Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/atm/horizon.c
15109 views
1
/*
2
Madge Horizon ATM Adapter driver.
3
Copyright (C) 1995-1999 Madge Networks Ltd.
4
5
This program is free software; you can redistribute it and/or modify
6
it under the terms of the GNU General Public License as published by
7
the Free Software Foundation; either version 2 of the License, or
8
(at your option) any later version.
9
10
This program is distributed in the hope that it will be useful,
11
but WITHOUT ANY WARRANTY; without even the implied warranty of
12
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
GNU General Public License for more details.
14
15
You should have received a copy of the GNU General Public License
16
along with this program; if not, write to the Free Software
17
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18
19
The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20
system and in the file COPYING in the Linux kernel source.
21
*/
22
23
/*
24
IMPORTANT NOTE: Madge Networks no longer makes the adapters
25
supported by this driver and makes no commitment to maintain it.
26
*/
27
28
#include <linux/module.h>
29
#include <linux/kernel.h>
30
#include <linux/mm.h>
31
#include <linux/pci.h>
32
#include <linux/errno.h>
33
#include <linux/atm.h>
34
#include <linux/atmdev.h>
35
#include <linux/sonet.h>
36
#include <linux/skbuff.h>
37
#include <linux/time.h>
38
#include <linux/delay.h>
39
#include <linux/uio.h>
40
#include <linux/init.h>
41
#include <linux/ioport.h>
42
#include <linux/wait.h>
43
#include <linux/slab.h>
44
45
#include <asm/system.h>
46
#include <asm/io.h>
47
#include <asm/atomic.h>
48
#include <asm/uaccess.h>
49
#include <asm/string.h>
50
#include <asm/byteorder.h>
51
52
#include "horizon.h"
53
54
#define maintainer_string "Giuliano Procida at Madge Networks <[email protected]>"
55
#define description_string "Madge ATM Horizon [Ultra] driver"
56
#define version_string "1.2.1"
57
58
static inline void __init show_version (void) {
59
printk ("%s version %s\n", description_string, version_string);
60
}
61
62
/*
63
64
CREDITS
65
66
Driver and documentation by:
67
68
Chris Aston Madge Networks
69
Giuliano Procida Madge Networks
70
Simon Benham Madge Networks
71
Simon Johnson Madge Networks
72
Various Others Madge Networks
73
74
Some inspiration taken from other drivers by:
75
76
Alexandru Cucos UTBv
77
Kari Mettinen University of Helsinki
78
Werner Almesberger EPFL LRC
79
80
Theory of Operation
81
82
I Hardware, detection, initialisation and shutdown.
83
84
1. Supported Hardware
85
86
This driver should handle all variants of the PCI Madge ATM adapters
87
with the Horizon chipset. These are all PCI cards supporting PIO, BM
88
DMA and a form of MMIO (registers only, not internal RAM).
89
90
The driver is only known to work with SONET and UTP Horizon Ultra
91
cards at 155Mb/s. However, code is in place to deal with both the
92
original Horizon and 25Mb/s operation.
93
94
There are two revisions of the Horizon ASIC: the original and the
95
Ultra. Details of hardware bugs are in section III.
96
97
The ASIC version can be distinguished by chip markings but is NOT
98
indicated by the PCI revision (all adapters seem to have PCI rev 1).
99
100
I believe that:
101
102
Horizon => Collage 25 PCI Adapter (UTP and STP)
103
Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
104
Ambassador x => Collage 155 PCI Server (completely different)
105
106
Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
107
have a Madge B154 plus glue logic serializer. I have also found a
108
really ancient version of this with slightly different glue. It
109
comes with the revision 0 (140-025-01) ASIC.
110
111
Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
112
output (UTP) or an HP HFBR 5205 output (SONET). It has either
113
Madge's SAMBA framer or a SUNI-lite device (early versions). It
114
comes with the revision 1 (140-027-01) ASIC.
115
116
2. Detection
117
118
All Horizon-based cards present with the same PCI Vendor and Device
119
IDs. The standard Linux 2.2 PCI API is used to locate any cards and
120
to enable bus-mastering (with appropriate latency).
121
122
ATM_LAYER_STATUS in the control register distinguishes between the
123
two possible physical layers (25 and 155). It is not clear whether
124
the 155 cards can also operate at 25Mbps. We rely on the fact that a
125
card operates at 155 if and only if it has the newer Horizon Ultra
126
ASIC.
127
128
For 155 cards the two possible framers are probed for and then set
129
up for loop-timing.
130
131
3. Initialisation
132
133
The card is reset and then put into a known state. The physical
134
layer is configured for normal operation at the appropriate speed;
135
in the case of the 155 cards, the framer is initialised with
136
line-based timing; the internal RAM is zeroed and the allocation of
137
buffers for RX and TX is made; the Burnt In Address is read and
138
copied to the ATM ESI; various policy settings for RX (VPI bits,
139
unknown VCs, oam cells) are made. Ideally all policy items should be
140
configurable at module load (if not actually on-demand), however,
141
only the vpi vs vci bit allocation can be specified at insmod.
142
143
4. Shutdown
144
145
This is in response to module_cleaup. No VCs are in use and the card
146
should be idle; it is reset.
147
148
II Driver software (as it should be)
149
150
0. Traffic Parameters
151
152
The traffic classes (not an enumeration) are currently: ATM_NONE (no
153
traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
154
(compatible with everything). Together with (perhaps only some of)
155
the following items they make up the traffic specification.
156
157
struct atm_trafprm {
158
unsigned char traffic_class; traffic class (ATM_UBR, ...)
159
int max_pcr; maximum PCR in cells per second
160
int pcr; desired PCR in cells per second
161
int min_pcr; minimum PCR in cells per second
162
int max_cdv; maximum CDV in microseconds
163
int max_sdu; maximum SDU in bytes
164
};
165
166
Note that these denote bandwidth available not bandwidth used; the
167
possibilities according to ATMF are:
168
169
Real Time (cdv and max CDT given)
170
171
CBR(pcr) pcr bandwidth always available
172
rtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
173
174
Non Real Time
175
176
nrtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
177
UBR()
178
ABR(mcr,pcr) mcr bandwidth always available, up to pcr (depending) too
179
180
mbs is max burst size (bucket)
181
pcr and scr have associated cdvt values
182
mcr is like scr but has no cdtv
183
cdtv may differ at each hop
184
185
Some of the above items are qos items (as opposed to traffic
186
parameters). We have nothing to do with qos. All except ABR can have
187
their traffic parameters converted to GCRA parameters. The GCRA may
188
be implemented as a (real-number) leaky bucket. The GCRA can be used
189
in complicated ways by switches and in simpler ways by end-stations.
190
It can be used both to filter incoming cells and shape out-going
191
cells.
192
193
ATM Linux actually supports:
194
195
ATM_NONE() (no traffic in this direction)
196
ATM_UBR(max_frame_size)
197
ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
198
199
0 or ATM_MAX_PCR are used to indicate maximum available PCR
200
201
A traffic specification consists of the AAL type and separate
202
traffic specifications for either direction. In ATM Linux it is:
203
204
struct atm_qos {
205
struct atm_trafprm txtp;
206
struct atm_trafprm rxtp;
207
unsigned char aal;
208
};
209
210
AAL types are:
211
212
ATM_NO_AAL AAL not specified
213
ATM_AAL0 "raw" ATM cells
214
ATM_AAL1 AAL1 (CBR)
215
ATM_AAL2 AAL2 (VBR)
216
ATM_AAL34 AAL3/4 (data)
217
ATM_AAL5 AAL5 (data)
218
ATM_SAAL signaling AAL
219
220
The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
221
it does not implement AAL 3/4 SAR and it has a different notion of
222
"raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
223
supported by this driver.
224
225
The Horizon has limited support for ABR (including UBR), VBR and
226
CBR. Each TX channel has a bucket (containing up to 31 cell units)
227
and two timers (PCR and SCR) associated with it that can be used to
228
govern cell emissions and host notification (in the case of ABR this
229
is presumably so that RM cells may be emitted at appropriate times).
230
The timers may either be disabled or may be set to any of 240 values
231
(determined by the clock crystal, a fixed (?) per-device divider, a
232
configurable divider and a configurable timer preload value).
233
234
At the moment only UBR and CBR are supported by the driver. VBR will
235
be supported as soon as ATM for Linux supports it. ABR support is
236
very unlikely as RM cell handling is completely up to the driver.
237
238
1. TX (TX channel setup and TX transfer)
239
240
The TX half of the driver owns the TX Horizon registers. The TX
241
component in the IRQ handler is the BM completion handler. This can
242
only be entered when tx_busy is true (enforced by hardware). The
243
other TX component can only be entered when tx_busy is false
244
(enforced by driver). So TX is single-threaded.
245
246
Apart from a minor optimisation to not re-select the last channel,
247
the TX send component works as follows:
248
249
Atomic test and set tx_busy until we succeed; we should implement
250
some sort of timeout so that tx_busy will never be stuck at true.
251
252
If no TX channel is set up for this VC we wait for an idle one (if
253
necessary) and set it up.
254
255
At this point we have a TX channel ready for use. We wait for enough
256
buffers to become available then start a TX transmit (set the TX
257
descriptor, schedule transfer, exit).
258
259
The IRQ component handles TX completion (stats, free buffer, tx_busy
260
unset, exit). We also re-schedule further transfers for the same
261
frame if needed.
262
263
TX setup in more detail:
264
265
TX open is a nop, the relevant information is held in the hrz_vcc
266
(vcc->dev_data) structure and is "cached" on the card.
267
268
TX close gets the TX lock and clears the channel from the "cache".
269
270
2. RX (Data Available and RX transfer)
271
272
The RX half of the driver owns the RX registers. There are two RX
273
components in the IRQ handler: the data available handler deals with
274
fresh data that has arrived on the card, the BM completion handler
275
is very similar to the TX completion handler. The data available
276
handler grabs the rx_lock and it is only released once the data has
277
been discarded or completely transferred to the host. The BM
278
completion handler only runs when the lock is held; the data
279
available handler is locked out over the same period.
280
281
Data available on the card triggers an interrupt. If the data is not
282
suitable for our existing RX channels or we cannot allocate a buffer
283
it is flushed. Otherwise an RX receive is scheduled. Multiple RX
284
transfers may be scheduled for the same frame.
285
286
RX setup in more detail:
287
288
RX open...
289
RX close...
290
291
III Hardware Bugs
292
293
0. Byte vs Word addressing of adapter RAM.
294
295
A design feature; see the .h file (especially the memory map).
296
297
1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
298
299
The host must not start a transmit direction transfer at a
300
non-four-byte boundary in host memory. Instead the host should
301
perform a byte, or a two byte, or one byte followed by two byte
302
transfer in order to start the rest of the transfer on a four byte
303
boundary. RX is OK.
304
305
Simultaneous transmit and receive direction bus master transfers are
306
not allowed.
307
308
The simplest solution to these two is to always do PIO (never DMA)
309
in the TX direction on the original Horizon. More complicated
310
solutions are likely to hurt my brain.
311
312
2. Loss of buffer on close VC
313
314
When a VC is being closed, the buffer associated with it is not
315
returned to the pool. The host must store the reference to this
316
buffer and when opening a new VC then give it to that new VC.
317
318
The host intervention currently consists of stacking such a buffer
319
pointer at VC close and checking the stack at VC open.
320
321
3. Failure to close a VC
322
323
If a VC is currently receiving a frame then closing the VC may fail
324
and the frame continues to be received.
325
326
The solution is to make sure any received frames are flushed when
327
ready. This is currently done just before the solution to 2.
328
329
4. PCI bus (original Horizon only, fixed in Ultra)
330
331
Reading from the data port prior to initialisation will hang the PCI
332
bus. Just don't do that then! We don't.
333
334
IV To Do List
335
336
. Timer code may be broken.
337
338
. Allow users to specify buffer allocation split for TX and RX.
339
340
. Deal once and for all with buggy VC close.
341
342
. Handle interrupted and/or non-blocking operations.
343
344
. Change some macros to functions and move from .h to .c.
345
346
. Try to limit the number of TX frames each VC may have queued, in
347
order to reduce the chances of TX buffer exhaustion.
348
349
. Implement VBR (bucket and timers not understood) and ABR (need to
350
do RM cells manually); also no Linux support for either.
351
352
. Implement QoS changes on open VCs (involves extracting parts of VC open
353
and close into separate functions and using them to make changes).
354
355
*/
356
357
/********** globals **********/
358
359
static void do_housekeeping (unsigned long arg);
360
361
static unsigned short debug = 0;
362
static unsigned short vpi_bits = 0;
363
static int max_tx_size = 9000;
364
static int max_rx_size = 9000;
365
static unsigned char pci_lat = 0;
366
367
/********** access functions **********/
368
369
/* Read / Write Horizon registers */
370
static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
371
outl (cpu_to_le32 (data), dev->iobase + reg);
372
}
373
374
static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
375
return le32_to_cpu (inl (dev->iobase + reg));
376
}
377
378
static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
379
outw (cpu_to_le16 (data), dev->iobase + reg);
380
}
381
382
static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
383
return le16_to_cpu (inw (dev->iobase + reg));
384
}
385
386
static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
387
outsb (dev->iobase + reg, addr, len);
388
}
389
390
static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
391
insb (dev->iobase + reg, addr, len);
392
}
393
394
/* Read / Write to a given address in Horizon buffer memory.
395
Interrupts must be disabled between the address register and data
396
port accesses as these must form an atomic operation. */
397
static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
398
// wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
399
wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
400
wr_regl (dev, MEMORY_PORT_OFF, data);
401
}
402
403
static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
404
// wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
405
wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
406
return rd_regl (dev, MEMORY_PORT_OFF);
407
}
408
409
static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
410
wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
411
wr_regl (dev, MEMORY_PORT_OFF, data);
412
}
413
414
static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
415
wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
416
return rd_regl (dev, MEMORY_PORT_OFF);
417
}
418
419
/********** specialised access functions **********/
420
421
/* RX */
422
423
static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
424
wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
425
return;
426
}
427
428
static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
429
while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
430
;
431
return;
432
}
433
434
static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
435
wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
436
return;
437
}
438
439
static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
440
while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
441
;
442
return;
443
}
444
445
/* TX */
446
447
static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
448
wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
449
return;
450
}
451
452
/* Update or query one configuration parameter of a particular channel. */
453
454
static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
455
wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
456
chan * TX_CHANNEL_CONFIG_MULT | mode);
457
wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
458
return;
459
}
460
461
static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) {
462
wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
463
chan * TX_CHANNEL_CONFIG_MULT | mode);
464
return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF);
465
}
466
467
/********** dump functions **********/
468
469
static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
470
#ifdef DEBUG_HORIZON
471
unsigned int i;
472
unsigned char * data = skb->data;
473
PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
474
for (i=0; i<skb->len && i < 256;i++)
475
PRINTDM (DBG_DATA, "%02x ", data[i]);
476
PRINTDE (DBG_DATA,"");
477
#else
478
(void) prefix;
479
(void) vc;
480
(void) skb;
481
#endif
482
return;
483
}
484
485
static inline void dump_regs (hrz_dev * dev) {
486
#ifdef DEBUG_HORIZON
487
PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
488
PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
489
PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
490
PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
491
PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
492
PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
493
#else
494
(void) dev;
495
#endif
496
return;
497
}
498
499
static inline void dump_framer (hrz_dev * dev) {
500
#ifdef DEBUG_HORIZON
501
unsigned int i;
502
PRINTDB (DBG_REGS, "framer registers:");
503
for (i = 0; i < 0x10; ++i)
504
PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
505
PRINTDE (DBG_REGS,"");
506
#else
507
(void) dev;
508
#endif
509
return;
510
}
511
512
/********** VPI/VCI <-> (RX) channel conversions **********/
513
514
/* RX channels are 10 bit integers, these fns are quite paranoid */
515
516
static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) {
517
unsigned short vci_bits = 10 - vpi_bits;
518
if ((channel & RX_CHANNEL_MASK) == channel) {
519
*vci = channel & ((~0)<<vci_bits);
520
*vpi = channel >> vci_bits;
521
return channel ? 0 : -EINVAL;
522
}
523
return -EINVAL;
524
}
525
526
static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
527
unsigned short vci_bits = 10 - vpi_bits;
528
if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
529
*channel = vpi<<vci_bits | vci;
530
return *channel ? 0 : -EINVAL;
531
}
532
return -EINVAL;
533
}
534
535
/********** decode RX queue entries **********/
536
537
static inline u16 rx_q_entry_to_length (u32 x) {
538
return x & RX_Q_ENTRY_LENGTH_MASK;
539
}
540
541
static inline u16 rx_q_entry_to_rx_channel (u32 x) {
542
return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
543
}
544
545
/* Cell Transmit Rate Values
546
*
547
* the cell transmit rate (cells per sec) can be set to a variety of
548
* different values by specifying two parameters: a timer preload from
549
* 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
550
* an exponent from 0 to 14; the special value 15 disables the timer).
551
*
552
* cellrate = baserate / (preload * 2^divider)
553
*
554
* The maximum cell rate that can be specified is therefore just the
555
* base rate. Halving the preload is equivalent to adding 1 to the
556
* divider and so values 1 to 8 of the preload are redundant except
557
* in the case of a maximal divider (14).
558
*
559
* Given a desired cell rate, an algorithm to determine the preload
560
* and divider is:
561
*
562
* a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
563
* b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
564
* if x <= 16 then set p = x, d = 0 (high rates), done
565
* c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
566
* know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
567
* we find the range (n will be between 1 and 14), set d = n
568
* d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
569
*
570
* The algorithm used below is a minor variant of the above.
571
*
572
* The base rate is derived from the oscillator frequency (Hz) using a
573
* fixed divider:
574
*
575
* baserate = freq / 32 in the case of some Unknown Card
576
* baserate = freq / 8 in the case of the Horizon 25
577
* baserate = freq / 8 in the case of the Horizon Ultra 155
578
*
579
* The Horizon cards have oscillators and base rates as follows:
580
*
581
* Card Oscillator Base Rate
582
* Unknown Card 33 MHz 1.03125 MHz (33 MHz = PCI freq)
583
* Horizon 25 32 MHz 4 MHz
584
* Horizon Ultra 155 40 MHz 5 MHz
585
*
586
* The following defines give the base rates in Hz. These were
587
* previously a factor of 100 larger, no doubt someone was using
588
* cps*100.
589
*/
590
591
#define BR_UKN 1031250l
592
#define BR_HRZ 4000000l
593
#define BR_ULT 5000000l
594
595
// d is an exponent
596
#define CR_MIND 0
597
#define CR_MAXD 14
598
599
// p ranges from 1 to a power of 2
600
#define CR_MAXPEXP 4
601
602
static int make_rate (const hrz_dev * dev, u32 c, rounding r,
603
u16 * bits, unsigned int * actual)
604
{
605
// note: rounding the rate down means rounding 'p' up
606
const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
607
608
u32 div = CR_MIND;
609
u32 pre;
610
611
// br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
612
// the tests below. We could think harder about exact possibilities
613
// of failure...
614
615
unsigned long br_man = br;
616
unsigned int br_exp = 0;
617
618
PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
619
r == round_up ? "up" : r == round_down ? "down" : "nearest");
620
621
// avoid div by zero
622
if (!c) {
623
PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
624
return -EINVAL;
625
}
626
627
while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
628
br_man = br_man >> 1;
629
++br_exp;
630
}
631
// (br >>br_exp) <<br_exp == br and
632
// br_exp <= CR_MAXPEXP+CR_MIND
633
634
if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
635
// Equivalent to: B <= (c << (MAXPEXP+MIND))
636
// take care of rounding
637
switch (r) {
638
case round_down:
639
pre = DIV_ROUND_UP(br, c<<div);
640
// but p must be non-zero
641
if (!pre)
642
pre = 1;
643
break;
644
case round_nearest:
645
pre = DIV_ROUND_CLOSEST(br, c<<div);
646
// but p must be non-zero
647
if (!pre)
648
pre = 1;
649
break;
650
default: /* round_up */
651
pre = br/(c<<div);
652
// but p must be non-zero
653
if (!pre)
654
return -EINVAL;
655
}
656
PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
657
goto got_it;
658
}
659
660
// at this point we have
661
// d == MIND and (c << (MAXPEXP+MIND)) < B
662
while (div < CR_MAXD) {
663
div++;
664
if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
665
// Equivalent to: B <= (c << (MAXPEXP+d))
666
// c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
667
// 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
668
// MAXP/2 < B/c2^d <= MAXP
669
// take care of rounding
670
switch (r) {
671
case round_down:
672
pre = DIV_ROUND_UP(br, c<<div);
673
break;
674
case round_nearest:
675
pre = DIV_ROUND_CLOSEST(br, c<<div);
676
break;
677
default: /* round_up */
678
pre = br/(c<<div);
679
}
680
PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
681
goto got_it;
682
}
683
}
684
// at this point we have
685
// d == MAXD and (c << (MAXPEXP+MAXD)) < B
686
// but we cannot go any higher
687
// take care of rounding
688
if (r == round_down)
689
return -EINVAL;
690
pre = 1 << CR_MAXPEXP;
691
PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
692
got_it:
693
// paranoia
694
if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
695
PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
696
div, pre);
697
return -EINVAL;
698
} else {
699
if (bits)
700
*bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
701
if (actual) {
702
*actual = DIV_ROUND_UP(br, pre<<div);
703
PRINTD (DBG_QOS, "actual rate: %u", *actual);
704
}
705
return 0;
706
}
707
}
708
709
static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
710
u16 * bit_pattern, unsigned int * actual) {
711
unsigned int my_actual;
712
713
PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
714
c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
715
716
if (!actual)
717
// actual rate is not returned
718
actual = &my_actual;
719
720
if (make_rate (dev, c, round_nearest, bit_pattern, actual))
721
// should never happen as round_nearest always succeeds
722
return -1;
723
724
if (c - tol <= *actual && *actual <= c + tol)
725
// within tolerance
726
return 0;
727
else
728
// intolerant, try rounding instead
729
return make_rate (dev, c, r, bit_pattern, actual);
730
}
731
732
/********** Listen on a VC **********/
733
734
static int hrz_open_rx (hrz_dev * dev, u16 channel) {
735
// is there any guarantee that we don't get two simulataneous
736
// identical calls of this function from different processes? yes
737
// rate_lock
738
unsigned long flags;
739
u32 channel_type; // u16?
740
741
u16 buf_ptr = RX_CHANNEL_IDLE;
742
743
rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
744
745
PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
746
747
spin_lock_irqsave (&dev->mem_lock, flags);
748
channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
749
spin_unlock_irqrestore (&dev->mem_lock, flags);
750
751
// very serious error, should never occur
752
if (channel_type != RX_CHANNEL_DISABLED) {
753
PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
754
return -EBUSY; // clean up?
755
}
756
757
// Give back spare buffer
758
if (dev->noof_spare_buffers) {
759
buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
760
PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
761
// should never occur
762
if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
763
// but easy to recover from
764
PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
765
buf_ptr = RX_CHANNEL_IDLE;
766
}
767
} else {
768
PRINTD (DBG_VCC, "using IDLE buffer pointer");
769
}
770
771
// Channel is currently disabled so change its status to idle
772
773
// do we really need to save the flags again?
774
spin_lock_irqsave (&dev->mem_lock, flags);
775
776
wr_mem (dev, &rx_desc->wr_buf_type,
777
buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
778
if (buf_ptr != RX_CHANNEL_IDLE)
779
wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
780
781
spin_unlock_irqrestore (&dev->mem_lock, flags);
782
783
// rxer->rate = make_rate (qos->peak_cells);
784
785
PRINTD (DBG_FLOW, "hrz_open_rx ok");
786
787
return 0;
788
}
789
790
#if 0
791
/********** change vc rate for a given vc **********/
792
793
static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
794
rxer->rate = make_rate (qos->peak_cells);
795
}
796
#endif
797
798
/********** free an skb (as per ATM device driver documentation) **********/
799
800
static void hrz_kfree_skb (struct sk_buff * skb) {
801
if (ATM_SKB(skb)->vcc->pop) {
802
ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
803
} else {
804
dev_kfree_skb_any (skb);
805
}
806
}
807
808
/********** cancel listen on a VC **********/
809
810
static void hrz_close_rx (hrz_dev * dev, u16 vc) {
811
unsigned long flags;
812
813
u32 value;
814
815
u32 r1, r2;
816
817
rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
818
819
int was_idle = 0;
820
821
spin_lock_irqsave (&dev->mem_lock, flags);
822
value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
823
spin_unlock_irqrestore (&dev->mem_lock, flags);
824
825
if (value == RX_CHANNEL_DISABLED) {
826
// I suppose this could happen once we deal with _NONE traffic properly
827
PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
828
return;
829
}
830
if (value == RX_CHANNEL_IDLE)
831
was_idle = 1;
832
833
spin_lock_irqsave (&dev->mem_lock, flags);
834
835
for (;;) {
836
wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
837
838
if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
839
break;
840
841
was_idle = 0;
842
}
843
844
if (was_idle) {
845
spin_unlock_irqrestore (&dev->mem_lock, flags);
846
return;
847
}
848
849
WAIT_FLUSH_RX_COMPLETE(dev);
850
851
// XXX Is this all really necessary? We can rely on the rx_data_av
852
// handler to discard frames that remain queued for delivery. If the
853
// worry is that immediately reopening the channel (perhaps by a
854
// different process) may cause some data to be mis-delivered then
855
// there may still be a simpler solution (such as busy-waiting on
856
// rx_busy once the channel is disabled or before a new one is
857
// opened - does this leave any holes?). Arguably setting up and
858
// tearing down the TX and RX halves of each virtual circuit could
859
// most safely be done within ?x_busy protected regions.
860
861
// OK, current changes are that Simon's marker is disabled and we DO
862
// look for NULL rxer elsewhere. The code here seems flush frames
863
// and then remember the last dead cell belonging to the channel
864
// just disabled - the cell gets relinked at the next vc_open.
865
// However, when all VCs are closed or only a few opened there are a
866
// handful of buffers that are unusable.
867
868
// Does anyone feel like documenting spare_buffers properly?
869
// Does anyone feel like fixing this in a nicer way?
870
871
// Flush any data which is left in the channel
872
for (;;) {
873
// Change the rx channel port to something different to the RX
874
// channel we are trying to close to force Horizon to flush the rx
875
// channel read and write pointers.
876
877
u16 other = vc^(RX_CHANS/2);
878
879
SELECT_RX_CHANNEL (dev, other);
880
WAIT_UPDATE_COMPLETE (dev);
881
882
r1 = rd_mem (dev, &rx_desc->rd_buf_type);
883
884
// Select this RX channel. Flush doesn't seem to work unless we
885
// select an RX channel before hand
886
887
SELECT_RX_CHANNEL (dev, vc);
888
WAIT_UPDATE_COMPLETE (dev);
889
890
// Attempt to flush a frame on this RX channel
891
892
FLUSH_RX_CHANNEL (dev, vc);
893
WAIT_FLUSH_RX_COMPLETE (dev);
894
895
// Force Horizon to flush rx channel read and write pointers as before
896
897
SELECT_RX_CHANNEL (dev, other);
898
WAIT_UPDATE_COMPLETE (dev);
899
900
r2 = rd_mem (dev, &rx_desc->rd_buf_type);
901
902
PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
903
904
if (r1 == r2) {
905
dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
906
break;
907
}
908
}
909
910
#if 0
911
{
912
rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
913
rx_q_entry * rd_ptr = dev->rx_q_entry;
914
915
PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
916
917
while (rd_ptr != wr_ptr) {
918
u32 x = rd_mem (dev, (HDW *) rd_ptr);
919
920
if (vc == rx_q_entry_to_rx_channel (x)) {
921
x |= SIMONS_DODGEY_MARKER;
922
923
PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
924
925
wr_mem (dev, (HDW *) rd_ptr, x);
926
}
927
928
if (rd_ptr == dev->rx_q_wrap)
929
rd_ptr = dev->rx_q_reset;
930
else
931
rd_ptr++;
932
}
933
}
934
#endif
935
936
spin_unlock_irqrestore (&dev->mem_lock, flags);
937
938
return;
939
}
940
941
/********** schedule RX transfers **********/
942
943
// Note on tail recursion: a GCC developer said that it is not likely
944
// to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
945
// are sure it does as you may otherwise overflow the kernel stack.
946
947
// giving this fn a return value would help GCC, allegedly
948
949
static void rx_schedule (hrz_dev * dev, int irq) {
950
unsigned int rx_bytes;
951
952
int pio_instead = 0;
953
#ifndef TAILRECURSIONWORKS
954
pio_instead = 1;
955
while (pio_instead) {
956
#endif
957
// bytes waiting for RX transfer
958
rx_bytes = dev->rx_bytes;
959
960
#if 0
961
spin_count = 0;
962
while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
963
PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
964
if (++spin_count > 10) {
965
PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
966
wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
967
clear_bit (rx_busy, &dev->flags);
968
hrz_kfree_skb (dev->rx_skb);
969
return;
970
}
971
}
972
#endif
973
974
// this code follows the TX code but (at the moment) there is only
975
// one region - the skb itself. I don't know if this will change,
976
// but it doesn't hurt to have the code here, disabled.
977
978
if (rx_bytes) {
979
// start next transfer within same region
980
if (rx_bytes <= MAX_PIO_COUNT) {
981
PRINTD (DBG_RX|DBG_BUS, "(pio)");
982
pio_instead = 1;
983
}
984
if (rx_bytes <= MAX_TRANSFER_COUNT) {
985
PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
986
dev->rx_bytes = 0;
987
} else {
988
PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
989
dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
990
rx_bytes = MAX_TRANSFER_COUNT;
991
}
992
} else {
993
// rx_bytes == 0 -- we're between regions
994
// regions remaining to transfer
995
#if 0
996
unsigned int rx_regions = dev->rx_regions;
997
#else
998
unsigned int rx_regions = 0;
999
#endif
1000
1001
if (rx_regions) {
1002
#if 0
1003
// start a new region
1004
dev->rx_addr = dev->rx_iovec->iov_base;
1005
rx_bytes = dev->rx_iovec->iov_len;
1006
++dev->rx_iovec;
1007
dev->rx_regions = rx_regions - 1;
1008
1009
if (rx_bytes <= MAX_PIO_COUNT) {
1010
PRINTD (DBG_RX|DBG_BUS, "(pio)");
1011
pio_instead = 1;
1012
}
1013
if (rx_bytes <= MAX_TRANSFER_COUNT) {
1014
PRINTD (DBG_RX|DBG_BUS, "(full region)");
1015
dev->rx_bytes = 0;
1016
} else {
1017
PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1018
dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1019
rx_bytes = MAX_TRANSFER_COUNT;
1020
}
1021
#endif
1022
} else {
1023
// rx_regions == 0
1024
// that's all folks - end of frame
1025
struct sk_buff * skb = dev->rx_skb;
1026
// dev->rx_iovec = 0;
1027
1028
FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1029
1030
dump_skb ("<<<", dev->rx_channel, skb);
1031
1032
PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1033
1034
{
1035
struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1036
// VC layer stats
1037
atomic_inc(&vcc->stats->rx);
1038
__net_timestamp(skb);
1039
// end of our responsibility
1040
vcc->push (vcc, skb);
1041
}
1042
}
1043
}
1044
1045
// note: writing RX_COUNT clears any interrupt condition
1046
if (rx_bytes) {
1047
if (pio_instead) {
1048
if (irq)
1049
wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1050
rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1051
} else {
1052
wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1053
wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1054
}
1055
dev->rx_addr += rx_bytes;
1056
} else {
1057
if (irq)
1058
wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1059
// allow another RX thread to start
1060
YELLOW_LED_ON(dev);
1061
clear_bit (rx_busy, &dev->flags);
1062
PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1063
}
1064
1065
#ifdef TAILRECURSIONWORKS
1066
// and we all bless optimised tail calls
1067
if (pio_instead)
1068
return rx_schedule (dev, 0);
1069
return;
1070
#else
1071
// grrrrrrr!
1072
irq = 0;
1073
}
1074
return;
1075
#endif
1076
}
1077
1078
/********** handle RX bus master complete events **********/
1079
1080
static void rx_bus_master_complete_handler (hrz_dev * dev) {
1081
if (test_bit (rx_busy, &dev->flags)) {
1082
rx_schedule (dev, 1);
1083
} else {
1084
PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1085
// clear interrupt condition on adapter
1086
wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1087
}
1088
return;
1089
}
1090
1091
/********** (queue to) become the next TX thread **********/
1092
1093
static int tx_hold (hrz_dev * dev) {
1094
PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1095
wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1096
PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1097
if (signal_pending (current))
1098
return -1;
1099
PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1100
return 0;
1101
}
1102
1103
/********** allow another TX thread to start **********/
1104
1105
static inline void tx_release (hrz_dev * dev) {
1106
clear_bit (tx_busy, &dev->flags);
1107
PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1108
wake_up_interruptible (&dev->tx_queue);
1109
}
1110
1111
/********** schedule TX transfers **********/
1112
1113
static void tx_schedule (hrz_dev * const dev, int irq) {
1114
unsigned int tx_bytes;
1115
1116
int append_desc = 0;
1117
1118
int pio_instead = 0;
1119
#ifndef TAILRECURSIONWORKS
1120
pio_instead = 1;
1121
while (pio_instead) {
1122
#endif
1123
// bytes in current region waiting for TX transfer
1124
tx_bytes = dev->tx_bytes;
1125
1126
#if 0
1127
spin_count = 0;
1128
while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1129
PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1130
if (++spin_count > 10) {
1131
PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1132
wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1133
tx_release (dev);
1134
hrz_kfree_skb (dev->tx_skb);
1135
return;
1136
}
1137
}
1138
#endif
1139
1140
if (tx_bytes) {
1141
// start next transfer within same region
1142
if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1143
PRINTD (DBG_TX|DBG_BUS, "(pio)");
1144
pio_instead = 1;
1145
}
1146
if (tx_bytes <= MAX_TRANSFER_COUNT) {
1147
PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1148
if (!dev->tx_iovec) {
1149
// end of last region
1150
append_desc = 1;
1151
}
1152
dev->tx_bytes = 0;
1153
} else {
1154
PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1155
dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1156
tx_bytes = MAX_TRANSFER_COUNT;
1157
}
1158
} else {
1159
// tx_bytes == 0 -- we're between regions
1160
// regions remaining to transfer
1161
unsigned int tx_regions = dev->tx_regions;
1162
1163
if (tx_regions) {
1164
// start a new region
1165
dev->tx_addr = dev->tx_iovec->iov_base;
1166
tx_bytes = dev->tx_iovec->iov_len;
1167
++dev->tx_iovec;
1168
dev->tx_regions = tx_regions - 1;
1169
1170
if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1171
PRINTD (DBG_TX|DBG_BUS, "(pio)");
1172
pio_instead = 1;
1173
}
1174
if (tx_bytes <= MAX_TRANSFER_COUNT) {
1175
PRINTD (DBG_TX|DBG_BUS, "(full region)");
1176
dev->tx_bytes = 0;
1177
} else {
1178
PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1179
dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1180
tx_bytes = MAX_TRANSFER_COUNT;
1181
}
1182
} else {
1183
// tx_regions == 0
1184
// that's all folks - end of frame
1185
struct sk_buff * skb = dev->tx_skb;
1186
dev->tx_iovec = NULL;
1187
1188
// VC layer stats
1189
atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1190
1191
// free the skb
1192
hrz_kfree_skb (skb);
1193
}
1194
}
1195
1196
// note: writing TX_COUNT clears any interrupt condition
1197
if (tx_bytes) {
1198
if (pio_instead) {
1199
if (irq)
1200
wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1201
wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1202
if (append_desc)
1203
wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1204
} else {
1205
wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1206
if (append_desc)
1207
wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1208
wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1209
append_desc
1210
? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1211
: tx_bytes);
1212
}
1213
dev->tx_addr += tx_bytes;
1214
} else {
1215
if (irq)
1216
wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1217
YELLOW_LED_ON(dev);
1218
tx_release (dev);
1219
}
1220
1221
#ifdef TAILRECURSIONWORKS
1222
// and we all bless optimised tail calls
1223
if (pio_instead)
1224
return tx_schedule (dev, 0);
1225
return;
1226
#else
1227
// grrrrrrr!
1228
irq = 0;
1229
}
1230
return;
1231
#endif
1232
}
1233
1234
/********** handle TX bus master complete events **********/
1235
1236
static void tx_bus_master_complete_handler (hrz_dev * dev) {
1237
if (test_bit (tx_busy, &dev->flags)) {
1238
tx_schedule (dev, 1);
1239
} else {
1240
PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1241
// clear interrupt condition on adapter
1242
wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1243
}
1244
return;
1245
}
1246
1247
/********** move RX Q pointer to next item in circular buffer **********/
1248
1249
// called only from IRQ sub-handler
1250
static u32 rx_queue_entry_next (hrz_dev * dev) {
1251
u32 rx_queue_entry;
1252
spin_lock (&dev->mem_lock);
1253
rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1254
if (dev->rx_q_entry == dev->rx_q_wrap)
1255
dev->rx_q_entry = dev->rx_q_reset;
1256
else
1257
dev->rx_q_entry++;
1258
wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1259
spin_unlock (&dev->mem_lock);
1260
return rx_queue_entry;
1261
}
1262
1263
/********** handle RX disabled by device **********/
1264
1265
static inline void rx_disabled_handler (hrz_dev * dev) {
1266
wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1267
// count me please
1268
PRINTK (KERN_WARNING, "RX was disabled!");
1269
}
1270
1271
/********** handle RX data received by device **********/
1272
1273
// called from IRQ handler
1274
static void rx_data_av_handler (hrz_dev * dev) {
1275
u32 rx_queue_entry;
1276
u32 rx_queue_entry_flags;
1277
u16 rx_len;
1278
u16 rx_channel;
1279
1280
PRINTD (DBG_FLOW, "hrz_data_av_handler");
1281
1282
// try to grab rx lock (not possible during RX bus mastering)
1283
if (test_and_set_bit (rx_busy, &dev->flags)) {
1284
PRINTD (DBG_RX, "locked out of rx lock");
1285
return;
1286
}
1287
PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1288
// lock is cleared if we fail now, o/w after bus master completion
1289
1290
YELLOW_LED_OFF(dev);
1291
1292
rx_queue_entry = rx_queue_entry_next (dev);
1293
1294
rx_len = rx_q_entry_to_length (rx_queue_entry);
1295
rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1296
1297
WAIT_FLUSH_RX_COMPLETE (dev);
1298
1299
SELECT_RX_CHANNEL (dev, rx_channel);
1300
1301
PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1302
rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1303
1304
if (!rx_len) {
1305
// (at least) bus-mastering breaks if we try to handle a
1306
// zero-length frame, besides AAL5 does not support them
1307
PRINTK (KERN_ERR, "zero-length frame!");
1308
rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1309
}
1310
1311
if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1312
PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1313
}
1314
if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1315
struct atm_vcc * atm_vcc;
1316
1317
PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1318
1319
atm_vcc = dev->rxer[rx_channel];
1320
// if no vcc is assigned to this channel, we should drop the frame
1321
// (is this what SIMONS etc. was trying to achieve?)
1322
1323
if (atm_vcc) {
1324
1325
if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1326
1327
if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1328
1329
struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1330
if (skb) {
1331
// remember this so we can push it later
1332
dev->rx_skb = skb;
1333
// remember this so we can flush it later
1334
dev->rx_channel = rx_channel;
1335
1336
// prepare socket buffer
1337
skb_put (skb, rx_len);
1338
ATM_SKB(skb)->vcc = atm_vcc;
1339
1340
// simple transfer
1341
// dev->rx_regions = 0;
1342
// dev->rx_iovec = 0;
1343
dev->rx_bytes = rx_len;
1344
dev->rx_addr = skb->data;
1345
PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1346
skb->data, rx_len);
1347
1348
// do the business
1349
rx_schedule (dev, 0);
1350
return;
1351
1352
} else {
1353
PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1354
}
1355
1356
} else {
1357
PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1358
// do we count this?
1359
}
1360
1361
} else {
1362
PRINTK (KERN_WARNING, "dropped over-size frame");
1363
// do we count this?
1364
}
1365
1366
} else {
1367
PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1368
// do we count this?
1369
}
1370
1371
} else {
1372
// Wait update complete ? SPONG
1373
}
1374
1375
// RX was aborted
1376
YELLOW_LED_ON(dev);
1377
1378
FLUSH_RX_CHANNEL (dev,rx_channel);
1379
clear_bit (rx_busy, &dev->flags);
1380
1381
return;
1382
}
1383
1384
/********** interrupt handler **********/
1385
1386
static irqreturn_t interrupt_handler(int irq, void *dev_id)
1387
{
1388
hrz_dev *dev = dev_id;
1389
u32 int_source;
1390
unsigned int irq_ok;
1391
1392
PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1393
1394
// definitely for us
1395
irq_ok = 0;
1396
while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1397
& INTERESTING_INTERRUPTS)) {
1398
// In the interests of fairness, the handlers below are
1399
// called in sequence and without immediate return to the head of
1400
// the while loop. This is only of issue for slow hosts (or when
1401
// debugging messages are on). Really slow hosts may find a fast
1402
// sender keeps them permanently in the IRQ handler. :(
1403
1404
// (only an issue for slow hosts) RX completion goes before
1405
// rx_data_av as the former implies rx_busy and so the latter
1406
// would just abort. If it reschedules another transfer
1407
// (continuing the same frame) then it will not clear rx_busy.
1408
1409
// (only an issue for slow hosts) TX completion goes before RX
1410
// data available as it is a much shorter routine - there is the
1411
// chance that any further transfers it schedules will be complete
1412
// by the time of the return to the head of the while loop
1413
1414
if (int_source & RX_BUS_MASTER_COMPLETE) {
1415
++irq_ok;
1416
PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1417
rx_bus_master_complete_handler (dev);
1418
}
1419
if (int_source & TX_BUS_MASTER_COMPLETE) {
1420
++irq_ok;
1421
PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1422
tx_bus_master_complete_handler (dev);
1423
}
1424
if (int_source & RX_DATA_AV) {
1425
++irq_ok;
1426
PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1427
rx_data_av_handler (dev);
1428
}
1429
}
1430
if (irq_ok) {
1431
PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1432
} else {
1433
PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1434
}
1435
1436
PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1437
if (irq_ok)
1438
return IRQ_HANDLED;
1439
return IRQ_NONE;
1440
}
1441
1442
/********** housekeeping **********/
1443
1444
static void do_housekeeping (unsigned long arg) {
1445
// just stats at the moment
1446
hrz_dev * dev = (hrz_dev *) arg;
1447
1448
// collect device-specific (not driver/atm-linux) stats here
1449
dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1450
dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1451
dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1452
dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1453
1454
mod_timer (&dev->housekeeping, jiffies + HZ/10);
1455
1456
return;
1457
}
1458
1459
/********** find an idle channel for TX and set it up **********/
1460
1461
// called with tx_busy set
1462
static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1463
unsigned short idle_channels;
1464
short tx_channel = -1;
1465
unsigned int spin_count;
1466
PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1467
1468
// better would be to fail immediately, the caller can then decide whether
1469
// to wait or drop (depending on whether this is UBR etc.)
1470
spin_count = 0;
1471
while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1472
PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1473
// delay a bit here
1474
if (++spin_count > 100) {
1475
PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1476
return -EBUSY;
1477
}
1478
}
1479
1480
// got an idle channel
1481
{
1482
// tx_idle ensures we look for idle channels in RR order
1483
int chan = dev->tx_idle;
1484
1485
int keep_going = 1;
1486
while (keep_going) {
1487
if (idle_channels & (1<<chan)) {
1488
tx_channel = chan;
1489
keep_going = 0;
1490
}
1491
++chan;
1492
if (chan == TX_CHANS)
1493
chan = 0;
1494
}
1495
1496
dev->tx_idle = chan;
1497
}
1498
1499
// set up the channel we found
1500
{
1501
// Initialise the cell header in the transmit channel descriptor
1502
// a.k.a. prepare the channel and remember that we have done so.
1503
1504
tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1505
u32 rd_ptr;
1506
u32 wr_ptr;
1507
u16 channel = vcc->channel;
1508
1509
unsigned long flags;
1510
spin_lock_irqsave (&dev->mem_lock, flags);
1511
1512
// Update the transmit channel record.
1513
dev->tx_channel_record[tx_channel] = channel;
1514
1515
// xBR channel
1516
update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1517
vcc->tx_xbr_bits);
1518
1519
// Update the PCR counter preload value etc.
1520
update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1521
vcc->tx_pcr_bits);
1522
1523
#if 0
1524
if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1525
// SCR timer
1526
update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1527
vcc->tx_scr_bits);
1528
1529
// Bucket size...
1530
update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1531
vcc->tx_bucket_bits);
1532
1533
// ... and fullness
1534
update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1535
vcc->tx_bucket_bits);
1536
}
1537
#endif
1538
1539
// Initialise the read and write buffer pointers
1540
rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1541
wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1542
1543
// idle TX channels should have identical pointers
1544
if (rd_ptr != wr_ptr) {
1545
PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1546
// spin_unlock... return -E...
1547
// I wonder if gcc would get rid of one of the pointer aliases
1548
}
1549
PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1550
rd_ptr, wr_ptr);
1551
1552
switch (vcc->aal) {
1553
case aal0:
1554
PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1555
rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1556
wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1557
break;
1558
case aal34:
1559
PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1560
rd_ptr |= CHANNEL_TYPE_AAL3_4;
1561
wr_ptr |= CHANNEL_TYPE_AAL3_4;
1562
break;
1563
case aal5:
1564
rd_ptr |= CHANNEL_TYPE_AAL5;
1565
wr_ptr |= CHANNEL_TYPE_AAL5;
1566
// Initialise the CRC
1567
wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1568
break;
1569
}
1570
1571
wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1572
wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1573
1574
// Write the Cell Header
1575
// Payload Type, CLP and GFC would go here if non-zero
1576
wr_mem (dev, &tx_desc->cell_header, channel);
1577
1578
spin_unlock_irqrestore (&dev->mem_lock, flags);
1579
}
1580
1581
return tx_channel;
1582
}
1583
1584
/********** send a frame **********/
1585
1586
static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1587
unsigned int spin_count;
1588
int free_buffers;
1589
hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1590
hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1591
u16 channel = vcc->channel;
1592
1593
u32 buffers_required;
1594
1595
/* signed for error return */
1596
short tx_channel;
1597
1598
PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1599
channel, skb->data, skb->len);
1600
1601
dump_skb (">>>", channel, skb);
1602
1603
if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1604
PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1605
hrz_kfree_skb (skb);
1606
return -EIO;
1607
}
1608
1609
// don't understand this
1610
ATM_SKB(skb)->vcc = atm_vcc;
1611
1612
if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1613
PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1614
hrz_kfree_skb (skb);
1615
return -EIO;
1616
}
1617
1618
if (!channel) {
1619
PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1620
hrz_kfree_skb (skb);
1621
return -EIO;
1622
}
1623
1624
#if 0
1625
{
1626
// where would be a better place for this? housekeeping?
1627
u16 status;
1628
pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1629
if (status & PCI_STATUS_REC_MASTER_ABORT) {
1630
PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1631
status &= ~PCI_STATUS_REC_MASTER_ABORT;
1632
pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1633
if (test_bit (tx_busy, &dev->flags)) {
1634
hrz_kfree_skb (dev->tx_skb);
1635
tx_release (dev);
1636
}
1637
}
1638
}
1639
#endif
1640
1641
#ifdef DEBUG_HORIZON
1642
/* wey-hey! */
1643
if (channel == 1023) {
1644
unsigned int i;
1645
unsigned short d = 0;
1646
char * s = skb->data;
1647
if (*s++ == 'D') {
1648
for (i = 0; i < 4; ++i)
1649
d = (d << 4) | hex_to_bin(*s++);
1650
PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1651
}
1652
}
1653
#endif
1654
1655
// wait until TX is free and grab lock
1656
if (tx_hold (dev)) {
1657
hrz_kfree_skb (skb);
1658
return -ERESTARTSYS;
1659
}
1660
1661
// Wait for enough space to be available in transmit buffer memory.
1662
1663
// should be number of cells needed + 2 (according to hardware docs)
1664
// = ((framelen+8)+47) / 48 + 2
1665
// = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1666
buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1667
1668
// replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1669
spin_count = 0;
1670
while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1671
PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1672
free_buffers, buffers_required);
1673
// what is the appropriate delay? implement a timeout? (depending on line speed?)
1674
// mdelay (1);
1675
// what happens if we kill (current_pid, SIGKILL) ?
1676
schedule();
1677
if (++spin_count > 1000) {
1678
PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1679
free_buffers, buffers_required);
1680
tx_release (dev);
1681
hrz_kfree_skb (skb);
1682
return -ERESTARTSYS;
1683
}
1684
}
1685
1686
// Select a channel to transmit the frame on.
1687
if (channel == dev->last_vc) {
1688
PRINTD (DBG_TX, "last vc hack: hit");
1689
tx_channel = dev->tx_last;
1690
} else {
1691
PRINTD (DBG_TX, "last vc hack: miss");
1692
// Are we currently transmitting this VC on one of the channels?
1693
for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1694
if (dev->tx_channel_record[tx_channel] == channel) {
1695
PRINTD (DBG_TX, "vc already on channel: hit");
1696
break;
1697
}
1698
if (tx_channel == TX_CHANS) {
1699
PRINTD (DBG_TX, "vc already on channel: miss");
1700
// Find and set up an idle channel.
1701
tx_channel = setup_idle_tx_channel (dev, vcc);
1702
if (tx_channel < 0) {
1703
PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1704
tx_release (dev);
1705
return tx_channel;
1706
}
1707
}
1708
1709
PRINTD (DBG_TX, "got channel");
1710
SELECT_TX_CHANNEL(dev, tx_channel);
1711
1712
dev->last_vc = channel;
1713
dev->tx_last = tx_channel;
1714
}
1715
1716
PRINTD (DBG_TX, "using channel %u", tx_channel);
1717
1718
YELLOW_LED_OFF(dev);
1719
1720
// TX start transfer
1721
1722
{
1723
unsigned int tx_len = skb->len;
1724
unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1725
// remember this so we can free it later
1726
dev->tx_skb = skb;
1727
1728
if (tx_iovcnt) {
1729
// scatter gather transfer
1730
dev->tx_regions = tx_iovcnt;
1731
dev->tx_iovec = NULL; /* @@@ needs rewritten */
1732
dev->tx_bytes = 0;
1733
PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1734
skb->data, tx_len);
1735
tx_release (dev);
1736
hrz_kfree_skb (skb);
1737
return -EIO;
1738
} else {
1739
// simple transfer
1740
dev->tx_regions = 0;
1741
dev->tx_iovec = NULL;
1742
dev->tx_bytes = tx_len;
1743
dev->tx_addr = skb->data;
1744
PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1745
skb->data, tx_len);
1746
}
1747
1748
// and do the business
1749
tx_schedule (dev, 0);
1750
1751
}
1752
1753
return 0;
1754
}
1755
1756
/********** reset a card **********/
1757
1758
static void hrz_reset (const hrz_dev * dev) {
1759
u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1760
1761
// why not set RESET_HORIZON to one and wait for the card to
1762
// reassert that bit as zero? Like so:
1763
control_0_reg = control_0_reg & RESET_HORIZON;
1764
wr_regl (dev, CONTROL_0_REG, control_0_reg);
1765
while (control_0_reg & RESET_HORIZON)
1766
control_0_reg = rd_regl (dev, CONTROL_0_REG);
1767
1768
// old reset code retained:
1769
wr_regl (dev, CONTROL_0_REG, control_0_reg |
1770
RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1771
// just guessing here
1772
udelay (1000);
1773
1774
wr_regl (dev, CONTROL_0_REG, control_0_reg);
1775
}
1776
1777
/********** read the burnt in address **********/
1778
1779
static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1780
{
1781
wr_regl (dev, CONTROL_0_REG, ctrl);
1782
udelay (5);
1783
}
1784
1785
static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1786
{
1787
// DI must be valid around rising SK edge
1788
WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1789
WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1790
}
1791
1792
static u16 __devinit read_bia (const hrz_dev * dev, u16 addr)
1793
{
1794
u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1795
1796
const unsigned int addr_bits = 6;
1797
const unsigned int data_bits = 16;
1798
1799
unsigned int i;
1800
1801
u16 res;
1802
1803
ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1804
WRITE_IT_WAIT(dev, ctrl);
1805
1806
// wake Serial EEPROM and send 110 (READ) command
1807
ctrl |= (SEEPROM_CS | SEEPROM_DI);
1808
CLOCK_IT(dev, ctrl);
1809
1810
ctrl |= SEEPROM_DI;
1811
CLOCK_IT(dev, ctrl);
1812
1813
ctrl &= ~SEEPROM_DI;
1814
CLOCK_IT(dev, ctrl);
1815
1816
for (i=0; i<addr_bits; i++) {
1817
if (addr & (1 << (addr_bits-1)))
1818
ctrl |= SEEPROM_DI;
1819
else
1820
ctrl &= ~SEEPROM_DI;
1821
1822
CLOCK_IT(dev, ctrl);
1823
1824
addr = addr << 1;
1825
}
1826
1827
// we could check that we have DO = 0 here
1828
ctrl &= ~SEEPROM_DI;
1829
1830
res = 0;
1831
for (i=0;i<data_bits;i++) {
1832
res = res >> 1;
1833
1834
CLOCK_IT(dev, ctrl);
1835
1836
if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1837
res |= (1 << (data_bits-1));
1838
}
1839
1840
ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1841
WRITE_IT_WAIT(dev, ctrl);
1842
1843
return res;
1844
}
1845
1846
/********** initialise a card **********/
1847
1848
static int __devinit hrz_init (hrz_dev * dev) {
1849
int onefivefive;
1850
1851
u16 chan;
1852
1853
int buff_count;
1854
1855
HDW * mem;
1856
1857
cell_buf * tx_desc;
1858
cell_buf * rx_desc;
1859
1860
u32 ctrl;
1861
1862
ctrl = rd_regl (dev, CONTROL_0_REG);
1863
PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1864
onefivefive = ctrl & ATM_LAYER_STATUS;
1865
1866
if (onefivefive)
1867
printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1868
else
1869
printk (DEV_LABEL ": Horizon (at 25 MBps)");
1870
1871
printk (":");
1872
// Reset the card to get everything in a known state
1873
1874
printk (" reset");
1875
hrz_reset (dev);
1876
1877
// Clear all the buffer memory
1878
1879
printk (" clearing memory");
1880
1881
for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1882
wr_mem (dev, mem, 0);
1883
1884
printk (" tx channels");
1885
1886
// All transmit eight channels are set up as AAL5 ABR channels with
1887
// a 16us cell spacing. Why?
1888
1889
// Channel 0 gets the free buffer at 100h, channel 1 gets the free
1890
// buffer at 110h etc.
1891
1892
for (chan = 0; chan < TX_CHANS; ++chan) {
1893
tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1894
cell_buf * buf = &memmap->inittxbufs[chan];
1895
1896
// initialise the read and write buffer pointers
1897
wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1898
wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1899
1900
// set the status of the initial buffers to empty
1901
wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1902
}
1903
1904
// Use space bufn3 at the moment for tx buffers
1905
1906
printk (" tx buffers");
1907
1908
tx_desc = memmap->bufn3;
1909
1910
wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1911
1912
for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1913
wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1914
tx_desc++;
1915
}
1916
1917
wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1918
1919
// Initialise the transmit free buffer count
1920
wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1921
1922
printk (" rx channels");
1923
1924
// Initialise all of the receive channels to be AAL5 disabled with
1925
// an interrupt threshold of 0
1926
1927
for (chan = 0; chan < RX_CHANS; ++chan) {
1928
rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1929
1930
wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1931
}
1932
1933
printk (" rx buffers");
1934
1935
// Use space bufn4 at the moment for rx buffers
1936
1937
rx_desc = memmap->bufn4;
1938
1939
wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1940
1941
for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1942
wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1943
1944
rx_desc++;
1945
}
1946
1947
wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1948
1949
// Initialise the receive free buffer count
1950
wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1951
1952
// Initialize Horizons registers
1953
1954
// TX config
1955
wr_regw (dev, TX_CONFIG_OFF,
1956
ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1957
1958
// RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1959
wr_regw (dev, RX_CONFIG_OFF,
1960
DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1961
1962
// RX line config
1963
wr_regw (dev, RX_LINE_CONFIG_OFF,
1964
LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1965
1966
// Set the max AAL5 cell count to be just enough to contain the
1967
// largest AAL5 frame that the user wants to receive
1968
wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1969
DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1970
1971
// Enable receive
1972
wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1973
1974
printk (" control");
1975
1976
// Drive the OE of the LEDs then turn the green LED on
1977
ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1978
wr_regl (dev, CONTROL_0_REG, ctrl);
1979
1980
// Test for a 155-capable card
1981
1982
if (onefivefive) {
1983
// Select 155 mode... make this a choice (or: how do we detect
1984
// external line speed and switch?)
1985
ctrl |= ATM_LAYER_SELECT;
1986
wr_regl (dev, CONTROL_0_REG, ctrl);
1987
1988
// test SUNI-lite vs SAMBA
1989
1990
// Register 0x00 in the SUNI will have some of bits 3-7 set, and
1991
// they will always be zero for the SAMBA. Ha! Bloody hardware
1992
// engineers. It'll never work.
1993
1994
if (rd_framer (dev, 0) & 0x00f0) {
1995
// SUNI
1996
printk (" SUNI");
1997
1998
// Reset, just in case
1999
wr_framer (dev, 0x00, 0x0080);
2000
wr_framer (dev, 0x00, 0x0000);
2001
2002
// Configure transmit FIFO
2003
wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
2004
2005
// Set line timed mode
2006
wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
2007
} else {
2008
// SAMBA
2009
printk (" SAMBA");
2010
2011
// Reset, just in case
2012
wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
2013
wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
2014
2015
// Turn off diagnostic loopback and enable line-timed mode
2016
wr_framer (dev, 0, 0x0002);
2017
2018
// Turn on transmit outputs
2019
wr_framer (dev, 2, 0x0B80);
2020
}
2021
} else {
2022
// Select 25 mode
2023
ctrl &= ~ATM_LAYER_SELECT;
2024
2025
// Madge B154 setup
2026
// none required?
2027
}
2028
2029
printk (" LEDs");
2030
2031
GREEN_LED_ON(dev);
2032
YELLOW_LED_ON(dev);
2033
2034
printk (" ESI=");
2035
2036
{
2037
u16 b = 0;
2038
int i;
2039
u8 * esi = dev->atm_dev->esi;
2040
2041
// in the card I have, EEPROM
2042
// addresses 0, 1, 2 contain 0
2043
// addresess 5, 6 etc. contain ffff
2044
// NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2045
// the read_bia routine gets the BIA in Ethernet bit order
2046
2047
for (i=0; i < ESI_LEN; ++i) {
2048
if (i % 2 == 0)
2049
b = read_bia (dev, i/2 + 2);
2050
else
2051
b = b >> 8;
2052
esi[i] = b & 0xFF;
2053
printk ("%02x", esi[i]);
2054
}
2055
}
2056
2057
// Enable RX_Q and ?X_COMPLETE interrupts only
2058
wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2059
printk (" IRQ on");
2060
2061
printk (".\n");
2062
2063
return onefivefive;
2064
}
2065
2066
/********** check max_sdu **********/
2067
2068
static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2069
PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2070
2071
switch (aal) {
2072
case aal0:
2073
if (!(tp->max_sdu)) {
2074
PRINTD (DBG_QOS, "defaulting max_sdu");
2075
tp->max_sdu = ATM_AAL0_SDU;
2076
} else if (tp->max_sdu != ATM_AAL0_SDU) {
2077
PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2078
return -EINVAL;
2079
}
2080
break;
2081
case aal34:
2082
if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2083
PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2084
tp->max_sdu = ATM_MAX_AAL34_PDU;
2085
}
2086
break;
2087
case aal5:
2088
if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2089
PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2090
tp->max_sdu = max_frame_size;
2091
}
2092
break;
2093
}
2094
return 0;
2095
}
2096
2097
/********** check pcr **********/
2098
2099
// something like this should be part of ATM Linux
2100
static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2101
// we are assuming non-UBR, and non-special values of pcr
2102
if (tp->min_pcr == ATM_MAX_PCR)
2103
PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2104
else if (tp->min_pcr < 0)
2105
PRINTD (DBG_QOS, "luser gave negative min_pcr");
2106
else if (tp->min_pcr && tp->min_pcr > pcr)
2107
PRINTD (DBG_QOS, "pcr less than min_pcr");
2108
else
2109
// !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2110
// easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2111
// [this would get rid of next two conditionals]
2112
if ((0) && tp->max_pcr == ATM_MAX_PCR)
2113
PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2114
else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2115
PRINTD (DBG_QOS, "luser gave negative max_pcr");
2116
else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2117
PRINTD (DBG_QOS, "pcr greater than max_pcr");
2118
else {
2119
// each limit unspecified or not violated
2120
PRINTD (DBG_QOS, "xBR(pcr) OK");
2121
return 0;
2122
}
2123
PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2124
pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2125
return -EINVAL;
2126
}
2127
2128
/********** open VC **********/
2129
2130
static int hrz_open (struct atm_vcc *atm_vcc)
2131
{
2132
int error;
2133
u16 channel;
2134
2135
struct atm_qos * qos;
2136
struct atm_trafprm * txtp;
2137
struct atm_trafprm * rxtp;
2138
2139
hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2140
hrz_vcc vcc;
2141
hrz_vcc * vccp; // allocated late
2142
short vpi = atm_vcc->vpi;
2143
int vci = atm_vcc->vci;
2144
PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2145
2146
#ifdef ATM_VPI_UNSPEC
2147
// UNSPEC is deprecated, remove this code eventually
2148
if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2149
PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2150
return -EINVAL;
2151
}
2152
#endif
2153
2154
error = vpivci_to_channel (&channel, vpi, vci);
2155
if (error) {
2156
PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2157
return error;
2158
}
2159
2160
vcc.channel = channel;
2161
// max speed for the moment
2162
vcc.tx_rate = 0x0;
2163
2164
qos = &atm_vcc->qos;
2165
2166
// check AAL and remember it
2167
switch (qos->aal) {
2168
case ATM_AAL0:
2169
// we would if it were 48 bytes and not 52!
2170
PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2171
vcc.aal = aal0;
2172
break;
2173
case ATM_AAL34:
2174
// we would if I knew how do the SAR!
2175
PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2176
vcc.aal = aal34;
2177
break;
2178
case ATM_AAL5:
2179
PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2180
vcc.aal = aal5;
2181
break;
2182
default:
2183
PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2184
return -EINVAL;
2185
break;
2186
}
2187
2188
// TX traffic parameters
2189
2190
// there are two, interrelated problems here: 1. the reservation of
2191
// PCR is not a binary choice, we are given bounds and/or a
2192
// desirable value; 2. the device is only capable of certain values,
2193
// most of which are not integers. It is almost certainly acceptable
2194
// to be off by a maximum of 1 to 10 cps.
2195
2196
// Pragmatic choice: always store an integral PCR as that which has
2197
// been allocated, even if we allocate a little (or a lot) less,
2198
// after rounding. The actual allocation depends on what we can
2199
// manage with our rate selection algorithm. The rate selection
2200
// algorithm is given an integral PCR and a tolerance and told
2201
// whether it should round the value up or down if the tolerance is
2202
// exceeded; it returns: a) the actual rate selected (rounded up to
2203
// the nearest integer), b) a bit pattern to feed to the timer
2204
// register, and c) a failure value if no applicable rate exists.
2205
2206
// Part of the job is done by atm_pcr_goal which gives us a PCR
2207
// specification which says: EITHER grab the maximum available PCR
2208
// (and perhaps a lower bound which we musn't pass), OR grab this
2209
// amount, rounding down if you have to (and perhaps a lower bound
2210
// which we musn't pass) OR grab this amount, rounding up if you
2211
// have to (and perhaps an upper bound which we musn't pass). If any
2212
// bounds ARE passed we fail. Note that rounding is only rounding to
2213
// match device limitations, we do not round down to satisfy
2214
// bandwidth availability even if this would not violate any given
2215
// lower bound.
2216
2217
// Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2218
// (say) so this is not even a binary fixpoint cell rate (but this
2219
// device can do it). To avoid this sort of hassle we use a
2220
// tolerance parameter (currently fixed at 10 cps).
2221
2222
PRINTD (DBG_QOS, "TX:");
2223
2224
txtp = &qos->txtp;
2225
2226
// set up defaults for no traffic
2227
vcc.tx_rate = 0;
2228
// who knows what would actually happen if you try and send on this?
2229
vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2230
vcc.tx_pcr_bits = CLOCK_DISABLE;
2231
#if 0
2232
vcc.tx_scr_bits = CLOCK_DISABLE;
2233
vcc.tx_bucket_bits = 0;
2234
#endif
2235
2236
if (txtp->traffic_class != ATM_NONE) {
2237
error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2238
if (error) {
2239
PRINTD (DBG_QOS, "TX max_sdu check failed");
2240
return error;
2241
}
2242
2243
switch (txtp->traffic_class) {
2244
case ATM_UBR: {
2245
// we take "the PCR" as a rate-cap
2246
// not reserved
2247
vcc.tx_rate = 0;
2248
make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2249
vcc.tx_xbr_bits = ABR_RATE_TYPE;
2250
break;
2251
}
2252
#if 0
2253
case ATM_ABR: {
2254
// reserve min, allow up to max
2255
vcc.tx_rate = 0; // ?
2256
make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2257
vcc.tx_xbr_bits = ABR_RATE_TYPE;
2258
break;
2259
}
2260
#endif
2261
case ATM_CBR: {
2262
int pcr = atm_pcr_goal (txtp);
2263
rounding r;
2264
if (!pcr) {
2265
// down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2266
// should really have: once someone gets unlimited bandwidth
2267
// that no more non-UBR channels can be opened until the
2268
// unlimited one closes?? For the moment, round_down means
2269
// greedy people actually get something and not nothing
2270
r = round_down;
2271
// slight race (no locking) here so we may get -EAGAIN
2272
// later; the greedy bastards would deserve it :)
2273
PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2274
pcr = dev->tx_avail;
2275
} else if (pcr < 0) {
2276
r = round_down;
2277
pcr = -pcr;
2278
} else {
2279
r = round_up;
2280
}
2281
error = make_rate_with_tolerance (dev, pcr, r, 10,
2282
&vcc.tx_pcr_bits, &vcc.tx_rate);
2283
if (error) {
2284
PRINTD (DBG_QOS, "could not make rate from TX PCR");
2285
return error;
2286
}
2287
// not really clear what further checking is needed
2288
error = atm_pcr_check (txtp, vcc.tx_rate);
2289
if (error) {
2290
PRINTD (DBG_QOS, "TX PCR failed consistency check");
2291
return error;
2292
}
2293
vcc.tx_xbr_bits = CBR_RATE_TYPE;
2294
break;
2295
}
2296
#if 0
2297
case ATM_VBR: {
2298
int pcr = atm_pcr_goal (txtp);
2299
// int scr = atm_scr_goal (txtp);
2300
int scr = pcr/2; // just for fun
2301
unsigned int mbs = 60; // just for fun
2302
rounding pr;
2303
rounding sr;
2304
unsigned int bucket;
2305
if (!pcr) {
2306
pr = round_nearest;
2307
pcr = 1<<30;
2308
} else if (pcr < 0) {
2309
pr = round_down;
2310
pcr = -pcr;
2311
} else {
2312
pr = round_up;
2313
}
2314
error = make_rate_with_tolerance (dev, pcr, pr, 10,
2315
&vcc.tx_pcr_bits, 0);
2316
if (!scr) {
2317
// see comments for PCR with CBR above
2318
sr = round_down;
2319
// slight race (no locking) here so we may get -EAGAIN
2320
// later; the greedy bastards would deserve it :)
2321
PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2322
scr = dev->tx_avail;
2323
} else if (scr < 0) {
2324
sr = round_down;
2325
scr = -scr;
2326
} else {
2327
sr = round_up;
2328
}
2329
error = make_rate_with_tolerance (dev, scr, sr, 10,
2330
&vcc.tx_scr_bits, &vcc.tx_rate);
2331
if (error) {
2332
PRINTD (DBG_QOS, "could not make rate from TX SCR");
2333
return error;
2334
}
2335
// not really clear what further checking is needed
2336
// error = atm_scr_check (txtp, vcc.tx_rate);
2337
if (error) {
2338
PRINTD (DBG_QOS, "TX SCR failed consistency check");
2339
return error;
2340
}
2341
// bucket calculations (from a piece of paper...) cell bucket
2342
// capacity must be largest integer smaller than m(p-s)/p + 1
2343
// where m = max burst size, p = pcr, s = scr
2344
bucket = mbs*(pcr-scr)/pcr;
2345
if (bucket*pcr != mbs*(pcr-scr))
2346
bucket += 1;
2347
if (bucket > BUCKET_MAX_SIZE) {
2348
PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2349
bucket, BUCKET_MAX_SIZE);
2350
bucket = BUCKET_MAX_SIZE;
2351
}
2352
vcc.tx_xbr_bits = VBR_RATE_TYPE;
2353
vcc.tx_bucket_bits = bucket;
2354
break;
2355
}
2356
#endif
2357
default: {
2358
PRINTD (DBG_QOS, "unsupported TX traffic class");
2359
return -EINVAL;
2360
break;
2361
}
2362
}
2363
}
2364
2365
// RX traffic parameters
2366
2367
PRINTD (DBG_QOS, "RX:");
2368
2369
rxtp = &qos->rxtp;
2370
2371
// set up defaults for no traffic
2372
vcc.rx_rate = 0;
2373
2374
if (rxtp->traffic_class != ATM_NONE) {
2375
error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2376
if (error) {
2377
PRINTD (DBG_QOS, "RX max_sdu check failed");
2378
return error;
2379
}
2380
switch (rxtp->traffic_class) {
2381
case ATM_UBR: {
2382
// not reserved
2383
break;
2384
}
2385
#if 0
2386
case ATM_ABR: {
2387
// reserve min
2388
vcc.rx_rate = 0; // ?
2389
break;
2390
}
2391
#endif
2392
case ATM_CBR: {
2393
int pcr = atm_pcr_goal (rxtp);
2394
if (!pcr) {
2395
// slight race (no locking) here so we may get -EAGAIN
2396
// later; the greedy bastards would deserve it :)
2397
PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2398
pcr = dev->rx_avail;
2399
} else if (pcr < 0) {
2400
pcr = -pcr;
2401
}
2402
vcc.rx_rate = pcr;
2403
// not really clear what further checking is needed
2404
error = atm_pcr_check (rxtp, vcc.rx_rate);
2405
if (error) {
2406
PRINTD (DBG_QOS, "RX PCR failed consistency check");
2407
return error;
2408
}
2409
break;
2410
}
2411
#if 0
2412
case ATM_VBR: {
2413
// int scr = atm_scr_goal (rxtp);
2414
int scr = 1<<16; // just for fun
2415
if (!scr) {
2416
// slight race (no locking) here so we may get -EAGAIN
2417
// later; the greedy bastards would deserve it :)
2418
PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2419
scr = dev->rx_avail;
2420
} else if (scr < 0) {
2421
scr = -scr;
2422
}
2423
vcc.rx_rate = scr;
2424
// not really clear what further checking is needed
2425
// error = atm_scr_check (rxtp, vcc.rx_rate);
2426
if (error) {
2427
PRINTD (DBG_QOS, "RX SCR failed consistency check");
2428
return error;
2429
}
2430
break;
2431
}
2432
#endif
2433
default: {
2434
PRINTD (DBG_QOS, "unsupported RX traffic class");
2435
return -EINVAL;
2436
break;
2437
}
2438
}
2439
}
2440
2441
2442
// late abort useful for diagnostics
2443
if (vcc.aal != aal5) {
2444
PRINTD (DBG_QOS, "AAL not supported");
2445
return -EINVAL;
2446
}
2447
2448
// get space for our vcc stuff and copy parameters into it
2449
vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2450
if (!vccp) {
2451
PRINTK (KERN_ERR, "out of memory!");
2452
return -ENOMEM;
2453
}
2454
*vccp = vcc;
2455
2456
// clear error and grab cell rate resource lock
2457
error = 0;
2458
spin_lock (&dev->rate_lock);
2459
2460
if (vcc.tx_rate > dev->tx_avail) {
2461
PRINTD (DBG_QOS, "not enough TX PCR left");
2462
error = -EAGAIN;
2463
}
2464
2465
if (vcc.rx_rate > dev->rx_avail) {
2466
PRINTD (DBG_QOS, "not enough RX PCR left");
2467
error = -EAGAIN;
2468
}
2469
2470
if (!error) {
2471
// really consume cell rates
2472
dev->tx_avail -= vcc.tx_rate;
2473
dev->rx_avail -= vcc.rx_rate;
2474
PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2475
vcc.tx_rate, vcc.rx_rate);
2476
}
2477
2478
// release lock and exit on error
2479
spin_unlock (&dev->rate_lock);
2480
if (error) {
2481
PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2482
kfree (vccp);
2483
return error;
2484
}
2485
2486
// this is "immediately before allocating the connection identifier
2487
// in hardware" - so long as the next call does not fail :)
2488
set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2489
2490
// any errors here are very serious and should never occur
2491
2492
if (rxtp->traffic_class != ATM_NONE) {
2493
if (dev->rxer[channel]) {
2494
PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2495
error = -EBUSY;
2496
}
2497
if (!error)
2498
error = hrz_open_rx (dev, channel);
2499
if (error) {
2500
kfree (vccp);
2501
return error;
2502
}
2503
// this link allows RX frames through
2504
dev->rxer[channel] = atm_vcc;
2505
}
2506
2507
// success, set elements of atm_vcc
2508
atm_vcc->dev_data = (void *) vccp;
2509
2510
// indicate readiness
2511
set_bit(ATM_VF_READY,&atm_vcc->flags);
2512
2513
return 0;
2514
}
2515
2516
/********** close VC **********/
2517
2518
static void hrz_close (struct atm_vcc * atm_vcc) {
2519
hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2520
hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2521
u16 channel = vcc->channel;
2522
PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2523
2524
// indicate unreadiness
2525
clear_bit(ATM_VF_READY,&atm_vcc->flags);
2526
2527
if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2528
unsigned int i;
2529
2530
// let any TX on this channel that has started complete
2531
// no restart, just keep trying
2532
while (tx_hold (dev))
2533
;
2534
// remove record of any tx_channel having been setup for this channel
2535
for (i = 0; i < TX_CHANS; ++i)
2536
if (dev->tx_channel_record[i] == channel) {
2537
dev->tx_channel_record[i] = -1;
2538
break;
2539
}
2540
if (dev->last_vc == channel)
2541
dev->tx_last = -1;
2542
tx_release (dev);
2543
}
2544
2545
if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2546
// disable RXing - it tries quite hard
2547
hrz_close_rx (dev, channel);
2548
// forget the vcc - no more skbs will be pushed
2549
if (atm_vcc != dev->rxer[channel])
2550
PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2551
"arghhh! we're going to die!",
2552
atm_vcc, dev->rxer[channel]);
2553
dev->rxer[channel] = NULL;
2554
}
2555
2556
// atomically release our rate reservation
2557
spin_lock (&dev->rate_lock);
2558
PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2559
vcc->tx_rate, vcc->rx_rate);
2560
dev->tx_avail += vcc->tx_rate;
2561
dev->rx_avail += vcc->rx_rate;
2562
spin_unlock (&dev->rate_lock);
2563
2564
// free our structure
2565
kfree (vcc);
2566
// say the VPI/VCI is free again
2567
clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2568
}
2569
2570
#if 0
2571
static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2572
void *optval, int optlen) {
2573
hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2574
PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2575
switch (level) {
2576
case SOL_SOCKET:
2577
switch (optname) {
2578
// case SO_BCTXOPT:
2579
// break;
2580
// case SO_BCRXOPT:
2581
// break;
2582
default:
2583
return -ENOPROTOOPT;
2584
break;
2585
};
2586
break;
2587
}
2588
return -EINVAL;
2589
}
2590
2591
static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2592
void *optval, unsigned int optlen) {
2593
hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2594
PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2595
switch (level) {
2596
case SOL_SOCKET:
2597
switch (optname) {
2598
// case SO_BCTXOPT:
2599
// break;
2600
// case SO_BCRXOPT:
2601
// break;
2602
default:
2603
return -ENOPROTOOPT;
2604
break;
2605
};
2606
break;
2607
}
2608
return -EINVAL;
2609
}
2610
#endif
2611
2612
#if 0
2613
static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2614
hrz_dev * dev = HRZ_DEV(atm_dev);
2615
PRINTD (DBG_FLOW, "hrz_ioctl");
2616
return -1;
2617
}
2618
2619
unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2620
hrz_dev * dev = HRZ_DEV(atm_dev);
2621
PRINTD (DBG_FLOW, "hrz_phy_get");
2622
return 0;
2623
}
2624
2625
static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2626
unsigned long addr) {
2627
hrz_dev * dev = HRZ_DEV(atm_dev);
2628
PRINTD (DBG_FLOW, "hrz_phy_put");
2629
}
2630
2631
static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2632
hrz_dev * dev = HRZ_DEV(vcc->dev);
2633
PRINTD (DBG_FLOW, "hrz_change_qos");
2634
return -1;
2635
}
2636
#endif
2637
2638
/********** proc file contents **********/
2639
2640
static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2641
hrz_dev * dev = HRZ_DEV(atm_dev);
2642
int left = *pos;
2643
PRINTD (DBG_FLOW, "hrz_proc_read");
2644
2645
/* more diagnostics here? */
2646
2647
#if 0
2648
if (!left--) {
2649
unsigned int count = sprintf (page, "vbr buckets:");
2650
unsigned int i;
2651
for (i = 0; i < TX_CHANS; ++i)
2652
count += sprintf (page, " %u/%u",
2653
query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2654
query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2655
count += sprintf (page+count, ".\n");
2656
return count;
2657
}
2658
#endif
2659
2660
if (!left--)
2661
return sprintf (page,
2662
"cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2663
dev->tx_cell_count, dev->rx_cell_count,
2664
dev->hec_error_count, dev->unassigned_cell_count);
2665
2666
if (!left--)
2667
return sprintf (page,
2668
"free cell buffers: TX %hu, RX %hu+%hu.\n",
2669
rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2670
rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2671
dev->noof_spare_buffers);
2672
2673
if (!left--)
2674
return sprintf (page,
2675
"cps remaining: TX %u, RX %u\n",
2676
dev->tx_avail, dev->rx_avail);
2677
2678
return 0;
2679
}
2680
2681
static const struct atmdev_ops hrz_ops = {
2682
.open = hrz_open,
2683
.close = hrz_close,
2684
.send = hrz_send,
2685
.proc_read = hrz_proc_read,
2686
.owner = THIS_MODULE,
2687
};
2688
2689
static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2690
{
2691
hrz_dev * dev;
2692
int err = 0;
2693
2694
// adapter slot free, read resources from PCI configuration space
2695
u32 iobase = pci_resource_start (pci_dev, 0);
2696
u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2697
unsigned int irq;
2698
unsigned char lat;
2699
2700
PRINTD (DBG_FLOW, "hrz_probe");
2701
2702
if (pci_enable_device(pci_dev))
2703
return -EINVAL;
2704
2705
/* XXX DEV_LABEL is a guess */
2706
if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2707
err = -EINVAL;
2708
goto out_disable;
2709
}
2710
2711
dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2712
if (!dev) {
2713
// perhaps we should be nice: deregister all adapters and abort?
2714
PRINTD(DBG_ERR, "out of memory");
2715
err = -ENOMEM;
2716
goto out_release;
2717
}
2718
2719
pci_set_drvdata(pci_dev, dev);
2720
2721
// grab IRQ and install handler - move this someplace more sensible
2722
irq = pci_dev->irq;
2723
if (request_irq(irq,
2724
interrupt_handler,
2725
IRQF_SHARED, /* irqflags guess */
2726
DEV_LABEL, /* name guess */
2727
dev)) {
2728
PRINTD(DBG_WARN, "request IRQ failed!");
2729
err = -EINVAL;
2730
goto out_free;
2731
}
2732
2733
PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2734
iobase, irq, membase);
2735
2736
dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2737
NULL);
2738
if (!(dev->atm_dev)) {
2739
PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2740
err = -EINVAL;
2741
goto out_free_irq;
2742
}
2743
2744
PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2745
dev->atm_dev->number, dev, dev->atm_dev);
2746
dev->atm_dev->dev_data = (void *) dev;
2747
dev->pci_dev = pci_dev;
2748
2749
// enable bus master accesses
2750
pci_set_master(pci_dev);
2751
2752
// frobnicate latency (upwards, usually)
2753
pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2754
if (pci_lat) {
2755
PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2756
"changing", lat, pci_lat);
2757
pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2758
} else if (lat < MIN_PCI_LATENCY) {
2759
PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2760
"increasing", lat, MIN_PCI_LATENCY);
2761
pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2762
}
2763
2764
dev->iobase = iobase;
2765
dev->irq = irq;
2766
dev->membase = membase;
2767
2768
dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2769
dev->rx_q_wrap = &memmap->rx_q_entries[RX_CHANS-1];
2770
2771
// these next three are performance hacks
2772
dev->last_vc = -1;
2773
dev->tx_last = -1;
2774
dev->tx_idle = 0;
2775
2776
dev->tx_regions = 0;
2777
dev->tx_bytes = 0;
2778
dev->tx_skb = NULL;
2779
dev->tx_iovec = NULL;
2780
2781
dev->tx_cell_count = 0;
2782
dev->rx_cell_count = 0;
2783
dev->hec_error_count = 0;
2784
dev->unassigned_cell_count = 0;
2785
2786
dev->noof_spare_buffers = 0;
2787
2788
{
2789
unsigned int i;
2790
for (i = 0; i < TX_CHANS; ++i)
2791
dev->tx_channel_record[i] = -1;
2792
}
2793
2794
dev->flags = 0;
2795
2796
// Allocate cell rates and remember ASIC version
2797
// Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2798
// Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2799
// Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2800
2801
if (hrz_init(dev)) {
2802
// to be really pedantic, this should be ATM_OC3c_PCR
2803
dev->tx_avail = ATM_OC3_PCR;
2804
dev->rx_avail = ATM_OC3_PCR;
2805
set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2806
} else {
2807
dev->tx_avail = ((25600000/8)*26)/(27*53);
2808
dev->rx_avail = ((25600000/8)*26)/(27*53);
2809
PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2810
}
2811
2812
// rate changes spinlock
2813
spin_lock_init(&dev->rate_lock);
2814
2815
// on-board memory access spinlock; we want atomic reads and
2816
// writes to adapter memory (handles IRQ and SMP)
2817
spin_lock_init(&dev->mem_lock);
2818
2819
init_waitqueue_head(&dev->tx_queue);
2820
2821
// vpi in 0..4, vci in 6..10
2822
dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2823
dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2824
2825
init_timer(&dev->housekeeping);
2826
dev->housekeeping.function = do_housekeeping;
2827
dev->housekeeping.data = (unsigned long) dev;
2828
mod_timer(&dev->housekeeping, jiffies);
2829
2830
out:
2831
return err;
2832
2833
out_free_irq:
2834
free_irq(dev->irq, dev);
2835
out_free:
2836
kfree(dev);
2837
out_release:
2838
release_region(iobase, HRZ_IO_EXTENT);
2839
out_disable:
2840
pci_disable_device(pci_dev);
2841
goto out;
2842
}
2843
2844
static void __devexit hrz_remove_one(struct pci_dev *pci_dev)
2845
{
2846
hrz_dev *dev;
2847
2848
dev = pci_get_drvdata(pci_dev);
2849
2850
PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2851
del_timer_sync(&dev->housekeeping);
2852
hrz_reset(dev);
2853
atm_dev_deregister(dev->atm_dev);
2854
free_irq(dev->irq, dev);
2855
release_region(dev->iobase, HRZ_IO_EXTENT);
2856
kfree(dev);
2857
2858
pci_disable_device(pci_dev);
2859
}
2860
2861
static void __init hrz_check_args (void) {
2862
#ifdef DEBUG_HORIZON
2863
PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2864
#else
2865
if (debug)
2866
PRINTK (KERN_NOTICE, "no debug support in this image");
2867
#endif
2868
2869
if (vpi_bits > HRZ_MAX_VPI)
2870
PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2871
vpi_bits = HRZ_MAX_VPI);
2872
2873
if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2874
PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2875
max_tx_size = TX_AAL5_LIMIT);
2876
2877
if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2878
PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2879
max_rx_size = RX_AAL5_LIMIT);
2880
2881
return;
2882
}
2883
2884
MODULE_AUTHOR(maintainer_string);
2885
MODULE_DESCRIPTION(description_string);
2886
MODULE_LICENSE("GPL");
2887
module_param(debug, ushort, 0644);
2888
module_param(vpi_bits, ushort, 0);
2889
module_param(max_tx_size, int, 0);
2890
module_param(max_rx_size, int, 0);
2891
module_param(pci_lat, byte, 0);
2892
MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2893
MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2894
MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2895
MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2896
MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2897
2898
static struct pci_device_id hrz_pci_tbl[] = {
2899
{ PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2900
0, 0, 0 },
2901
{ 0, }
2902
};
2903
2904
MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2905
2906
static struct pci_driver hrz_driver = {
2907
.name = "horizon",
2908
.probe = hrz_probe,
2909
.remove = __devexit_p(hrz_remove_one),
2910
.id_table = hrz_pci_tbl,
2911
};
2912
2913
/********** module entry **********/
2914
2915
static int __init hrz_module_init (void) {
2916
// sanity check - cast is needed since printk does not support %Zu
2917
if (sizeof(struct MEMMAP) != 128*1024/4) {
2918
PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2919
(unsigned long) sizeof(struct MEMMAP));
2920
return -ENOMEM;
2921
}
2922
2923
show_version();
2924
2925
// check arguments
2926
hrz_check_args();
2927
2928
// get the juice
2929
return pci_register_driver(&hrz_driver);
2930
}
2931
2932
/********** module exit **********/
2933
2934
static void __exit hrz_module_exit (void) {
2935
PRINTD (DBG_FLOW, "cleanup_module");
2936
2937
pci_unregister_driver(&hrz_driver);
2938
}
2939
2940
module_init(hrz_module_init);
2941
module_exit(hrz_module_exit);
2942
2943