do it early as it might change IDENTIFY data */
2196
rc = ata_hpa_resize(dev);
2197
if (rc)
2198
return rc;
2199
2200
/* print device capabilities */
2201
if (ata_msg_probe(ap))
2202
ata_dev_printk(dev, KERN_DEBUG,
2203
"%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2204
"85:%04x 86:%04x 87:%04x 88:%04x\n",
2205
__func__,
2206
id[49], id[82], id[83], id[84],
2207
id[85], id[86], id[87], id[88]);
2208
2209
/* initialize to-be-configured parameters */
2210
dev->flags &= ~ATA_DFLAG_CFG_MASK;
2211
dev->max_sectors = 0;
2212
dev->cdb_len = 0;
2213
dev->n_sectors = 0;
2214
dev->cylinders = 0;
2215
dev->heads = 0;
2216
dev->sectors = 0;
2217
dev->multi_count = 0;
2218
2219
/*
2220
* common ATA, ATAPI feature tests
2221
*/
2222
2223
/* find max transfer mode; for printk only */
2224
xfer_mask = ata_id_xfermask(id);
2225
2226
if (ata_msg_probe(ap))
2227
ata_dump_id(id);
2228
2229
/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2230
ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2231
sizeof(fwrevbuf));
2232
2233
ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2234
sizeof(modelbuf));
2235
2236
/* ATA-specific feature tests */
2237
if (dev->class == ATA_DEV_ATA) {
2238
if (ata_id_is_cfa(id)) {
2239
/* CPRM may make this media unusable */
2240
if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2241
ata_dev_printk(dev, KERN_WARNING,
2242
"supports DRM functions and may "
2243
"not be fully accessible.\n");
2244
snprintf(revbuf, 7, "CFA");
2245
} else {
2246
snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2247
/* Warn the user if the device has TPM extensions */
2248
if (ata_id_has_tpm(id))
2249
ata_dev_printk(dev, KERN_WARNING,
2250
"supports DRM functions and may "
2251
"not be fully accessible.\n");
2252
}
2253
2254
dev->n_sectors = ata_id_n_sectors(id);
2255
2256
/* get current R/W Multiple count setting */
2257
if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2258
unsigned int max = dev->id[47] & 0xff;
2259
unsigned int cnt = dev->id[59] & 0xff;
2260
/* only recognize/allow powers of two here */
2261
if (is_power_of_2(max) && is_power_of_2(cnt))
2262
if (cnt <= max)
2263
dev->multi_count = cnt;
2264
}
2265
2266
if (ata_id_has_lba(id)) {
2267
const char *lba_desc;
2268
char ncq_desc[24];
2269
2270
lba_desc = "LBA";
2271
dev->flags |= ATA_DFLAG_LBA;
2272
if (ata_id_has_lba48(id)) {
2273
dev->flags |= ATA_DFLAG_LBA48;
2274
lba_desc = "LBA48";
2275
2276
if (dev->n_sectors >= (1UL << 28) &&
2277
ata_id_has_flush_ext(id))
2278
dev->flags |= ATA_DFLAG_FLUSH_EXT;
2279
}
2280
2281
/* config NCQ */
2282
rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2283
if (rc)
2284
return rc;
2285
2286
/* print device info to dmesg */
2287
if (ata_msg_drv(ap) && print_info) {
2288
ata_dev_printk(dev, KERN_INFO,
2289
"%s: %s, %s, max %s\n",
2290
revbuf, modelbuf, fwrevbuf,
2291
ata_mode_string(xfer_mask));
2292
ata_dev_printk(dev, KERN_INFO,
2293
"%Lu sectors, multi %u: %s %s\n",
2294
(unsigned long long)dev->n_sectors,
2295
dev->multi_count, lba_desc, ncq_desc);
2296
}
2297
} else {
2298
/* CHS */
2299
2300
/* Default translation */
2301
dev->cylinders = id[1];
2302
dev->heads = id[3];
2303
dev->sectors = id[6];
2304
2305
if (ata_id_current_chs_valid(id)) {
2306
/* Current CHS translation is valid. */
2307
dev->cylinders = id[54];
2308
dev->heads = id[55];
2309
dev->sectors = id[56];
2310
}
2311
2312
/* print device info to dmesg */
2313
if (ata_msg_drv(ap) && print_info) {
2314
ata_dev_printk(dev, KERN_INFO,
2315
"%s: %s, %s, max %s\n",
2316
revbuf, modelbuf, fwrevbuf,
2317
ata_mode_string(xfer_mask));
2318
ata_dev_printk(dev, KERN_INFO,
2319
"%Lu sectors, multi %u, CHS %u/%u/%u\n",
2320
(unsigned long long)dev->n_sectors,
2321
dev->multi_count, dev->cylinders,
2322
dev->heads, dev->sectors);
2323
}
2324
}
2325
2326
dev->cdb_len = 16;
2327
}
2328
2329
/* ATAPI-specific feature tests */
2330
else if (dev->class == ATA_DEV_ATAPI) {
2331
const char *cdb_intr_string = "";
2332
const char *atapi_an_string = "";
2333
const char *dma_dir_string = "";
2334
u32 sntf;
2335
2336
rc = atapi_cdb_len(id);
2337
if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2338
if (ata_msg_warn(ap))
2339
ata_dev_printk(dev, KERN_WARNING,
2340
"unsupported CDB len\n");
2341
rc = -EINVAL;
2342
goto err_out_nosup;
2343
}
2344
dev->cdb_len = (unsigned int) rc;
2345
2346
/* Enable ATAPI AN if both the host and device have
2347
* the support. If PMP is attached, SNTF is required
2348
* to enable ATAPI AN to discern between PHY status
2349
* changed notifications and ATAPI ANs.
2350
*/
2351
if (atapi_an &&
2352
(ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2353
(!sata_pmp_attached(ap) ||
2354
sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2355
unsigned int err_mask;
2356
2357
/* issue SET feature command to turn this on */
2358
err_mask = ata_dev_set_feature(dev,
2359
SETFEATURES_SATA_ENABLE, SATA_AN);
2360
if (err_mask)
2361
ata_dev_printk(dev, KERN_ERR,
2362
"failed to enable ATAPI AN "
2363
"(err_mask=0x%x)\n", err_mask);
2364
else {
2365
dev->flags |= ATA_DFLAG_AN;
2366
atapi_an_string = ", ATAPI AN";
2367
}
2368
}
2369
2370
if (ata_id_cdb_intr(dev->id)) {
2371
dev->flags |= ATA_DFLAG_CDB_INTR;
2372
cdb_intr_string = ", CDB intr";
2373
}
2374
2375
if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2376
dev->flags |= ATA_DFLAG_DMADIR;
2377
dma_dir_string = ", DMADIR";
2378
}
2379
2380
/* print device info to dmesg */
2381
if (ata_msg_drv(ap) && print_info)
2382
ata_dev_printk(dev, KERN_INFO,
2383
"ATAPI: %s, %s, max %s%s%s%s\n",
2384
modelbuf, fwrevbuf,
2385
ata_mode_string(xfer_mask),
2386
cdb_intr_string, atapi_an_string,
2387
dma_dir_string);
2388
}
2389
2390
/* determine max_sectors */
2391
dev->max_sectors = ATA_MAX_SECTORS;
2392
if (dev->flags & ATA_DFLAG_LBA48)
2393
dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2394
2395
/* Limit PATA drive on SATA cable bridge transfers to udma5,
2396
200 sectors */
2397
if (ata_dev_knobble(dev)) {
2398
if (ata_msg_drv(ap) && print_info)
2399
ata_dev_printk(dev, KERN_INFO,
2400
"applying bridge limits\n");
2401
dev->udma_mask &= ATA_UDMA5;
2402
dev->max_sectors = ATA_MAX_SECTORS;
2403
}
2404
2405
if ((dev->class == ATA_DEV_ATAPI) &&
2406
(atapi_command_packet_set(id) == TYPE_TAPE)) {
2407
dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2408
dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2409
}
2410
2411
if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2412
dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2413
dev->max_sectors);
2414
2415
if (ap->ops->dev_config)
2416
ap->ops->dev_config(dev);
2417
2418
if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2419
/* Let the user know. We don't want to disallow opens for
2420
rescue purposes, or in case the vendor is just a blithering
2421
idiot. Do this after the dev_config call as some controllers
2422
with buggy firmware may want to avoid reporting false device
2423
bugs */
2424
2425
if (print_info) {
2426
ata_dev_printk(dev, KERN_WARNING,
2427
"Drive reports diagnostics failure. This may indicate a drive\n");
2428
ata_dev_printk(dev, KERN_WARNING,
2429
"fault or invalid emulation. Contact drive vendor for information.\n");
2430
}
2431
}
2432
2433
if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2434
ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2435
"firmware update to be fully functional.\n");
2436
ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2437
"or visit http://ata.wiki.kernel.org.\n");
2438
}
2439
2440
return 0;
2441
2442
err_out_nosup:
2443
if (ata_msg_probe(ap))
2444
ata_dev_printk(dev, KERN_DEBUG,
2445
"%s: EXIT, err\n", __func__);
2446
return rc;
2447
}
2448
2449
/**
2450
* ata_cable_40wire - return 40 wire cable type
2451
* @ap: port
2452
*
2453
* Helper method for drivers which want to hardwire 40 wire cable
2454
* detection.
2455
*/
2456
2457
int ata_cable_40wire(struct ata_port *ap)
2458
{
2459
return ATA_CBL_PATA40;
2460
}
2461
2462
/**
2463
* ata_cable_80wire - return 80 wire cable type
2464
* @ap: port
2465
*
2466
* Helper method for drivers which want to hardwire 80 wire cable
2467
* detection.
2468
*/
2469
2470
int ata_cable_80wire(struct ata_port *ap)
2471
{
2472
return ATA_CBL_PATA80;
2473
}
2474
2475
/**
2476
* ata_cable_unknown - return unknown PATA cable.
2477
* @ap: port
2478
*
2479
* Helper method for drivers which have no PATA cable detection.
2480
*/
2481
2482
int ata_cable_unknown(struct ata_port *ap)
2483
{
2484
return ATA_CBL_PATA_UNK;
2485
}
2486
2487
/**
2488
* ata_cable_ignore - return ignored PATA cable.
2489
* @ap: port
2490
*
2491
* Helper method for drivers which don't use cable type to limit
2492
* transfer mode.
2493
*/
2494
int ata_cable_ignore(struct ata_port *ap)
2495
{
2496
return ATA_CBL_PATA_IGN;
2497
}
2498
2499
/**
2500
* ata_cable_sata - return SATA cable type
2501
* @ap: port
2502
*
2503
* Helper method for drivers which have SATA cables
2504
*/
2505
2506
int ata_cable_sata(struct ata_port *ap)
2507
{
2508
return ATA_CBL_SATA;
2509
}
2510
2511
/**
2512
* ata_bus_probe - Reset and probe ATA bus
2513
* @ap: Bus to probe
2514
*
2515
* Master ATA bus probing function. Initiates a hardware-dependent
2516
* bus reset, then attempts to identify any devices found on
2517
* the bus.
2518
*
2519
* LOCKING:
2520
* PCI/etc. bus probe sem.
2521
*
2522
* RETURNS:
2523
* Zero on success, negative errno otherwise.
2524
*/
2525
2526
int ata_bus_probe(struct ata_port *ap)
2527
{
2528
unsigned int classes[ATA_MAX_DEVICES];
2529
int tries[ATA_MAX_DEVICES];
2530
int rc;
2531
struct ata_device *dev;
2532
2533
ata_for_each_dev(dev, &ap->link, ALL)
2534
tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2535
2536
retry:
2537
ata_for_each_dev(dev, &ap->link, ALL) {
2538
/* If we issue an SRST then an ATA drive (not ATAPI)
2539
* may change configuration and be in PIO0 timing. If
2540
* we do a hard reset (or are coming from power on)
2541
* this is true for ATA or ATAPI. Until we've set a
2542
* suitable controller mode we should not touch the
2543
* bus as we may be talking too fast.
2544
*/
2545
dev->pio_mode = XFER_PIO_0;
2546
2547
/* If the controller has a pio mode setup function
2548
* then use it to set the chipset to rights. Don't
2549
* touch the DMA setup as that will be dealt with when
2550
* configuring devices.
2551
*/
2552
if (ap->ops->set_piomode)
2553
ap->ops->set_piomode(ap, dev);
2554
}
2555
2556
/* reset and determine device classes */
2557
ap->ops->phy_reset(ap);
2558
2559
ata_for_each_dev(dev, &ap->link, ALL) {
2560
if (dev->class != ATA_DEV_UNKNOWN)
2561
classes[dev->devno] = dev->class;
2562
else
2563
classes[dev->devno] = ATA_DEV_NONE;
2564
2565
dev->class = ATA_DEV_UNKNOWN;
2566
}
2567
2568
/* read IDENTIFY page and configure devices. We have to do the identify
2569
specific sequence bass-ackwards so that PDIAG- is released by
2570
the slave device */
2571
2572
ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2573
if (tries[dev->devno])
2574
dev->class = classes[dev->devno];
2575
2576
if (!ata_dev_enabled(dev))
2577
continue;
2578
2579
rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2580
dev->id);
2581
if (rc)
2582
goto fail;
2583
}
2584
2585
/* Now ask for the cable type as PDIAG- should have been released */
2586
if (ap->ops->cable_detect)
2587
ap->cbl = ap->ops->cable_detect(ap);
2588
2589
/* We may have SATA bridge glue hiding here irrespective of
2590
* the reported cable types and sensed types. When SATA
2591
* drives indicate we have a bridge, we don't know which end
2592
* of the link the bridge is which is a problem.
2593
*/
2594
ata_for_each_dev(dev, &ap->link, ENABLED)
2595
if (ata_id_is_sata(dev->id))
2596
ap->cbl = ATA_CBL_SATA;
2597
2598
/* After the identify sequence we can now set up the devices. We do
2599
this in the normal order so that the user doesn't get confused */
2600
2601
ata_for_each_dev(dev, &ap->link, ENABLED) {
2602
ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2603
rc = ata_dev_configure(dev);
2604
ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2605
if (rc)
2606
goto fail;
2607
}
2608
2609
/* configure transfer mode */
2610
rc = ata_set_mode(&ap->link, &dev);
2611
if (rc)
2612
goto fail;
2613
2614
ata_for_each_dev(dev, &ap->link, ENABLED)
2615
return 0;
2616
2617
return -ENODEV;
2618
2619
fail:
2620
tries[dev->devno]--;
2621
2622
switch (rc) {
2623
case -EINVAL:
2624
/* eeek, something went very wrong, give up */
2625
tries[dev->devno] = 0;
2626
break;
2627
2628
case -ENODEV:
2629
/* give it just one more chance */
2630
tries[dev->devno] = min(tries[dev->devno], 1);
2631
case -EIO:
2632
if (tries[dev->devno] == 1) {
2633
/* This is the last chance, better to slow
2634
* down than lose it.
2635
*/
2636
sata_down_spd_limit(&ap->link, 0);
2637
ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2638
}
2639
}
2640
2641
if (!tries[dev->devno])
2642
ata_dev_disable(dev);
2643
2644
goto retry;
2645
}
2646
2647
/**
2648
* sata_print_link_status - Print SATA link status
2649
* @link: SATA link to printk link status about
2650
*
2651
* This function prints link speed and status of a SATA link.
2652
*
2653
* LOCKING:
2654
* None.
2655
*/
2656
static void sata_print_link_status(struct ata_link *link)
2657
{
2658
u32 sstatus, scontrol, tmp;
2659
2660
if (sata_scr_read(link, SCR_STATUS, &sstatus))
2661
return;
2662
sata_scr_read(link, SCR_CONTROL, &scontrol);
2663
2664
if (ata_phys_link_online(link)) {
2665
tmp = (sstatus >> 4) & 0xf;
2666
ata_link_printk(link, KERN_INFO,
2667
"SATA link up %s (SStatus %X SControl %X)\n",
2668
sata_spd_string(tmp), sstatus, scontrol);
2669
} else {
2670
ata_link_printk(link, KERN_INFO,
2671
"SATA link down (SStatus %X SControl %X)\n",
2672
sstatus, scontrol);
2673
}
2674
}
2675
2676
/**
2677
* ata_dev_pair - return other device on cable
2678
* @adev: device
2679
*
2680
* Obtain the other device on the same cable, or if none is
2681
* present NULL is returned
2682
*/
2683
2684
struct ata_device *ata_dev_pair(struct ata_device *adev)
2685
{
2686
struct ata_link *link = adev->link;
2687
struct ata_device *pair = &link->device[1 - adev->devno];
2688
if (!ata_dev_enabled(pair))
2689
return NULL;
2690
return pair;
2691
}
2692
2693
/**
2694
* sata_down_spd_limit - adjust SATA spd limit downward
2695
* @link: Link to adjust SATA spd limit for
2696
* @spd_limit: Additional limit
2697
*
2698
* Adjust SATA spd limit of @link downward. Note that this
2699
* function only adjusts the limit. The change must be applied
2700
* using sata_set_spd().
2701
*
2702
* If @spd_limit is non-zero, the speed is limited to equal to or
2703
* lower than @spd_limit if such speed is supported. If
2704
* @spd_limit is slower than any supported speed, only the lowest
2705
* supported speed is allowed.
2706
*
2707
* LOCKING:
2708
* Inherited from caller.
2709
*
2710
* RETURNS:
2711
* 0 on success, negative errno on failure
2712
*/
2713
int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2714
{
2715
u32 sstatus, spd, mask;
2716
int rc, bit;
2717
2718
if (!sata_scr_valid(link))
2719
return -EOPNOTSUPP;
2720
2721
/* If SCR can be read, use it to determine the current SPD.
2722
* If not, use cached value in link->sata_spd.
2723
*/
2724
rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2725
if (rc == 0 && ata_sstatus_online(sstatus))
2726
spd = (sstatus >> 4) & 0xf;
2727
else
2728
spd = link->sata_spd;
2729
2730
mask = link->sata_spd_limit;
2731
if (mask <= 1)
2732
return -EINVAL;
2733
2734
/* unconditionally mask off the highest bit */
2735
bit = fls(mask) - 1;
2736
mask &= ~(1 << bit);
2737
2738
/* Mask off all speeds higher than or equal to the current
2739
* one. Force 1.5Gbps if current SPD is not available.
2740
*/
2741
if (spd > 1)
2742
mask &= (1 << (spd - 1)) - 1;
2743
else
2744
mask &= 1;
2745
2746
/* were we already at the bottom? */
2747
if (!mask)
2748
return -EINVAL;
2749
2750
if (spd_limit) {
2751
if (mask & ((1 << spd_limit) - 1))
2752
mask &= (1 << spd_limit) - 1;
2753
else {
2754
bit = ffs(mask) - 1;
2755
mask = 1 << bit;
2756
}
2757
}
2758
2759
link->sata_spd_limit = mask;
2760
2761
ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2762
sata_spd_string(fls(mask)));
2763
2764
return 0;
2765
}
2766
2767
static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2768
{
2769
struct ata_link *host_link = &link->ap->link;
2770
u32 limit, target, spd;
2771
2772
limit = link->sata_spd_limit;
2773
2774
/* Don't configure downstream link faster than upstream link.
2775
* It doesn't speed up anything and some PMPs choke on such
2776
* configuration.
2777
*/
2778
if (!ata_is_host_link(link) && host_link->sata_spd)
2779
limit &= (1 << host_link->sata_spd) - 1;
2780
2781
if (limit == UINT_MAX)
2782
target = 0;
2783
else
2784
target = fls(limit);
2785
2786
spd = (*scontrol >> 4) & 0xf;
2787
*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2788
2789
return spd != target;
2790
}
2791
2792
/**
2793
* sata_set_spd_needed - is SATA spd configuration needed
2794
* @link: Link in question
2795
*
2796
* Test whether the spd limit in SControl matches
2797
* @link->sata_spd_limit. This function is used to determine
2798
* whether hardreset is necessary to apply SATA spd
2799
* configuration.
2800
*
2801
* LOCKING:
2802
* Inherited from caller.
2803
*
2804
* RETURNS:
2805
* 1 if SATA spd configuration is needed, 0 otherwise.
2806
*/
2807
static int sata_set_spd_needed(struct ata_link *link)
2808
{
2809
u32 scontrol;
2810
2811
if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2812
return 1;
2813
2814
return __sata_set_spd_needed(link, &scontrol);
2815
}
2816
2817
/**
2818
* sata_set_spd - set SATA spd according to spd limit
2819
* @link: Link to set SATA spd for
2820
*
2821
* Set SATA spd of @link according to sata_spd_limit.
2822
*
2823
* LOCKING:
2824
* Inherited from caller.
2825
*
2826
* RETURNS:
2827
* 0 if spd doesn't need to be changed, 1 if spd has been
2828
* changed. Negative errno if SCR registers are inaccessible.
2829
*/
2830
int sata_set_spd(struct ata_link *link)
2831
{
2832
u32 scontrol;
2833
int rc;
2834
2835
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2836
return rc;
2837
2838
if (!__sata_set_spd_needed(link, &scontrol))
2839
return 0;
2840
2841
if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2842
return rc;
2843
2844
return 1;
2845
}
2846
2847
/*
2848
* This mode timing computation functionality is ported over from
2849
* drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2850
*/
2851
/*
2852
* PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2853
* These were taken from ATA/ATAPI-6 standard, rev 0a, except
2854
* for UDMA6, which is currently supported only by Maxtor drives.
2855
*
2856
* For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2857
*/
2858
2859
static const struct ata_timing ata_timing[] = {
2860
/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2861
{ XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2862
{ XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2863
{ XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2864
{ XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2865
{ XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2866
{ XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2867
{ XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2868
2869
{ XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2870
{ XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2871
{ XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2872
2873
{ XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2874
{ XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2875
{ XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2876
{ XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2877
{ XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2878
2879
/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2880
{ XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2881
{ XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2882
{ XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2883
{ XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2884
{ XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2885
{ XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2886
{ XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2887
2888
{ 0xFF }
2889
};
2890
2891
#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2892
#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2893
2894
static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2895
{
2896
q->setup = EZ(t->setup * 1000, T);
2897
q->act8b = EZ(t->act8b * 1000, T);
2898
q->rec8b = EZ(t->rec8b * 1000, T);
2899
q->cyc8b = EZ(t->cyc8b * 1000, T);
2900
q->active = EZ(t->active * 1000, T);
2901
q->recover = EZ(t->recover * 1000, T);
2902
q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2903
q->cycle = EZ(t->cycle * 1000, T);
2904
q->udma = EZ(t->udma * 1000, UT);
2905
}
2906
2907
void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2908
struct ata_timing *m, unsigned int what)
2909
{
2910
if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2911
if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2912
if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2913
if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2914
if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2915
if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2916
if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2917
if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2918
if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2919
}
2920
2921
const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2922
{
2923
const struct ata_timing *t = ata_timing;
2924
2925
while (xfer_mode > t->mode)
2926
t++;
2927
2928
if (xfer_mode == t->mode)
2929
return t;
2930
return NULL;
2931
}
2932
2933
int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2934
struct ata_timing *t, int T, int UT)
2935
{
2936
const u16 *id = adev->id;
2937
const struct ata_timing *s;
2938
struct ata_timing p;
2939
2940
/*
2941
* Find the mode.
2942
*/
2943
2944
if (!(s = ata_timing_find_mode(speed)))
2945
return -EINVAL;
2946
2947
memcpy(t, s, sizeof(*s));
2948
2949
/*
2950
* If the drive is an EIDE drive, it can tell us it needs extended
2951
* PIO/MW_DMA cycle timing.
2952
*/
2953
2954
if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2955
memset(&p, 0, sizeof(p));
2956
2957
if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2958
if (speed <= XFER_PIO_2)
2959
p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2960
else if ((speed <= XFER_PIO_4) ||
2961
(speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2962
p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2963
} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2964
p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2965
2966
ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2967
}
2968
2969
/*
2970
* Convert the timing to bus clock counts.
2971
*/
2972
2973
ata_timing_quantize(t, t, T, UT);
2974
2975
/*
2976
* Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2977
* S.M.A.R.T * and some other commands. We have to ensure that the
2978
* DMA cycle timing is slower/equal than the fastest PIO timing.
2979
*/
2980
2981
if (speed > XFER_PIO_6) {
2982
ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2983
ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2984
}
2985
2986
/*
2987
* Lengthen active & recovery time so that cycle time is correct.
2988
*/
2989
2990
if (t->act8b + t->rec8b < t->cyc8b) {
2991
t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2992
t->rec8b = t->cyc8b - t->act8b;
2993
}
2994
2995
if (t->active + t->recover < t->cycle) {
2996
t->active += (t->cycle - (t->active + t->recover)) / 2;
2997
t->recover = t->cycle - t->active;
2998
}
2999
3000
/* In a few cases quantisation may produce enough errors to
3001
leave t->cycle too low for the sum of active and recovery
3002
if so we must correct this */
3003
if (t->active + t->recover > t->cycle)
3004
t->cycle = t->active + t->recover;
3005
3006
return 0;
3007
}
3008
3009
/**
3010
* ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3011
* @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3012
* @cycle: cycle duration in ns
3013
*
3014
* Return matching xfer mode for @cycle. The returned mode is of
3015
* the transfer type specified by @xfer_shift. If @cycle is too
3016
* slow for @xfer_shift, 0xff is returned. If @cycle is faster
3017
* than the fastest known mode, the fasted mode is returned.
3018
*
3019
* LOCKING:
3020
* None.
3021
*
3022
* RETURNS:
3023
* Matching xfer_mode, 0xff if no match found.
3024
*/
3025
u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3026
{
3027
u8 base_mode = 0xff, last_mode = 0xff;
3028
const struct ata_xfer_ent *ent;
3029
const struct ata_timing *t;
3030
3031
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3032
if (ent->shift == xfer_shift)
3033
base_mode = ent->base;
3034
3035
for (t = ata_timing_find_mode(base_mode);
3036
t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3037
unsigned short this_cycle;
3038
3039
switch (xfer_shift) {
3040
case ATA_SHIFT_PIO:
3041
case ATA_SHIFT_MWDMA:
3042
this_cycle = t->cycle;
3043
break;
3044
case ATA_SHIFT_UDMA:
3045
this_cycle = t->udma;
3046
break;
3047
default:
3048
return 0xff;
3049
}
3050
3051
if (cycle > this_cycle)
3052
break;
3053
3054
last_mode = t->mode;
3055
}
3056
3057
return last_mode;
3058
}
3059
3060
/**
3061
* ata_down_xfermask_limit - adjust dev xfer masks downward
3062
* @dev: Device to adjust xfer masks
3063
* @sel: ATA_DNXFER_* selector
3064
*
3065
* Adjust xfer masks of @dev downward. Note that this function
3066
* does not apply the change. Invoking ata_set_mode() afterwards
3067
* will apply the limit.
3068
*
3069
* LOCKING:
3070
* Inherited from caller.
3071
*
3072
* RETURNS:
3073
* 0 on success, negative errno on failure
3074
*/
3075
int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3076
{
3077
char buf[32];
3078
unsigned long orig_mask, xfer_mask;
3079
unsigned long pio_mask, mwdma_mask, udma_mask;
3080
int quiet, highbit;
3081
3082
quiet = !!(sel & ATA_DNXFER_QUIET);
3083
sel &= ~ATA_DNXFER_QUIET;
3084
3085
xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3086
dev->mwdma_mask,
3087
dev->udma_mask);
3088
ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3089
3090
switch (sel) {
3091
case ATA_DNXFER_PIO:
3092
highbit = fls(pio_mask) - 1;
3093
pio_mask &= ~(1 << highbit);
3094
break;
3095
3096
case ATA_DNXFER_DMA:
3097
if (udma_mask) {
3098
highbit = fls(udma_mask) - 1;
3099
udma_mask &= ~(1 << highbit);
3100
if (!udma_mask)
3101
return -ENOENT;
3102
} else if (mwdma_mask) {
3103
highbit = fls(mwdma_mask) - 1;
3104
mwdma_mask &= ~(1 << highbit);
3105
if (!mwdma_mask)
3106
return -ENOENT;
3107
}
3108
break;
3109
3110
case ATA_DNXFER_40C:
3111
udma_mask &= ATA_UDMA_MASK_40C;
3112
break;
3113
3114
case ATA_DNXFER_FORCE_PIO0:
3115
pio_mask &= 1;
3116
case ATA_DNXFER_FORCE_PIO:
3117
mwdma_mask = 0;
3118
udma_mask = 0;
3119
break;
3120
3121
default:
3122
BUG();
3123
}
3124
3125
xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3126
3127
if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3128
return -ENOENT;
3129
3130
if (!quiet) {
3131
if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3132
snprintf(buf, sizeof(buf), "%s:%s",
3133
ata_mode_string(xfer_mask),
3134
ata_mode_string(xfer_mask & ATA_MASK_PIO));
3135
else
3136
snprintf(buf, sizeof(buf), "%s",
3137
ata_mode_string(xfer_mask));
3138
3139
ata_dev_printk(dev, KERN_WARNING,
3140
"limiting speed to %s\n", buf);
3141
}
3142
3143
ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3144
&dev->udma_mask);
3145
3146
return 0;
3147
}
3148
3149
static int ata_dev_set_mode(struct ata_device *dev)
3150
{
3151
struct ata_port *ap = dev->link->ap;
3152
struct ata_eh_context *ehc = &dev->link->eh_context;
3153
const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3154
const char *dev_err_whine = "";
3155
int ign_dev_err = 0;
3156
unsigned int err_mask = 0;
3157
int rc;
3158
3159
dev->flags &= ~ATA_DFLAG_PIO;
3160
if (dev->xfer_shift == ATA_SHIFT_PIO)
3161
dev->flags |= ATA_DFLAG_PIO;
3162
3163
if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3164
dev_err_whine = " (SET_XFERMODE skipped)";
3165
else {
3166
if (nosetxfer)
3167
ata_dev_printk(dev, KERN_WARNING,
3168
"NOSETXFER but PATA detected - can't "
3169
"skip SETXFER, might malfunction\n");
3170
err_mask = ata_dev_set_xfermode(dev);
3171
}
3172
3173
if (err_mask & ~AC_ERR_DEV)
3174
goto fail;
3175
3176
/* revalidate */
3177
ehc->i.flags |= ATA_EHI_POST_SETMODE;
3178
rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3179
ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3180
if (rc)
3181
return rc;
3182
3183
if (dev->xfer_shift == ATA_SHIFT_PIO) {
3184
/* Old CFA may refuse this command, which is just fine */
3185
if (ata_id_is_cfa(dev->id))
3186
ign_dev_err = 1;
3187
/* Catch several broken garbage emulations plus some pre
3188
ATA devices */
3189
if (ata_id_major_version(dev->id) == 0 &&
3190
dev->pio_mode <= XFER_PIO_2)
3191
ign_dev_err = 1;
3192
/* Some very old devices and some bad newer ones fail
3193
any kind of SET_XFERMODE request but support PIO0-2
3194
timings and no IORDY */
3195
if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3196
ign_dev_err = 1;
3197
}
3198
/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3199
Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3200
if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3201
dev->dma_mode == XFER_MW_DMA_0 &&
3202
(dev->id[63] >> 8) & 1)
3203
ign_dev_err = 1;
3204
3205
/* if the device is actually configured correctly, ignore dev err */
3206
if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3207
ign_dev_err = 1;
3208
3209
if (err_mask & AC_ERR_DEV) {
3210
if (!ign_dev_err)
3211
goto fail;
3212
else
3213
dev_err_whine = " (device error ignored)";
3214
}
3215
3216
DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3217
dev->xfer_shift, (int)dev->xfer_mode);
3218
3219
ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3220
ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3221
dev_err_whine);
3222
3223
return 0;
3224
3225
fail:
3226
ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3227
"(err_mask=0x%x)\n", err_mask);
3228
return -EIO;
3229
}
3230
3231
/**
3232
* ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3233
* @link: link on which timings will be programmed
3234
* @r_failed_dev: out parameter for failed device
3235
*
3236
* Standard implementation of the function used to tune and set
3237
* ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3238
* ata_dev_set_mode() fails, pointer to the failing device is
3239
* returned in @r_failed_dev.
3240
*
3241
* LOCKING:
3242
* PCI/etc. bus probe sem.
3243
*
3244
* RETURNS:
3245
* 0 on success, negative errno otherwise
3246
*/
3247
3248
int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3249
{
3250
struct ata_port *ap = link->ap;
3251
struct ata_device *dev;
3252
int rc = 0, used_dma = 0, found = 0;
3253
3254
/* step 1: calculate xfer_mask */
3255
ata_for_each_dev(dev, link, ENABLED) {
3256
unsigned long pio_mask, dma_mask;
3257
unsigned int mode_mask;
3258
3259
mode_mask = ATA_DMA_MASK_ATA;
3260
if (dev->class == ATA_DEV_ATAPI)
3261
mode_mask = ATA_DMA_MASK_ATAPI;
3262
else if (ata_id_is_cfa(dev->id))
3263
mode_mask = ATA_DMA_MASK_CFA;
3264
3265
ata_dev_xfermask(dev);
3266
ata_force_xfermask(dev);
3267
3268
pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3269
dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3270
3271
if (libata_dma_mask & mode_mask)
3272
dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3273
else
3274
dma_mask = 0;
3275
3276
dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3277
dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3278
3279
found = 1;
3280
if (ata_dma_enabled(dev))
3281
used_dma = 1;
3282
}
3283
if (!found)
3284
goto out;
3285
3286
/* step 2: always set host PIO timings */
3287
ata_for_each_dev(dev, link, ENABLED) {
3288
if (dev->pio_mode == 0xff) {
3289
ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3290
rc = -EINVAL;
3291
goto out;
3292
}
3293
3294
dev->xfer_mode = dev->pio_mode;
3295
dev->xfer_shift = ATA_SHIFT_PIO;
3296
if (ap->ops->set_piomode)
3297
ap->ops->set_piomode(ap, dev);
3298
}
3299
3300
/* step 3: set host DMA timings */
3301
ata_for_each_dev(dev, link, ENABLED) {
3302
if (!ata_dma_enabled(dev))
3303
continue;
3304
3305
dev->xfer_mode = dev->dma_mode;
3306
dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3307
if (ap->ops->set_dmamode)
3308
ap->ops->set_dmamode(ap, dev);
3309
}
3310
3311
/* step 4: update devices' xfer mode */
3312
ata_for_each_dev(dev, link, ENABLED) {
3313
rc = ata_dev_set_mode(dev);
3314
if (rc)
3315
goto out;
3316
}
3317
3318
/* Record simplex status. If we selected DMA then the other
3319
* host channels are not permitted to do so.
3320
*/
3321
if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3322
ap->host->simplex_claimed = ap;
3323
3324
out:
3325
if (rc)
3326
*r_failed_dev = dev;
3327
return rc;
3328
}
3329
3330
/**
3331
* ata_wait_ready - wait for link to become ready
3332
* @link: link to be waited on
3333
* @deadline: deadline jiffies for the operation
3334
* @check_ready: callback to check link readiness
3335
*
3336
* Wait for @link to become ready. @check_ready should return
3337
* positive number if @link is ready, 0 if it isn't, -ENODEV if
3338
* link doesn't seem to be occupied, other errno for other error
3339
* conditions.
3340
*
3341
* Transient -ENODEV conditions are allowed for
3342
* ATA_TMOUT_FF_WAIT.
3343
*
3344
* LOCKING:
3345
* EH context.
3346
*
3347
* RETURNS:
3348
* 0 if @linke is ready before @deadline; otherwise, -errno.
3349
*/
3350
int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3351
int (*check_ready)(struct ata_link *link))
3352
{
3353
unsigned long start = jiffies;
3354
unsigned long nodev_deadline;
3355
int warned = 0;
3356
3357
/* choose which 0xff timeout to use, read comment in libata.h */
3358
if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3359
nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3360
else
3361
nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3362
3363
/* Slave readiness can't be tested separately from master. On
3364
* M/S emulation configuration, this function should be called
3365
* only on the master and it will handle both master and slave.
3366
*/
3367
WARN_ON(link == link->ap->slave_link);
3368
3369
if (time_after(nodev_deadline, deadline))
3370
nodev_deadline = deadline;
3371
3372
while (1) {
3373
unsigned long now = jiffies;
3374
int ready, tmp;
3375
3376
ready = tmp = check_ready(link);
3377
if (ready > 0)
3378
return 0;
3379
3380
/*
3381
* -ENODEV could be transient. Ignore -ENODEV if link
3382
* is online. Also, some SATA devices take a long
3383
* time to clear 0xff after reset. Wait for
3384
* ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3385
* offline.
3386
*
3387
* Note that some PATA controllers (pata_ali) explode
3388
* if status register is read more than once when
3389
* there's no device attached.
3390
*/
3391
if (ready == -ENODEV) {
3392
if (ata_link_online(link))
3393
ready = 0;
3394
else if ((link->ap->flags & ATA_FLAG_SATA) &&
3395
!ata_link_offline(link) &&
3396
time_before(now, nodev_deadline))
3397
ready = 0;
3398
}
3399
3400
if (ready)
3401
return ready;
3402
if (time_after(now, deadline))
3403
return -EBUSY;
3404
3405
if (!warned && time_after(now, start + 5 * HZ) &&
3406
(deadline - now > 3 * HZ)) {
3407
ata_link_printk(link, KERN_WARNING,
3408
"link is slow to respond, please be patient "
3409
"(ready=%d)\n", tmp);
3410
warned = 1;
3411
}
3412
3413
ata_msleep(link->ap, 50);
3414
}
3415
}
3416
3417
/**
3418
* ata_wait_after_reset - wait for link to become ready after reset
3419
* @link: link to be waited on
3420
* @deadline: deadline jiffies for the operation
3421
* @check_ready: callback to check link readiness
3422
*
3423
* Wait for @link to become ready after reset.
3424
*
3425
* LOCKING:
3426
* EH context.
3427
*
3428
* RETURNS:
3429
* 0 if @linke is ready before @deadline; otherwise, -errno.
3430
*/
3431
int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3432
int (*check_ready)(struct ata_link *link))
3433
{
3434
ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3435
3436
return ata_wait_ready(link, deadline, check_ready);
3437
}
3438
3439
/**
3440
* sata_link_debounce - debounce SATA phy status
3441
* @link: ATA link to debounce SATA phy status for
3442
* @params: timing parameters { interval, duratinon, timeout } in msec
3443
* @deadline: deadline jiffies for the operation
3444
*
3445
* Make sure SStatus of @link reaches stable state, determined by
3446
* holding the same value where DET is not 1 for @duration polled
3447
* every @interval, before @timeout. Timeout constraints the
3448
* beginning of the stable state. Because DET gets stuck at 1 on
3449
* some controllers after hot unplugging, this functions waits
3450
* until timeout then returns 0 if DET is stable at 1.
3451
*
3452
* @timeout is further limited by @deadline. The sooner of the
3453
* two is used.
3454
*
3455
* LOCKING:
3456
* Kernel thread context (may sleep)
3457
*
3458
* RETURNS:
3459
* 0 on success, -errno on failure.
3460
*/
3461
int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3462
unsigned long deadline)
3463
{
3464
unsigned long interval = params[0];
3465
unsigned long duration = params[1];
3466
unsigned long last_jiffies, t;
3467
u32 last, cur;
3468
int rc;
3469
3470
t = ata_deadline(jiffies, params[2]);
3471
if (time_before(t, deadline))
3472
deadline = t;
3473
3474
if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3475
return rc;
3476
cur &= 0xf;
3477
3478
last = cur;
3479
last_jiffies = jiffies;
3480
3481
while (1) {
3482
ata_msleep(link->ap, interval);
3483
if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3484
return rc;
3485
cur &= 0xf;
3486
3487
/* DET stable? */
3488
if (cur == last) {
3489
if (cur == 1 && time_before(jiffies, deadline))
3490
continue;
3491
if (time_after(jiffies,
3492
ata_deadline(last_jiffies, duration)))
3493
return 0;
3494
continue;
3495
}
3496
3497
/* unstable, start over */
3498
last = cur;
3499
last_jiffies = jiffies;
3500
3501
/* Check deadline. If debouncing failed, return
3502
* -EPIPE to tell upper layer to lower link speed.
3503
*/
3504
if (time_after(jiffies, deadline))
3505
return -EPIPE;
3506
}
3507
}
3508
3509
/**
3510
* sata_link_resume - resume SATA link
3511
* @link: ATA link to resume SATA
3512
* @params: timing parameters { interval, duratinon, timeout } in msec
3513
* @deadline: deadline jiffies for the operation
3514
*
3515
* Resume SATA phy @link and debounce it.
3516
*
3517
* LOCKING:
3518
* Kernel thread context (may sleep)
3519
*
3520
* RETURNS:
3521
* 0 on success, -errno on failure.
3522
*/
3523
int sata_link_resume(struct ata_link *link, const unsigned long *params,
3524
unsigned long deadline)
3525
{
3526
int tries = ATA_LINK_RESUME_TRIES;
3527
u32 scontrol, serror;
3528
int rc;
3529
3530
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3531
return rc;
3532
3533
/*
3534
* Writes to SControl sometimes get ignored under certain
3535
* controllers (ata_piix SIDPR). Make sure DET actually is
3536
* cleared.
3537
*/
3538
do {
3539
scontrol = (scontrol & 0x0f0) | 0x300;
3540
if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3541
return rc;
3542
/*
3543
* Some PHYs react badly if SStatus is pounded
3544
* immediately after resuming. Delay 200ms before
3545
* debouncing.
3546
*/
3547
ata_msleep(link->ap, 200);
3548
3549
/* is SControl restored correctly? */
3550
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3551
return rc;
3552
} while ((scontrol & 0xf0f) != 0x300 && --tries);
3553
3554
if ((scontrol & 0xf0f) != 0x300) {
3555
ata_link_printk(link, KERN_ERR,
3556
"failed to resume link (SControl %X)\n",
3557
scontrol);
3558
return 0;
3559
}
3560
3561
if (tries < ATA_LINK_RESUME_TRIES)
3562
ata_link_printk(link, KERN_WARNING,
3563
"link resume succeeded after %d retries\n",
3564
ATA_LINK_RESUME_TRIES - tries);
3565
3566
if ((rc = sata_link_debounce(link, params, deadline)))
3567
return rc;
3568
3569
/* clear SError, some PHYs require this even for SRST to work */
3570
if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3571
rc = sata_scr_write(link, SCR_ERROR, serror);
3572
3573
return rc != -EINVAL ? rc : 0;
3574
}
3575
3576
/**
3577
* sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3578
* @link: ATA link to manipulate SControl for
3579
* @policy: LPM policy to configure
3580
* @spm_wakeup: initiate LPM transition to active state
3581
*
3582
* Manipulate the IPM field of the SControl register of @link
3583
* according to @policy. If @policy is ATA_LPM_MAX_POWER and
3584
* @spm_wakeup is %true, the SPM field is manipulated to wake up
3585
* the link. This function also clears PHYRDY_CHG before
3586
* returning.
3587
*
3588
* LOCKING:
3589
* EH context.
3590
*
3591
* RETURNS:
3592
* 0 on succes, -errno otherwise.
3593
*/
3594
int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3595
bool spm_wakeup)
3596
{
3597
struct ata_eh_context *ehc = &link->eh_context;
3598
bool woken_up = false;
3599
u32 scontrol;
3600
int rc;
3601
3602
rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3603
if (rc)
3604
return rc;
3605
3606
switch (policy) {
3607
case ATA_LPM_MAX_POWER:
3608
/* disable all LPM transitions */
3609
scontrol |= (0x3 << 8);
3610
/* initiate transition to active state */
3611
if (spm_wakeup) {
3612
scontrol |= (0x4 << 12);
3613
woken_up = true;
3614
}
3615
break;
3616
case ATA_LPM_MED_POWER:
3617
/* allow LPM to PARTIAL */
3618
scontrol &= ~(0x1 << 8);
3619
scontrol |= (0x2 << 8);
3620
break;
3621
case ATA_LPM_MIN_POWER:
3622
if (ata_link_nr_enabled(link) > 0)
3623
/* no restrictions on LPM transitions */
3624
scontrol &= ~(0x3 << 8);
3625
else {
3626
/* empty port, power off */
3627
scontrol &= ~0xf;
3628
scontrol |= (0x1 << 2);
3629
}
3630
break;
3631
default:
3632
WARN_ON(1);
3633
}
3634
3635
rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3636
if (rc)
3637
return rc;
3638
3639
/* give the link time to transit out of LPM state */
3640
if (woken_up)
3641
msleep(10);
3642
3643
/* clear PHYRDY_CHG from SError */
3644
ehc->i.serror &= ~SERR_PHYRDY_CHG;
3645
return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3646
}
3647
3648
/**
3649
* ata_std_prereset - prepare for reset
3650
* @link: ATA link to be reset
3651
* @deadline: deadline jiffies for the operation
3652
*
3653
* @link is about to be reset. Initialize it. Failure from
3654
* prereset makes libata abort whole reset sequence and give up
3655
* that port, so prereset should be best-effort. It does its
3656
* best to prepare for reset sequence but if things go wrong, it
3657
* should just whine, not fail.
3658
*
3659
* LOCKING:
3660
* Kernel thread context (may sleep)
3661
*
3662
* RETURNS:
3663
* 0 on success, -errno otherwise.
3664
*/
3665
int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3666
{
3667
struct ata_port *ap = link->ap;
3668
struct ata_eh_context *ehc = &link->eh_context;
3669
const unsigned long *timing = sata_ehc_deb_timing(ehc);
3670
int rc;
3671
3672
/* if we're about to do hardreset, nothing more to do */
3673
if (ehc->i.action & ATA_EH_HARDRESET)
3674
return 0;
3675
3676
/* if SATA, resume link */
3677
if (ap->flags & ATA_FLAG_SATA) {
3678
rc = sata_link_resume(link, timing, deadline);
3679
/* whine about phy resume failure but proceed */
3680
if (rc && rc != -EOPNOTSUPP)
3681
ata_link_printk(link, KERN_WARNING, "failed to resume "
3682
"link for reset (errno=%d)\n", rc);
3683
}
3684
3685
/* no point in trying softreset on offline link */
3686
if (ata_phys_link_offline(link))
3687
ehc->i.action &= ~ATA_EH_SOFTRESET;
3688
3689
return 0;
3690
}
3691
3692
/**
3693
* sata_link_hardreset - reset link via SATA phy reset
3694
* @link: link to reset
3695
* @timing: timing parameters { interval, duratinon, timeout } in msec
3696
* @deadline: deadline jiffies for the operation
3697
* @online: optional out parameter indicating link onlineness
3698
* @check_ready: optional callback to check link readiness
3699
*
3700
* SATA phy-reset @link using DET bits of SControl register.
3701
* After hardreset, link readiness is waited upon using
3702
* ata_wait_ready() if @check_ready is specified. LLDs are
3703
* allowed to not specify @check_ready and wait itself after this
3704
* function returns. Device classification is LLD's
3705
* responsibility.
3706
*
3707
* *@online is set to one iff reset succeeded and @link is online
3708
* after reset.
3709
*
3710
* LOCKING:
3711
* Kernel thread context (may sleep)
3712
*
3713
* RETURNS:
3714
* 0 on success, -errno otherwise.
3715
*/
3716
int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3717
unsigned long deadline,
3718
bool *online, int (*check_ready)(struct ata_link *))
3719
{
3720
u32 scontrol;
3721
int rc;
3722
3723
DPRINTK("ENTER\n");
3724
3725
if (online)
3726
*online = false;
3727
3728
if (sata_set_spd_needed(link)) {
3729
/* SATA spec says nothing about how to reconfigure
3730
* spd. To be on the safe side, turn off phy during
3731
* reconfiguration. This works for at least ICH7 AHCI
3732
* and Sil3124.
3733
*/
3734
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3735
goto out;
3736
3737
scontrol = (scontrol & 0x0f0) | 0x304;
3738
3739
if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3740
goto out;
3741
3742
sata_set_spd(link);
3743
}
3744
3745
/* issue phy wake/reset */
3746
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3747
goto out;
3748
3749
scontrol = (scontrol & 0x0f0) | 0x301;
3750
3751
if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3752
goto out;
3753
3754
/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3755
* 10.4.2 says at least 1 ms.
3756
*/
3757
ata_msleep(link->ap, 1);
3758
3759
/* bring link back */
3760
rc = sata_link_resume(link, timing, deadline);
3761
if (rc)
3762
goto out;
3763
/* if link is offline nothing more to do */
3764
if (ata_phys_link_offline(link))
3765
goto out;
3766
3767
/* Link is online. From this point, -ENODEV too is an error. */
3768
if (online)
3769
*online = true;
3770
3771
if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3772
/* If PMP is supported, we have to do follow-up SRST.
3773
* Some PMPs don't send D2H Reg FIS after hardreset if
3774
* the first port is empty. Wait only for
3775
* ATA_TMOUT_PMP_SRST_WAIT.
3776
*/
3777
if (check_ready) {
3778
unsigned long pmp_deadline;
3779
3780
pmp_deadline = ata_deadline(jiffies,
3781
ATA_TMOUT_PMP_SRST_WAIT);
3782
if (time_after(pmp_deadline, deadline))
3783
pmp_deadline = deadline;
3784
ata_wait_ready(link, pmp_deadline, check_ready);
3785
}
3786
rc = -EAGAIN;
3787
goto out;
3788
}
3789
3790
rc = 0;
3791
if (check_ready)
3792
rc = ata_wait_ready(link, deadline, check_ready);
3793
out:
3794
if (rc && rc != -EAGAIN) {
3795
/* online is set iff link is online && reset succeeded */
3796
if (online)
3797
*online = false;
3798
ata_link_printk(link, KERN_ERR,
3799
"COMRESET failed (errno=%d)\n", rc);
3800
}
3801
DPRINTK("EXIT, rc=%d\n", rc);
3802
return rc;
3803
}
3804
3805
/**
3806
* sata_std_hardreset - COMRESET w/o waiting or classification
3807
* @link: link to reset
3808
* @class: resulting class of attached device
3809
* @deadline: deadline jiffies for the operation
3810
*
3811
* Standard SATA COMRESET w/o waiting or classification.
3812
*
3813
* LOCKING:
3814
* Kernel thread context (may sleep)
3815
*
3816
* RETURNS:
3817
* 0 if link offline, -EAGAIN if link online, -errno on errors.
3818
*/
3819
int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3820
unsigned long deadline)
3821
{
3822
const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3823
bool online;
3824
int rc;
3825
3826
/* do hardreset */
3827
rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3828
return online ? -EAGAIN : rc;
3829
}
3830
3831
/**
3832
* ata_std_postreset - standard postreset callback
3833
* @link: the target ata_link
3834
* @classes: classes of attached devices
3835
*
3836
* This function is invoked after a successful reset. Note that
3837
* the device might have been reset more than once using
3838
* different reset methods before postreset is invoked.
3839
*
3840
* LOCKING:
3841
* Kernel thread context (may sleep)
3842
*/
3843
void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3844
{
3845
u32 serror;
3846
3847
DPRINTK("ENTER\n");
3848
3849
/* reset complete, clear SError */
3850
if (!sata_scr_read(link, SCR_ERROR, &serror))
3851
sata_scr_write(link, SCR_ERROR, serror);
3852
3853
/* print link status */
3854
sata_print_link_status(link);
3855
3856
DPRINTK("EXIT\n");
3857
}
3858
3859
/**
3860
* ata_dev_same_device - Determine whether new ID matches configured device
3861
* @dev: device to compare against
3862
* @new_class: class of the new device
3863
* @new_id: IDENTIFY page of the new device
3864
*
3865
* Compare @new_class and @new_id against @dev and determine
3866
* whether @dev is the device indicated by @new_class and
3867
* @new_id.
3868
*
3869
* LOCKING:
3870
* None.
3871
*
3872
* RETURNS:
3873
* 1 if @dev matches @new_class and @new_id, 0 otherwise.
3874
*/
3875
static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3876
const u16 *new_id)
3877
{
3878
const u16 *old_id = dev->id;
3879
unsigned char model[2][ATA_ID_PROD_LEN + 1];
3880
unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3881
3882
if (dev->class != new_class) {
3883
ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3884
dev->class, new_class);
3885
return 0;
3886
}
3887
3888
ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3889
ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3890
ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3891
ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3892
3893
if (strcmp(model[0], model[1])) {
3894
ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3895
"'%s' != '%s'\n", model[0], model[1]);
3896
return 0;
3897
}
3898
3899
if (strcmp(serial[0], serial[1])) {
3900
ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3901
"'%s' != '%s'\n", serial[0], serial[1]);
3902
return 0;
3903
}
3904
3905
return 1;
3906
}
3907
3908
/**
3909
* ata_dev_reread_id - Re-read IDENTIFY data
3910
* @dev: target ATA device
3911
* @readid_flags: read ID flags
3912
*
3913
* Re-read IDENTIFY page and make sure @dev is still attached to
3914
* the port.
3915
*
3916
* LOCKING:
3917
* Kernel thread context (may sleep)
3918
*
3919
* RETURNS:
3920
* 0 on success, negative errno otherwise
3921
*/
3922
int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3923
{
3924
unsigned int class = dev->class;
3925
u16 *id = (void *)dev->link->ap->sector_buf;
3926
int rc;
3927
3928
/* read ID data */
3929
rc = ata_dev_read_id(dev, &class, readid_flags, id);
3930
if (rc)
3931
return rc;
3932
3933
/* is the device still there? */
3934
if (!ata_dev_same_device(dev, class, id))
3935
return -ENODEV;
3936
3937
memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3938
return 0;
3939
}
3940
3941
/**
3942
* ata_dev_revalidate - Revalidate ATA device
3943
* @dev: device to revalidate
3944
* @new_class: new class code
3945
* @readid_flags: read ID flags
3946
*
3947
* Re-read IDENTIFY page, make sure @dev is still attached to the
3948
* port and reconfigure it according to the new IDENTIFY page.
3949
*
3950
* LOCKING:
3951
* Kernel thread context (may sleep)
3952
*
3953
* RETURNS:
3954
* 0 on success, negative errno otherwise
3955
*/
3956
int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3957
unsigned int readid_flags)
3958
{
3959
u64 n_sectors = dev->n_sectors;
3960
u64 n_native_sectors = dev->n_native_sectors;
3961
int rc;
3962
3963
if (!ata_dev_enabled(dev))
3964
return -ENODEV;
3965
3966
/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3967
if (ata_class_enabled(new_class) &&
3968
new_class != ATA_DEV_ATA &&
3969
new_class != ATA_DEV_ATAPI &&
3970
new_class != ATA_DEV_SEMB) {
3971
ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3972
dev->class, new_class);
3973
rc = -ENODEV;
3974
goto fail;
3975
}
3976
3977
/* re-read ID */
3978
rc = ata_dev_reread_id(dev, readid_flags);
3979
if (rc)
3980
goto fail;
3981
3982
/* configure device according to the new ID */
3983
rc = ata_dev_configure(dev);
3984
if (rc)
3985
goto fail;
3986
3987
/* verify n_sectors hasn't changed */
3988
if (dev->class != ATA_DEV_ATA || !n_sectors ||
3989
dev->n_sectors == n_sectors)
3990
return 0;
3991
3992
/* n_sectors has changed */
3993
ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n",
3994
(unsigned long long)n_sectors,
3995
(unsigned long long)dev->n_sectors);
3996
3997
/*
3998
* Something could have caused HPA to be unlocked
3999
* involuntarily. If n_native_sectors hasn't changed and the
4000
* new size matches it, keep the device.
4001
*/
4002
if (dev->n_native_sectors == n_native_sectors &&
4003
dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4004
ata_dev_printk(dev, KERN_WARNING,
4005
"new n_sectors matches native, probably "
4006
"late HPA unlock, n_sectors updated\n");
4007
/* use the larger n_sectors */
4008
return 0;
4009
}
4010
4011
/*
4012
* Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4013
* unlocking HPA in those cases.
4014
*
4015
* https://bugzilla.kernel.org/show_bug.cgi?id=15396
4016
*/
4017
if (dev->n_native_sectors == n_native_sectors &&
4018
dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4019
!(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4020
ata_dev_printk(dev, KERN_WARNING,
4021
"old n_sectors matches native, probably "
4022
"late HPA lock, will try to unlock HPA\n");
4023
/* try unlocking HPA */
4024
dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4025
rc = -EIO;
4026
} else
4027
rc = -ENODEV;
4028
4029
/* restore original n_[native_]sectors and fail */
4030
dev->n_native_sectors = n_native_sectors;
4031
dev->n_sectors = n_sectors;
4032
fail:
4033
ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4034
return rc;
4035
}
4036
4037
struct ata_blacklist_entry {
4038
const char *model_num;
4039
const char *model_rev;
4040
unsigned long horkage;
4041
};
4042
4043
static const struct ata_blacklist_entry ata_device_blacklist [] = {
4044
/* Devices with DMA related problems under Linux */
4045
{ "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4046
{ "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4047
{ "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4048
{ "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4049
{ "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4050
{ "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4051
{ "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4052
{ "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4053
{ "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4054
{ "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4055
{ "CRD-84", NULL, ATA_HORKAGE_NODMA },
4056
{ "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4057
{ "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4058
{ "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4059
{ "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4060
{ "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4061
{ "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4062
{ "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4063
{ "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4064
{ "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4065
{ "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4066
{ "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4067
{ "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4068
{ "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4069
{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4070
{ "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4071
{ "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4072
{ "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4073
/* Odd clown on sil3726/4726 PMPs */
4074
{ "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4075
4076
/* Weird ATAPI devices */
4077
{ "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4078
{ "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4079
4080
/* Devices we expect to fail diagnostics */
4081
4082
/* Devices where NCQ should be avoided */
4083
/* NCQ is slow */
4084
{ "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4085
{ "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4086
/* http://thread.gmane.org/gmane.linux.ide/14907 */
4087
{ "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4088
/* NCQ is broken */
4089
{ "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4090
{ "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4091
{ "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4092
{ "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4093
{ "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4094
4095
/* Seagate NCQ + FLUSH CACHE firmware bug */
4096
{ "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4097
ATA_HORKAGE_FIRMWARE_WARN },
4098
4099
{ "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4100
ATA_HORKAGE_FIRMWARE_WARN },
4101
4102
{ "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4103
ATA_HORKAGE_FIRMWARE_WARN },
4104
4105
{ "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4106
ATA_HORKAGE_FIRMWARE_WARN },
4107
4108
/* Blacklist entries taken from Silicon Image 3124/3132
4109
Windows driver .inf file - also several Linux problem reports */
4110
{ "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4111
{ "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4112
{ "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4113
4114
/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4115
{ "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4116
4117
/* devices which puke on READ_NATIVE_MAX */
4118
{ "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4119
{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4120
{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4121
{ "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4122
4123
/* this one allows HPA unlocking but fails IOs on the area */
4124
{ "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4125
4126
/* Devices which report 1 sector over size HPA */
4127
{ "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4128
{ "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4129
{ "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4130
4131
/* Devices which get the IVB wrong */
4132
{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4133
/* Maybe we should just blacklist TSSTcorp... */
4134
{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4135
4136
/* Devices that do not need bridging limits applied */
4137
{ "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4138
4139
/* Devices which aren't very happy with higher link speeds */
4140
{ "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4141
4142
/*
4143
* Devices which choke on SETXFER. Applies only if both the
4144
* device and controller are SATA.
4145
*/
4146
{ "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4147
{ "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4148
{ "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4149
4150
/* End Marker */
4151
{ }
4152
};
4153
4154
/**
4155
* glob_match - match a text string against a glob-style pattern
4156
* @text: the string to be examined
4157
* @pattern: the glob-style pattern to be matched against
4158
*
4159
* Either/both of text and pattern can be empty strings.
4160
*
4161
* Match text against a glob-style pattern, with wildcards and simple sets:
4162
*
4163
* ? matches any single character.
4164
* * matches any run of characters.
4165
* [xyz] matches a single character from the set: x, y, or z.
4166
* [a-d] matches a single character from the range: a, b, c, or d.
4167
* [a-d0-9] matches a single character from either range.
4168
*
4169
* The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4170
* Behaviour with malformed patterns is undefined, though generally reasonable.
4171
*
4172
* Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
4173
*
4174
* This function uses one level of recursion per '*' in pattern.
4175
* Since it calls _nothing_ else, and has _no_ explicit local variables,
4176
* this will not cause stack problems for any reasonable use here.
4177
*
4178
* RETURNS:
4179
* 0 on match, 1 otherwise.
4180
*/
4181
static int glob_match (const char *text, const char *pattern)
4182
{
4183
do {
4184
/* Match single character or a '?' wildcard */
4185
if (*text == *pattern || *pattern == '?') {
4186
if (!*pattern++)
4187
return 0; /* End of both strings: match */
4188
} else {
4189
/* Match single char against a '[' bracketed ']' pattern set */
4190
if (!*text || *pattern != '[')
4191
break; /* Not a pattern set */
4192
while (*++pattern && *pattern != ']' && *text != *pattern) {
4193
if (*pattern == '-' && *(pattern - 1) != '[')
4194
if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4195
++pattern;
4196
break;
4197
}
4198
}
4199
if (!*pattern || *pattern == ']')
4200
return 1; /* No match */
4201
while (*pattern && *pattern++ != ']');
4202
}
4203
} while (*++text && *pattern);
4204
4205
/* Match any run of chars against a '*' wildcard */
4206
if (*pattern == '*') {
4207
if (!*++pattern)
4208
return 0; /* Match: avoid recursion at end of pattern */
4209
/* Loop to handle additional pattern chars after the wildcard */
4210
while (*text) {
4211
if (glob_match(text, pattern) == 0)
4212
return 0; /* Remainder matched */
4213
++text; /* Absorb (match) this char and try again */
4214
}
4215
}
4216
if (!*text && !*pattern)
4217
return 0; /* End of both strings: match */
4218
return 1; /* No match */
4219
}
4220
4221
static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4222
{
4223
unsigned char model_num[ATA_ID_PROD_LEN + 1];
4224
unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4225
const struct ata_blacklist_entry *ad = ata_device_blacklist;
4226
4227
ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4228
ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4229
4230
while (ad->model_num) {
4231
if (!glob_match(model_num, ad->model_num)) {
4232
if (ad->model_rev == NULL)
4233
return ad->horkage;
4234
if (!glob_match(model_rev, ad->model_rev))
4235
return ad->horkage;
4236
}
4237
ad++;
4238
}
4239
return 0;
4240
}
4241
4242
static int ata_dma_blacklisted(const struct ata_device *dev)
4243
{
4244
/* We don't support polling DMA.
4245
* DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4246
* if the LLDD handles only interrupts in the HSM_ST_LAST state.
4247
*/
4248
if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4249
(dev->flags & ATA_DFLAG_CDB_INTR))
4250
return 1;
4251
return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4252
}
4253
4254
/**
4255
* ata_is_40wire - check drive side detection
4256
* @dev: device
4257
*
4258
* Perform drive side detection decoding, allowing for device vendors
4259
* who can't follow the documentation.
4260
*/
4261
4262
static int ata_is_40wire(struct ata_device *dev)
4263
{
4264
if (dev->horkage & ATA_HORKAGE_IVB)
4265
return ata_drive_40wire_relaxed(dev->id);
4266
return ata_drive_40wire(dev->id);
4267
}
4268
4269
/**
4270
* cable_is_40wire - 40/80/SATA decider
4271
* @ap: port to consider
4272
*
4273
* This function encapsulates the policy for speed management
4274
* in one place. At the moment we don't cache the result but
4275
* there is a good case for setting ap->cbl to the result when
4276
* we are called with unknown cables (and figuring out if it
4277
* impacts hotplug at all).
4278
*
4279
* Return 1 if the cable appears to be 40 wire.
4280
*/
4281
4282
static int cable_is_40wire(struct ata_port *ap)
4283
{
4284
struct ata_link *link;
4285
struct ata_device *dev;
4286
4287
/* If the controller thinks we are 40 wire, we are. */
4288
if (ap->cbl == ATA_CBL_PATA40)
4289
return 1;
4290
4291
/* If the controller thinks we are 80 wire, we are. */
4292
if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4293
return 0;
4294
4295
/* If the system is known to be 40 wire short cable (eg
4296
* laptop), then we allow 80 wire modes even if the drive
4297
* isn't sure.
4298
*/
4299
if (ap->cbl == ATA_CBL_PATA40_SHORT)
4300
return 0;
4301
4302
/* If the controller doesn't know, we scan.
4303
*
4304
* Note: We look for all 40 wire detects at this point. Any
4305
* 80 wire detect is taken to be 80 wire cable because
4306
* - in many setups only the one drive (slave if present) will
4307
* give a valid detect
4308
* - if you have a non detect capable drive you don't want it
4309
* to colour the choice
4310
*/
4311
ata_for_each_link(link, ap, EDGE) {
4312
ata_for_each_dev(dev, link, ENABLED) {
4313
if (!ata_is_40wire(dev))
4314
return 0;
4315
}
4316
}
4317
return 1;
4318
}
4319
4320
/**
4321
* ata_dev_xfermask - Compute supported xfermask of the given device
4322
* @dev: Device to compute xfermask for
4323
*
4324
* Compute supported xfermask of @dev and store it in
4325
* dev->*_mask. This function is responsible for applying all
4326
* known limits including host controller limits, device
4327
* blacklist, etc...
4328
*
4329
* LOCKING:
4330
* None.
4331
*/
4332
static void ata_dev_xfermask(struct ata_device *dev)
4333
{
4334
struct ata_link *link = dev->link;
4335
struct ata_port *ap = link->ap;
4336
struct ata_host *host = ap->host;
4337
unsigned long xfer_mask;
4338
4339
/* controller modes available */
4340
xfer_mask = ata_pack_xfermask(ap->pio_mask,
4341
ap->mwdma_mask, ap->udma_mask);
4342
4343
/* drive modes available */
4344
xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4345
dev->mwdma_mask, dev->udma_mask);
4346
xfer_mask &= ata_id_xfermask(dev->id);
4347
4348
/*
4349
* CFA Advanced TrueIDE timings are not allowed on a shared
4350
* cable
4351
*/
4352
if (ata_dev_pair(dev)) {
4353
/* No PIO5 or PIO6 */
4354
xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4355
/* No MWDMA3 or MWDMA 4 */
4356
xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4357
}
4358
4359
if (ata_dma_blacklisted(dev)) {
4360
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4361
ata_dev_printk(dev, KERN_WARNING,
4362
"device is on DMA blacklist, disabling DMA\n");
4363
}
4364
4365
if ((host->flags & ATA_HOST_SIMPLEX) &&
4366
host->simplex_claimed && host->simplex_claimed != ap) {
4367
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4368
ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4369
"other device, disabling DMA\n");
4370
}
4371
4372
if (ap->flags & ATA_FLAG_NO_IORDY)
4373
xfer_mask &= ata_pio_mask_no_iordy(dev);
4374
4375
if (ap->ops->mode_filter)
4376
xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4377
4378
/* Apply cable rule here. Don't apply it early because when
4379
* we handle hot plug the cable type can itself change.
4380
* Check this last so that we know if the transfer rate was
4381
* solely limited by the cable.
4382
* Unknown or 80 wire cables reported host side are checked
4383
* drive side as well. Cases where we know a 40wire cable
4384
* is used safely for 80 are not checked here.
4385
*/
4386
if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4387
/* UDMA/44 or higher would be available */
4388
if (cable_is_40wire(ap)) {
4389
ata_dev_printk(dev, KERN_WARNING,
4390
"limited to UDMA/33 due to 40-wire cable\n");
4391
xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4392
}
4393
4394
ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4395
&dev->mwdma_mask, &dev->udma_mask);
4396
}
4397
4398
/**
4399
* ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4400
* @dev: Device to which command will be sent
4401
*
4402
* Issue SET FEATURES - XFER MODE command to device @dev
4403
* on port @ap.
4404
*
4405
* LOCKING:
4406
* PCI/etc. bus probe sem.
4407
*
4408
* RETURNS:
4409
* 0 on success, AC_ERR_* mask otherwise.
4410
*/
4411
4412
static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4413
{
4414
struct ata_taskfile tf;
4415
unsigned int err_mask;
4416
4417
/* set up set-features taskfile */
4418
DPRINTK("set features - xfer mode\n");
4419
4420
/* Some controllers and ATAPI devices show flaky interrupt
4421
* behavior after setting xfer mode. Use polling instead.
4422
*/
4423
ata_tf_init(dev, &tf);
4424
tf.command = ATA_CMD_SET_FEATURES;
4425
tf.feature = SETFEATURES_XFER;
4426
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4427
tf.protocol = ATA_PROT_NODATA;
4428
/* If we are using IORDY we must send the mode setting command */
4429
if (ata_pio_need_iordy(dev))
4430
tf.nsect = dev->xfer_mode;
4431
/* If the device has IORDY and the controller does not - turn it off */
4432
else if (ata_id_has_iordy(dev->id))
4433
tf.nsect = 0x01;
4434
else /* In the ancient relic department - skip all of this */
4435
return 0;
4436
4437
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4438
4439
DPRINTK("EXIT, err_mask=%x\n", err_mask);
4440
return err_mask;
4441
}
4442
4443
/**
4444
* ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4445
* @dev: Device to which command will be sent
4446
* @enable: Whether to enable or disable the feature
4447
* @feature: The sector count represents the feature to set
4448
*
4449
* Issue SET FEATURES - SATA FEATURES command to device @dev
4450
* on port @ap with sector count
4451
*
4452
* LOCKING:
4453
* PCI/etc. bus probe sem.
4454
*
4455
* RETURNS:
4456
* 0 on success, AC_ERR_* mask otherwise.
4457
*/
4458
unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4459
{
4460
struct ata_taskfile tf;
4461
unsigned int err_mask;
4462
4463
/* set up set-features taskfile */
4464
DPRINTK("set features - SATA features\n");
4465
4466
ata_tf_init(dev, &tf);
4467
tf.command = ATA_CMD_SET_FEATURES;
4468
tf.feature = enable;
4469
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4470
tf.protocol = ATA_PROT_NODATA;
4471
tf.nsect = feature;
4472
4473
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4474
4475
DPRINTK("EXIT, err_mask=%x\n", err_mask);
4476
return err_mask;
4477
}
4478
4479
/**
4480
* ata_dev_init_params - Issue INIT DEV PARAMS command
4481
* @dev: Device to which command will be sent
4482
* @heads: Number of heads (taskfile parameter)
4483
* @sectors: Number of sectors (taskfile parameter)
4484
*
4485
* LOCKING:
4486
* Kernel thread context (may sleep)
4487
*
4488
* RETURNS:
4489
* 0 on success, AC_ERR_* mask otherwise.
4490
*/
4491
static unsigned int ata_dev_init_params(struct ata_device *dev,
4492
u16 heads, u16 sectors)
4493
{
4494
struct ata_taskfile tf;
4495
unsigned int err_mask;
4496
4497
/* Number of sectors per track 1-255. Number of heads 1-16 */
4498
if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4499
return AC_ERR_INVALID;
4500
4501
/* set up init dev params taskfile */
4502
DPRINTK("init dev params \n");
4503
4504
ata_tf_init(dev, &tf);
4505
tf.command = ATA_CMD_INIT_DEV_PARAMS;
4506
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4507
tf.protocol = ATA_PROT_NODATA;
4508
tf.nsect = sectors;
4509
tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4510
4511
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4512
/* A clean abort indicates an original or just out of spec drive
4513
and we should continue as we issue the setup based on the
4514
drive reported working geometry */
4515
if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4516
err_mask = 0;
4517
4518
DPRINTK("EXIT, err_mask=%x\n", err_mask);
4519
return err_mask;
4520
}
4521
4522
/**
4523
* ata_sg_clean - Unmap DMA memory associated with command
4524
* @qc: Command containing DMA memory to be released
4525
*
4526
* Unmap all mapped DMA memory associated with this command.
4527
*
4528
* LOCKING:
4529
* spin_lock_irqsave(host lock)
4530
*/
4531
void ata_sg_clean(struct ata_queued_cmd *qc)
4532
{
4533
struct ata_port *ap = qc->ap;
4534
struct scatterlist *sg = qc->sg;
4535
int dir = qc->dma_dir;
4536
4537
WARN_ON_ONCE(sg == NULL);
4538
4539
VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4540
4541
if (qc->n_elem)
4542
dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4543
4544
qc->flags &= ~ATA_QCFLAG_DMAMAP;
4545
qc->sg = NULL;
4546
}
4547
4548
/**
4549
* atapi_check_dma - Check whether ATAPI DMA can be supported
4550
* @qc: Metadata associated with taskfile to check
4551
*
4552
* Allow low-level driver to filter ATA PACKET commands, returning
4553
* a status indicating whether or not it is OK to use DMA for the
4554
* supplied PACKET command.
4555
*
4556
* LOCKING:
4557
* spin_lock_irqsave(host lock)
4558
*
4559
* RETURNS: 0 when ATAPI DMA can be used
4560
* nonzero otherwise
4561
*/
4562
int atapi_check_dma(struct ata_queued_cmd *qc)
4563
{
4564
struct ata_port *ap = qc->ap;
4565
4566
/* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4567
* few ATAPI devices choke on such DMA requests.
4568
*/
4569
if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4570
unlikely(qc->nbytes & 15))
4571
return 1;
4572
4573
if (ap->ops->check_atapi_dma)
4574
return ap->ops->check_atapi_dma(qc);
4575
4576
return 0;
4577
}
4578
4579
/**
4580
* ata_std_qc_defer - Check whether a qc needs to be deferred
4581
* @qc: ATA command in question
4582
*
4583
* Non-NCQ commands cannot run with any other command, NCQ or
4584
* not. As upper layer only knows the queue depth, we are
4585
* responsible for maintaining exclusion. This function checks
4586
* whether a new command @qc can be issued.
4587
*
4588
* LOCKING:
4589
* spin_lock_irqsave(host lock)
4590
*
4591
* RETURNS:
4592
* ATA_DEFER_* if deferring is needed, 0 otherwise.
4593
*/
4594
int ata_std_qc_defer(struct ata_queued_cmd *qc)
4595
{
4596
struct ata_link *link = qc->dev->link;
4597
4598
if (qc->tf.protocol == ATA_PROT_NCQ) {
4599
if (!ata_tag_valid(link->active_tag))
4600
return 0;
4601
} else {
4602
if (!ata_tag_valid(link->active_tag) && !link->sactive)
4603
return 0;
4604
}
4605
4606
return ATA_DEFER_LINK;
4607
}
4608
4609
void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4610
4611
/**
4612
* ata_sg_init - Associate command with scatter-gather table.
4613
* @qc: Command to be associated
4614
* @sg: Scatter-gather table.
4615
* @n_elem: Number of elements in s/g table.
4616
*
4617
* Initialize the data-related elements of queued_cmd @qc
4618
* to point to a scatter-gather table @sg, containing @n_elem
4619
* elements.
4620
*
4621
* LOCKING:
4622
* spin_lock_irqsave(host lock)
4623
*/
4624
void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4625
unsigned int n_elem)
4626
{
4627
qc->sg = sg;
4628
qc->n_elem = n_elem;
4629
qc->cursg = qc->sg;
4630
}
4631
4632
/**
4633
* ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4634
* @qc: Command with scatter-gather table to be mapped.
4635
*
4636
* DMA-map the scatter-gather table associated with queued_cmd @qc.
4637
*
4638
* LOCKING:
4639
* spin_lock_irqsave(host lock)
4640
*
4641
* RETURNS:
4642
* Zero on success, negative on error.
4643
*
4644
*/
4645
static int ata_sg_setup(struct ata_queued_cmd *qc)
4646
{
4647
struct ata_port *ap = qc->ap;
4648
unsigned int n_elem;
4649
4650
VPRINTK("ENTER, ata%u\n", ap->print_id);
4651
4652
n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4653
if (n_elem < 1)
4654
return -1;
4655
4656
DPRINTK("%d sg elements mapped\n", n_elem);
4657
qc->orig_n_elem = qc->n_elem;
4658
qc->n_elem = n_elem;
4659
qc->flags |= ATA_QCFLAG_DMAMAP;
4660
4661
return 0;
4662
}
4663
4664
/**
4665
* swap_buf_le16 - swap halves of 16-bit words in place
4666
* @buf: Buffer to swap
4667
* @buf_words: Number of 16-bit words in buffer.
4668
*
4669
* Swap halves of 16-bit words if needed to convert from
4670
* little-endian byte order to native cpu byte order, or
4671
* vice-versa.
4672
*
4673
* LOCKING:
4674
* Inherited from caller.
4675
*/
4676
void swap_buf_le16(u16 *buf, unsigned int buf_words)
4677
{
4678
#ifdef __BIG_ENDIAN
4679
unsigned int i;
4680
4681
for (i = 0; i < buf_words; i++)
4682
buf[i] = le16_to_cpu(buf[i]);
4683
#endif /* __BIG_ENDIAN */
4684
}
4685
4686
/**
4687
* ata_qc_new - Request an available ATA command, for queueing
4688
* @ap: target port
4689
*
4690
* LOCKING:
4691
* None.
4692
*/
4693
4694
static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4695
{
4696
struct ata_queued_cmd *qc = NULL;
4697
unsigned int i;
4698
4699
/* no command while frozen */
4700
if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4701
return NULL;
4702
4703
/* the last tag is reserved for internal command. */
4704
for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4705
if (!test_and_set_bit(i, &ap->qc_allocated)) {
4706
qc = __ata_qc_from_tag(ap, i);
4707
break;
4708
}
4709
4710
if (qc)
4711
qc->tag = i;
4712
4713
return qc;
4714
}
4715
4716
/**
4717
* ata_qc_new_init - Request an available ATA command, and initialize it
4718
* @dev: Device from whom we request an available command structure
4719
*
4720
* LOCKING:
4721
* None.
4722
*/
4723
4724
struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4725
{
4726
struct ata_port *ap = dev->link->ap;
4727
struct ata_queued_cmd *qc;
4728
4729
qc = ata_qc_new(ap);
4730
if (qc) {
4731
qc->scsicmd = NULL;
4732
qc->ap = ap;
4733
qc->dev = dev;
4734
4735
ata_qc_reinit(qc);
4736
}
4737
4738
return qc;
4739
}
4740
4741
/**
4742
* ata_qc_free - free unused ata_queued_cmd
4743
* @qc: Command to complete
4744
*
4745
* Designed to free unused ata_queued_cmd object
4746
* in case something prevents using it.
4747
*
4748
* LOCKING:
4749
* spin_lock_irqsave(host lock)
4750
*/
4751
void ata_qc_free(struct ata_queued_cmd *qc)
4752
{
4753
struct ata_port *ap;
4754
unsigned int tag;
4755
4756
WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4757
ap = qc->ap;
4758
4759
qc->flags = 0;
4760
tag = qc->tag;
4761
if (likely(ata_tag_valid(tag))) {
4762
qc->tag = ATA_TAG_POISON;
4763
clear_bit(tag, &ap->qc_allocated);
4764
}
4765
}
4766
4767
void __ata_qc_complete(struct ata_queued_cmd *qc)
4768
{
4769
struct ata_port *ap;
4770
struct ata_link *link;
4771
4772
WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4773
WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4774
ap = qc->ap;
4775
link = qc->dev->link;
4776
4777
if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4778
ata_sg_clean(qc);
4779
4780
/* command should be marked inactive atomically with qc completion */
4781
if (qc->tf.protocol == ATA_PROT_NCQ) {
4782
link->sactive &= ~(1 << qc->tag);
4783
if (!link->sactive)
4784
ap->nr_active_links--;
4785
} else {
4786
link->active_tag = ATA_TAG_POISON;
4787
ap->nr_active_links--;
4788
}
4789
4790
/* clear exclusive status */
4791
if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4792
ap->excl_link == link))
4793
ap->excl_link = NULL;
4794
4795
/* atapi: mark qc as inactive to prevent the interrupt handler
4796
* from completing the command twice later, before the error handler
4797
* is called. (when rc != 0 and atapi request sense is needed)
4798
*/
4799
qc->flags &= ~ATA_QCFLAG_ACTIVE;
4800
ap->qc_active &= ~(1 << qc->tag);
4801
4802
/* call completion callback */
4803
qc->complete_fn(qc);
4804
}
4805
4806
static void fill_result_tf(struct ata_queued_cmd *qc)
4807
{
4808
struct ata_port *ap = qc->ap;
4809
4810
qc->result_tf.flags = qc->tf.flags;
4811
ap->ops->qc_fill_rtf(qc);
4812
}
4813
4814
static void ata_verify_xfer(struct ata_queued_cmd *qc)
4815
{
4816
struct ata_device *dev = qc->dev;
4817
4818
if (ata_is_nodata(qc->tf.protocol))
4819
return;
4820
4821
if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4822
return;
4823
4824
dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4825
}
4826
4827
/**
4828
* ata_qc_complete - Complete an active ATA command
4829
* @qc: Command to complete
4830
*
4831
* Indicate to the mid and upper layers that an ATA command has
4832
* completed, with either an ok or not-ok status.
4833
*
4834
* Refrain from calling this function multiple times when
4835
* successfully completing multiple NCQ commands.
4836
* ata_qc_complete_multiple() should be used instead, which will
4837
* properly update IRQ expect state.
4838
*
4839
* LOCKING:
4840
* spin_lock_irqsave(host lock)
4841
*/
4842
void ata_qc_complete(struct ata_queued_cmd *qc)
4843
{
4844
struct ata_port *ap = qc->ap;
4845
4846
/* XXX: New EH and old EH use different mechanisms to
4847
* synchronize EH with regular execution path.
4848
*
4849
* In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4850
* Normal execution path is responsible for not accessing a
4851
* failed qc. libata core enforces the rule by returning NULL
4852
* from ata_qc_from_tag() for failed qcs.
4853
*
4854
* Old EH depends on ata_qc_complete() nullifying completion
4855
* requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4856
* not synchronize with interrupt handler. Only PIO task is
4857
* taken care of.
4858
*/
4859
if (ap->ops->error_handler) {
4860
struct ata_device *dev = qc->dev;
4861
struct ata_eh_info *ehi = &dev->link->eh_info;
4862
4863
if (unlikely(qc->err_mask))
4864
qc->flags |= ATA_QCFLAG_FAILED;
4865
4866
/*
4867
* Finish internal commands without any further processing
4868
* and always with the result TF filled.
4869
*/
4870
if (unlikely(ata_tag_internal(qc->tag))) {
4871
fill_result_tf(qc);
4872
__ata_qc_complete(qc);
4873
return;
4874
}
4875
4876
/*
4877
* Non-internal qc has failed. Fill the result TF and
4878
* summon EH.
4879
*/
4880
if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4881
fill_result_tf(qc);
4882
ata_qc_schedule_eh(qc);
4883
return;
4884
}
4885
4886
WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4887
4888
/* read result TF if requested */
4889
if (qc->flags & ATA_QCFLAG_RESULT_TF)
4890
fill_result_tf(qc);
4891
4892
/* Some commands need post-processing after successful
4893
* completion.
4894
*/
4895
switch (qc->tf.command) {
4896
case ATA_CMD_SET_FEATURES:
4897
if (qc->tf.feature != SETFEATURES_WC_ON &&
4898
qc->tf.feature != SETFEATURES_WC_OFF)
4899
break;
4900
/* fall through */
4901
case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4902
case ATA_CMD_SET_MULTI: /* multi_count changed */
4903
/* revalidate device */
4904
ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4905
ata_port_schedule_eh(ap);
4906
break;
4907
4908
case ATA_CMD_SLEEP:
4909
dev->flags |= ATA_DFLAG_SLEEPING;
4910
break;
4911
}
4912
4913
if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4914
ata_verify_xfer(qc);
4915
4916
__ata_qc_complete(qc);
4917
} else {
4918
if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4919
return;
4920
4921
/* read result TF if failed or requested */
4922
if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4923
fill_result_tf(qc);
4924
4925
__ata_qc_complete(qc);
4926
}
4927
}
4928
4929
/**
4930
* ata_qc_complete_multiple - Complete multiple qcs successfully
4931
* @ap: port in question
4932
* @qc_active: new qc_active mask
4933
*
4934
* Complete in-flight commands. This functions is meant to be
4935
* called from low-level driver's interrupt routine to complete
4936
* requests normally. ap->qc_active and @qc_active is compared
4937
* and commands are completed accordingly.
4938
*
4939
* Always use this function when completing multiple NCQ commands
4940
* from IRQ handlers instead of calling ata_qc_complete()
4941
* multiple times to keep IRQ expect status properly in sync.
4942
*
4943
* LOCKING:
4944
* spin_lock_irqsave(host lock)
4945
*
4946
* RETURNS:
4947
* Number of completed commands on success, -errno otherwise.
4948
*/
4949
int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4950
{
4951
int nr_done = 0;
4952
u32 done_mask;
4953
4954
done_mask = ap->qc_active ^ qc_active;
4955
4956
if (unlikely(done_mask & qc_active)) {
4957
ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4958
"(%08x->%08x)\n", ap->qc_active, qc_active);
4959
return -EINVAL;
4960
}
4961
4962
while (done_mask) {
4963
struct ata_queued_cmd *qc;
4964
unsigned int tag = __ffs(done_mask);
4965
4966
qc = ata_qc_from_tag(ap, tag);
4967
if (qc) {
4968
ata_qc_complete(qc);
4969
nr_done++;
4970
}
4971
done_mask &= ~(1 << tag);
4972
}
4973
4974
return nr_done;
4975
}
4976
4977
/**
4978
* ata_qc_issue - issue taskfile to device
4979
* @qc: command to issue to device
4980
*
4981
* Prepare an ATA command to submission to device.
4982
* This includes mapping the data into a DMA-able
4983
* area, filling in the S/G table, and finally
4984
* writing the taskfile to hardware, starting the command.
4985
*
4986
* LOCKING:
4987
* spin_lock_irqsave(host lock)
4988
*/
4989
void ata_qc_issue(struct ata_queued_cmd *qc)
4990
{
4991
struct ata_port *ap = qc->ap;
4992
struct ata_link *link = qc->dev->link;
4993
u8 prot = qc->tf.protocol;
4994
4995
/* Make sure only one non-NCQ command is outstanding. The
4996
* check is skipped for old EH because it reuses active qc to
4997
* request ATAPI sense.
4998
*/
4999
WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5000
5001
if (ata_is_ncq(prot)) {
5002
WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5003
5004
if (!link->sactive)
5005
ap->nr_active_links++;
5006
link->sactive |= 1 << qc->tag;
5007
} else {
5008
WARN_ON_ONCE(link->sactive);
5009
5010
ap->nr_active_links++;
5011
link->active_tag = qc->tag;
5012
}
5013
5014
qc->flags |= ATA_QCFLAG_ACTIVE;
5015
ap->qc_active |= 1 << qc->tag;
5016
5017
/*
5018
* We guarantee to LLDs that they will have at least one
5019
* non-zero sg if the command is a data command.
5020
*/
5021
if (WARN_ON_ONCE(ata_is_data(prot) &&
5022
(!qc->sg || !qc->n_elem || !qc->nbytes)))
5023
goto sys_err;
5024
5025
if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5026
(ap->flags & ATA_FLAG_PIO_DMA)))
5027
if (ata_sg_setup(qc))
5028
goto sys_err;
5029
5030
/* if device is sleeping, schedule reset and abort the link */
5031
if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5032
link->eh_info.action |= ATA_EH_RESET;
5033
ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5034
ata_link_abort(link);
5035
return;
5036
}
5037
5038
ap->ops->qc_prep(qc);
5039
5040
qc->err_mask |= ap->ops->qc_issue(qc);
5041
if (unlikely(qc->err_mask))
5042
goto err;
5043
return;
5044
5045
sys_err:
5046
qc->err_mask |= AC_ERR_SYSTEM;
5047
err:
5048
ata_qc_complete(qc);
5049
}
5050
5051
/**
5052
* sata_scr_valid - test whether SCRs are accessible
5053
* @link: ATA link to test SCR accessibility for
5054
*
5055
* Test whether SCRs are accessible for @link.
5056
*
5057
* LOCKING:
5058
* None.
5059
*
5060
* RETURNS:
5061
* 1 if SCRs are accessible, 0 otherwise.
5062
*/
5063
int sata_scr_valid(struct ata_link *link)
5064
{
5065
struct ata_port *ap = link->ap;
5066
5067
return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5068
}
5069
5070
/**
5071
* sata_scr_read - read SCR register of the specified port
5072
* @link: ATA link to read SCR for
5073
* @reg: SCR to read
5074
* @val: Place to store read value
5075
*
5076
* Read SCR register @reg of @link into *@val. This function is
5077
* guaranteed to succeed if @link is ap->link, the cable type of
5078
* the port is SATA and the port implements ->scr_read.
5079
*
5080
* LOCKING:
5081
* None if @link is ap->link. Kernel thread context otherwise.
5082
*
5083
* RETURNS:
5084
* 0 on success, negative errno on failure.
5085
*/
5086
int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5087
{
5088
if (ata_is_host_link(link)) {
5089
if (sata_scr_valid(link))
5090
return link->ap->ops->scr_read(link, reg, val);
5091
return -EOPNOTSUPP;
5092
}
5093
5094
return sata_pmp_scr_read(link, reg, val);
5095
}
5096
5097
/**
5098
* sata_scr_write - write SCR register of the specified port
5099
* @link: ATA link to write SCR for
5100
* @reg: SCR to write
5101
* @val: value to write
5102
*
5103
* Write @val to SCR register @reg of @link. This function is
5104
* guaranteed to succeed if @link is ap->link, the cable type of
5105
* the port is SATA and the port implements ->scr_read.
5106
*
5107
* LOCKING:
5108
* None if @link is ap->link. Kernel thread context otherwise.
5109
*
5110
* RETURNS:
5111
* 0 on success, negative errno on failure.
5112
*/
5113
int sata_scr_write(struct ata_link *link, int reg, u32 val)
5114
{
5115
if (ata_is_host_link(link)) {
5116
if (sata_scr_valid(link))
5117
return link->ap->ops->scr_write(link, reg, val);
5118
return -EOPNOTSUPP;
5119
}
5120
5121
return sata_pmp_scr_write(link, reg, val);
5122
}
5123
5124
/**
5125
* sata_scr_write_flush - write SCR register of the specified port and flush
5126
* @link: ATA link to write SCR for
5127
* @reg: SCR to write
5128
* @val: value to write
5129
*
5130
* This function is identical to sata_scr_write() except that this
5131
* function performs flush after writing to the register.
5132
*
5133
* LOCKING:
5134
* None if @link is ap->link. Kernel thread context otherwise.
5135
*
5136
* RETURNS:
5137
* 0 on success, negative errno on failure.
5138
*/
5139
int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5140
{
5141
if (ata_is_host_link(link)) {
5142
int rc;
5143
5144
if (sata_scr_valid(link)) {
5145
rc = link->ap->ops->scr_write(link, reg, val);
5146
if (rc == 0)
5147
rc = link->ap->ops->scr_read(link, reg, &val);
5148
return rc;
5149
}
5150
return -EOPNOTSUPP;
5151
}
5152
5153
return sata_pmp_scr_write(link, reg, val);
5154
}
5155
5156
/**
5157
* ata_phys_link_online - test whether the given link is online
5158
* @link: ATA link to test
5159
*
5160
* Test whether @link is online. Note that this function returns
5161
* 0 if online status of @link cannot be obtained, so
5162
* ata_link_online(link) != !ata_link_offline(link).
5163
*
5164
* LOCKING:
5165
* None.
5166
*
5167
* RETURNS:
5168
* True if the port online status is available and online.
5169
*/
5170
bool ata_phys_link_online(struct ata_link *link)
5171
{
5172
u32 sstatus;
5173
5174
if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5175
ata_sstatus_online(sstatus))
5176
return true;
5177
return false;
5178
}
5179
5180
/**
5181
* ata_phys_link_offline - test whether the given link is offline
5182
* @link: ATA link to test
5183
*
5184
* Test whether @link is offline. Note that this function
5185
* returns 0 if offline status of @link cannot be obtained, so
5186
* ata_link_online(link) != !ata_link_offline(link).
5187
*
5188
* LOCKING:
5189
* None.
5190
*
5191
* RETURNS:
5192
* True if the port offline status is available and offline.
5193
*/
5194
bool ata_phys_link_offline(struct ata_link *link)
5195
{
5196
u32 sstatus;
5197
5198
if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5199
!ata_sstatus_online(sstatus))
5200
return true;
5201
return false;
5202
}
5203
5204
/**
5205
* ata_link_online - test whether the given link is online
5206
* @link: ATA link to test
5207
*
5208
* Test whether @link is online. This is identical to
5209
* ata_phys_link_online() when there's no slave link. When
5210
* there's a slave link, this function should only be called on
5211
* the master link and will return true if any of M/S links is
5212
* online.
5213
*
5214
* LOCKING:
5215
* None.
5216
*
5217
* RETURNS:
5218
* True if the port online status is available and online.
5219
*/
5220
bool ata_link_online(struct ata_link *link)
5221
{
5222
struct ata_link *slave = link->ap->slave_link;
5223
5224
WARN_ON(link == slave); /* shouldn't be called on slave link */
5225
5226
return ata_phys_link_online(link) ||
5227
(slave && ata_phys_link_online(slave));
5228
}
5229
5230
/**
5231
* ata_link_offline - test whether the given link is offline
5232
* @link: ATA link to test
5233
*
5234
* Test whether @link is offline. This is identical to
5235
* ata_phys_link_offline() when there's no slave link. When
5236
* there's a slave link, this function should only be called on
5237
* the master link and will return true if both M/S links are
5238
* offline.
5239
*
5240
* LOCKING:
5241
* None.
5242
*
5243
* RETURNS:
5244
* True if the port offline status is available and offline.
5245
*/
5246
bool ata_link_offline(struct ata_link *link)
5247
{
5248
struct ata_link *slave = link->ap->slave_link;
5249
5250
WARN_ON(link == slave); /* shouldn't be called on slave link */
5251
5252
return ata_phys_link_offline(link) &&
5253
(!slave || ata_phys_link_offline(slave));
5254
}
5255
5256
#ifdef CONFIG_PM
5257
static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5258
unsigned int action, unsigned int ehi_flags,
5259
int wait)
5260
{
5261
unsigned long flags;
5262
int i, rc;
5263
5264
for (i = 0; i < host->n_ports; i++) {
5265
struct ata_port *ap = host->ports[i];
5266
struct ata_link *link;
5267
5268
/* Previous resume operation might still be in
5269
* progress. Wait for PM_PENDING to clear.
5270
*/
5271
if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5272
ata_port_wait_eh(ap);
5273
WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5274
}
5275
5276
/* request PM ops to EH */
5277
spin_lock_irqsave(ap->lock, flags);
5278
5279
ap->pm_mesg = mesg;
5280
if (wait) {
5281
rc = 0;
5282
ap->pm_result = &rc;
5283
}
5284
5285
ap->pflags |= ATA_PFLAG_PM_PENDING;
5286
ata_for_each_link(link, ap, HOST_FIRST) {
5287
link->eh_info.action |= action;
5288
link->eh_info.flags |= ehi_flags;
5289
}
5290
5291
ata_port_schedule_eh(ap);
5292
5293
spin_unlock_irqrestore(ap->lock, flags);
5294
5295
/* wait and check result */
5296
if (wait) {
5297
ata_port_wait_eh(ap);
5298
WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5299
if (rc)
5300
return rc;
5301
}
5302
}
5303
5304
return 0;
5305
}
5306
5307
/**
5308
* ata_host_suspend - suspend host
5309
* @host: host to suspend
5310
* @mesg: PM message
5311
*
5312
* Suspend @host. Actual operation is performed by EH. This
5313
* function requests EH to perform PM operations and waits for EH
5314
* to finish.
5315
*
5316
* LOCKING:
5317
* Kernel thread context (may sleep).
5318
*
5319
* RETURNS:
5320
* 0 on success, -errno on failure.
5321
*/
5322
int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5323
{
5324
unsigned int ehi_flags = ATA_EHI_QUIET;
5325
int rc;
5326
5327
/*
5328
* On some hardware, device fails to respond after spun down
5329
* for suspend. As the device won't be used before being
5330
* resumed, we don't need to touch the device. Ask EH to skip
5331
* the usual stuff and proceed directly to suspend.
5332
*
5333
* http://thread.gmane.org/gmane.linux.ide/46764
5334
*/
5335
if (mesg.event == PM_EVENT_SUSPEND)
5336
ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5337
5338
rc = ata_host_request_pm(host, mesg, 0, ehi_flags, 1);
5339
if (rc == 0)
5340
host->dev->power.power_state = mesg;
5341
return rc;
5342
}
5343
5344
/**
5345
* ata_host_resume - resume host
5346
* @host: host to resume
5347
*
5348
* Resume @host. Actual operation is performed by EH. This
5349
* function requests EH to perform PM operations and returns.
5350
* Note that all resume operations are performed parallelly.
5351
*
5352
* LOCKING:
5353
* Kernel thread context (may sleep).
5354
*/
5355
void ata_host_resume(struct ata_host *host)
5356
{
5357
ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5358
ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5359
host->dev->power.power_state = PMSG_ON;
5360
}
5361
#endif
5362
5363
/**
5364
* ata_dev_init - Initialize an ata_device structure
5365
* @dev: Device structure to initialize
5366
*
5367
* Initialize @dev in preparation for probing.
5368
*
5369
* LOCKING:
5370
* Inherited from caller.
5371
*/
5372
void ata_dev_init(struct ata_device *dev)
5373
{
5374
struct ata_link *link = ata_dev_phys_link(dev);
5375
struct ata_port *ap = link->ap;
5376
unsigned long flags;
5377
5378
/* SATA spd limit is bound to the attached device, reset together */
5379
link->sata_spd_limit = link->hw_sata_spd_limit;
5380
link->sata_spd = 0;
5381
5382
/* High bits of dev->flags are used to record warm plug
5383
* requests which occur asynchronously. Synchronize using
5384
* host lock.
5385
*/
5386
spin_lock_irqsave(ap->lock, flags);
5387
dev->flags &= ~ATA_DFLAG_INIT_MASK;
5388
dev->horkage = 0;
5389
spin_unlock_irqrestore(ap->lock, flags);
5390
5391
memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5392
ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5393
dev->pio_mask = UINT_MAX;
5394
dev->mwdma_mask = UINT_MAX;
5395
dev->udma_mask = UINT_MAX;
5396
}
5397
5398
/**
5399
* ata_link_init - Initialize an ata_link structure
5400
* @ap: ATA port link is attached to
5401
* @link: Link structure to initialize
5402
* @pmp: Port multiplier port number
5403
*
5404
* Initialize @link.
5405
*
5406
* LOCKING:
5407
* Kernel thread context (may sleep)
5408
*/
5409
void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5410
{
5411
int i;
5412
5413
/* clear everything except for devices */
5414
memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5415
ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5416
5417
link->ap = ap;
5418
link->pmp = pmp;
5419
link->active_tag = ATA_TAG_POISON;
5420
link->hw_sata_spd_limit = UINT_MAX;
5421
5422
/* can't use iterator, ap isn't initialized yet */
5423
for (i = 0; i < ATA_MAX_DEVICES; i++) {
5424
struct ata_device *dev = &link->device[i];
5425
5426
dev->link = link;
5427
dev->devno = dev - link->device;
5428
#ifdef CONFIG_ATA_ACPI
5429
dev->gtf_filter = ata_acpi_gtf_filter;
5430
#endif
5431
ata_dev_init(dev);
5432
}
5433
}
5434
5435
/**
5436
* sata_link_init_spd - Initialize link->sata_spd_limit
5437
* @link: Link to configure sata_spd_limit for
5438
*
5439
* Initialize @link->[hw_]sata_spd_limit to the currently
5440
* configured value.
5441
*
5442
* LOCKING:
5443
* Kernel thread context (may sleep).
5444
*
5445
* RETURNS:
5446
* 0 on success, -errno on failure.
5447
*/
5448
int sata_link_init_spd(struct ata_link *link)
5449
{
5450
u8 spd;
5451
int rc;
5452
5453
rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5454
if (rc)
5455
return rc;
5456
5457
spd = (link->saved_scontrol >> 4) & 0xf;
5458
if (spd)
5459
link->hw_sata_spd_limit &= (1 << spd) - 1;
5460
5461
ata_force_link_limits(link);
5462
5463
link->sata_spd_limit = link->hw_sata_spd_limit;
5464
5465
return 0;
5466
}
5467
5468
/**
5469
* ata_port_alloc - allocate and initialize basic ATA port resources
5470
* @host: ATA host this allocated port belongs to
5471
*
5472
* Allocate and initialize basic ATA port resources.
5473
*
5474
* RETURNS:
5475
* Allocate ATA port on success, NULL on failure.
5476
*
5477
* LOCKING:
5478
* Inherited from calling layer (may sleep).
5479
*/
5480
struct ata_port *ata_port_alloc(struct ata_host *host)
5481
{
5482
struct ata_port *ap;
5483
5484
DPRINTK("ENTER\n");
5485
5486
ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5487
if (!ap)
5488
return NULL;
5489
5490
ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5491
ap->lock = &host->lock;
5492
ap->print_id = -1;
5493
ap->host = host;
5494
ap->dev = host->dev;
5495
5496
#if defined(ATA_VERBOSE_DEBUG)
5497
/* turn on all debugging levels */
5498
ap->msg_enable = 0x00FF;
5499
#elif defined(ATA_DEBUG)
5500
ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5501
#else
5502
ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5503
#endif
5504
5505
mutex_init(&ap->scsi_scan_mutex);
5506
INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5507
INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5508
INIT_LIST_HEAD(&ap->eh_done_q);
5509
init_waitqueue_head(&ap->eh_wait_q);
5510
init_completion(&ap->park_req_pending);
5511
init_timer_deferrable(&ap->fastdrain_timer);
5512
ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5513
ap->fastdrain_timer.data = (unsigned long)ap;
5514
5515
ap->cbl = ATA_CBL_NONE;
5516
5517
ata_link_init(ap, &ap->link, 0);
5518
5519
#ifdef ATA_IRQ_TRAP
5520
ap->stats.unhandled_irq = 1;
5521
ap->stats.idle_irq = 1;
5522
#endif
5523
ata_sff_port_init(ap);
5524
5525
return ap;
5526
}
5527
5528
static void ata_host_release(struct device *gendev, void *res)
5529
{
5530
struct ata_host *host = dev_get_drvdata(gendev);
5531
int i;
5532
5533
for (i = 0; i < host->n_ports; i++) {
5534
struct ata_port *ap = host->ports[i];
5535
5536
if (!ap)
5537
continue;
5538
5539
if (ap->scsi_host)
5540
scsi_host_put(ap->scsi_host);
5541
5542
kfree(ap->pmp_link);
5543
kfree(ap->slave_link);
5544
kfree(ap);
5545
host->ports[i] = NULL;
5546
}
5547
5548
dev_set_drvdata(gendev, NULL);
5549
}
5550
5551
/**
5552
* ata_host_alloc - allocate and init basic ATA host resources
5553
* @dev: generic device this host is associated with
5554
* @max_ports: maximum number of ATA ports associated with this host
5555
*
5556
* Allocate and initialize basic ATA host resources. LLD calls
5557
* this function to allocate a host, initializes it fully and
5558
* attaches it using ata_host_register().
5559
*
5560
* @max_ports ports are allocated and host->n_ports is
5561
* initialized to @max_ports. The caller is allowed to decrease
5562
* host->n_ports before calling ata_host_register(). The unused
5563
* ports will be automatically freed on registration.
5564
*
5565
* RETURNS:
5566
* Allocate ATA host on success, NULL on failure.
5567
*
5568
* LOCKING:
5569
* Inherited from calling layer (may sleep).
5570
*/
5571
struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5572
{
5573
struct ata_host *host;
5574
size_t sz;
5575
int i;
5576
5577
DPRINTK("ENTER\n");
5578
5579
if (!devres_open_group(dev, NULL, GFP_KERNEL))
5580
return NULL;
5581
5582
/* alloc a container for our list of ATA ports (buses) */
5583
sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5584
/* alloc a container for our list of ATA ports (buses) */
5585
host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5586
if (!host)
5587
goto err_out;
5588
5589
devres_add(dev, host);
5590
dev_set_drvdata(dev, host);
5591
5592
spin_lock_init(&host->lock);
5593
mutex_init(&host->eh_mutex);
5594
host->dev = dev;
5595
host->n_ports = max_ports;
5596
5597
/* allocate ports bound to this host */
5598
for (i = 0; i < max_ports; i++) {
5599
struct ata_port *ap;
5600
5601
ap = ata_port_alloc(host);
5602
if (!ap)
5603
goto err_out;
5604
5605
ap->port_no = i;
5606
host->ports[i] = ap;
5607
}
5608
5609
devres_remove_group(dev, NULL);
5610
return host;
5611
5612
err_out:
5613
devres_release_group(dev, NULL);
5614
return NULL;
5615
}
5616
5617
/**
5618
* ata_host_alloc_pinfo - alloc host and init with port_info array
5619
* @dev: generic device this host is associated with
5620
* @ppi: array of ATA port_info to initialize host with
5621
* @n_ports: number of ATA ports attached to this host
5622
*
5623
* Allocate ATA host and initialize with info from @ppi. If NULL
5624
* terminated, @ppi may contain fewer entries than @n_ports. The
5625
* last entry will be used for the remaining ports.
5626
*
5627
* RETURNS:
5628
* Allocate ATA host on success, NULL on failure.
5629
*
5630
* LOCKING:
5631
* Inherited from calling layer (may sleep).
5632
*/
5633
struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5634
const struct ata_port_info * const * ppi,
5635
int n_ports)
5636
{
5637
const struct ata_port_info *pi;
5638
struct ata_host *host;
5639
int i, j;
5640
5641
host = ata_host_alloc(dev, n_ports);
5642
if (!host)
5643
return NULL;
5644
5645
for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5646
struct ata_port *ap = host->ports[i];
5647
5648
if (ppi[j])
5649
pi = ppi[j++];
5650
5651
ap->pio_mask = pi->pio_mask;
5652
ap->mwdma_mask = pi->mwdma_mask;
5653
ap->udma_mask = pi->udma_mask;
5654
ap->flags |= pi->flags;
5655
ap->link.flags |= pi->link_flags;
5656
ap->ops = pi->port_ops;
5657
5658
if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5659
host->ops = pi->port_ops;
5660
}
5661
5662
return host;
5663
}
5664
5665
/**
5666
* ata_slave_link_init - initialize slave link
5667
* @ap: port to initialize slave link for
5668
*
5669
* Create and initialize slave link for @ap. This enables slave
5670
* link handling on the port.
5671
*
5672
* In libata, a port contains links and a link contains devices.
5673
* There is single host link but if a PMP is attached to it,
5674
* there can be multiple fan-out links. On SATA, there's usually
5675
* a single device connected to a link but PATA and SATA
5676
* controllers emulating TF based interface can have two - master
5677
* and slave.
5678
*
5679
* However, there are a few controllers which don't fit into this
5680
* abstraction too well - SATA controllers which emulate TF
5681
* interface with both master and slave devices but also have
5682
* separate SCR register sets for each device. These controllers
5683
* need separate links for physical link handling
5684
* (e.g. onlineness, link speed) but should be treated like a
5685
* traditional M/S controller for everything else (e.g. command
5686
* issue, softreset).
5687
*
5688
* slave_link is libata's way of handling this class of
5689
* controllers without impacting core layer too much. For
5690
* anything other than physical link handling, the default host
5691
* link is used for both master and slave. For physical link
5692
* handling, separate @ap->slave_link is used. All dirty details
5693
* are implemented inside libata core layer. From LLD's POV, the
5694
* only difference is that prereset, hardreset and postreset are
5695
* called once more for the slave link, so the reset sequence
5696
* looks like the following.
5697
*
5698
* prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5699
* softreset(M) -> postreset(M) -> postreset(S)
5700
*
5701
* Note that softreset is called only for the master. Softreset
5702
* resets both M/S by definition, so SRST on master should handle
5703
* both (the standard method will work just fine).
5704
*
5705
* LOCKING:
5706
* Should be called before host is registered.
5707
*
5708
* RETURNS:
5709
* 0 on success, -errno on failure.
5710
*/
5711
int ata_slave_link_init(struct ata_port *ap)
5712
{
5713
struct ata_link *link;
5714
5715
WARN_ON(ap->slave_link);
5716
WARN_ON(ap->flags & ATA_FLAG_PMP);
5717
5718
link = kzalloc(sizeof(*link), GFP_KERNEL);
5719
if (!link)
5720
return -ENOMEM;
5721
5722
ata_link_init(ap, link, 1);
5723
ap->slave_link = link;
5724
return 0;
5725
}
5726
5727
static void ata_host_stop(struct device *gendev, void *res)
5728
{
5729
struct ata_host *host = dev_get_drvdata(gendev);
5730
int i;
5731
5732
WARN_ON(!(host->flags & ATA_HOST_STARTED));
5733
5734
for (i = 0; i < host->n_ports; i++) {
5735
struct ata_port *ap = host->ports[i];
5736
5737
if (ap->ops->port_stop)
5738
ap->ops->port_stop(ap);
5739
}
5740
5741
if (host->ops->host_stop)
5742
host->ops->host_stop(host);
5743
}
5744
5745
/**
5746
* ata_finalize_port_ops - finalize ata_port_operations
5747
* @ops: ata_port_operations to finalize
5748
*
5749
* An ata_port_operations can inherit from another ops and that
5750
* ops can again inherit from another. This can go on as many
5751
* times as necessary as long as there is no loop in the
5752
* inheritance chain.
5753
*
5754
* Ops tables are finalized when the host is started. NULL or
5755
* unspecified entries are inherited from the closet ancestor
5756
* which has the method and the entry is populated with it.
5757
* After finalization, the ops table directly points to all the
5758
* methods and ->inherits is no longer necessary and cleared.
5759
*
5760
* Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5761
*
5762
* LOCKING:
5763
* None.
5764
*/
5765
static void ata_finalize_port_ops(struct ata_port_operations *ops)
5766
{
5767
static DEFINE_SPINLOCK(lock);
5768
const struct ata_port_operations *cur;
5769
void **begin = (void **)ops;
5770
void **end = (void **)&ops->inherits;
5771
void **pp;
5772
5773
if (!ops || !ops->inherits)
5774
return;
5775
5776
spin_lock(&lock);
5777
5778
for (cur = ops->inherits; cur; cur = cur->inherits) {
5779
void **inherit = (void **)cur;
5780
5781
for (pp = begin; pp < end; pp++, inherit++)
5782
if (!*pp)
5783
*pp = *inherit;
5784
}
5785
5786
for (pp = begin; pp < end; pp++)
5787
if (IS_ERR(*pp))
5788
*pp = NULL;
5789
5790
ops->inherits = NULL;
5791
5792
spin_unlock(&lock);
5793
}
5794
5795
/**
5796
* ata_host_start - start and freeze ports of an ATA host
5797
* @host: ATA host to start ports for
5798
*
5799
* Start and then freeze ports of @host. Started status is
5800
* recorded in host->flags, so this function can be called
5801
* multiple times. Ports are guaranteed to get started only
5802
* once. If host->ops isn't initialized yet, its set to the
5803
* first non-dummy port ops.
5804
*
5805
* LOCKING:
5806
* Inherited from calling layer (may sleep).
5807
*
5808
* RETURNS:
5809
* 0 if all ports are started successfully, -errno otherwise.
5810
*/
5811
int ata_host_start(struct ata_host *host)
5812
{
5813
int have_stop = 0;
5814
void *start_dr = NULL;
5815
int i, rc;
5816
5817
if (host->flags & ATA_HOST_STARTED)
5818
return 0;
5819
5820
ata_finalize_port_ops(host->ops);
5821
5822
for (i = 0; i < host->n_ports; i++) {
5823
struct ata_port *ap = host->ports[i];
5824
5825
ata_finalize_port_ops(ap->ops);
5826
5827
if (!host->ops && !ata_port_is_dummy(ap))
5828
host->ops = ap->ops;
5829
5830
if (ap->ops->port_stop)
5831
have_stop = 1;
5832
}
5833
5834
if (host->ops->host_stop)
5835
have_stop = 1;
5836
5837
if (have_stop) {
5838
start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5839
if (!start_dr)
5840
return -ENOMEM;
5841
}
5842
5843
for (i = 0; i < host->n_ports; i++) {
5844
struct ata_port *ap = host->ports[i];
5845
5846
if (ap->ops->port_start) {
5847
rc = ap->ops->port_start(ap);
5848
if (rc) {
5849
if (rc != -ENODEV)
5850
dev_printk(KERN_ERR, host->dev,
5851
"failed to start port %d "
5852
"(errno=%d)\n", i, rc);
5853
goto err_out;
5854
}
5855
}
5856
ata_eh_freeze_port(ap);
5857
}
5858
5859
if (start_dr)
5860
devres_add(host->dev, start_dr);
5861
host->flags |= ATA_HOST_STARTED;
5862
return 0;
5863
5864
err_out:
5865
while (--i >= 0) {
5866
struct ata_port *ap = host->ports[i];
5867
5868
if (ap->ops->port_stop)
5869
ap->ops->port_stop(ap);
5870
}
5871
devres_free(start_dr);
5872
return rc;
5873
}
5874
5875
/**
5876
* ata_sas_host_init - Initialize a host struct
5877
* @host: host to initialize
5878
* @dev: device host is attached to
5879
* @flags: host flags
5880
* @ops: port_ops
5881
*
5882
* LOCKING:
5883
* PCI/etc. bus probe sem.
5884
*
5885
*/
5886
/* KILLME - the only user left is ipr */
5887
void ata_host_init(struct ata_host *host, struct device *dev,
5888
unsigned long flags, struct ata_port_operations *ops)
5889
{
5890
spin_lock_init(&host->lock);
5891
mutex_init(&host->eh_mutex);
5892
host->dev = dev;
5893
host->flags = flags;
5894
host->ops = ops;
5895
}
5896
5897
int ata_port_probe(struct ata_port *ap)
5898
{
5899
int rc = 0;
5900
5901
/* probe */
5902
if (ap->ops->error_handler) {
5903
struct ata_eh_info *ehi = &ap->link.eh_info;
5904
unsigned long flags;
5905
5906
/* kick EH for boot probing */
5907
spin_lock_irqsave(ap->lock, flags);
5908
5909
ehi->probe_mask |= ATA_ALL_DEVICES;
5910
ehi->action |= ATA_EH_RESET;
5911
ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5912
5913
ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5914
ap->pflags |= ATA_PFLAG_LOADING;
5915
ata_port_schedule_eh(ap);
5916
5917
spin_unlock_irqrestore(ap->lock, flags);
5918
5919
/* wait for EH to finish */
5920
ata_port_wait_eh(ap);
5921
} else {
5922
DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5923
rc = ata_bus_probe(ap);
5924
DPRINTK("ata%u: bus probe end\n", ap->print_id);
5925
}
5926
return rc;
5927
}
5928
5929
5930
static void async_port_probe(void *data, async_cookie_t cookie)
5931
{
5932
struct ata_port *ap = data;
5933
5934
/*
5935
* If we're not allowed to scan this host in parallel,
5936
* we need to wait until all previous scans have completed
5937
* before going further.
5938
* Jeff Garzik says this is only within a controller, so we
5939
* don't need to wait for port 0, only for later ports.
5940
*/
5941
if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5942
async_synchronize_cookie(cookie);
5943
5944
(void)ata_port_probe(ap);
5945
5946
/* in order to keep device order, we need to synchronize at this point */
5947
async_synchronize_cookie(cookie);
5948
5949
ata_scsi_scan_host(ap, 1);
5950
}
5951
5952
/**
5953
* ata_host_register - register initialized ATA host
5954
* @host: ATA host to register
5955
* @sht: template for SCSI host
5956
*
5957
* Register initialized ATA host. @host is allocated using
5958
* ata_host_alloc() and fully initialized by LLD. This function
5959
* starts ports, registers @host with ATA and SCSI layers and
5960
* probe registered devices.
5961
*
5962
* LOCKING:
5963
* Inherited from calling layer (may sleep).
5964
*
5965
* RETURNS:
5966
* 0 on success, -errno otherwise.
5967
*/
5968
int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5969
{
5970
int i, rc;
5971
5972
/* host must have been started */
5973
if (!(host->flags & ATA_HOST_STARTED)) {
5974
dev_printk(KERN_ERR, host->dev,
5975
"BUG: trying to register unstarted host\n");
5976
WARN_ON(1);
5977
return -EINVAL;
5978
}
5979
5980
/* Blow away unused ports. This happens when LLD can't
5981
* determine the exact number of ports to allocate at
5982
* allocation time.
5983
*/
5984
for (i = host->n_ports; host->ports[i]; i++)
5985
kfree(host->ports[i]);
5986
5987
/* give ports names and add SCSI hosts */
5988
for (i = 0; i < host->n_ports; i++)
5989
host->ports[i]->print_id = ata_print_id++;
5990
5991
5992
/* Create associated sysfs transport objects */
5993
for (i = 0; i < host->n_ports; i++) {
5994
rc = ata_tport_add(host->dev,host->ports[i]);
5995
if (rc) {
5996
goto err_tadd;
5997
}
5998
}
5999
6000
rc = ata_scsi_add_hosts(host, sht);
6001
if (rc)
6002
goto err_tadd;
6003
6004
/* associate with ACPI nodes */
6005
ata_acpi_associate(host);
6006
6007
/* set cable, sata_spd_limit and report */
6008
for (i = 0; i < host->n_ports; i++) {
6009
struct ata_port *ap = host->ports[i];
6010
unsigned long xfer_mask;
6011
6012
/* set SATA cable type if still unset */
6013
if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6014
ap->cbl = ATA_CBL_SATA;
6015
6016
/* init sata_spd_limit to the current value */
6017
sata_link_init_spd(&ap->link);
6018
if (ap->slave_link)
6019
sata_link_init_spd(ap->slave_link);
6020
6021
/* print per-port info to dmesg */
6022
xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6023
ap->udma_mask);
6024
6025
if (!ata_port_is_dummy(ap)) {
6026
ata_port_printk(ap, KERN_INFO,
6027
"%cATA max %s %s\n",
6028
(ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6029
ata_mode_string(xfer_mask),
6030
ap->link.eh_info.desc);
6031
ata_ehi_clear_desc(&ap->link.eh_info);
6032
} else
6033
ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6034
}
6035
6036
/* perform each probe asynchronously */
6037
for (i = 0; i < host->n_ports; i++) {
6038
struct ata_port *ap = host->ports[i];
6039
async_schedule(async_port_probe, ap);
6040
}
6041
6042
return 0;
6043
6044
err_tadd:
6045
while (--i >= 0) {
6046
ata_tport_delete(host->ports[i]);
6047
}
6048
return rc;
6049
6050
}
6051
6052
/**
6053
* ata_host_activate - start host, request IRQ and register it
6054
* @host: target ATA host
6055
* @irq: IRQ to request
6056
* @irq_handler: irq_handler used when requesting IRQ
6057
* @irq_flags: irq_flags used when requesting IRQ
6058
* @sht: scsi_host_template to use when registering the host
6059
*
6060
* After allocating an ATA host and initializing it, most libata
6061
* LLDs perform three steps to activate the host - start host,
6062
* request IRQ and register it. This helper takes necessasry
6063
* arguments and performs the three steps in one go.
6064
*
6065
* An invalid IRQ skips the IRQ registration and expects the host to
6066
* have set polling mode on the port. In this case, @irq_handler
6067
* should be NULL.
6068
*
6069
* LOCKING:
6070
* Inherited from calling layer (may sleep).
6071
*
6072
* RETURNS:
6073
* 0 on success, -errno otherwise.
6074
*/
6075
int ata_host_activate(struct ata_host *host, int irq,
6076
irq_handler_t irq_handler, unsigned long irq_flags,
6077
struct scsi_host_template *sht)
6078
{
6079
int i, rc;
6080
6081
rc = ata_host_start(host);
6082
if (rc)
6083
return rc;
6084
6085
/* Special case for polling mode */
6086
if (!irq) {
6087
WARN_ON(irq_handler);
6088
return ata_host_register(host, sht);
6089
}
6090
6091
rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6092
dev_driver_string(host->dev), host);
6093
if (rc)
6094
return rc;
6095
6096
for (i = 0; i < host->n_ports; i++)
6097
ata_port_desc(host->ports[i], "irq %d", irq);
6098
6099
rc = ata_host_register(host, sht);
6100
/* if failed, just free the IRQ and leave ports alone */
6101
if (rc)
6102
devm_free_irq(host->dev, irq, host);
6103
6104
return rc;
6105
}
6106
6107
/**
6108
* ata_port_detach - Detach ATA port in prepration of device removal
6109
* @ap: ATA port to be detached
6110
*
6111
* Detach all ATA devices and the associated SCSI devices of @ap;
6112
* then, remove the associated SCSI host. @ap is guaranteed to
6113
* be quiescent on return from this function.
6114
*
6115
* LOCKING:
6116
* Kernel thread context (may sleep).
6117
*/
6118
static void ata_port_detach(struct ata_port *ap)
6119
{
6120
unsigned long flags;
6121
6122
if (!ap->ops->error_handler)
6123
goto skip_eh;
6124
6125
/* tell EH we're leaving & flush EH */
6126
spin_lock_irqsave(ap->lock, flags);
6127
ap->pflags |= ATA_PFLAG_UNLOADING;
6128
ata_port_schedule_eh(ap);
6129
spin_unlock_irqrestore(ap->lock, flags);
6130
6131
/* wait till EH commits suicide */
6132
ata_port_wait_eh(ap);
6133
6134
/* it better be dead now */
6135
WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6136
6137
cancel_delayed_work_sync(&ap->hotplug_task);
6138
6139
skip_eh:
6140
if (ap->pmp_link) {
6141
int i;
6142
for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6143
ata_tlink_delete(&ap->pmp_link[i]);
6144
}
6145
ata_tport_delete(ap);
6146
6147
/* remove the associated SCSI host */
6148
scsi_remove_host(ap->scsi_host);
6149
}
6150
6151
/**
6152
* ata_host_detach - Detach all ports of an ATA host
6153
* @host: Host to detach
6154
*
6155
* Detach all ports of @host.
6156
*
6157
* LOCKING:
6158
* Kernel thread context (may sleep).
6159
*/
6160
void ata_host_detach(struct ata_host *host)
6161
{
6162
int i;
6163
6164
for (i = 0; i < host->n_ports; i++)
6165
ata_port_detach(host->ports[i]);
6166
6167
/* the host is dead now, dissociate ACPI */
6168
ata_acpi_dissociate(host);
6169
}
6170
6171
#ifdef CONFIG_PCI
6172
6173
/**
6174
* ata_pci_remove_one - PCI layer callback for device removal
6175
* @pdev: PCI device that was removed
6176
*
6177
* PCI layer indicates to libata via this hook that hot-unplug or
6178
* module unload event has occurred. Detach all ports. Resource
6179
* release is handled via devres.
6180
*
6181
* LOCKING:
6182
* Inherited from PCI layer (may sleep).
6183
*/
6184
void ata_pci_remove_one(struct pci_dev *pdev)
6185
{
6186
struct device *dev = &pdev->dev;
6187
struct ata_host *host = dev_get_drvdata(dev);
6188
6189
ata_host_detach(host);
6190
}
6191
6192
/* move to PCI subsystem */
6193
int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6194
{
6195
unsigned long tmp = 0;
6196
6197
switch (bits->width) {
6198
case 1: {
6199
u8 tmp8 = 0;
6200
pci_read_config_byte(pdev, bits->reg, &tmp8);
6201
tmp = tmp8;
6202
break;
6203
}
6204
case 2: {
6205
u16 tmp16 = 0;
6206
pci_read_config_word(pdev, bits->reg, &tmp16);
6207
tmp = tmp16;
6208
break;
6209
}
6210
case 4: {
6211
u32 tmp32 = 0;
6212
pci_read_config_dword(pdev, bits->reg, &tmp32);
6213
tmp = tmp32;
6214
break;
6215
}
6216
6217
default:
6218
return -EINVAL;
6219
}
6220
6221
tmp &= bits->mask;
6222
6223
return (tmp == bits->val) ? 1 : 0;
6224
}
6225
6226
#ifdef CONFIG_PM
6227
void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6228
{
6229
pci_save_state(pdev);
6230
pci_disable_device(pdev);
6231
6232
if (mesg.event & PM_EVENT_SLEEP)
6233
pci_set_power_state(pdev, PCI_D3hot);
6234
}
6235
6236
int ata_pci_device_do_resume(struct pci_dev *pdev)
6237
{
6238
int rc;
6239
6240
pci_set_power_state(pdev, PCI_D0);
6241
pci_restore_state(pdev);
6242
6243
rc = pcim_enable_device(pdev);
6244
if (rc) {
6245
dev_printk(KERN_ERR, &pdev->dev,
6246
"failed to enable device after resume (%d)\n", rc);
6247
return rc;
6248
}
6249
6250
pci_set_master(pdev);
6251
return 0;
6252
}
6253
6254
int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6255
{
6256
struct ata_host *host = dev_get_drvdata(&pdev->dev);
6257
int rc = 0;
6258
6259
rc = ata_host_suspend(host, mesg);
6260
if (rc)
6261
return rc;
6262
6263
ata_pci_device_do_suspend(pdev, mesg);
6264
6265
return 0;
6266
}
6267
6268
int ata_pci_device_resume(struct pci_dev *pdev)
6269
{
6270
struct ata_host *host = dev_get_drvdata(&pdev->dev);
6271
int rc;
6272
6273
rc = ata_pci_device_do_resume(pdev);
6274
if (rc == 0)
6275
ata_host_resume(host);
6276
return rc;
6277
}
6278
#endif /* CONFIG_PM */
6279
6280
#endif /* CONFIG_PCI */
6281
6282
static int __init ata_parse_force_one(char **cur,
6283
struct ata_force_ent *force_ent,
6284
const char **reason)
6285
{
6286
/* FIXME: Currently, there's no way to tag init const data and
6287
* using __initdata causes build failure on some versions of
6288
* gcc. Once __initdataconst is implemented, add const to the
6289
* following structure.
6290
*/
6291
static struct ata_force_param force_tbl[] __initdata = {
6292
{ "40c", .cbl = ATA_CBL_PATA40 },
6293
{ "80c", .cbl = ATA_CBL_PATA80 },
6294
{ "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6295
{ "unk", .cbl = ATA_CBL_PATA_UNK },
6296
{ "ign", .cbl = ATA_CBL_PATA_IGN },
6297
{ "sata", .cbl = ATA_CBL_SATA },
6298
{ "1.5Gbps", .spd_limit = 1 },
6299
{ "3.0Gbps", .spd_limit = 2 },
6300
{ "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6301
{ "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6302
{ "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6303
{ "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6304
{ "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6305
{ "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6306
{ "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6307
{ "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6308
{ "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6309
{ "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6310
{ "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6311
{ "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6312
{ "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6313
{ "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6314
{ "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6315
{ "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6316
{ "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6317
{ "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6318
{ "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6319
{ "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6320
{ "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6321
{ "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6322
{ "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6323
{ "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6324
{ "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6325
{ "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6326
{ "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6327
{ "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6328
{ "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6329
{ "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6330
{ "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6331
{ "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6332
{ "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6333
{ "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6334
{ "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6335
{ "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6336
{ "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6337
{ "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6338
{ "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6339
{ "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6340
};
6341
char *start = *cur, *p = *cur;
6342
char *id, *val, *endp;
6343
const struct ata_force_param *match_fp = NULL;
6344
int nr_matches = 0, i;
6345
6346
/* find where this param ends and update *cur */
6347
while (*p != '\0' && *p != ',')
6348
p++;
6349
6350
if (*p == '\0')
6351
*cur = p;
6352
else
6353
*cur = p + 1;
6354
6355
*p = '\0';
6356
6357
/* parse */
6358
p = strchr(start, ':');
6359
if (!p) {
6360
val = strstrip(start);
6361
goto parse_val;
6362
}
6363
*p = '\0';
6364
6365
id = strstrip(start);
6366
val = strstrip(p + 1);
6367
6368
/* parse id */
6369
p = strchr(id, '.');
6370
if (p) {
6371
*p++ = '\0';
6372
force_ent->device = simple_strtoul(p, &endp, 10);
6373
if (p == endp || *endp != '\0') {
6374
*reason = "invalid device";
6375
return -EINVAL;
6376
}
6377
}
6378
6379
force_ent->port = simple_strtoul(id, &endp, 10);
6380
if (p == endp || *endp != '\0') {
6381
*reason = "invalid port/link";
6382
return -EINVAL;
6383
}
6384
6385
parse_val:
6386
/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6387
for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6388
const struct ata_force_param *fp = &force_tbl[i];
6389
6390
if (strncasecmp(val, fp->name, strlen(val)))
6391
continue;
6392
6393
nr_matches++;
6394
match_fp = fp;
6395
6396
if (strcasecmp(val, fp->name) == 0) {
6397
nr_matches = 1;
6398
break;
6399
}
6400
}
6401
6402
if (!nr_matches) {
6403
*reason = "unknown value";
6404
return -EINVAL;
6405
}
6406
if (nr_matches > 1) {
6407
*reason = "ambigious value";
6408
return -EINVAL;
6409
}
6410
6411
force_ent->param = *match_fp;
6412
6413
return 0;
6414
}
6415
6416
static void __init ata_parse_force_param(void)
6417
{
6418
int idx = 0, size = 1;
6419
int last_port = -1, last_device = -1;
6420
char *p, *cur, *next;
6421
6422
/* calculate maximum number of params and allocate force_tbl */
6423
for (p = ata_force_param_buf; *p; p++)
6424
if (*p == ',')
6425
size++;
6426
6427
ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6428
if (!ata_force_tbl) {
6429
printk(KERN_WARNING "ata: failed to extend force table, "
6430
"libata.force ignored\n");
6431
return;
6432
}
6433
6434
/* parse and populate the table */
6435
for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6436
const char *reason = "";
6437
struct ata_force_ent te = { .port = -1, .device = -1 };
6438
6439
next = cur;
6440
if (ata_parse_force_one(&next, &te, &reason)) {
6441
printk(KERN_WARNING "ata: failed to parse force "
6442
"parameter \"%s\" (%s)\n",
6443
cur, reason);
6444
continue;
6445
}
6446
6447
if (te.port == -1) {
6448
te.port = last_port;
6449
te.device = last_device;
6450
}
6451
6452
ata_force_tbl[idx++] = te;
6453
6454
last_port = te.port;
6455
last_device = te.device;
6456
}
6457
6458
ata_force_tbl_size = idx;
6459
}
6460
6461
static int __init ata_init(void)
6462
{
6463
int rc;
6464
6465
ata_parse_force_param();
6466
6467
rc = ata_sff_init();
6468
if (rc) {
6469
kfree(ata_force_tbl);
6470
return rc;
6471
}
6472
6473
libata_transport_init();
6474
ata_scsi_transport_template = ata_attach_transport();
6475
if (!ata_scsi_transport_template) {
6476
ata_sff_exit();
6477
rc = -ENOMEM;
6478
goto err_out;
6479
}
6480
6481
printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6482
return 0;
6483
6484
err_out:
6485
return rc;
6486
}
6487
6488
static void __exit ata_exit(void)
6489
{
6490
ata_release_transport(ata_scsi_transport_template);
6491
libata_transport_exit();
6492
ata_sff_exit();
6493
kfree(ata_force_tbl);
6494
}
6495
6496
subsys_initcall(ata_init);
6497
module_exit(ata_exit);
6498
6499
static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6500
6501
int ata_ratelimit(void)
6502
{
6503
return __ratelimit(&ratelimit);
6504
}
6505
6506
/**
6507
* ata_msleep - ATA EH owner aware msleep
6508
* @ap: ATA port to attribute the sleep to
6509
* @msecs: duration to sleep in milliseconds
6510
*
6511
* Sleeps @msecs. If the current task is owner of @ap's EH, the
6512
* ownership is released before going to sleep and reacquired
6513
* after the sleep is complete. IOW, other ports sharing the
6514
* @ap->host will be allowed to own the EH while this task is
6515
* sleeping.
6516
*
6517
* LOCKING:
6518
* Might sleep.
6519
*/
6520
void ata_msleep(struct ata_port *ap, unsigned int msecs)
6521
{
6522
bool owns_eh = ap && ap->host->eh_owner == current;
6523
6524
if (owns_eh)
6525
ata_eh_release(ap);
6526
6527
msleep(msecs);
6528
6529
if (owns_eh)
6530
ata_eh_acquire(ap);
6531
}
6532
6533
/**
6534
* ata_wait_register - wait until register value changes
6535
* @ap: ATA port to wait register for, can be NULL
6536
* @reg: IO-mapped register
6537
* @mask: Mask to apply to read register value
6538
* @val: Wait condition
6539
* @interval: polling interval in milliseconds
6540
* @timeout: timeout in milliseconds
6541
*
6542
* Waiting for some bits of register to change is a common
6543
* operation for ATA controllers. This function reads 32bit LE
6544
* IO-mapped register @reg and tests for the following condition.
6545
*
6546
* (*@reg & mask) != val
6547
*
6548
* If the condition is met, it returns; otherwise, the process is
6549
* repeated after @interval_msec until timeout.
6550
*
6551
* LOCKING:
6552
* Kernel thread context (may sleep)
6553
*
6554
* RETURNS:
6555
* The final register value.
6556
*/
6557
u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6558
unsigned long interval, unsigned long timeout)
6559
{
6560
unsigned long deadline;
6561
u32 tmp;
6562
6563
tmp = ioread32(reg);
6564
6565
/* Calculate timeout _after_ the first read to make sure
6566
* preceding writes reach the controller before starting to
6567
* eat away the timeout.
6568
*/
6569
deadline = ata_deadline(jiffies, timeout);
6570
6571
while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6572
ata_msleep(ap, interval);
6573
tmp = ioread32(reg);
6574
}
6575
6576
return tmp;
6577
}
6578
6579
/*
6580
* Dummy port_ops
6581
*/
6582
static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6583
{
6584
return AC_ERR_SYSTEM;
6585
}
6586
6587
static void ata_dummy_error_handler(struct ata_port *ap)
6588
{
6589
/* truly dummy */
6590
}
6591
6592
struct ata_port_operations ata_dummy_port_ops = {
6593
.qc_prep = ata_noop_qc_prep,
6594
.qc_issue = ata_dummy_qc_issue,
6595
.error_handler = ata_dummy_error_handler,
6596
};
6597
6598
const struct ata_port_info ata_dummy_port_info = {
6599
.port_ops = &ata_dummy_port_ops,
6600
};
6601
6602
/*
6603
* libata is essentially a library of internal helper functions for
6604
* low-level ATA host controller drivers. As such, the API/ABI is
6605
* likely to change as new drivers are added and updated.
6606
* Do not depend on ABI/API stability.
6607
*/
6608
EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6609
EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6610
EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6611
EXPORT_SYMBOL_GPL(ata_base_port_ops);
6612
EXPORT_SYMBOL_GPL(sata_port_ops);
6613
EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6614
EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6615
EXPORT_SYMBOL_GPL(ata_link_next);
6616
EXPORT_SYMBOL_GPL(ata_dev_next);
6617
EXPORT_SYMBOL_GPL(ata_std_bios_param);
6618
EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6619
EXPORT_SYMBOL_GPL(ata_host_init);
6620
EXPORT_SYMBOL_GPL(ata_host_alloc);
6621
EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6622
EXPORT_SYMBOL_GPL(ata_slave_link_init);
6623
EXPORT_SYMBOL_GPL(ata_host_start);
6624
EXPORT_SYMBOL_GPL(ata_host_register);
6625
EXPORT_SYMBOL_GPL(ata_host_activate);
6626
EXPORT_SYMBOL_GPL(ata_host_detach);
6627
EXPORT_SYMBOL_GPL(ata_sg_init);
6628
EXPORT_SYMBOL_GPL(ata_qc_complete);
6629
EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6630
EXPORT_SYMBOL_GPL(atapi_cmd_type);
6631
EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6632
EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6633
EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6634
EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6635
EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6636
EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6637
EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6638
EXPORT_SYMBOL_GPL(ata_mode_string);
6639
EXPORT_SYMBOL_GPL(ata_id_xfermask);
6640
EXPORT_SYMBOL_GPL(ata_do_set_mode);
6641
EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6642
EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6643
EXPORT_SYMBOL_GPL(ata_dev_disable);
6644
EXPORT_SYMBOL_GPL(sata_set_spd);
6645
EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6646
EXPORT_SYMBOL_GPL(sata_link_debounce);
6647
EXPORT_SYMBOL_GPL(sata_link_resume);
6648
EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6649
EXPORT_SYMBOL_GPL(ata_std_prereset);
6650
EXPORT_SYMBOL_GPL(sata_link_hardreset);
6651
EXPORT_SYMBOL_GPL(sata_std_hardreset);
6652
EXPORT_SYMBOL_GPL(ata_std_postreset);
6653
EXPORT_SYMBOL_GPL(ata_dev_classify);
6654
EXPORT_SYMBOL_GPL(ata_dev_pair);
6655
EXPORT_SYMBOL_GPL(ata_ratelimit);
6656
EXPORT_SYMBOL_GPL(ata_msleep);
6657
EXPORT_SYMBOL_GPL(ata_wait_register);
6658
EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6659
EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6660
EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6661
EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6662
EXPORT_SYMBOL_GPL(sata_scr_valid);
6663
EXPORT_SYMBOL_GPL(sata_scr_read);
6664
EXPORT_SYMBOL_GPL(sata_scr_write);
6665
EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6666
EXPORT_SYMBOL_GPL(ata_link_online);
6667
EXPORT_SYMBOL_GPL(ata_link_offline);
6668
#ifdef CONFIG_PM
6669
EXPORT_SYMBOL_GPL(ata_host_suspend);
6670
EXPORT_SYMBOL_GPL(ata_host_resume);
6671
#endif /* CONFIG_PM */
6672
EXPORT_SYMBOL_GPL(ata_id_string);
6673
EXPORT_SYMBOL_GPL(ata_id_c_string);
6674
EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6675
EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6676
6677
EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6678
EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6679
EXPORT_SYMBOL_GPL(ata_timing_compute);
6680
EXPORT_SYMBOL_GPL(ata_timing_merge);
6681
EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6682
6683
#ifdef CONFIG_PCI
6684
EXPORT_SYMBOL_GPL(pci_test_config_bits);
6685
EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6686
#ifdef CONFIG_PM
6687
EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6688
EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6689
EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6690
EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6691
#endif /* CONFIG_PM */
6692
#endif /* CONFIG_PCI */
6693
6694
EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6695
EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6696
EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6697
EXPORT_SYMBOL_GPL(ata_port_desc);
6698
#ifdef CONFIG_PCI
6699
EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6700
#endif /* CONFIG_PCI */
6701
EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6702
EXPORT_SYMBOL_GPL(ata_link_abort);
6703
EXPORT_SYMBOL_GPL(ata_port_abort);
6704
EXPORT_SYMBOL_GPL(ata_port_freeze);
6705
EXPORT_SYMBOL_GPL(sata_async_notification);
6706
EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6707
EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6708
EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6709
EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6710
EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6711
EXPORT_SYMBOL_GPL(ata_do_eh);
6712
EXPORT_SYMBOL_GPL(ata_std_error_handler);
6713
6714
EXPORT_SYMBOL_GPL(ata_cable_40wire);
6715
EXPORT_SYMBOL_GPL(ata_cable_80wire);
6716
EXPORT_SYMBOL_GPL(ata_cable_unknown);
6717
EXPORT_SYMBOL_GPL(ata_cable_ignore);
6718
EXPORT_SYMBOL_GPL(ata_cable_sata);
6719
6720