Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/atm/firestream.c
15109 views
1
2
/* drivers/atm/firestream.c - FireStream 155 (MB86697) and
3
* FireStream 50 (MB86695) device driver
4
*/
5
6
/* Written & (C) 2000 by [email protected]
7
* Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
8
* and ambassador.c Copyright (C) 1995-1999 Madge Networks Ltd
9
*/
10
11
/*
12
This program is free software; you can redistribute it and/or modify
13
it under the terms of the GNU General Public License as published by
14
the Free Software Foundation; either version 2 of the License, or
15
(at your option) any later version.
16
17
This program is distributed in the hope that it will be useful,
18
but WITHOUT ANY WARRANTY; without even the implied warranty of
19
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20
GNU General Public License for more details.
21
22
You should have received a copy of the GNU General Public License
23
along with this program; if not, write to the Free Software
24
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25
26
The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
27
system and in the file COPYING in the Linux kernel source.
28
*/
29
30
31
#include <linux/module.h>
32
#include <linux/sched.h>
33
#include <linux/kernel.h>
34
#include <linux/mm.h>
35
#include <linux/pci.h>
36
#include <linux/poison.h>
37
#include <linux/errno.h>
38
#include <linux/atm.h>
39
#include <linux/atmdev.h>
40
#include <linux/sonet.h>
41
#include <linux/skbuff.h>
42
#include <linux/netdevice.h>
43
#include <linux/delay.h>
44
#include <linux/ioport.h> /* for request_region */
45
#include <linux/uio.h>
46
#include <linux/init.h>
47
#include <linux/capability.h>
48
#include <linux/bitops.h>
49
#include <linux/slab.h>
50
#include <asm/byteorder.h>
51
#include <asm/system.h>
52
#include <asm/string.h>
53
#include <asm/io.h>
54
#include <asm/atomic.h>
55
#include <asm/uaccess.h>
56
#include <linux/wait.h>
57
58
#include "firestream.h"
59
60
static int loopback = 0;
61
static int num=0x5a;
62
63
/* According to measurements (but they look suspicious to me!) done in
64
* '97, 37% of the packets are one cell in size. So it pays to have
65
* buffers allocated at that size. A large jump in percentage of
66
* packets occurs at packets around 536 bytes in length. So it also
67
* pays to have those pre-allocated. Unfortunately, we can't fully
68
* take advantage of this as the majority of the packets is likely to
69
* be TCP/IP (As where obviously the measurement comes from) There the
70
* link would be opened with say a 1500 byte MTU, and we can't handle
71
* smaller buffers more efficiently than the larger ones. -- REW
72
*/
73
74
/* Due to the way Linux memory management works, specifying "576" as
75
* an allocation size here isn't going to help. They are allocated
76
* from 1024-byte regions anyway. With the size of the sk_buffs (quite
77
* large), it doesn't pay to allocate the smallest size (64) -- REW */
78
79
/* This is all guesswork. Hard numbers to back this up or disprove this,
80
* are appreciated. -- REW */
81
82
/* The last entry should be about 64k. However, the "buffer size" is
83
* passed to the chip in a 16 bit field. I don't know how "65536"
84
* would be interpreted. -- REW */
85
86
#define NP FS_NR_FREE_POOLS
87
static int rx_buf_sizes[NP] = {128, 256, 512, 1024, 2048, 4096, 16384, 65520};
88
/* log2: 7 8 9 10 11 12 14 16 */
89
90
#if 0
91
static int rx_pool_sizes[NP] = {1024, 1024, 512, 256, 128, 64, 32, 32};
92
#else
93
/* debug */
94
static int rx_pool_sizes[NP] = {128, 128, 128, 64, 64, 64, 32, 32};
95
#endif
96
/* log2: 10 10 9 8 7 6 5 5 */
97
/* sumlog2: 17 18 18 18 18 18 19 21 */
98
/* mem allocated: 128k 256k 256k 256k 256k 256k 512k 2M */
99
/* tot mem: almost 4M */
100
101
/* NP is shorter, so that it fits on a single line. */
102
#undef NP
103
104
105
/* Small hardware gotcha:
106
107
The FS50 CAM (VP/VC match registers) always take the lowest channel
108
number that matches. This is not a problem.
109
110
However, they also ignore whether the channel is enabled or
111
not. This means that if you allocate channel 0 to 1.2 and then
112
channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
113
match channel for channel 0 will "steal" the traffic from channel
114
1, even if you correctly disable channel 0.
115
116
Workaround:
117
118
- When disabling channels, write an invalid VP/VC value to the
119
match register. (We use 0xffffffff, which in the worst case
120
matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
121
anything as some "when not in use, program to 0" bits are now
122
programmed to 1...)
123
124
- Don't initialize the match registers to 0, as 0.0 is a valid
125
channel.
126
*/
127
128
129
/* Optimization hints and tips.
130
131
The FireStream chips are very capable of reducing the amount of
132
"interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
133
action. You could try to minimize this a bit.
134
135
Besides that, the userspace->kernel copy and the PCI bus are the
136
performance limiting issues for this driver.
137
138
You could queue up a bunch of outgoing packets without telling the
139
FireStream. I'm not sure that's going to win you much though. The
140
Linux layer won't tell us in advance when it's not going to give us
141
any more packets in a while. So this is tricky to implement right without
142
introducing extra delays.
143
144
-- REW
145
*/
146
147
148
149
150
/* The strings that define what the RX queue entry is all about. */
151
/* Fujitsu: Please tell me which ones can have a pointer to a
152
freepool descriptor! */
153
static char *res_strings[] = {
154
"RX OK: streaming not EOP",
155
"RX OK: streaming EOP",
156
"RX OK: Single buffer packet",
157
"RX OK: packet mode",
158
"RX OK: F4 OAM (end to end)",
159
"RX OK: F4 OAM (Segment)",
160
"RX OK: F5 OAM (end to end)",
161
"RX OK: F5 OAM (Segment)",
162
"RX OK: RM cell",
163
"RX OK: TRANSP cell",
164
"RX OK: TRANSPC cell",
165
"Unmatched cell",
166
"reserved 12",
167
"reserved 13",
168
"reserved 14",
169
"Unrecognized cell",
170
"reserved 16",
171
"reassemby abort: AAL5 abort",
172
"packet purged",
173
"packet ageing timeout",
174
"channel ageing timeout",
175
"calculated length error",
176
"programmed length limit error",
177
"aal5 crc32 error",
178
"oam transp or transpc crc10 error",
179
"reserved 25",
180
"reserved 26",
181
"reserved 27",
182
"reserved 28",
183
"reserved 29",
184
"reserved 30",
185
"reassembly abort: no buffers",
186
"receive buffer overflow",
187
"change in GFC",
188
"receive buffer full",
189
"low priority discard - no receive descriptor",
190
"low priority discard - missing end of packet",
191
"reserved 41",
192
"reserved 42",
193
"reserved 43",
194
"reserved 44",
195
"reserved 45",
196
"reserved 46",
197
"reserved 47",
198
"reserved 48",
199
"reserved 49",
200
"reserved 50",
201
"reserved 51",
202
"reserved 52",
203
"reserved 53",
204
"reserved 54",
205
"reserved 55",
206
"reserved 56",
207
"reserved 57",
208
"reserved 58",
209
"reserved 59",
210
"reserved 60",
211
"reserved 61",
212
"reserved 62",
213
"reserved 63",
214
};
215
216
static char *irq_bitname[] = {
217
"LPCO",
218
"DPCO",
219
"RBRQ0_W",
220
"RBRQ1_W",
221
"RBRQ2_W",
222
"RBRQ3_W",
223
"RBRQ0_NF",
224
"RBRQ1_NF",
225
"RBRQ2_NF",
226
"RBRQ3_NF",
227
"BFP_SC",
228
"INIT",
229
"INIT_ERR",
230
"USCEO",
231
"UPEC0",
232
"VPFCO",
233
"CRCCO",
234
"HECO",
235
"TBRQ_W",
236
"TBRQ_NF",
237
"CTPQ_E",
238
"GFC_C0",
239
"PCI_FTL",
240
"CSQ_W",
241
"CSQ_NF",
242
"EXT_INT",
243
"RXDMA_S"
244
};
245
246
247
#define PHY_EOF -1
248
#define PHY_CLEARALL -2
249
250
struct reginit_item {
251
int reg, val;
252
};
253
254
255
static struct reginit_item PHY_NTC_INIT[] __devinitdata = {
256
{ PHY_CLEARALL, 0x40 },
257
{ 0x12, 0x0001 },
258
{ 0x13, 0x7605 },
259
{ 0x1A, 0x0001 },
260
{ 0x1B, 0x0005 },
261
{ 0x38, 0x0003 },
262
{ 0x39, 0x0006 }, /* changed here to make loopback */
263
{ 0x01, 0x5262 },
264
{ 0x15, 0x0213 },
265
{ 0x00, 0x0003 },
266
{ PHY_EOF, 0}, /* -1 signals end of list */
267
};
268
269
270
/* Safetyfeature: If the card interrupts more than this number of times
271
in a jiffy (1/100th of a second) then we just disable the interrupt and
272
print a message. This prevents the system from hanging.
273
274
150000 packets per second is close to the limit a PC is going to have
275
anyway. We therefore have to disable this for production. -- REW */
276
#undef IRQ_RATE_LIMIT // 100
277
278
/* Interrupts work now. Unlike serial cards, ATM cards don't work all
279
that great without interrupts. -- REW */
280
#undef FS_POLL_FREQ // 100
281
282
/*
283
This driver can spew a whole lot of debugging output at you. If you
284
need maximum performance, you should disable the DEBUG define. To
285
aid in debugging in the field, I'm leaving the compile-time debug
286
features enabled, and disable them "runtime". That allows me to
287
instruct people with problems to enable debugging without requiring
288
them to recompile... -- REW
289
*/
290
#define DEBUG
291
292
#ifdef DEBUG
293
#define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
294
#else
295
#define fs_dprintk(f, str...) /* nothing */
296
#endif
297
298
299
static int fs_keystream = 0;
300
301
#ifdef DEBUG
302
/* I didn't forget to set this to zero before shipping. Hit me with a stick
303
if you get this with the debug default not set to zero again. -- REW */
304
static int fs_debug = 0;
305
#else
306
#define fs_debug 0
307
#endif
308
309
#ifdef MODULE
310
#ifdef DEBUG
311
module_param(fs_debug, int, 0644);
312
#endif
313
module_param(loopback, int, 0);
314
module_param(num, int, 0);
315
module_param(fs_keystream, int, 0);
316
/* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
317
#endif
318
319
320
#define FS_DEBUG_FLOW 0x00000001
321
#define FS_DEBUG_OPEN 0x00000002
322
#define FS_DEBUG_QUEUE 0x00000004
323
#define FS_DEBUG_IRQ 0x00000008
324
#define FS_DEBUG_INIT 0x00000010
325
#define FS_DEBUG_SEND 0x00000020
326
#define FS_DEBUG_PHY 0x00000040
327
#define FS_DEBUG_CLEANUP 0x00000080
328
#define FS_DEBUG_QOS 0x00000100
329
#define FS_DEBUG_TXQ 0x00000200
330
#define FS_DEBUG_ALLOC 0x00000400
331
#define FS_DEBUG_TXMEM 0x00000800
332
#define FS_DEBUG_QSIZE 0x00001000
333
334
335
#define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
336
#define func_exit() fs_dprintk(FS_DEBUG_FLOW, "fs: exit %s\n", __func__)
337
338
339
static struct fs_dev *fs_boards = NULL;
340
341
#ifdef DEBUG
342
343
static void my_hd (void *addr, int len)
344
{
345
int j, ch;
346
unsigned char *ptr = addr;
347
348
while (len > 0) {
349
printk ("%p ", ptr);
350
for (j=0;j < ((len < 16)?len:16);j++) {
351
printk ("%02x %s", ptr[j], (j==7)?" ":"");
352
}
353
for ( ;j < 16;j++) {
354
printk (" %s", (j==7)?" ":"");
355
}
356
for (j=0;j < ((len < 16)?len:16);j++) {
357
ch = ptr[j];
358
printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
359
}
360
printk ("\n");
361
ptr += 16;
362
len -= 16;
363
}
364
}
365
#else /* DEBUG */
366
static void my_hd (void *addr, int len){}
367
#endif /* DEBUG */
368
369
/********** free an skb (as per ATM device driver documentation) **********/
370
371
/* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
372
* I copied it over from the ambassador driver. -- REW */
373
374
static inline void fs_kfree_skb (struct sk_buff * skb)
375
{
376
if (ATM_SKB(skb)->vcc->pop)
377
ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
378
else
379
dev_kfree_skb_any (skb);
380
}
381
382
383
384
385
/* It seems the ATM forum recommends this horribly complicated 16bit
386
* floating point format. Turns out the Ambassador uses the exact same
387
* encoding. I just copied it over. If Mitch agrees, I'll move it over
388
* to the atm_misc file or something like that. (and remove it from
389
* here and the ambassador driver) -- REW
390
*/
391
392
/* The good thing about this format is that it is monotonic. So,
393
a conversion routine need not be very complicated. To be able to
394
round "nearest" we need to take along a few extra bits. Lets
395
put these after 16 bits, so that we can just return the top 16
396
bits of the 32bit number as the result:
397
398
int mr (unsigned int rate, int r)
399
{
400
int e = 16+9;
401
static int round[4]={0, 0, 0xffff, 0x8000};
402
if (!rate) return 0;
403
while (rate & 0xfc000000) {
404
rate >>= 1;
405
e++;
406
}
407
while (! (rate & 0xfe000000)) {
408
rate <<= 1;
409
e--;
410
}
411
412
// Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
413
rate &= ~0x02000000;
414
// Next add in the exponent
415
rate |= e << (16+9);
416
// And perform the rounding:
417
return (rate + round[r]) >> 16;
418
}
419
420
14 lines-of-code. Compare that with the 120 that the Ambassador
421
guys needed. (would be 8 lines shorter if I'd try to really reduce
422
the number of lines:
423
424
int mr (unsigned int rate, int r)
425
{
426
int e = 16+9;
427
static int round[4]={0, 0, 0xffff, 0x8000};
428
if (!rate) return 0;
429
for (; rate & 0xfc000000 ;rate >>= 1, e++);
430
for (;!(rate & 0xfe000000);rate <<= 1, e--);
431
return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
432
}
433
434
Exercise for the reader: Remove one more line-of-code, without
435
cheating. (Just joining two lines is cheating). (I know it's
436
possible, don't think you've beat me if you found it... If you
437
manage to lose two lines or more, keep me updated! ;-)
438
439
-- REW */
440
441
442
#define ROUND_UP 1
443
#define ROUND_DOWN 2
444
#define ROUND_NEAREST 3
445
/********** make rate (not quite as much fun as Horizon) **********/
446
447
static int make_rate(unsigned int rate, int r,
448
u16 *bits, unsigned int *actual)
449
{
450
unsigned char exp = -1; /* hush gcc */
451
unsigned int man = -1; /* hush gcc */
452
453
fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
454
455
/* rates in cells per second, ITU format (nasty 16-bit floating-point)
456
given 5-bit e and 9-bit m:
457
rate = EITHER (1+m/2^9)*2^e OR 0
458
bits = EITHER 1<<14 | e<<9 | m OR 0
459
(bit 15 is "reserved", bit 14 "non-zero")
460
smallest rate is 0 (special representation)
461
largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
462
smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
463
simple algorithm:
464
find position of top bit, this gives e
465
remove top bit and shift (rounding if feeling clever) by 9-e
466
*/
467
/* Ambassador ucode bug: please don't set bit 14! so 0 rate not
468
representable. // This should move into the ambassador driver
469
when properly merged. -- REW */
470
471
if (rate > 0xffc00000U) {
472
/* larger than largest representable rate */
473
474
if (r == ROUND_UP) {
475
return -EINVAL;
476
} else {
477
exp = 31;
478
man = 511;
479
}
480
481
} else if (rate) {
482
/* representable rate */
483
484
exp = 31;
485
man = rate;
486
487
/* invariant: rate = man*2^(exp-31) */
488
while (!(man & (1<<31))) {
489
exp = exp - 1;
490
man = man<<1;
491
}
492
493
/* man has top bit set
494
rate = (2^31+(man-2^31))*2^(exp-31)
495
rate = (1+(man-2^31)/2^31)*2^exp
496
*/
497
man = man<<1;
498
man &= 0xffffffffU; /* a nop on 32-bit systems */
499
/* rate = (1+man/2^32)*2^exp
500
501
exp is in the range 0 to 31, man is in the range 0 to 2^32-1
502
time to lose significance... we want m in the range 0 to 2^9-1
503
rounding presents a minor problem... we first decide which way
504
we are rounding (based on given rounding direction and possibly
505
the bits of the mantissa that are to be discarded).
506
*/
507
508
switch (r) {
509
case ROUND_DOWN: {
510
/* just truncate */
511
man = man>>(32-9);
512
break;
513
}
514
case ROUND_UP: {
515
/* check all bits that we are discarding */
516
if (man & (~0U>>9)) {
517
man = (man>>(32-9)) + 1;
518
if (man == (1<<9)) {
519
/* no need to check for round up outside of range */
520
man = 0;
521
exp += 1;
522
}
523
} else {
524
man = (man>>(32-9));
525
}
526
break;
527
}
528
case ROUND_NEAREST: {
529
/* check msb that we are discarding */
530
if (man & (1<<(32-9-1))) {
531
man = (man>>(32-9)) + 1;
532
if (man == (1<<9)) {
533
/* no need to check for round up outside of range */
534
man = 0;
535
exp += 1;
536
}
537
} else {
538
man = (man>>(32-9));
539
}
540
break;
541
}
542
}
543
544
} else {
545
/* zero rate - not representable */
546
547
if (r == ROUND_DOWN) {
548
return -EINVAL;
549
} else {
550
exp = 0;
551
man = 0;
552
}
553
}
554
555
fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
556
557
if (bits)
558
*bits = /* (1<<14) | */ (exp<<9) | man;
559
560
if (actual)
561
*actual = (exp >= 9)
562
? (1 << exp) + (man << (exp-9))
563
: (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
564
565
return 0;
566
}
567
568
569
570
571
/* FireStream access routines */
572
/* For DEEP-DOWN debugging these can be rigged to intercept accesses to
573
certain registers or to just log all accesses. */
574
575
static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
576
{
577
writel (val, dev->base + offset);
578
}
579
580
581
static inline u32 read_fs (struct fs_dev *dev, int offset)
582
{
583
return readl (dev->base + offset);
584
}
585
586
587
588
static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
589
{
590
return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
591
}
592
593
594
static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
595
{
596
u32 wp;
597
struct FS_QENTRY *cqe;
598
599
/* XXX Sanity check: the write pointer can be checked to be
600
still the same as the value passed as qe... -- REW */
601
/* udelay (5); */
602
while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
603
fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
604
q->offset);
605
schedule ();
606
}
607
608
wp &= ~0xf;
609
cqe = bus_to_virt (wp);
610
if (qe != cqe) {
611
fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
612
}
613
614
write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
615
616
{
617
static int c;
618
if (!(c++ % 100))
619
{
620
int rp, wp;
621
rp = read_fs (dev, Q_RP(q->offset));
622
wp = read_fs (dev, Q_WP(q->offset));
623
fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
624
q->offset, rp, wp, wp-rp);
625
}
626
}
627
}
628
629
#ifdef DEBUG_EXTRA
630
static struct FS_QENTRY pq[60];
631
static int qp;
632
633
static struct FS_BPENTRY dq[60];
634
static int qd;
635
static void *da[60];
636
#endif
637
638
static void submit_queue (struct fs_dev *dev, struct queue *q,
639
u32 cmd, u32 p1, u32 p2, u32 p3)
640
{
641
struct FS_QENTRY *qe;
642
643
qe = get_qentry (dev, q);
644
qe->cmd = cmd;
645
qe->p0 = p1;
646
qe->p1 = p2;
647
qe->p2 = p3;
648
submit_qentry (dev, q, qe);
649
650
#ifdef DEBUG_EXTRA
651
pq[qp].cmd = cmd;
652
pq[qp].p0 = p1;
653
pq[qp].p1 = p2;
654
pq[qp].p2 = p3;
655
qp++;
656
if (qp >= 60) qp = 0;
657
#endif
658
}
659
660
/* Test the "other" way one day... -- REW */
661
#if 1
662
#define submit_command submit_queue
663
#else
664
665
static void submit_command (struct fs_dev *dev, struct queue *q,
666
u32 cmd, u32 p1, u32 p2, u32 p3)
667
{
668
write_fs (dev, CMDR0, cmd);
669
write_fs (dev, CMDR1, p1);
670
write_fs (dev, CMDR2, p2);
671
write_fs (dev, CMDR3, p3);
672
}
673
#endif
674
675
676
677
static void process_return_queue (struct fs_dev *dev, struct queue *q)
678
{
679
long rq;
680
struct FS_QENTRY *qe;
681
void *tc;
682
683
while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
684
fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
685
qe = bus_to_virt (rq);
686
687
fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
688
qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
689
690
switch (STATUS_CODE (qe)) {
691
case 5:
692
tc = bus_to_virt (qe->p0);
693
fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
694
kfree (tc);
695
break;
696
}
697
698
write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
699
}
700
}
701
702
703
static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
704
{
705
long rq;
706
long tmp;
707
struct FS_QENTRY *qe;
708
struct sk_buff *skb;
709
struct FS_BPENTRY *td;
710
711
while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
712
fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
713
qe = bus_to_virt (rq);
714
715
fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
716
qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
717
718
if (STATUS_CODE (qe) != 2)
719
fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
720
qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
721
722
723
switch (STATUS_CODE (qe)) {
724
case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
725
/* Fall through */
726
case 0x02:
727
/* Process a real txdone entry. */
728
tmp = qe->p0;
729
if (tmp & 0x0f)
730
printk (KERN_WARNING "td not aligned: %ld\n", tmp);
731
tmp &= ~0x0f;
732
td = bus_to_virt (tmp);
733
734
fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
735
td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
736
737
skb = td->skb;
738
if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
739
wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
740
FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
741
}
742
td->dev->ntxpckts--;
743
744
{
745
static int c=0;
746
747
if (!(c++ % 100)) {
748
fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
749
}
750
}
751
752
atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
753
754
fs_dprintk (FS_DEBUG_TXMEM, "i");
755
fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
756
fs_kfree_skb (skb);
757
758
fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
759
memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
760
kfree (td);
761
break;
762
default:
763
/* Here we get the tx purge inhibit command ... */
764
/* Action, I believe, is "don't do anything". -- REW */
765
;
766
}
767
768
write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
769
}
770
}
771
772
773
static void process_incoming (struct fs_dev *dev, struct queue *q)
774
{
775
long rq;
776
struct FS_QENTRY *qe;
777
struct FS_BPENTRY *pe;
778
struct sk_buff *skb;
779
unsigned int channo;
780
struct atm_vcc *atm_vcc;
781
782
while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
783
fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
784
qe = bus_to_virt (rq);
785
786
fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. ",
787
qe->cmd, qe->p0, qe->p1, qe->p2);
788
789
fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
790
STATUS_CODE (qe),
791
res_strings[STATUS_CODE(qe)]);
792
793
pe = bus_to_virt (qe->p0);
794
fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
795
pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
796
pe->skb, pe->fp);
797
798
channo = qe->cmd & 0xffff;
799
800
if (channo < dev->nchannels)
801
atm_vcc = dev->atm_vccs[channo];
802
else
803
atm_vcc = NULL;
804
805
/* Single buffer packet */
806
switch (STATUS_CODE (qe)) {
807
case 0x1:
808
/* Fall through for streaming mode */
809
case 0x2:/* Packet received OK.... */
810
if (atm_vcc) {
811
skb = pe->skb;
812
pe->fp->n--;
813
#if 0
814
fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
815
if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
816
#endif
817
skb_put (skb, qe->p1 & 0xffff);
818
ATM_SKB(skb)->vcc = atm_vcc;
819
atomic_inc(&atm_vcc->stats->rx);
820
__net_timestamp(skb);
821
fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
822
atm_vcc->push (atm_vcc, skb);
823
fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
824
kfree (pe);
825
} else {
826
printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
827
}
828
break;
829
case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
830
has been consumed and needs to be processed. -- REW */
831
if (qe->p1 & 0xffff) {
832
pe = bus_to_virt (qe->p0);
833
pe->fp->n--;
834
fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
835
dev_kfree_skb_any (pe->skb);
836
fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
837
kfree (pe);
838
}
839
if (atm_vcc)
840
atomic_inc(&atm_vcc->stats->rx_drop);
841
break;
842
case 0x1f: /* Reassembly abort: no buffers. */
843
/* Silently increment error counter. */
844
if (atm_vcc)
845
atomic_inc(&atm_vcc->stats->rx_drop);
846
break;
847
default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
848
printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
849
STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
850
}
851
write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
852
}
853
}
854
855
856
857
#define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
858
859
static int fs_open(struct atm_vcc *atm_vcc)
860
{
861
struct fs_dev *dev;
862
struct fs_vcc *vcc;
863
struct fs_transmit_config *tc;
864
struct atm_trafprm * txtp;
865
struct atm_trafprm * rxtp;
866
/* struct fs_receive_config *rc;*/
867
/* struct FS_QENTRY *qe; */
868
int error;
869
int bfp;
870
int to;
871
unsigned short tmc0;
872
short vpi = atm_vcc->vpi;
873
int vci = atm_vcc->vci;
874
875
func_enter ();
876
877
dev = FS_DEV(atm_vcc->dev);
878
fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
879
dev, atm_vcc);
880
881
if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
882
set_bit(ATM_VF_ADDR, &atm_vcc->flags);
883
884
if ((atm_vcc->qos.aal != ATM_AAL5) &&
885
(atm_vcc->qos.aal != ATM_AAL2))
886
return -EINVAL; /* XXX AAL0 */
887
888
fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
889
atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
890
891
/* XXX handle qos parameters (rate limiting) ? */
892
893
vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
894
fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%Zd)\n", vcc, sizeof(struct fs_vcc));
895
if (!vcc) {
896
clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
897
return -ENOMEM;
898
}
899
900
atm_vcc->dev_data = vcc;
901
vcc->last_skb = NULL;
902
903
init_waitqueue_head (&vcc->close_wait);
904
905
txtp = &atm_vcc->qos.txtp;
906
rxtp = &atm_vcc->qos.rxtp;
907
908
if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
909
if (IS_FS50(dev)) {
910
/* Increment the channel numer: take a free one next time. */
911
for (to=33;to;to--, dev->channo++) {
912
/* We only have 32 channels */
913
if (dev->channo >= 32)
914
dev->channo = 0;
915
/* If we need to do RX, AND the RX is inuse, try the next */
916
if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
917
continue;
918
/* If we need to do TX, AND the TX is inuse, try the next */
919
if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
920
continue;
921
/* Ok, both are free! (or not needed) */
922
break;
923
}
924
if (!to) {
925
printk ("No more free channels for FS50..\n");
926
return -EBUSY;
927
}
928
vcc->channo = dev->channo;
929
dev->channo &= dev->channel_mask;
930
931
} else {
932
vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
933
if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
934
( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
935
printk ("Channel is in use for FS155.\n");
936
return -EBUSY;
937
}
938
}
939
fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
940
vcc->channo, vcc->channo);
941
}
942
943
if (DO_DIRECTION (txtp)) {
944
tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
945
fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%Zd)\n",
946
tc, sizeof (struct fs_transmit_config));
947
if (!tc) {
948
fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
949
return -ENOMEM;
950
}
951
952
/* Allocate the "open" entry from the high priority txq. This makes
953
it most likely that the chip will notice it. It also prevents us
954
from having to wait for completion. On the other hand, we may
955
need to wait for completion anyway, to see if it completed
956
successfully. */
957
958
switch (atm_vcc->qos.aal) {
959
case ATM_AAL2:
960
case ATM_AAL0:
961
tc->flags = 0
962
| TC_FLAGS_TRANSPARENT_PAYLOAD
963
| TC_FLAGS_PACKET
964
| (1 << 28)
965
| TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
966
| TC_FLAGS_CAL0;
967
break;
968
case ATM_AAL5:
969
tc->flags = 0
970
| TC_FLAGS_AAL5
971
| TC_FLAGS_PACKET /* ??? */
972
| TC_FLAGS_TYPE_CBR
973
| TC_FLAGS_CAL0;
974
break;
975
default:
976
printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
977
tc->flags = 0;
978
}
979
/* Docs are vague about this atm_hdr field. By the way, the FS
980
* chip makes odd errors if lower bits are set.... -- REW */
981
tc->atm_hdr = (vpi << 20) | (vci << 4);
982
tmc0 = 0;
983
{
984
int pcr = atm_pcr_goal (txtp);
985
986
fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
987
988
/* XXX Hmm. officially we're only allowed to do this if rounding
989
is round_down -- REW */
990
if (IS_FS50(dev)) {
991
if (pcr > 51840000/53/8) pcr = 51840000/53/8;
992
} else {
993
if (pcr > 155520000/53/8) pcr = 155520000/53/8;
994
}
995
if (!pcr) {
996
/* no rate cap */
997
tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
998
} else {
999
int r;
1000
if (pcr < 0) {
1001
r = ROUND_DOWN;
1002
pcr = -pcr;
1003
} else {
1004
r = ROUND_UP;
1005
}
1006
error = make_rate (pcr, r, &tmc0, NULL);
1007
if (error) {
1008
kfree(tc);
1009
return error;
1010
}
1011
}
1012
fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1013
}
1014
1015
tc->TMC[0] = tmc0 | 0x4000;
1016
tc->TMC[1] = 0; /* Unused */
1017
tc->TMC[2] = 0; /* Unused */
1018
tc->TMC[3] = 0; /* Unused */
1019
1020
tc->spec = 0; /* UTOPIA address, UDF, HEC: Unused -> 0 */
1021
tc->rtag[0] = 0; /* What should I do with routing tags???
1022
-- Not used -- AS -- Thanks -- REW*/
1023
tc->rtag[1] = 0;
1024
tc->rtag[2] = 0;
1025
1026
if (fs_debug & FS_DEBUG_OPEN) {
1027
fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1028
my_hd (tc, sizeof (*tc));
1029
}
1030
1031
/* We now use the "submit_command" function to submit commands to
1032
the firestream. There is a define up near the definition of
1033
that routine that switches this routine between immediate write
1034
to the immediate command registers and queuing the commands in
1035
the HPTXQ for execution. This last technique might be more
1036
efficient if we know we're going to submit a whole lot of
1037
commands in one go, but this driver is not setup to be able to
1038
use such a construct. So it probably doen't matter much right
1039
now. -- REW */
1040
1041
/* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1042
submit_command (dev, &dev->hp_txq,
1043
QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1044
virt_to_bus (tc), 0, 0);
1045
1046
submit_command (dev, &dev->hp_txq,
1047
QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1048
0, 0, 0);
1049
set_bit (vcc->channo, dev->tx_inuse);
1050
}
1051
1052
if (DO_DIRECTION (rxtp)) {
1053
dev->atm_vccs[vcc->channo] = atm_vcc;
1054
1055
for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1056
if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1057
if (bfp >= FS_NR_FREE_POOLS) {
1058
fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1059
atm_vcc->qos.rxtp.max_sdu);
1060
/* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1061
1062
/* XXX clear tx inuse. Close TX part? */
1063
dev->atm_vccs[vcc->channo] = NULL;
1064
kfree (vcc);
1065
return -EINVAL;
1066
}
1067
1068
switch (atm_vcc->qos.aal) {
1069
case ATM_AAL0:
1070
case ATM_AAL2:
1071
submit_command (dev, &dev->hp_txq,
1072
QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1073
RC_FLAGS_TRANSP |
1074
RC_FLAGS_BFPS_BFP * bfp |
1075
RC_FLAGS_RXBM_PSB, 0, 0);
1076
break;
1077
case ATM_AAL5:
1078
submit_command (dev, &dev->hp_txq,
1079
QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1080
RC_FLAGS_AAL5 |
1081
RC_FLAGS_BFPS_BFP * bfp |
1082
RC_FLAGS_RXBM_PSB, 0, 0);
1083
break;
1084
};
1085
if (IS_FS50 (dev)) {
1086
submit_command (dev, &dev->hp_txq,
1087
QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1088
0x80 + vcc->channo,
1089
(vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1090
}
1091
submit_command (dev, &dev->hp_txq,
1092
QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1093
0, 0, 0);
1094
}
1095
1096
/* Indicate we're done! */
1097
set_bit(ATM_VF_READY, &atm_vcc->flags);
1098
1099
func_exit ();
1100
return 0;
1101
}
1102
1103
1104
static void fs_close(struct atm_vcc *atm_vcc)
1105
{
1106
struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1107
struct fs_vcc *vcc = FS_VCC (atm_vcc);
1108
struct atm_trafprm * txtp;
1109
struct atm_trafprm * rxtp;
1110
1111
func_enter ();
1112
1113
clear_bit(ATM_VF_READY, &atm_vcc->flags);
1114
1115
fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1116
if (vcc->last_skb) {
1117
fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1118
vcc->last_skb);
1119
/* We're going to wait for the last packet to get sent on this VC. It would
1120
be impolite not to send them don't you think?
1121
XXX
1122
We don't know which packets didn't get sent. So if we get interrupted in
1123
this sleep_on, we'll lose any reference to these packets. Memory leak!
1124
On the other hand, it's awfully convenient that we can abort a "close" that
1125
is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1126
interruptible_sleep_on (& vcc->close_wait);
1127
}
1128
1129
txtp = &atm_vcc->qos.txtp;
1130
rxtp = &atm_vcc->qos.rxtp;
1131
1132
1133
/* See App note XXX (Unpublished as of now) for the reason for the
1134
removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1135
1136
if (DO_DIRECTION (txtp)) {
1137
submit_command (dev, &dev->hp_txq,
1138
QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1139
clear_bit (vcc->channo, dev->tx_inuse);
1140
}
1141
1142
if (DO_DIRECTION (rxtp)) {
1143
submit_command (dev, &dev->hp_txq,
1144
QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1145
dev->atm_vccs [vcc->channo] = NULL;
1146
1147
/* This means that this is configured as a receive channel */
1148
if (IS_FS50 (dev)) {
1149
/* Disable the receive filter. Is 0/0 indeed an invalid receive
1150
channel? -- REW. Yes it is. -- Hang. Ok. I'll use -1
1151
(0xfff...) -- REW */
1152
submit_command (dev, &dev->hp_txq,
1153
QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1154
0x80 + vcc->channo, -1, 0 );
1155
}
1156
}
1157
1158
fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1159
kfree (vcc);
1160
1161
func_exit ();
1162
}
1163
1164
1165
static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1166
{
1167
struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1168
struct fs_vcc *vcc = FS_VCC (atm_vcc);
1169
struct FS_BPENTRY *td;
1170
1171
func_enter ();
1172
1173
fs_dprintk (FS_DEBUG_TXMEM, "I");
1174
fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1175
atm_vcc, skb, vcc, dev);
1176
1177
fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1178
1179
ATM_SKB(skb)->vcc = atm_vcc;
1180
1181
vcc->last_skb = skb;
1182
1183
td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1184
fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%Zd)\n", td, sizeof (struct FS_BPENTRY));
1185
if (!td) {
1186
/* Oops out of mem */
1187
return -ENOMEM;
1188
}
1189
1190
fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1191
*(int *) skb->data);
1192
1193
td->flags = TD_EPI | TD_DATA | skb->len;
1194
td->next = 0;
1195
td->bsa = virt_to_bus (skb->data);
1196
td->skb = skb;
1197
td->dev = dev;
1198
dev->ntxpckts++;
1199
1200
#ifdef DEBUG_EXTRA
1201
da[qd] = td;
1202
dq[qd].flags = td->flags;
1203
dq[qd].next = td->next;
1204
dq[qd].bsa = td->bsa;
1205
dq[qd].skb = td->skb;
1206
dq[qd].dev = td->dev;
1207
qd++;
1208
if (qd >= 60) qd = 0;
1209
#endif
1210
1211
submit_queue (dev, &dev->hp_txq,
1212
QE_TRANSMIT_DE | vcc->channo,
1213
virt_to_bus (td), 0,
1214
virt_to_bus (td));
1215
1216
fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1217
read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1218
read_fs (dev, Q_SA (dev->hp_txq.offset)),
1219
read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1220
read_fs (dev, Q_SA (dev->tx_relq.offset)));
1221
1222
func_exit ();
1223
return 0;
1224
}
1225
1226
1227
/* Some function placeholders for functions we don't yet support. */
1228
1229
#if 0
1230
static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1231
{
1232
func_enter ();
1233
func_exit ();
1234
return -ENOIOCTLCMD;
1235
}
1236
1237
1238
static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1239
void __user *optval,int optlen)
1240
{
1241
func_enter ();
1242
func_exit ();
1243
return 0;
1244
}
1245
1246
1247
static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1248
void __user *optval,unsigned int optlen)
1249
{
1250
func_enter ();
1251
func_exit ();
1252
return 0;
1253
}
1254
1255
1256
static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1257
unsigned long addr)
1258
{
1259
func_enter ();
1260
func_exit ();
1261
}
1262
1263
1264
static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1265
{
1266
func_enter ();
1267
func_exit ();
1268
return 0;
1269
}
1270
1271
1272
static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1273
{
1274
func_enter ();
1275
func_exit ();
1276
return 0;
1277
};
1278
1279
#endif
1280
1281
1282
static const struct atmdev_ops ops = {
1283
.open = fs_open,
1284
.close = fs_close,
1285
.send = fs_send,
1286
.owner = THIS_MODULE,
1287
/* ioctl: fs_ioctl, */
1288
/* getsockopt: fs_getsockopt, */
1289
/* setsockopt: fs_setsockopt, */
1290
/* change_qos: fs_change_qos, */
1291
1292
/* For now implement these internally here... */
1293
/* phy_put: fs_phy_put, */
1294
/* phy_get: fs_phy_get, */
1295
};
1296
1297
1298
static void __devinit undocumented_pci_fix (struct pci_dev *pdev)
1299
{
1300
u32 tint;
1301
1302
/* The Windows driver says: */
1303
/* Switch off FireStream Retry Limit Threshold
1304
*/
1305
1306
/* The register at 0x28 is documented as "reserved", no further
1307
comments. */
1308
1309
pci_read_config_dword (pdev, 0x28, &tint);
1310
if (tint != 0x80) {
1311
tint = 0x80;
1312
pci_write_config_dword (pdev, 0x28, tint);
1313
}
1314
}
1315
1316
1317
1318
/**************************************************************************
1319
* PHY routines *
1320
**************************************************************************/
1321
1322
static void __devinit write_phy (struct fs_dev *dev, int regnum, int val)
1323
{
1324
submit_command (dev, &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1325
regnum, val, 0);
1326
}
1327
1328
static int __devinit init_phy (struct fs_dev *dev, struct reginit_item *reginit)
1329
{
1330
int i;
1331
1332
func_enter ();
1333
while (reginit->reg != PHY_EOF) {
1334
if (reginit->reg == PHY_CLEARALL) {
1335
/* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1336
for (i=0;i<reginit->val;i++) {
1337
write_phy (dev, i, 0);
1338
}
1339
} else {
1340
write_phy (dev, reginit->reg, reginit->val);
1341
}
1342
reginit++;
1343
}
1344
func_exit ();
1345
return 0;
1346
}
1347
1348
static void reset_chip (struct fs_dev *dev)
1349
{
1350
int i;
1351
1352
write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1353
1354
/* Undocumented delay */
1355
udelay (128);
1356
1357
/* The "internal registers are documented to all reset to zero, but
1358
comments & code in the Windows driver indicates that the pools are
1359
NOT reset. */
1360
for (i=0;i < FS_NR_FREE_POOLS;i++) {
1361
write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1362
write_fs (dev, FP_SA (RXB_FP(i)), 0);
1363
write_fs (dev, FP_EA (RXB_FP(i)), 0);
1364
write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1365
write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1366
}
1367
1368
/* The same goes for the match channel registers, although those are
1369
NOT documented that way in the Windows driver. -- REW */
1370
/* The Windows driver DOES write 0 to these registers somewhere in
1371
the init sequence. However, a small hardware-feature, will
1372
prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1373
allocated happens to have no disabled channels that have a lower
1374
number. -- REW */
1375
1376
/* Clear the match channel registers. */
1377
if (IS_FS50 (dev)) {
1378
for (i=0;i<FS50_NR_CHANNELS;i++) {
1379
write_fs (dev, 0x200 + i * 4, -1);
1380
}
1381
}
1382
}
1383
1384
static void __devinit *aligned_kmalloc (int size, gfp_t flags, int alignment)
1385
{
1386
void *t;
1387
1388
if (alignment <= 0x10) {
1389
t = kmalloc (size, flags);
1390
if ((unsigned long)t & (alignment-1)) {
1391
printk ("Kmalloc doesn't align things correctly! %p\n", t);
1392
kfree (t);
1393
return aligned_kmalloc (size, flags, alignment * 4);
1394
}
1395
return t;
1396
}
1397
printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1398
return NULL;
1399
}
1400
1401
static int __devinit init_q (struct fs_dev *dev,
1402
struct queue *txq, int queue, int nentries, int is_rq)
1403
{
1404
int sz = nentries * sizeof (struct FS_QENTRY);
1405
struct FS_QENTRY *p;
1406
1407
func_enter ();
1408
1409
fs_dprintk (FS_DEBUG_INIT, "Inititing queue at %x: %d entries:\n",
1410
queue, nentries);
1411
1412
p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1413
fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1414
1415
if (!p) return 0;
1416
1417
write_fs (dev, Q_SA(queue), virt_to_bus(p));
1418
write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1419
write_fs (dev, Q_WP(queue), virt_to_bus(p));
1420
write_fs (dev, Q_RP(queue), virt_to_bus(p));
1421
if (is_rq) {
1422
/* Configuration for the receive queue: 0: interrupt immediately,
1423
no pre-warning to empty queues: We do our best to keep the
1424
queue filled anyway. */
1425
write_fs (dev, Q_CNF(queue), 0 );
1426
}
1427
1428
txq->sa = p;
1429
txq->ea = p;
1430
txq->offset = queue;
1431
1432
func_exit ();
1433
return 1;
1434
}
1435
1436
1437
static int __devinit init_fp (struct fs_dev *dev,
1438
struct freepool *fp, int queue, int bufsize, int nr_buffers)
1439
{
1440
func_enter ();
1441
1442
fs_dprintk (FS_DEBUG_INIT, "Inititing free pool at %x:\n", queue);
1443
1444
write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1445
write_fs (dev, FP_SA(queue), 0);
1446
write_fs (dev, FP_EA(queue), 0);
1447
write_fs (dev, FP_CTU(queue), 0);
1448
write_fs (dev, FP_CNT(queue), 0);
1449
1450
fp->offset = queue;
1451
fp->bufsize = bufsize;
1452
fp->nr_buffers = nr_buffers;
1453
1454
func_exit ();
1455
return 1;
1456
}
1457
1458
1459
static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1460
{
1461
#if 0
1462
/* This seems to be unreliable.... */
1463
return read_fs (dev, FP_CNT (fp->offset));
1464
#else
1465
return fp->n;
1466
#endif
1467
}
1468
1469
1470
/* Check if this gets going again if a pool ever runs out. -- Yes, it
1471
does. I've seen "receive abort: no buffers" and things started
1472
working again after that... -- REW */
1473
1474
static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1475
gfp_t gfp_flags)
1476
{
1477
struct FS_BPENTRY *qe, *ne;
1478
struct sk_buff *skb;
1479
int n = 0;
1480
u32 qe_tmp;
1481
1482
fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1483
fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1484
fp->nr_buffers);
1485
while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1486
1487
skb = alloc_skb (fp->bufsize, gfp_flags);
1488
fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1489
if (!skb) break;
1490
ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1491
fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%Zd)\n", ne, sizeof (struct FS_BPENTRY));
1492
if (!ne) {
1493
fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1494
dev_kfree_skb_any (skb);
1495
break;
1496
}
1497
1498
fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1499
skb, ne, skb->data, skb->head);
1500
n++;
1501
ne->flags = FP_FLAGS_EPI | fp->bufsize;
1502
ne->next = virt_to_bus (NULL);
1503
ne->bsa = virt_to_bus (skb->data);
1504
ne->aal_bufsize = fp->bufsize;
1505
ne->skb = skb;
1506
ne->fp = fp;
1507
1508
/*
1509
* FIXME: following code encodes and decodes
1510
* machine pointers (could be 64-bit) into a
1511
* 32-bit register.
1512
*/
1513
1514
qe_tmp = read_fs (dev, FP_EA(fp->offset));
1515
fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1516
if (qe_tmp) {
1517
qe = bus_to_virt ((long) qe_tmp);
1518
qe->next = virt_to_bus(ne);
1519
qe->flags &= ~FP_FLAGS_EPI;
1520
} else
1521
write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1522
1523
write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1524
fp->n++; /* XXX Atomic_inc? */
1525
write_fs (dev, FP_CTU(fp->offset), 1);
1526
}
1527
1528
fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1529
}
1530
1531
static void __devexit free_queue (struct fs_dev *dev, struct queue *txq)
1532
{
1533
func_enter ();
1534
1535
write_fs (dev, Q_SA(txq->offset), 0);
1536
write_fs (dev, Q_EA(txq->offset), 0);
1537
write_fs (dev, Q_RP(txq->offset), 0);
1538
write_fs (dev, Q_WP(txq->offset), 0);
1539
/* Configuration ? */
1540
1541
fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1542
kfree (txq->sa);
1543
1544
func_exit ();
1545
}
1546
1547
static void __devexit free_freepool (struct fs_dev *dev, struct freepool *fp)
1548
{
1549
func_enter ();
1550
1551
write_fs (dev, FP_CNF(fp->offset), 0);
1552
write_fs (dev, FP_SA (fp->offset), 0);
1553
write_fs (dev, FP_EA (fp->offset), 0);
1554
write_fs (dev, FP_CNT(fp->offset), 0);
1555
write_fs (dev, FP_CTU(fp->offset), 0);
1556
1557
func_exit ();
1558
}
1559
1560
1561
1562
static irqreturn_t fs_irq (int irq, void *dev_id)
1563
{
1564
int i;
1565
u32 status;
1566
struct fs_dev *dev = dev_id;
1567
1568
status = read_fs (dev, ISR);
1569
if (!status)
1570
return IRQ_NONE;
1571
1572
func_enter ();
1573
1574
#ifdef IRQ_RATE_LIMIT
1575
/* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1576
interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1577
{
1578
static int lastjif;
1579
static int nintr=0;
1580
1581
if (lastjif == jiffies) {
1582
if (++nintr > IRQ_RATE_LIMIT) {
1583
free_irq (dev->irq, dev_id);
1584
printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1585
dev->irq);
1586
}
1587
} else {
1588
lastjif = jiffies;
1589
nintr = 0;
1590
}
1591
}
1592
#endif
1593
fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1594
read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1595
read_fs (dev, Q_SA (dev->hp_txq.offset)),
1596
read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1597
read_fs (dev, Q_SA (dev->tx_relq.offset)));
1598
1599
/* print the bits in the ISR register. */
1600
if (fs_debug & FS_DEBUG_IRQ) {
1601
/* The FS_DEBUG things are unnecessary here. But this way it is
1602
clear for grep that these are debug prints. */
1603
fs_dprintk (FS_DEBUG_IRQ, "IRQ status:");
1604
for (i=0;i<27;i++)
1605
if (status & (1 << i))
1606
fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1607
fs_dprintk (FS_DEBUG_IRQ, "\n");
1608
}
1609
1610
if (status & ISR_RBRQ0_W) {
1611
fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1612
process_incoming (dev, &dev->rx_rq[0]);
1613
/* items mentioned on RBRQ0 are from FP 0 or 1. */
1614
top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1615
top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1616
}
1617
1618
if (status & ISR_RBRQ1_W) {
1619
fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1620
process_incoming (dev, &dev->rx_rq[1]);
1621
top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1622
top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1623
}
1624
1625
if (status & ISR_RBRQ2_W) {
1626
fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1627
process_incoming (dev, &dev->rx_rq[2]);
1628
top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1629
top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1630
}
1631
1632
if (status & ISR_RBRQ3_W) {
1633
fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1634
process_incoming (dev, &dev->rx_rq[3]);
1635
top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1636
top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1637
}
1638
1639
if (status & ISR_CSQ_W) {
1640
fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1641
process_return_queue (dev, &dev->st_q);
1642
}
1643
1644
if (status & ISR_TBRQ_W) {
1645
fs_dprintk (FS_DEBUG_IRQ, "Data tramsitted!\n");
1646
process_txdone_queue (dev, &dev->tx_relq);
1647
}
1648
1649
func_exit ();
1650
return IRQ_HANDLED;
1651
}
1652
1653
1654
#ifdef FS_POLL_FREQ
1655
static void fs_poll (unsigned long data)
1656
{
1657
struct fs_dev *dev = (struct fs_dev *) data;
1658
1659
fs_irq (0, dev);
1660
dev->timer.expires = jiffies + FS_POLL_FREQ;
1661
add_timer (&dev->timer);
1662
}
1663
#endif
1664
1665
static int __devinit fs_init (struct fs_dev *dev)
1666
{
1667
struct pci_dev *pci_dev;
1668
int isr, to;
1669
int i;
1670
1671
func_enter ();
1672
pci_dev = dev->pci_dev;
1673
1674
printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1675
IS_FS50(dev)?50:155,
1676
(unsigned long long)pci_resource_start(pci_dev, 0),
1677
dev->pci_dev->irq);
1678
1679
if (fs_debug & FS_DEBUG_INIT)
1680
my_hd ((unsigned char *) dev, sizeof (*dev));
1681
1682
undocumented_pci_fix (pci_dev);
1683
1684
dev->hw_base = pci_resource_start(pci_dev, 0);
1685
1686
dev->base = ioremap(dev->hw_base, 0x1000);
1687
1688
reset_chip (dev);
1689
1690
write_fs (dev, SARMODE0, 0
1691
| (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1692
| (1 * SARMODE0_INTMODE_READCLEAR)
1693
| (1 * SARMODE0_CWRE)
1694
| (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1695
SARMODE0_PRPWT_FS155_3)
1696
| (1 * SARMODE0_CALSUP_1)
1697
| (IS_FS50(dev) ? (0
1698
| SARMODE0_RXVCS_32
1699
| SARMODE0_ABRVCS_32
1700
| SARMODE0_TXVCS_32):
1701
(0
1702
| SARMODE0_RXVCS_1k
1703
| SARMODE0_ABRVCS_1k
1704
| SARMODE0_TXVCS_1k)));
1705
1706
/* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1707
1ms. */
1708
to = 100;
1709
while (--to) {
1710
isr = read_fs (dev, ISR);
1711
1712
/* This bit is documented as "RESERVED" */
1713
if (isr & ISR_INIT_ERR) {
1714
printk (KERN_ERR "Error initializing the FS... \n");
1715
goto unmap;
1716
}
1717
if (isr & ISR_INIT) {
1718
fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1719
break;
1720
}
1721
1722
/* Try again after 10ms. */
1723
msleep(10);
1724
}
1725
1726
if (!to) {
1727
printk (KERN_ERR "timeout initializing the FS... \n");
1728
goto unmap;
1729
}
1730
1731
/* XXX fix for fs155 */
1732
dev->channel_mask = 0x1f;
1733
dev->channo = 0;
1734
1735
/* AN3: 10 */
1736
write_fs (dev, SARMODE1, 0
1737
| (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1738
| ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1739
| (1 * SARMODE1_DCRM)
1740
| (1 * SARMODE1_DCOAM)
1741
| (0 * SARMODE1_OAMCRC)
1742
| (0 * SARMODE1_DUMPE)
1743
| (0 * SARMODE1_GPLEN)
1744
| (0 * SARMODE1_GNAM)
1745
| (0 * SARMODE1_GVAS)
1746
| (0 * SARMODE1_GPAS)
1747
| (1 * SARMODE1_GPRI)
1748
| (0 * SARMODE1_PMS)
1749
| (0 * SARMODE1_GFCR)
1750
| (1 * SARMODE1_HECM2)
1751
| (1 * SARMODE1_HECM1)
1752
| (1 * SARMODE1_HECM0)
1753
| (1 << 12) /* That's what hang's driver does. Program to 0 */
1754
| (0 * 0xff) /* XXX FS155 */);
1755
1756
1757
/* Cal prescale etc */
1758
1759
/* AN3: 11 */
1760
write_fs (dev, TMCONF, 0x0000000f);
1761
write_fs (dev, CALPRESCALE, 0x01010101 * num);
1762
write_fs (dev, 0x80, 0x000F00E4);
1763
1764
/* AN3: 12 */
1765
write_fs (dev, CELLOSCONF, 0
1766
| ( 0 * CELLOSCONF_CEN)
1767
| ( CELLOSCONF_SC1)
1768
| (0x80 * CELLOSCONF_COBS)
1769
| (num * CELLOSCONF_COPK) /* Changed from 0xff to 0x5a */
1770
| (num * CELLOSCONF_COST));/* after a hint from Hang.
1771
* performance jumped 50->70... */
1772
1773
/* Magic value by Hang */
1774
write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1775
1776
if (IS_FS50 (dev)) {
1777
write_fs (dev, RAS0, RAS0_DCD_XHLT);
1778
dev->atm_dev->ci_range.vpi_bits = 12;
1779
dev->atm_dev->ci_range.vci_bits = 16;
1780
dev->nchannels = FS50_NR_CHANNELS;
1781
} else {
1782
write_fs (dev, RAS0, RAS0_DCD_XHLT
1783
| (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1784
| (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1785
/* We can chose the split arbitrarily. We might be able to
1786
support more. Whatever. This should do for now. */
1787
dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1788
dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1789
1790
/* Address bits we can't use should be compared to 0. */
1791
write_fs (dev, RAC, 0);
1792
1793
/* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1794
* too. I can't find ASF1 anywhere. Anyway, we AND with just the
1795
* other bits, then compare with 0, which is exactly what we
1796
* want. */
1797
write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1798
dev->nchannels = FS155_NR_CHANNELS;
1799
}
1800
dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1801
GFP_KERNEL);
1802
fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%Zd)\n",
1803
dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1804
1805
if (!dev->atm_vccs) {
1806
printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1807
/* XXX Clean up..... */
1808
goto unmap;
1809
}
1810
1811
dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1812
fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1813
dev->atm_vccs, dev->nchannels / 8);
1814
1815
if (!dev->tx_inuse) {
1816
printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1817
/* XXX Clean up..... */
1818
goto unmap;
1819
}
1820
/* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1821
/* -- RAS2 : FS50 only: Default is OK. */
1822
1823
/* DMAMODE, default should be OK. -- REW */
1824
write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1825
1826
init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1827
init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1828
init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1829
init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1830
1831
for (i=0;i < FS_NR_FREE_POOLS;i++) {
1832
init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1833
rx_buf_sizes[i], rx_pool_sizes[i]);
1834
top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1835
}
1836
1837
1838
for (i=0;i < FS_NR_RX_QUEUES;i++)
1839
init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1840
1841
dev->irq = pci_dev->irq;
1842
if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1843
printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1844
/* XXX undo all previous stuff... */
1845
goto unmap;
1846
}
1847
fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1848
1849
/* We want to be notified of most things. Just the statistics count
1850
overflows are not interesting */
1851
write_fs (dev, IMR, 0
1852
| ISR_RBRQ0_W
1853
| ISR_RBRQ1_W
1854
| ISR_RBRQ2_W
1855
| ISR_RBRQ3_W
1856
| ISR_TBRQ_W
1857
| ISR_CSQ_W);
1858
1859
write_fs (dev, SARMODE0, 0
1860
| (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1861
| (1 * SARMODE0_GINT)
1862
| (1 * SARMODE0_INTMODE_READCLEAR)
1863
| (0 * SARMODE0_CWRE)
1864
| (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1865
SARMODE0_PRPWT_FS155_3)
1866
| (1 * SARMODE0_CALSUP_1)
1867
| (IS_FS50 (dev)?(0
1868
| SARMODE0_RXVCS_32
1869
| SARMODE0_ABRVCS_32
1870
| SARMODE0_TXVCS_32):
1871
(0
1872
| SARMODE0_RXVCS_1k
1873
| SARMODE0_ABRVCS_1k
1874
| SARMODE0_TXVCS_1k))
1875
| (1 * SARMODE0_RUN));
1876
1877
init_phy (dev, PHY_NTC_INIT);
1878
1879
if (loopback == 2) {
1880
write_phy (dev, 0x39, 0x000e);
1881
}
1882
1883
#ifdef FS_POLL_FREQ
1884
init_timer (&dev->timer);
1885
dev->timer.data = (unsigned long) dev;
1886
dev->timer.function = fs_poll;
1887
dev->timer.expires = jiffies + FS_POLL_FREQ;
1888
add_timer (&dev->timer);
1889
#endif
1890
1891
dev->atm_dev->dev_data = dev;
1892
1893
func_exit ();
1894
return 0;
1895
unmap:
1896
iounmap(dev->base);
1897
return 1;
1898
}
1899
1900
static int __devinit firestream_init_one (struct pci_dev *pci_dev,
1901
const struct pci_device_id *ent)
1902
{
1903
struct atm_dev *atm_dev;
1904
struct fs_dev *fs_dev;
1905
1906
if (pci_enable_device(pci_dev))
1907
goto err_out;
1908
1909
fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1910
fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%Zd)\n",
1911
fs_dev, sizeof (struct fs_dev));
1912
if (!fs_dev)
1913
goto err_out;
1914
atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1915
if (!atm_dev)
1916
goto err_out_free_fs_dev;
1917
1918
fs_dev->pci_dev = pci_dev;
1919
fs_dev->atm_dev = atm_dev;
1920
fs_dev->flags = ent->driver_data;
1921
1922
if (fs_init(fs_dev))
1923
goto err_out_free_atm_dev;
1924
1925
fs_dev->next = fs_boards;
1926
fs_boards = fs_dev;
1927
return 0;
1928
1929
err_out_free_atm_dev:
1930
atm_dev_deregister(atm_dev);
1931
err_out_free_fs_dev:
1932
kfree(fs_dev);
1933
err_out:
1934
return -ENODEV;
1935
}
1936
1937
static void __devexit firestream_remove_one (struct pci_dev *pdev)
1938
{
1939
int i;
1940
struct fs_dev *dev, *nxtdev;
1941
struct fs_vcc *vcc;
1942
struct FS_BPENTRY *fp, *nxt;
1943
1944
func_enter ();
1945
1946
#if 0
1947
printk ("hptxq:\n");
1948
for (i=0;i<60;i++) {
1949
printk ("%d: %08x %08x %08x %08x \n",
1950
i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1951
qp++;
1952
if (qp >= 60) qp = 0;
1953
}
1954
1955
printk ("descriptors:\n");
1956
for (i=0;i<60;i++) {
1957
printk ("%d: %p: %08x %08x %p %p\n",
1958
i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1959
qd++;
1960
if (qd >= 60) qd = 0;
1961
}
1962
#endif
1963
1964
for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1965
fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1966
1967
/* XXX Hit all the tx channels too! */
1968
1969
for (i=0;i < dev->nchannels;i++) {
1970
if (dev->atm_vccs[i]) {
1971
vcc = FS_VCC (dev->atm_vccs[i]);
1972
submit_command (dev, &dev->hp_txq,
1973
QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1974
submit_command (dev, &dev->hp_txq,
1975
QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1976
1977
}
1978
}
1979
1980
/* XXX Wait a while for the chip to release all buffers. */
1981
1982
for (i=0;i < FS_NR_FREE_POOLS;i++) {
1983
for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1984
!(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1985
fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1986
dev_kfree_skb_any (fp->skb);
1987
nxt = bus_to_virt (fp->next);
1988
fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1989
kfree (fp);
1990
}
1991
fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1992
dev_kfree_skb_any (fp->skb);
1993
fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1994
kfree (fp);
1995
}
1996
1997
/* Hang the chip in "reset", prevent it clobbering memory that is
1998
no longer ours. */
1999
reset_chip (dev);
2000
2001
fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
2002
free_irq (dev->irq, dev);
2003
del_timer (&dev->timer);
2004
2005
atm_dev_deregister(dev->atm_dev);
2006
free_queue (dev, &dev->hp_txq);
2007
free_queue (dev, &dev->lp_txq);
2008
free_queue (dev, &dev->tx_relq);
2009
free_queue (dev, &dev->st_q);
2010
2011
fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2012
kfree (dev->atm_vccs);
2013
2014
for (i=0;i< FS_NR_FREE_POOLS;i++)
2015
free_freepool (dev, &dev->rx_fp[i]);
2016
2017
for (i=0;i < FS_NR_RX_QUEUES;i++)
2018
free_queue (dev, &dev->rx_rq[i]);
2019
2020
iounmap(dev->base);
2021
fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2022
nxtdev = dev->next;
2023
kfree (dev);
2024
}
2025
2026
func_exit ();
2027
}
2028
2029
static struct pci_device_id firestream_pci_tbl[] = {
2030
{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2031
{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2032
{ 0, }
2033
};
2034
2035
MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2036
2037
static struct pci_driver firestream_driver = {
2038
.name = "firestream",
2039
.id_table = firestream_pci_tbl,
2040
.probe = firestream_init_one,
2041
.remove = __devexit_p(firestream_remove_one),
2042
};
2043
2044
static int __init firestream_init_module (void)
2045
{
2046
int error;
2047
2048
func_enter ();
2049
error = pci_register_driver(&firestream_driver);
2050
func_exit ();
2051
return error;
2052
}
2053
2054
static void __exit firestream_cleanup_module(void)
2055
{
2056
pci_unregister_driver(&firestream_driver);
2057
}
2058
2059
module_init(firestream_init_module);
2060
module_exit(firestream_cleanup_module);
2061
2062
MODULE_LICENSE("GPL");
2063
2064
2065
2066
2067