Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/atm/lanai.c
15109 views
1
/* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <[email protected]>
2
*
3
* This program is free software; you can redistribute it and/or
4
* modify it under the terms of the GNU General Public License
5
* as published by the Free Software Foundation; either version
6
* 2 of the License, or (at your option) any later version.
7
*
8
* This driver supports ATM cards based on the Efficient "Lanai"
9
* chipset such as the Speedstream 3010 and the ENI-25p. The
10
* Speedstream 3060 is currently not supported since we don't
11
* have the code to drive the on-board Alcatel DSL chipset (yet).
12
*
13
* Thanks to Efficient for supporting this project with hardware,
14
* documentation, and by answering my questions.
15
*
16
* Things not working yet:
17
*
18
* o We don't support the Speedstream 3060 yet - this card has
19
* an on-board DSL modem chip by Alcatel and the driver will
20
* need some extra code added to handle it
21
*
22
* o Note that due to limitations of the Lanai only one VCC can be
23
* in CBR at once
24
*
25
* o We don't currently parse the EEPROM at all. The code is all
26
* there as per the spec, but it doesn't actually work. I think
27
* there may be some issues with the docs. Anyway, do NOT
28
* enable it yet - bugs in that code may actually damage your
29
* hardware! Because of this you should hardware an ESI before
30
* trying to use this in a LANE or MPOA environment.
31
*
32
* o AAL0 is stubbed in but the actual rx/tx path isn't written yet:
33
* vcc_tx_aal0() needs to send or queue a SKB
34
* vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
35
* vcc_rx_aal0() needs to handle AAL0 interrupts
36
* This isn't too much work - I just wanted to get other things
37
* done first.
38
*
39
* o lanai_change_qos() isn't written yet
40
*
41
* o There aren't any ioctl's yet -- I'd like to eventually support
42
* setting loopback and LED modes that way.
43
*
44
* o If the segmentation engine or DMA gets shut down we should restart
45
* card as per section 17.0i. (see lanai_reset)
46
*
47
* o setsockopt(SO_CIRANGE) isn't done (although despite what the
48
* API says it isn't exactly commonly implemented)
49
*/
50
51
/* Version history:
52
* v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
53
* v.0.02 -- 11-JAN-2000 -- Endian fixes
54
* v.0.01 -- 30-NOV-1999 -- Initial release
55
*/
56
57
#include <linux/module.h>
58
#include <linux/slab.h>
59
#include <linux/mm.h>
60
#include <linux/atmdev.h>
61
#include <asm/io.h>
62
#include <asm/byteorder.h>
63
#include <linux/spinlock.h>
64
#include <linux/pci.h>
65
#include <linux/dma-mapping.h>
66
#include <linux/init.h>
67
#include <linux/delay.h>
68
#include <linux/interrupt.h>
69
70
/* -------------------- TUNABLE PARAMATERS: */
71
72
/*
73
* Maximum number of VCIs per card. Setting it lower could theoretically
74
* save some memory, but since we allocate our vcc list with get_free_pages,
75
* it's not really likely for most architectures
76
*/
77
#define NUM_VCI (1024)
78
79
/*
80
* Enable extra debugging
81
*/
82
#define DEBUG
83
/*
84
* Debug _all_ register operations with card, except the memory test.
85
* Also disables the timed poll to prevent extra chattiness. This
86
* isn't for normal use
87
*/
88
#undef DEBUG_RW
89
90
/*
91
* The programming guide specifies a full test of the on-board SRAM
92
* at initialization time. Undefine to remove this
93
*/
94
#define FULL_MEMORY_TEST
95
96
/*
97
* This is the number of (4 byte) service entries that we will
98
* try to allocate at startup. Note that we will end up with
99
* one PAGE_SIZE's worth regardless of what this is set to
100
*/
101
#define SERVICE_ENTRIES (1024)
102
/* TODO: make above a module load-time option */
103
104
/*
105
* We normally read the onboard EEPROM in order to discover our MAC
106
* address. Undefine to _not_ do this
107
*/
108
/* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
109
/* TODO: make above a module load-time option (also) */
110
111
/*
112
* Depth of TX fifo (in 128 byte units; range 2-31)
113
* Smaller numbers are better for network latency
114
* Larger numbers are better for PCI latency
115
* I'm really sure where the best tradeoff is, but the BSD driver uses
116
* 7 and it seems to work ok.
117
*/
118
#define TX_FIFO_DEPTH (7)
119
/* TODO: make above a module load-time option */
120
121
/*
122
* How often (in jiffies) we will try to unstick stuck connections -
123
* shouldn't need to happen much
124
*/
125
#define LANAI_POLL_PERIOD (10*HZ)
126
/* TODO: make above a module load-time option */
127
128
/*
129
* When allocating an AAL5 receiving buffer, try to make it at least
130
* large enough to hold this many max_sdu sized PDUs
131
*/
132
#define AAL5_RX_MULTIPLIER (3)
133
/* TODO: make above a module load-time option */
134
135
/*
136
* Same for transmitting buffer
137
*/
138
#define AAL5_TX_MULTIPLIER (3)
139
/* TODO: make above a module load-time option */
140
141
/*
142
* When allocating an AAL0 transmiting buffer, how many cells should fit.
143
* Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
144
* really critical
145
*/
146
#define AAL0_TX_MULTIPLIER (40)
147
/* TODO: make above a module load-time option */
148
149
/*
150
* How large should we make the AAL0 receiving buffer. Remember that this
151
* is shared between all AAL0 VC's
152
*/
153
#define AAL0_RX_BUFFER_SIZE (PAGE_SIZE)
154
/* TODO: make above a module load-time option */
155
156
/*
157
* Should we use Lanai's "powerdown" feature when no vcc's are bound?
158
*/
159
/* #define USE_POWERDOWN */
160
/* TODO: make above a module load-time option (also) */
161
162
/* -------------------- DEBUGGING AIDS: */
163
164
#define DEV_LABEL "lanai"
165
166
#ifdef DEBUG
167
168
#define DPRINTK(format, args...) \
169
printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
170
#define APRINTK(truth, format, args...) \
171
do { \
172
if (unlikely(!(truth))) \
173
printk(KERN_ERR DEV_LABEL ": " format, ##args); \
174
} while (0)
175
176
#else /* !DEBUG */
177
178
#define DPRINTK(format, args...)
179
#define APRINTK(truth, format, args...)
180
181
#endif /* DEBUG */
182
183
#ifdef DEBUG_RW
184
#define RWDEBUG(format, args...) \
185
printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
186
#else /* !DEBUG_RW */
187
#define RWDEBUG(format, args...)
188
#endif
189
190
/* -------------------- DATA DEFINITIONS: */
191
192
#define LANAI_MAPPING_SIZE (0x40000)
193
#define LANAI_EEPROM_SIZE (128)
194
195
typedef int vci_t;
196
typedef void __iomem *bus_addr_t;
197
198
/* DMA buffer in host memory for TX, RX, or service list. */
199
struct lanai_buffer {
200
u32 *start; /* From get_free_pages */
201
u32 *end; /* One past last byte */
202
u32 *ptr; /* Pointer to current host location */
203
dma_addr_t dmaaddr;
204
};
205
206
struct lanai_vcc_stats {
207
unsigned rx_nomem;
208
union {
209
struct {
210
unsigned rx_badlen;
211
unsigned service_trash;
212
unsigned service_stream;
213
unsigned service_rxcrc;
214
} aal5;
215
struct {
216
} aal0;
217
} x;
218
};
219
220
struct lanai_dev; /* Forward declaration */
221
222
/*
223
* This is the card-specific per-vcc data. Note that unlike some other
224
* drivers there is NOT a 1-to-1 correspondance between these and
225
* atm_vcc's - each one of these represents an actual 2-way vcc, but
226
* an atm_vcc can be 1-way and share with a 1-way vcc in the other
227
* direction. To make it weirder, there can even be 0-way vccs
228
* bound to us, waiting to do a change_qos
229
*/
230
struct lanai_vcc {
231
bus_addr_t vbase; /* Base of VCC's registers */
232
struct lanai_vcc_stats stats;
233
int nref; /* # of atm_vcc's who reference us */
234
vci_t vci;
235
struct {
236
struct lanai_buffer buf;
237
struct atm_vcc *atmvcc; /* atm_vcc who is receiver */
238
} rx;
239
struct {
240
struct lanai_buffer buf;
241
struct atm_vcc *atmvcc; /* atm_vcc who is transmitter */
242
int endptr; /* last endptr from service entry */
243
struct sk_buff_head backlog;
244
void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
245
} tx;
246
};
247
248
enum lanai_type {
249
lanai2 = PCI_DEVICE_ID_EF_ATM_LANAI2,
250
lanaihb = PCI_DEVICE_ID_EF_ATM_LANAIHB
251
};
252
253
struct lanai_dev_stats {
254
unsigned ovfl_trash; /* # of cells dropped - buffer overflow */
255
unsigned vci_trash; /* # of cells dropped - closed vci */
256
unsigned hec_err; /* # of cells dropped - bad HEC */
257
unsigned atm_ovfl; /* # of cells dropped - rx fifo overflow */
258
unsigned pcierr_parity_detect;
259
unsigned pcierr_serr_set;
260
unsigned pcierr_master_abort;
261
unsigned pcierr_m_target_abort;
262
unsigned pcierr_s_target_abort;
263
unsigned pcierr_master_parity;
264
unsigned service_notx;
265
unsigned service_norx;
266
unsigned service_rxnotaal5;
267
unsigned dma_reenable;
268
unsigned card_reset;
269
};
270
271
struct lanai_dev {
272
bus_addr_t base;
273
struct lanai_dev_stats stats;
274
struct lanai_buffer service;
275
struct lanai_vcc **vccs;
276
#ifdef USE_POWERDOWN
277
int nbound; /* number of bound vccs */
278
#endif
279
enum lanai_type type;
280
vci_t num_vci; /* Currently just NUM_VCI */
281
u8 eeprom[LANAI_EEPROM_SIZE];
282
u32 serialno, magicno;
283
struct pci_dev *pci;
284
DECLARE_BITMAP(backlog_vccs, NUM_VCI); /* VCCs with tx backlog */
285
DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
286
struct timer_list timer;
287
int naal0;
288
struct lanai_buffer aal0buf; /* AAL0 RX buffers */
289
u32 conf1, conf2; /* CONFIG[12] registers */
290
u32 status; /* STATUS register */
291
spinlock_t endtxlock;
292
spinlock_t servicelock;
293
struct atm_vcc *cbrvcc;
294
int number;
295
int board_rev;
296
/* TODO - look at race conditions with maintence of conf1/conf2 */
297
/* TODO - transmit locking: should we use _irq not _irqsave? */
298
/* TODO - organize above in some rational fashion (see <asm/cache.h>) */
299
};
300
301
/*
302
* Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
303
* This function iterates one of these, calling a given function for each
304
* vci with their bit set
305
*/
306
static void vci_bitfield_iterate(struct lanai_dev *lanai,
307
const unsigned long *lp,
308
void (*func)(struct lanai_dev *,vci_t vci))
309
{
310
vci_t vci;
311
312
for_each_set_bit(vci, lp, NUM_VCI)
313
func(lanai, vci);
314
}
315
316
/* -------------------- BUFFER UTILITIES: */
317
318
/*
319
* Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
320
* usually any page allocation will do. Just to be safe in case
321
* PAGE_SIZE is insanely tiny, though...
322
*/
323
#define LANAI_PAGE_SIZE ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
324
325
/*
326
* Allocate a buffer in host RAM for service list, RX, or TX
327
* Returns buf->start==NULL if no memory
328
* Note that the size will be rounded up 2^n bytes, and
329
* if we can't allocate that we'll settle for something smaller
330
* until minbytes
331
*/
332
static void lanai_buf_allocate(struct lanai_buffer *buf,
333
size_t bytes, size_t minbytes, struct pci_dev *pci)
334
{
335
int size;
336
337
if (bytes > (128 * 1024)) /* max lanai buffer size */
338
bytes = 128 * 1024;
339
for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
340
;
341
if (minbytes < LANAI_PAGE_SIZE)
342
minbytes = LANAI_PAGE_SIZE;
343
do {
344
/*
345
* Technically we could use non-consistent mappings for
346
* everything, but the way the lanai uses DMA memory would
347
* make that a terrific pain. This is much simpler.
348
*/
349
buf->start = pci_alloc_consistent(pci, size, &buf->dmaaddr);
350
if (buf->start != NULL) { /* Success */
351
/* Lanai requires 256-byte alignment of DMA bufs */
352
APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
353
"bad dmaaddr: 0x%lx\n",
354
(unsigned long) buf->dmaaddr);
355
buf->ptr = buf->start;
356
buf->end = (u32 *)
357
(&((unsigned char *) buf->start)[size]);
358
memset(buf->start, 0, size);
359
break;
360
}
361
size /= 2;
362
} while (size >= minbytes);
363
}
364
365
/* size of buffer in bytes */
366
static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
367
{
368
return ((unsigned long) buf->end) - ((unsigned long) buf->start);
369
}
370
371
static void lanai_buf_deallocate(struct lanai_buffer *buf,
372
struct pci_dev *pci)
373
{
374
if (buf->start != NULL) {
375
pci_free_consistent(pci, lanai_buf_size(buf),
376
buf->start, buf->dmaaddr);
377
buf->start = buf->end = buf->ptr = NULL;
378
}
379
}
380
381
/* size of buffer as "card order" (0=1k .. 7=128k) */
382
static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
383
{
384
int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
385
386
/* This can only happen if PAGE_SIZE is gigantic, but just in case */
387
if (order > 7)
388
order = 7;
389
return order;
390
}
391
392
/* -------------------- PORT I/O UTILITIES: */
393
394
/* Registers (and their bit-fields) */
395
enum lanai_register {
396
Reset_Reg = 0x00, /* Reset; read for chip type; bits: */
397
#define RESET_GET_BOARD_REV(x) (((x)>> 0)&0x03) /* Board revision */
398
#define RESET_GET_BOARD_ID(x) (((x)>> 2)&0x03) /* Board ID */
399
#define BOARD_ID_LANAI256 (0) /* 25.6M adapter card */
400
Endian_Reg = 0x04, /* Endian setting */
401
IntStatus_Reg = 0x08, /* Interrupt status */
402
IntStatusMasked_Reg = 0x0C, /* Interrupt status (masked) */
403
IntAck_Reg = 0x10, /* Interrupt acknowledge */
404
IntAckMasked_Reg = 0x14, /* Interrupt acknowledge (masked) */
405
IntStatusSet_Reg = 0x18, /* Get status + enable/disable */
406
IntStatusSetMasked_Reg = 0x1C, /* Get status + en/di (masked) */
407
IntControlEna_Reg = 0x20, /* Interrupt control enable */
408
IntControlDis_Reg = 0x24, /* Interrupt control disable */
409
Status_Reg = 0x28, /* Status */
410
#define STATUS_PROMDATA (0x00000001) /* PROM_DATA pin */
411
#define STATUS_WAITING (0x00000002) /* Interrupt being delayed */
412
#define STATUS_SOOL (0x00000004) /* SOOL alarm */
413
#define STATUS_LOCD (0x00000008) /* LOCD alarm */
414
#define STATUS_LED (0x00000010) /* LED (HAPPI) output */
415
#define STATUS_GPIN (0x00000020) /* GPIN pin */
416
#define STATUS_BUTTBUSY (0x00000040) /* Butt register is pending */
417
Config1_Reg = 0x2C, /* Config word 1; bits: */
418
#define CONFIG1_PROMDATA (0x00000001) /* PROM_DATA pin */
419
#define CONFIG1_PROMCLK (0x00000002) /* PROM_CLK pin */
420
#define CONFIG1_SET_READMODE(x) ((x)*0x004) /* PCI BM reads; values: */
421
#define READMODE_PLAIN (0) /* Plain memory read */
422
#define READMODE_LINE (2) /* Memory read line */
423
#define READMODE_MULTIPLE (3) /* Memory read multiple */
424
#define CONFIG1_DMA_ENABLE (0x00000010) /* Turn on DMA */
425
#define CONFIG1_POWERDOWN (0x00000020) /* Turn off clocks */
426
#define CONFIG1_SET_LOOPMODE(x) ((x)*0x080) /* Clock&loop mode; values: */
427
#define LOOPMODE_NORMAL (0) /* Normal - no loop */
428
#define LOOPMODE_TIME (1)
429
#define LOOPMODE_DIAG (2)
430
#define LOOPMODE_LINE (3)
431
#define CONFIG1_MASK_LOOPMODE (0x00000180)
432
#define CONFIG1_SET_LEDMODE(x) ((x)*0x0200) /* Mode of LED; values: */
433
#define LEDMODE_NOT_SOOL (0) /* !SOOL */
434
#define LEDMODE_OFF (1) /* 0 */
435
#define LEDMODE_ON (2) /* 1 */
436
#define LEDMODE_NOT_LOCD (3) /* !LOCD */
437
#define LEDMORE_GPIN (4) /* GPIN */
438
#define LEDMODE_NOT_GPIN (7) /* !GPIN */
439
#define CONFIG1_MASK_LEDMODE (0x00000E00)
440
#define CONFIG1_GPOUT1 (0x00001000) /* Toggle for reset */
441
#define CONFIG1_GPOUT2 (0x00002000) /* Loopback PHY */
442
#define CONFIG1_GPOUT3 (0x00004000) /* Loopback lanai */
443
Config2_Reg = 0x30, /* Config word 2; bits: */
444
#define CONFIG2_HOWMANY (0x00000001) /* >512 VCIs? */
445
#define CONFIG2_PTI7_MODE (0x00000002) /* Make PTI=7 RM, not OAM */
446
#define CONFIG2_VPI_CHK_DIS (0x00000004) /* Ignore RX VPI value */
447
#define CONFIG2_HEC_DROP (0x00000008) /* Drop cells w/ HEC errors */
448
#define CONFIG2_VCI0_NORMAL (0x00000010) /* Treat VCI=0 normally */
449
#define CONFIG2_CBR_ENABLE (0x00000020) /* Deal with CBR traffic */
450
#define CONFIG2_TRASH_ALL (0x00000040) /* Trashing incoming cells */
451
#define CONFIG2_TX_DISABLE (0x00000080) /* Trashing outgoing cells */
452
#define CONFIG2_SET_TRASH (0x00000100) /* Turn trashing on */
453
Statistics_Reg = 0x34, /* Statistics; bits: */
454
#define STATS_GET_FIFO_OVFL(x) (((x)>> 0)&0xFF) /* FIFO overflowed */
455
#define STATS_GET_HEC_ERR(x) (((x)>> 8)&0xFF) /* HEC was bad */
456
#define STATS_GET_BAD_VCI(x) (((x)>>16)&0xFF) /* VCI not open */
457
#define STATS_GET_BUF_OVFL(x) (((x)>>24)&0xFF) /* VCC buffer full */
458
ServiceStuff_Reg = 0x38, /* Service stuff; bits: */
459
#define SSTUFF_SET_SIZE(x) ((x)*0x20000000) /* size of service buffer */
460
#define SSTUFF_SET_ADDR(x) ((x)>>8) /* set address of buffer */
461
ServWrite_Reg = 0x3C, /* ServWrite Pointer */
462
ServRead_Reg = 0x40, /* ServRead Pointer */
463
TxDepth_Reg = 0x44, /* FIFO Transmit Depth */
464
Butt_Reg = 0x48, /* Butt register */
465
CBR_ICG_Reg = 0x50,
466
CBR_PTR_Reg = 0x54,
467
PingCount_Reg = 0x58, /* Ping count */
468
DMA_Addr_Reg = 0x5C /* DMA address */
469
};
470
471
static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
472
enum lanai_register reg)
473
{
474
return lanai->base + reg;
475
}
476
477
static inline u32 reg_read(const struct lanai_dev *lanai,
478
enum lanai_register reg)
479
{
480
u32 t;
481
t = readl(reg_addr(lanai, reg));
482
RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
483
(int) reg, t);
484
return t;
485
}
486
487
static inline void reg_write(const struct lanai_dev *lanai, u32 val,
488
enum lanai_register reg)
489
{
490
RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
491
(int) reg, val);
492
writel(val, reg_addr(lanai, reg));
493
}
494
495
static inline void conf1_write(const struct lanai_dev *lanai)
496
{
497
reg_write(lanai, lanai->conf1, Config1_Reg);
498
}
499
500
static inline void conf2_write(const struct lanai_dev *lanai)
501
{
502
reg_write(lanai, lanai->conf2, Config2_Reg);
503
}
504
505
/* Same as conf2_write(), but defers I/O if we're powered down */
506
static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
507
{
508
#ifdef USE_POWERDOWN
509
if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
510
return;
511
#endif /* USE_POWERDOWN */
512
conf2_write(lanai);
513
}
514
515
static inline void reset_board(const struct lanai_dev *lanai)
516
{
517
DPRINTK("about to reset board\n");
518
reg_write(lanai, 0, Reset_Reg);
519
/*
520
* If we don't delay a little while here then we can end up
521
* leaving the card in a VERY weird state and lock up the
522
* PCI bus. This isn't documented anywhere but I've convinced
523
* myself after a lot of painful experimentation
524
*/
525
udelay(5);
526
}
527
528
/* -------------------- CARD SRAM UTILITIES: */
529
530
/* The SRAM is mapped into normal PCI memory space - the only catch is
531
* that it is only 16-bits wide but must be accessed as 32-bit. The
532
* 16 high bits will be zero. We don't hide this, since they get
533
* programmed mostly like discrete registers anyway
534
*/
535
#define SRAM_START (0x20000)
536
#define SRAM_BYTES (0x20000) /* Again, half don't really exist */
537
538
static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
539
{
540
return lanai->base + SRAM_START + offset;
541
}
542
543
static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
544
{
545
return readl(sram_addr(lanai, offset));
546
}
547
548
static inline void sram_write(const struct lanai_dev *lanai,
549
u32 val, int offset)
550
{
551
writel(val, sram_addr(lanai, offset));
552
}
553
554
static int __devinit sram_test_word(const struct lanai_dev *lanai,
555
int offset, u32 pattern)
556
{
557
u32 readback;
558
sram_write(lanai, pattern, offset);
559
readback = sram_read(lanai, offset);
560
if (likely(readback == pattern))
561
return 0;
562
printk(KERN_ERR DEV_LABEL
563
"(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
564
lanai->number, offset,
565
(unsigned int) pattern, (unsigned int) readback);
566
return -EIO;
567
}
568
569
static int __devinit sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
570
{
571
int offset, result = 0;
572
for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
573
result = sram_test_word(lanai, offset, pattern);
574
return result;
575
}
576
577
static int __devinit sram_test_and_clear(const struct lanai_dev *lanai)
578
{
579
#ifdef FULL_MEMORY_TEST
580
int result;
581
DPRINTK("testing SRAM\n");
582
if ((result = sram_test_pass(lanai, 0x5555)) != 0)
583
return result;
584
if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
585
return result;
586
#endif
587
DPRINTK("clearing SRAM\n");
588
return sram_test_pass(lanai, 0x0000);
589
}
590
591
/* -------------------- CARD-BASED VCC TABLE UTILITIES: */
592
593
/* vcc table */
594
enum lanai_vcc_offset {
595
vcc_rxaddr1 = 0x00, /* Location1, plus bits: */
596
#define RXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of RX buffer */
597
#define RXADDR1_SET_RMMODE(x) ((x)*0x00800) /* RM cell action; values: */
598
#define RMMODE_TRASH (0) /* discard */
599
#define RMMODE_PRESERVE (1) /* input as AAL0 */
600
#define RMMODE_PIPE (2) /* pipe to coscheduler */
601
#define RMMODE_PIPEALL (3) /* pipe non-RM too */
602
#define RXADDR1_OAM_PRESERVE (0x00002000) /* Input OAM cells as AAL0 */
603
#define RXADDR1_SET_MODE(x) ((x)*0x0004000) /* Reassembly mode */
604
#define RXMODE_TRASH (0) /* discard */
605
#define RXMODE_AAL0 (1) /* non-AAL5 mode */
606
#define RXMODE_AAL5 (2) /* AAL5, intr. each PDU */
607
#define RXMODE_AAL5_STREAM (3) /* AAL5 w/o per-PDU intr */
608
vcc_rxaddr2 = 0x04, /* Location2 */
609
vcc_rxcrc1 = 0x08, /* RX CRC claculation space */
610
vcc_rxcrc2 = 0x0C,
611
vcc_rxwriteptr = 0x10, /* RX writeptr, plus bits: */
612
#define RXWRITEPTR_LASTEFCI (0x00002000) /* Last PDU had EFCI bit */
613
#define RXWRITEPTR_DROPPING (0x00004000) /* Had error, dropping */
614
#define RXWRITEPTR_TRASHING (0x00008000) /* Trashing */
615
vcc_rxbufstart = 0x14, /* RX bufstart, plus bits: */
616
#define RXBUFSTART_CLP (0x00004000)
617
#define RXBUFSTART_CI (0x00008000)
618
vcc_rxreadptr = 0x18, /* RX readptr */
619
vcc_txicg = 0x1C, /* TX ICG */
620
vcc_txaddr1 = 0x20, /* Location1, plus bits: */
621
#define TXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of TX buffer */
622
#define TXADDR1_ABR (0x00008000) /* use ABR (doesn't work) */
623
vcc_txaddr2 = 0x24, /* Location2 */
624
vcc_txcrc1 = 0x28, /* TX CRC claculation space */
625
vcc_txcrc2 = 0x2C,
626
vcc_txreadptr = 0x30, /* TX Readptr, plus bits: */
627
#define TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
628
#define TXREADPTR_MASK_DELTA (0x0000E000) /* ? */
629
vcc_txendptr = 0x34, /* TX Endptr, plus bits: */
630
#define TXENDPTR_CLP (0x00002000)
631
#define TXENDPTR_MASK_PDUMODE (0x0000C000) /* PDU mode; values: */
632
#define PDUMODE_AAL0 (0*0x04000)
633
#define PDUMODE_AAL5 (2*0x04000)
634
#define PDUMODE_AAL5STREAM (3*0x04000)
635
vcc_txwriteptr = 0x38, /* TX Writeptr */
636
#define TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
637
vcc_txcbr_next = 0x3C /* # of next CBR VCI in ring */
638
#define TXCBR_NEXT_BOZO (0x00008000) /* "bozo bit" */
639
};
640
641
#define CARDVCC_SIZE (0x40)
642
643
static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
644
vci_t vci)
645
{
646
return sram_addr(lanai, vci * CARDVCC_SIZE);
647
}
648
649
static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
650
enum lanai_vcc_offset offset)
651
{
652
u32 val;
653
APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
654
val= readl(lvcc->vbase + offset);
655
RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
656
lvcc->vci, (int) offset, val);
657
return val;
658
}
659
660
static inline void cardvcc_write(const struct lanai_vcc *lvcc,
661
u32 val, enum lanai_vcc_offset offset)
662
{
663
APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
664
APRINTK((val & ~0xFFFF) == 0,
665
"cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
666
(unsigned int) val, lvcc->vci, (unsigned int) offset);
667
RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
668
lvcc->vci, (unsigned int) offset, (unsigned int) val);
669
writel(val, lvcc->vbase + offset);
670
}
671
672
/* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
673
674
/* How many bytes will an AAL5 PDU take to transmit - remember that:
675
* o we need to add 8 bytes for length, CPI, UU, and CRC
676
* o we need to round up to 48 bytes for cells
677
*/
678
static inline int aal5_size(int size)
679
{
680
int cells = (size + 8 + 47) / 48;
681
return cells * 48;
682
}
683
684
/* How many bytes can we send if we have "space" space, assuming we have
685
* to send full cells
686
*/
687
static inline int aal5_spacefor(int space)
688
{
689
int cells = space / 48;
690
return cells * 48;
691
}
692
693
/* -------------------- FREE AN ATM SKB: */
694
695
static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
696
{
697
if (atmvcc->pop != NULL)
698
atmvcc->pop(atmvcc, skb);
699
else
700
dev_kfree_skb_any(skb);
701
}
702
703
/* -------------------- TURN VCCS ON AND OFF: */
704
705
static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
706
{
707
u32 addr1;
708
if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
709
dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
710
cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
711
cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
712
cardvcc_write(lvcc, 0, vcc_rxwriteptr);
713
cardvcc_write(lvcc, 0, vcc_rxbufstart);
714
cardvcc_write(lvcc, 0, vcc_rxreadptr);
715
cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
716
addr1 = ((dmaaddr >> 8) & 0xFF) |
717
RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
718
RXADDR1_SET_RMMODE(RMMODE_TRASH) | /* ??? */
719
/* RXADDR1_OAM_PRESERVE | --- no OAM support yet */
720
RXADDR1_SET_MODE(RXMODE_AAL5);
721
} else
722
addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
723
RXADDR1_OAM_PRESERVE | /* ??? */
724
RXADDR1_SET_MODE(RXMODE_AAL0);
725
/* This one must be last! */
726
cardvcc_write(lvcc, addr1, vcc_rxaddr1);
727
}
728
729
static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
730
{
731
dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
732
cardvcc_write(lvcc, 0, vcc_txicg);
733
cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
734
cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
735
cardvcc_write(lvcc, 0, vcc_txreadptr);
736
cardvcc_write(lvcc, 0, vcc_txendptr);
737
cardvcc_write(lvcc, 0, vcc_txwriteptr);
738
cardvcc_write(lvcc,
739
(lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
740
TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
741
cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
742
cardvcc_write(lvcc,
743
((dmaaddr >> 8) & 0xFF) |
744
TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
745
vcc_txaddr1);
746
}
747
748
/* Shutdown receiving on card */
749
static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
750
{
751
if (lvcc->vbase == NULL) /* We were never bound to a VCI */
752
return;
753
/* 15.1.1 - set to trashing, wait one cell time (15us) */
754
cardvcc_write(lvcc,
755
RXADDR1_SET_RMMODE(RMMODE_TRASH) |
756
RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
757
udelay(15);
758
/* 15.1.2 - clear rest of entries */
759
cardvcc_write(lvcc, 0, vcc_rxaddr2);
760
cardvcc_write(lvcc, 0, vcc_rxcrc1);
761
cardvcc_write(lvcc, 0, vcc_rxcrc2);
762
cardvcc_write(lvcc, 0, vcc_rxwriteptr);
763
cardvcc_write(lvcc, 0, vcc_rxbufstart);
764
cardvcc_write(lvcc, 0, vcc_rxreadptr);
765
}
766
767
/* Shutdown transmitting on card.
768
* Unfortunately the lanai needs us to wait until all the data
769
* drains out of the buffer before we can dealloc it, so this
770
* can take awhile -- up to 370ms for a full 128KB buffer
771
* assuming everone else is quiet. In theory the time is
772
* boundless if there's a CBR VCC holding things up.
773
*/
774
static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
775
struct lanai_vcc *lvcc)
776
{
777
struct sk_buff *skb;
778
unsigned long flags, timeout;
779
int read, write, lastread = -1;
780
APRINTK(!in_interrupt(),
781
"lanai_shutdown_tx_vci called w/o process context!\n");
782
if (lvcc->vbase == NULL) /* We were never bound to a VCI */
783
return;
784
/* 15.2.1 - wait for queue to drain */
785
while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
786
lanai_free_skb(lvcc->tx.atmvcc, skb);
787
read_lock_irqsave(&vcc_sklist_lock, flags);
788
__clear_bit(lvcc->vci, lanai->backlog_vccs);
789
read_unlock_irqrestore(&vcc_sklist_lock, flags);
790
/*
791
* We need to wait for the VCC to drain but don't wait forever. We
792
* give each 1K of buffer size 1/128th of a second to clear out.
793
* TODO: maybe disable CBR if we're about to timeout?
794
*/
795
timeout = jiffies +
796
(((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
797
write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
798
for (;;) {
799
read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
800
if (read == write && /* Is TX buffer empty? */
801
(lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
802
(cardvcc_read(lvcc, vcc_txcbr_next) &
803
TXCBR_NEXT_BOZO) == 0))
804
break;
805
if (read != lastread) { /* Has there been any progress? */
806
lastread = read;
807
timeout += HZ / 10;
808
}
809
if (unlikely(time_after(jiffies, timeout))) {
810
printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
811
"backlog closing vci %d\n",
812
lvcc->tx.atmvcc->dev->number, lvcc->vci);
813
DPRINTK("read, write = %d, %d\n", read, write);
814
break;
815
}
816
msleep(40);
817
}
818
/* 15.2.2 - clear out all tx registers */
819
cardvcc_write(lvcc, 0, vcc_txreadptr);
820
cardvcc_write(lvcc, 0, vcc_txwriteptr);
821
cardvcc_write(lvcc, 0, vcc_txendptr);
822
cardvcc_write(lvcc, 0, vcc_txcrc1);
823
cardvcc_write(lvcc, 0, vcc_txcrc2);
824
cardvcc_write(lvcc, 0, vcc_txaddr2);
825
cardvcc_write(lvcc, 0, vcc_txaddr1);
826
}
827
828
/* -------------------- MANAGING AAL0 RX BUFFER: */
829
830
static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
831
{
832
DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
833
lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
834
lanai->pci);
835
return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
836
}
837
838
static inline void aal0_buffer_free(struct lanai_dev *lanai)
839
{
840
DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
841
lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
842
}
843
844
/* -------------------- EEPROM UTILITIES: */
845
846
/* Offsets of data in the EEPROM */
847
#define EEPROM_COPYRIGHT (0)
848
#define EEPROM_COPYRIGHT_LEN (44)
849
#define EEPROM_CHECKSUM (62)
850
#define EEPROM_CHECKSUM_REV (63)
851
#define EEPROM_MAC (64)
852
#define EEPROM_MAC_REV (70)
853
#define EEPROM_SERIAL (112)
854
#define EEPROM_SERIAL_REV (116)
855
#define EEPROM_MAGIC (120)
856
#define EEPROM_MAGIC_REV (124)
857
858
#define EEPROM_MAGIC_VALUE (0x5AB478D2)
859
860
#ifndef READ_EEPROM
861
862
/* Stub functions to use if EEPROM reading is disabled */
863
static int __devinit eeprom_read(struct lanai_dev *lanai)
864
{
865
printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
866
lanai->number);
867
memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
868
return 0;
869
}
870
871
static int __devinit eeprom_validate(struct lanai_dev *lanai)
872
{
873
lanai->serialno = 0;
874
lanai->magicno = EEPROM_MAGIC_VALUE;
875
return 0;
876
}
877
878
#else /* READ_EEPROM */
879
880
static int __devinit eeprom_read(struct lanai_dev *lanai)
881
{
882
int i, address;
883
u8 data;
884
u32 tmp;
885
#define set_config1(x) do { lanai->conf1 = x; conf1_write(lanai); \
886
} while (0)
887
#define clock_h() set_config1(lanai->conf1 | CONFIG1_PROMCLK)
888
#define clock_l() set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
889
#define data_h() set_config1(lanai->conf1 | CONFIG1_PROMDATA)
890
#define data_l() set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
891
#define pre_read() do { data_h(); clock_h(); udelay(5); } while (0)
892
#define read_pin() (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
893
#define send_stop() do { data_l(); udelay(5); clock_h(); udelay(5); \
894
data_h(); udelay(5); } while (0)
895
/* start with both clock and data high */
896
data_h(); clock_h(); udelay(5);
897
for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
898
data = (address << 1) | 1; /* Command=read + address */
899
/* send start bit */
900
data_l(); udelay(5);
901
clock_l(); udelay(5);
902
for (i = 128; i != 0; i >>= 1) { /* write command out */
903
tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
904
((data & i) ? CONFIG1_PROMDATA : 0);
905
if (lanai->conf1 != tmp) {
906
set_config1(tmp);
907
udelay(5); /* Let new data settle */
908
}
909
clock_h(); udelay(5); clock_l(); udelay(5);
910
}
911
/* look for ack */
912
data_h(); clock_h(); udelay(5);
913
if (read_pin() != 0)
914
goto error; /* No ack seen */
915
clock_l(); udelay(5);
916
/* read back result */
917
for (data = 0, i = 7; i >= 0; i--) {
918
data_h(); clock_h(); udelay(5);
919
data = (data << 1) | !!read_pin();
920
clock_l(); udelay(5);
921
}
922
/* look again for ack */
923
data_h(); clock_h(); udelay(5);
924
if (read_pin() == 0)
925
goto error; /* Spurious ack */
926
clock_l(); udelay(5);
927
send_stop();
928
lanai->eeprom[address] = data;
929
DPRINTK("EEPROM 0x%04X %02X\n",
930
(unsigned int) address, (unsigned int) data);
931
}
932
return 0;
933
error:
934
clock_l(); udelay(5); /* finish read */
935
send_stop();
936
printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
937
lanai->number, address);
938
return -EIO;
939
#undef set_config1
940
#undef clock_h
941
#undef clock_l
942
#undef data_h
943
#undef data_l
944
#undef pre_read
945
#undef read_pin
946
#undef send_stop
947
}
948
949
/* read a big-endian 4-byte value out of eeprom */
950
static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
951
{
952
return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
953
}
954
955
/* Checksum/validate EEPROM contents */
956
static int __devinit eeprom_validate(struct lanai_dev *lanai)
957
{
958
int i, s;
959
u32 v;
960
const u8 *e = lanai->eeprom;
961
#ifdef DEBUG
962
/* First, see if we can get an ASCIIZ string out of the copyright */
963
for (i = EEPROM_COPYRIGHT;
964
i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
965
if (e[i] < 0x20 || e[i] > 0x7E)
966
break;
967
if ( i != EEPROM_COPYRIGHT &&
968
i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
969
DPRINTK("eeprom: copyright = \"%s\"\n",
970
(char *) &e[EEPROM_COPYRIGHT]);
971
else
972
DPRINTK("eeprom: copyright not found\n");
973
#endif
974
/* Validate checksum */
975
for (i = s = 0; i < EEPROM_CHECKSUM; i++)
976
s += e[i];
977
s &= 0xFF;
978
if (s != e[EEPROM_CHECKSUM]) {
979
printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
980
"(wanted 0x%02X, got 0x%02X)\n", lanai->number,
981
(unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
982
return -EIO;
983
}
984
s ^= 0xFF;
985
if (s != e[EEPROM_CHECKSUM_REV]) {
986
printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
987
"bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
988
(unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
989
return -EIO;
990
}
991
/* Verify MAC address */
992
for (i = 0; i < 6; i++)
993
if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
994
printk(KERN_ERR DEV_LABEL
995
"(itf %d) : EEPROM MAC addresses don't match "
996
"(0x%02X, inverse 0x%02X)\n", lanai->number,
997
(unsigned int) e[EEPROM_MAC + i],
998
(unsigned int) e[EEPROM_MAC_REV + i]);
999
return -EIO;
1000
}
1001
DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
1002
/* Verify serial number */
1003
lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
1004
v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
1005
if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
1006
printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
1007
"don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1008
(unsigned int) lanai->serialno, (unsigned int) v);
1009
return -EIO;
1010
}
1011
DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
1012
/* Verify magic number */
1013
lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1014
v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1015
if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1016
printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1017
"don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1018
lanai->magicno, v);
1019
return -EIO;
1020
}
1021
DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1022
if (lanai->magicno != EEPROM_MAGIC_VALUE)
1023
printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1024
"magic not what expected (got 0x%08X, not 0x%08X)\n",
1025
lanai->number, (unsigned int) lanai->magicno,
1026
(unsigned int) EEPROM_MAGIC_VALUE);
1027
return 0;
1028
}
1029
1030
#endif /* READ_EEPROM */
1031
1032
static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1033
{
1034
return &lanai->eeprom[EEPROM_MAC];
1035
}
1036
1037
/* -------------------- INTERRUPT HANDLING UTILITIES: */
1038
1039
/* Interrupt types */
1040
#define INT_STATS (0x00000002) /* Statistics counter overflow */
1041
#define INT_SOOL (0x00000004) /* SOOL changed state */
1042
#define INT_LOCD (0x00000008) /* LOCD changed state */
1043
#define INT_LED (0x00000010) /* LED (HAPPI) changed state */
1044
#define INT_GPIN (0x00000020) /* GPIN changed state */
1045
#define INT_PING (0x00000040) /* PING_COUNT fulfilled */
1046
#define INT_WAKE (0x00000080) /* Lanai wants bus */
1047
#define INT_CBR0 (0x00000100) /* CBR sched hit VCI 0 */
1048
#define INT_LOCK (0x00000200) /* Service list overflow */
1049
#define INT_MISMATCH (0x00000400) /* TX magic list mismatch */
1050
#define INT_AAL0_STR (0x00000800) /* Non-AAL5 buffer half filled */
1051
#define INT_AAL0 (0x00001000) /* Non-AAL5 data available */
1052
#define INT_SERVICE (0x00002000) /* Service list entries available */
1053
#define INT_TABORTSENT (0x00004000) /* Target abort sent by lanai */
1054
#define INT_TABORTBM (0x00008000) /* Abort rcv'd as bus master */
1055
#define INT_TIMEOUTBM (0x00010000) /* No response to bus master */
1056
#define INT_PCIPARITY (0x00020000) /* Parity error on PCI */
1057
1058
/* Sets of the above */
1059
#define INT_ALL (0x0003FFFE) /* All interrupts */
1060
#define INT_STATUS (0x0000003C) /* Some status pin changed */
1061
#define INT_DMASHUT (0x00038000) /* DMA engine got shut down */
1062
#define INT_SEGSHUT (0x00000700) /* Segmentation got shut down */
1063
1064
static inline u32 intr_pending(const struct lanai_dev *lanai)
1065
{
1066
return reg_read(lanai, IntStatusMasked_Reg);
1067
}
1068
1069
static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1070
{
1071
reg_write(lanai, i, IntControlEna_Reg);
1072
}
1073
1074
static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1075
{
1076
reg_write(lanai, i, IntControlDis_Reg);
1077
}
1078
1079
/* -------------------- CARD/PCI STATUS: */
1080
1081
static void status_message(int itf, const char *name, int status)
1082
{
1083
static const char *onoff[2] = { "off to on", "on to off" };
1084
printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1085
itf, name, onoff[!status]);
1086
}
1087
1088
static void lanai_check_status(struct lanai_dev *lanai)
1089
{
1090
u32 new = reg_read(lanai, Status_Reg);
1091
u32 changes = new ^ lanai->status;
1092
lanai->status = new;
1093
#define e(flag, name) \
1094
if (changes & flag) \
1095
status_message(lanai->number, name, new & flag)
1096
e(STATUS_SOOL, "SOOL");
1097
e(STATUS_LOCD, "LOCD");
1098
e(STATUS_LED, "LED");
1099
e(STATUS_GPIN, "GPIN");
1100
#undef e
1101
}
1102
1103
static void pcistatus_got(int itf, const char *name)
1104
{
1105
printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1106
}
1107
1108
static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1109
{
1110
u16 s;
1111
int result;
1112
result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1113
if (result != PCIBIOS_SUCCESSFUL) {
1114
printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1115
"%d\n", lanai->number, result);
1116
return;
1117
}
1118
s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1119
PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
1120
PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
1121
if (s == 0)
1122
return;
1123
result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1124
if (result != PCIBIOS_SUCCESSFUL)
1125
printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1126
"%d\n", lanai->number, result);
1127
if (clearonly)
1128
return;
1129
#define e(flag, name, stat) \
1130
if (s & flag) { \
1131
pcistatus_got(lanai->number, name); \
1132
++lanai->stats.pcierr_##stat; \
1133
}
1134
e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1135
e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1136
e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1137
e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1138
e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1139
e(PCI_STATUS_PARITY, "master parity", master_parity);
1140
#undef e
1141
}
1142
1143
/* -------------------- VCC TX BUFFER UTILITIES: */
1144
1145
/* space left in tx buffer in bytes */
1146
static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1147
{
1148
int r;
1149
r = endptr * 16;
1150
r -= ((unsigned long) lvcc->tx.buf.ptr) -
1151
((unsigned long) lvcc->tx.buf.start);
1152
r -= 16; /* Leave "bubble" - if start==end it looks empty */
1153
if (r < 0)
1154
r += lanai_buf_size(&lvcc->tx.buf);
1155
return r;
1156
}
1157
1158
/* test if VCC is currently backlogged */
1159
static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1160
{
1161
return !skb_queue_empty(&lvcc->tx.backlog);
1162
}
1163
1164
/* Bit fields in the segmentation buffer descriptor */
1165
#define DESCRIPTOR_MAGIC (0xD0000000)
1166
#define DESCRIPTOR_AAL5 (0x00008000)
1167
#define DESCRIPTOR_AAL5_STREAM (0x00004000)
1168
#define DESCRIPTOR_CLP (0x00002000)
1169
1170
/* Add 32-bit descriptor with its padding */
1171
static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1172
u32 flags, int len)
1173
{
1174
int pos;
1175
APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1176
"vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1177
lvcc->tx.buf.ptr += 4; /* Hope the values REALLY don't matter */
1178
pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1179
(unsigned char *) lvcc->tx.buf.start;
1180
APRINTK((pos & ~0x0001FFF0) == 0,
1181
"vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1182
"start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1183
lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1184
pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1185
APRINTK((pos & ~0x0001FFF0) == 0,
1186
"vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1187
"start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1188
lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1189
lvcc->tx.buf.ptr[-1] =
1190
cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
1191
((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1192
DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1193
if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1194
lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1195
}
1196
1197
/* Add 32-bit AAL5 trailer and leave room for its CRC */
1198
static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1199
int len, int cpi, int uu)
1200
{
1201
APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1202
"vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1203
lvcc->tx.buf.ptr += 2;
1204
lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1205
if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1206
lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1207
}
1208
1209
static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1210
const unsigned char *src, int n)
1211
{
1212
unsigned char *e;
1213
int m;
1214
e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1215
m = e - (unsigned char *) lvcc->tx.buf.end;
1216
if (m < 0)
1217
m = 0;
1218
memcpy(lvcc->tx.buf.ptr, src, n - m);
1219
if (m != 0) {
1220
memcpy(lvcc->tx.buf.start, src + n - m, m);
1221
e = ((unsigned char *) lvcc->tx.buf.start) + m;
1222
}
1223
lvcc->tx.buf.ptr = (u32 *) e;
1224
}
1225
1226
static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1227
{
1228
unsigned char *e;
1229
int m;
1230
if (n == 0)
1231
return;
1232
e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1233
m = e - (unsigned char *) lvcc->tx.buf.end;
1234
if (m < 0)
1235
m = 0;
1236
memset(lvcc->tx.buf.ptr, 0, n - m);
1237
if (m != 0) {
1238
memset(lvcc->tx.buf.start, 0, m);
1239
e = ((unsigned char *) lvcc->tx.buf.start) + m;
1240
}
1241
lvcc->tx.buf.ptr = (u32 *) e;
1242
}
1243
1244
/* Update "butt" register to specify new WritePtr */
1245
static inline void lanai_endtx(struct lanai_dev *lanai,
1246
const struct lanai_vcc *lvcc)
1247
{
1248
int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1249
(unsigned char *) lvcc->tx.buf.start;
1250
APRINTK((ptr & ~0x0001FFF0) == 0,
1251
"lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1252
ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1253
lvcc->tx.buf.end);
1254
1255
/*
1256
* Since the "butt register" is a shared resounce on the card we
1257
* serialize all accesses to it through this spinlock. This is
1258
* mostly just paranoia since the register is rarely "busy" anyway
1259
* but is needed for correctness.
1260
*/
1261
spin_lock(&lanai->endtxlock);
1262
/*
1263
* We need to check if the "butt busy" bit is set before
1264
* updating the butt register. In theory this should
1265
* never happen because the ATM card is plenty fast at
1266
* updating the register. Still, we should make sure
1267
*/
1268
for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1269
if (unlikely(i > 50)) {
1270
printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1271
"always busy!\n", lanai->number);
1272
break;
1273
}
1274
udelay(5);
1275
}
1276
/*
1277
* Before we tall the card to start work we need to be sure 100% of
1278
* the info in the service buffer has been written before we tell
1279
* the card about it
1280
*/
1281
wmb();
1282
reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1283
spin_unlock(&lanai->endtxlock);
1284
}
1285
1286
/*
1287
* Add one AAL5 PDU to lvcc's transmit buffer. Caller garauntees there's
1288
* space available. "pdusize" is the number of bytes the PDU will take
1289
*/
1290
static void lanai_send_one_aal5(struct lanai_dev *lanai,
1291
struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1292
{
1293
int pad;
1294
APRINTK(pdusize == aal5_size(skb->len),
1295
"lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1296
pdusize, aal5_size(skb->len));
1297
vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1298
pad = pdusize - skb->len - 8;
1299
APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1300
APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1301
vcc_tx_memcpy(lvcc, skb->data, skb->len);
1302
vcc_tx_memzero(lvcc, pad);
1303
vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1304
lanai_endtx(lanai, lvcc);
1305
lanai_free_skb(lvcc->tx.atmvcc, skb);
1306
atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1307
}
1308
1309
/* Try to fill the buffer - don't call unless there is backlog */
1310
static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1311
struct lanai_vcc *lvcc, int endptr)
1312
{
1313
int n;
1314
struct sk_buff *skb;
1315
int space = vcc_tx_space(lvcc, endptr);
1316
APRINTK(vcc_is_backlogged(lvcc),
1317
"vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1318
lvcc->vci);
1319
while (space >= 64) {
1320
skb = skb_dequeue(&lvcc->tx.backlog);
1321
if (skb == NULL)
1322
goto no_backlog;
1323
n = aal5_size(skb->len);
1324
if (n + 16 > space) {
1325
/* No room for this packet - put it back on queue */
1326
skb_queue_head(&lvcc->tx.backlog, skb);
1327
return;
1328
}
1329
lanai_send_one_aal5(lanai, lvcc, skb, n);
1330
space -= n + 16;
1331
}
1332
if (!vcc_is_backlogged(lvcc)) {
1333
no_backlog:
1334
__clear_bit(lvcc->vci, lanai->backlog_vccs);
1335
}
1336
}
1337
1338
/* Given an skb that we want to transmit either send it now or queue */
1339
static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1340
struct sk_buff *skb)
1341
{
1342
int space, n;
1343
if (vcc_is_backlogged(lvcc)) /* Already backlogged */
1344
goto queue_it;
1345
space = vcc_tx_space(lvcc,
1346
TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1347
n = aal5_size(skb->len);
1348
APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1349
if (space < n + 16) { /* No space for this PDU */
1350
__set_bit(lvcc->vci, lanai->backlog_vccs);
1351
queue_it:
1352
skb_queue_tail(&lvcc->tx.backlog, skb);
1353
return;
1354
}
1355
lanai_send_one_aal5(lanai, lvcc, skb, n);
1356
}
1357
1358
static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1359
struct lanai_vcc *lvcc, int endptr)
1360
{
1361
printk(KERN_INFO DEV_LABEL
1362
": vcc_tx_unqueue_aal0: not implemented\n");
1363
}
1364
1365
static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1366
struct sk_buff *skb)
1367
{
1368
printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1369
/* Remember to increment lvcc->tx.atmvcc->stats->tx */
1370
lanai_free_skb(lvcc->tx.atmvcc, skb);
1371
}
1372
1373
/* -------------------- VCC RX BUFFER UTILITIES: */
1374
1375
/* unlike the _tx_ cousins, this doesn't update ptr */
1376
static inline void vcc_rx_memcpy(unsigned char *dest,
1377
const struct lanai_vcc *lvcc, int n)
1378
{
1379
int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1380
((const unsigned char *) (lvcc->rx.buf.end));
1381
if (m < 0)
1382
m = 0;
1383
memcpy(dest, lvcc->rx.buf.ptr, n - m);
1384
memcpy(dest + n - m, lvcc->rx.buf.start, m);
1385
/* Make sure that these copies don't get reordered */
1386
barrier();
1387
}
1388
1389
/* Receive AAL5 data on a VCC with a particular endptr */
1390
static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1391
{
1392
int size;
1393
struct sk_buff *skb;
1394
const u32 *x;
1395
u32 *end = &lvcc->rx.buf.start[endptr * 4];
1396
int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1397
if (n < 0)
1398
n += lanai_buf_size(&lvcc->rx.buf);
1399
APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1400
"vcc_rx_aal5: n out of range (%d/%Zu)\n",
1401
n, lanai_buf_size(&lvcc->rx.buf));
1402
/* Recover the second-to-last word to get true pdu length */
1403
if ((x = &end[-2]) < lvcc->rx.buf.start)
1404
x = &lvcc->rx.buf.end[-2];
1405
/*
1406
* Before we actually read from the buffer, make sure the memory
1407
* changes have arrived
1408
*/
1409
rmb();
1410
size = be32_to_cpup(x) & 0xffff;
1411
if (unlikely(n != aal5_size(size))) {
1412
/* Make sure size matches padding */
1413
printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1414
"on vci=%d - size=%d n=%d\n",
1415
lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1416
lvcc->stats.x.aal5.rx_badlen++;
1417
goto out;
1418
}
1419
skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1420
if (unlikely(skb == NULL)) {
1421
lvcc->stats.rx_nomem++;
1422
goto out;
1423
}
1424
skb_put(skb, size);
1425
vcc_rx_memcpy(skb->data, lvcc, size);
1426
ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1427
__net_timestamp(skb);
1428
lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1429
atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1430
out:
1431
lvcc->rx.buf.ptr = end;
1432
cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1433
}
1434
1435
static void vcc_rx_aal0(struct lanai_dev *lanai)
1436
{
1437
printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1438
/* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1439
/* Remember to increment lvcc->rx.atmvcc->stats->rx */
1440
}
1441
1442
/* -------------------- MANAGING HOST-BASED VCC TABLE: */
1443
1444
/* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1445
#if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1446
#define VCCTABLE_GETFREEPAGE
1447
#else
1448
#include <linux/vmalloc.h>
1449
#endif
1450
1451
static int __devinit vcc_table_allocate(struct lanai_dev *lanai)
1452
{
1453
#ifdef VCCTABLE_GETFREEPAGE
1454
APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1455
"vcc table > PAGE_SIZE!");
1456
lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1457
return (lanai->vccs == NULL) ? -ENOMEM : 0;
1458
#else
1459
int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1460
lanai->vccs = (struct lanai_vcc **) vmalloc(bytes);
1461
if (unlikely(lanai->vccs == NULL))
1462
return -ENOMEM;
1463
memset(lanai->vccs, 0, bytes);
1464
return 0;
1465
#endif
1466
}
1467
1468
static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1469
{
1470
#ifdef VCCTABLE_GETFREEPAGE
1471
free_page((unsigned long) lanai->vccs);
1472
#else
1473
vfree(lanai->vccs);
1474
#endif
1475
}
1476
1477
/* Allocate a fresh lanai_vcc, with the appropriate things cleared */
1478
static inline struct lanai_vcc *new_lanai_vcc(void)
1479
{
1480
struct lanai_vcc *lvcc;
1481
lvcc = kzalloc(sizeof(*lvcc), GFP_KERNEL);
1482
if (likely(lvcc != NULL)) {
1483
skb_queue_head_init(&lvcc->tx.backlog);
1484
#ifdef DEBUG
1485
lvcc->vci = -1;
1486
#endif
1487
}
1488
return lvcc;
1489
}
1490
1491
static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1492
struct lanai_buffer *buf, int max_sdu, int multiplier,
1493
const char *name)
1494
{
1495
int size;
1496
if (unlikely(max_sdu < 1))
1497
max_sdu = 1;
1498
max_sdu = aal5_size(max_sdu);
1499
size = (max_sdu + 16) * multiplier + 16;
1500
lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1501
if (unlikely(buf->start == NULL))
1502
return -ENOMEM;
1503
if (unlikely(lanai_buf_size(buf) < size))
1504
printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1505
"for %s buffer, got only %Zu\n", lanai->number, size,
1506
name, lanai_buf_size(buf));
1507
DPRINTK("Allocated %Zu byte %s buffer\n", lanai_buf_size(buf), name);
1508
return 0;
1509
}
1510
1511
/* Setup a RX buffer for a currently unbound AAL5 vci */
1512
static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1513
struct lanai_vcc *lvcc, const struct atm_qos *qos)
1514
{
1515
return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1516
qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1517
}
1518
1519
/* Setup a TX buffer for a currently unbound AAL5 vci */
1520
static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1521
const struct atm_qos *qos)
1522
{
1523
int max_sdu, multiplier;
1524
if (qos->aal == ATM_AAL0) {
1525
lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1526
max_sdu = ATM_CELL_SIZE - 1;
1527
multiplier = AAL0_TX_MULTIPLIER;
1528
} else {
1529
lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1530
max_sdu = qos->txtp.max_sdu;
1531
multiplier = AAL5_TX_MULTIPLIER;
1532
}
1533
return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1534
multiplier, "TX");
1535
}
1536
1537
static inline void host_vcc_bind(struct lanai_dev *lanai,
1538
struct lanai_vcc *lvcc, vci_t vci)
1539
{
1540
if (lvcc->vbase != NULL)
1541
return; /* We already were bound in the other direction */
1542
DPRINTK("Binding vci %d\n", vci);
1543
#ifdef USE_POWERDOWN
1544
if (lanai->nbound++ == 0) {
1545
DPRINTK("Coming out of powerdown\n");
1546
lanai->conf1 &= ~CONFIG1_POWERDOWN;
1547
conf1_write(lanai);
1548
conf2_write(lanai);
1549
}
1550
#endif
1551
lvcc->vbase = cardvcc_addr(lanai, vci);
1552
lanai->vccs[lvcc->vci = vci] = lvcc;
1553
}
1554
1555
static inline void host_vcc_unbind(struct lanai_dev *lanai,
1556
struct lanai_vcc *lvcc)
1557
{
1558
if (lvcc->vbase == NULL)
1559
return; /* This vcc was never bound */
1560
DPRINTK("Unbinding vci %d\n", lvcc->vci);
1561
lvcc->vbase = NULL;
1562
lanai->vccs[lvcc->vci] = NULL;
1563
#ifdef USE_POWERDOWN
1564
if (--lanai->nbound == 0) {
1565
DPRINTK("Going into powerdown\n");
1566
lanai->conf1 |= CONFIG1_POWERDOWN;
1567
conf1_write(lanai);
1568
}
1569
#endif
1570
}
1571
1572
/* -------------------- RESET CARD: */
1573
1574
static void lanai_reset(struct lanai_dev *lanai)
1575
{
1576
printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* reseting - not "
1577
"implemented\n", lanai->number);
1578
/* TODO */
1579
/* The following is just a hack until we write the real
1580
* resetter - at least ack whatever interrupt sent us
1581
* here
1582
*/
1583
reg_write(lanai, INT_ALL, IntAck_Reg);
1584
lanai->stats.card_reset++;
1585
}
1586
1587
/* -------------------- SERVICE LIST UTILITIES: */
1588
1589
/*
1590
* Allocate service buffer and tell card about it
1591
*/
1592
static int __devinit service_buffer_allocate(struct lanai_dev *lanai)
1593
{
1594
lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1595
lanai->pci);
1596
if (unlikely(lanai->service.start == NULL))
1597
return -ENOMEM;
1598
DPRINTK("allocated service buffer at 0x%08lX, size %Zu(%d)\n",
1599
(unsigned long) lanai->service.start,
1600
lanai_buf_size(&lanai->service),
1601
lanai_buf_size_cardorder(&lanai->service));
1602
/* Clear ServWrite register to be safe */
1603
reg_write(lanai, 0, ServWrite_Reg);
1604
/* ServiceStuff register contains size and address of buffer */
1605
reg_write(lanai,
1606
SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1607
SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1608
ServiceStuff_Reg);
1609
return 0;
1610
}
1611
1612
static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1613
{
1614
lanai_buf_deallocate(&lanai->service, lanai->pci);
1615
}
1616
1617
/* Bitfields in service list */
1618
#define SERVICE_TX (0x80000000) /* Was from transmission */
1619
#define SERVICE_TRASH (0x40000000) /* RXed PDU was trashed */
1620
#define SERVICE_CRCERR (0x20000000) /* RXed PDU had CRC error */
1621
#define SERVICE_CI (0x10000000) /* RXed PDU had CI set */
1622
#define SERVICE_CLP (0x08000000) /* RXed PDU had CLP set */
1623
#define SERVICE_STREAM (0x04000000) /* RX Stream mode */
1624
#define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1625
#define SERVICE_GET_END(x) ((x)&0x1FFF)
1626
1627
/* Handle one thing from the service list - returns true if it marked a
1628
* VCC ready for xmit
1629
*/
1630
static int handle_service(struct lanai_dev *lanai, u32 s)
1631
{
1632
vci_t vci = SERVICE_GET_VCI(s);
1633
struct lanai_vcc *lvcc;
1634
read_lock(&vcc_sklist_lock);
1635
lvcc = lanai->vccs[vci];
1636
if (unlikely(lvcc == NULL)) {
1637
read_unlock(&vcc_sklist_lock);
1638
DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1639
"vcc %d\n", lanai->number, (unsigned int) s, vci);
1640
if (s & SERVICE_TX)
1641
lanai->stats.service_notx++;
1642
else
1643
lanai->stats.service_norx++;
1644
return 0;
1645
}
1646
if (s & SERVICE_TX) { /* segmentation interrupt */
1647
if (unlikely(lvcc->tx.atmvcc == NULL)) {
1648
read_unlock(&vcc_sklist_lock);
1649
DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1650
"vcc %d\n", lanai->number, (unsigned int) s, vci);
1651
lanai->stats.service_notx++;
1652
return 0;
1653
}
1654
__set_bit(vci, lanai->transmit_ready);
1655
lvcc->tx.endptr = SERVICE_GET_END(s);
1656
read_unlock(&vcc_sklist_lock);
1657
return 1;
1658
}
1659
if (unlikely(lvcc->rx.atmvcc == NULL)) {
1660
read_unlock(&vcc_sklist_lock);
1661
DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1662
"vcc %d\n", lanai->number, (unsigned int) s, vci);
1663
lanai->stats.service_norx++;
1664
return 0;
1665
}
1666
if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1667
read_unlock(&vcc_sklist_lock);
1668
DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1669
"vcc %d\n", lanai->number, (unsigned int) s, vci);
1670
lanai->stats.service_rxnotaal5++;
1671
atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1672
return 0;
1673
}
1674
if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1675
vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1676
read_unlock(&vcc_sklist_lock);
1677
return 0;
1678
}
1679
if (s & SERVICE_TRASH) {
1680
int bytes;
1681
read_unlock(&vcc_sklist_lock);
1682
DPRINTK("got trashed rx pdu on vci %d\n", vci);
1683
atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1684
lvcc->stats.x.aal5.service_trash++;
1685
bytes = (SERVICE_GET_END(s) * 16) -
1686
(((unsigned long) lvcc->rx.buf.ptr) -
1687
((unsigned long) lvcc->rx.buf.start)) + 47;
1688
if (bytes < 0)
1689
bytes += lanai_buf_size(&lvcc->rx.buf);
1690
lanai->stats.ovfl_trash += (bytes / 48);
1691
return 0;
1692
}
1693
if (s & SERVICE_STREAM) {
1694
read_unlock(&vcc_sklist_lock);
1695
atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1696
lvcc->stats.x.aal5.service_stream++;
1697
printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1698
"PDU on VCI %d!\n", lanai->number, vci);
1699
lanai_reset(lanai);
1700
return 0;
1701
}
1702
DPRINTK("got rx crc error on vci %d\n", vci);
1703
atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1704
lvcc->stats.x.aal5.service_rxcrc++;
1705
lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1706
cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1707
read_unlock(&vcc_sklist_lock);
1708
return 0;
1709
}
1710
1711
/* Try transmitting on all VCIs that we marked ready to serve */
1712
static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1713
{
1714
struct lanai_vcc *lvcc = lanai->vccs[vci];
1715
if (vcc_is_backlogged(lvcc))
1716
lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1717
}
1718
1719
/* Run service queue -- called from interrupt context or with
1720
* interrupts otherwise disabled and with the lanai->servicelock
1721
* lock held
1722
*/
1723
static void run_service(struct lanai_dev *lanai)
1724
{
1725
int ntx = 0;
1726
u32 wreg = reg_read(lanai, ServWrite_Reg);
1727
const u32 *end = lanai->service.start + wreg;
1728
while (lanai->service.ptr != end) {
1729
ntx += handle_service(lanai,
1730
le32_to_cpup(lanai->service.ptr++));
1731
if (lanai->service.ptr >= lanai->service.end)
1732
lanai->service.ptr = lanai->service.start;
1733
}
1734
reg_write(lanai, wreg, ServRead_Reg);
1735
if (ntx != 0) {
1736
read_lock(&vcc_sklist_lock);
1737
vci_bitfield_iterate(lanai, lanai->transmit_ready,
1738
iter_transmit);
1739
bitmap_zero(lanai->transmit_ready, NUM_VCI);
1740
read_unlock(&vcc_sklist_lock);
1741
}
1742
}
1743
1744
/* -------------------- GATHER STATISTICS: */
1745
1746
static void get_statistics(struct lanai_dev *lanai)
1747
{
1748
u32 statreg = reg_read(lanai, Statistics_Reg);
1749
lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1750
lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1751
lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1752
lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1753
}
1754
1755
/* -------------------- POLLING TIMER: */
1756
1757
#ifndef DEBUG_RW
1758
/* Try to undequeue 1 backlogged vcc */
1759
static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1760
{
1761
struct lanai_vcc *lvcc = lanai->vccs[vci];
1762
int endptr;
1763
if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1764
!vcc_is_backlogged(lvcc)) {
1765
__clear_bit(vci, lanai->backlog_vccs);
1766
return;
1767
}
1768
endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1769
lvcc->tx.unqueue(lanai, lvcc, endptr);
1770
}
1771
#endif /* !DEBUG_RW */
1772
1773
static void lanai_timed_poll(unsigned long arg)
1774
{
1775
struct lanai_dev *lanai = (struct lanai_dev *) arg;
1776
#ifndef DEBUG_RW
1777
unsigned long flags;
1778
#ifdef USE_POWERDOWN
1779
if (lanai->conf1 & CONFIG1_POWERDOWN)
1780
return;
1781
#endif /* USE_POWERDOWN */
1782
local_irq_save(flags);
1783
/* If we can grab the spinlock, check if any services need to be run */
1784
if (spin_trylock(&lanai->servicelock)) {
1785
run_service(lanai);
1786
spin_unlock(&lanai->servicelock);
1787
}
1788
/* ...and see if any backlogged VCs can make progress */
1789
/* unfortunately linux has no read_trylock() currently */
1790
read_lock(&vcc_sklist_lock);
1791
vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1792
read_unlock(&vcc_sklist_lock);
1793
local_irq_restore(flags);
1794
1795
get_statistics(lanai);
1796
#endif /* !DEBUG_RW */
1797
mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1798
}
1799
1800
static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1801
{
1802
init_timer(&lanai->timer);
1803
lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
1804
lanai->timer.data = (unsigned long) lanai;
1805
lanai->timer.function = lanai_timed_poll;
1806
add_timer(&lanai->timer);
1807
}
1808
1809
static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1810
{
1811
del_timer_sync(&lanai->timer);
1812
}
1813
1814
/* -------------------- INTERRUPT SERVICE: */
1815
1816
static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1817
{
1818
u32 ack = 0;
1819
if (reason & INT_SERVICE) {
1820
ack = INT_SERVICE;
1821
spin_lock(&lanai->servicelock);
1822
run_service(lanai);
1823
spin_unlock(&lanai->servicelock);
1824
}
1825
if (reason & (INT_AAL0_STR | INT_AAL0)) {
1826
ack |= reason & (INT_AAL0_STR | INT_AAL0);
1827
vcc_rx_aal0(lanai);
1828
}
1829
/* The rest of the interrupts are pretty rare */
1830
if (ack == reason)
1831
goto done;
1832
if (reason & INT_STATS) {
1833
reason &= ~INT_STATS; /* No need to ack */
1834
get_statistics(lanai);
1835
}
1836
if (reason & INT_STATUS) {
1837
ack |= reason & INT_STATUS;
1838
lanai_check_status(lanai);
1839
}
1840
if (unlikely(reason & INT_DMASHUT)) {
1841
printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1842
"shutdown, reason=0x%08X, address=0x%08X\n",
1843
lanai->number, (unsigned int) (reason & INT_DMASHUT),
1844
(unsigned int) reg_read(lanai, DMA_Addr_Reg));
1845
if (reason & INT_TABORTBM) {
1846
lanai_reset(lanai);
1847
return;
1848
}
1849
ack |= (reason & INT_DMASHUT);
1850
printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1851
lanai->number);
1852
conf1_write(lanai);
1853
lanai->stats.dma_reenable++;
1854
pcistatus_check(lanai, 0);
1855
}
1856
if (unlikely(reason & INT_TABORTSENT)) {
1857
ack |= (reason & INT_TABORTSENT);
1858
printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1859
lanai->number);
1860
pcistatus_check(lanai, 0);
1861
}
1862
if (unlikely(reason & INT_SEGSHUT)) {
1863
printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1864
"segmentation shutdown, reason=0x%08X\n", lanai->number,
1865
(unsigned int) (reason & INT_SEGSHUT));
1866
lanai_reset(lanai);
1867
return;
1868
}
1869
if (unlikely(reason & (INT_PING | INT_WAKE))) {
1870
printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1871
"unexpected interrupt 0x%08X, resetting\n",
1872
lanai->number,
1873
(unsigned int) (reason & (INT_PING | INT_WAKE)));
1874
lanai_reset(lanai);
1875
return;
1876
}
1877
#ifdef DEBUG
1878
if (unlikely(ack != reason)) {
1879
DPRINTK("unacked ints: 0x%08X\n",
1880
(unsigned int) (reason & ~ack));
1881
ack = reason;
1882
}
1883
#endif
1884
done:
1885
if (ack != 0)
1886
reg_write(lanai, ack, IntAck_Reg);
1887
}
1888
1889
static irqreturn_t lanai_int(int irq, void *devid)
1890
{
1891
struct lanai_dev *lanai = devid;
1892
u32 reason;
1893
1894
#ifdef USE_POWERDOWN
1895
/*
1896
* If we're powered down we shouldn't be generating any interrupts -
1897
* so assume that this is a shared interrupt line and it's for someone
1898
* else
1899
*/
1900
if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1901
return IRQ_NONE;
1902
#endif
1903
1904
reason = intr_pending(lanai);
1905
if (reason == 0)
1906
return IRQ_NONE; /* Must be for someone else */
1907
1908
do {
1909
if (unlikely(reason == 0xFFFFFFFF))
1910
break; /* Maybe we've been unplugged? */
1911
lanai_int_1(lanai, reason);
1912
reason = intr_pending(lanai);
1913
} while (reason != 0);
1914
1915
return IRQ_HANDLED;
1916
}
1917
1918
/* TODO - it would be nice if we could use the "delayed interrupt" system
1919
* to some advantage
1920
*/
1921
1922
/* -------------------- CHECK BOARD ID/REV: */
1923
1924
/*
1925
* The board id and revision are stored both in the reset register and
1926
* in the PCI configuration space - the documentation says to check
1927
* each of them. If revp!=NULL we store the revision there
1928
*/
1929
static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1930
{
1931
DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1932
(int) RESET_GET_BOARD_ID(val),
1933
(int) RESET_GET_BOARD_REV(val));
1934
if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1935
printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1936
"Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1937
return -ENODEV;
1938
}
1939
if (revp != NULL)
1940
*revp = RESET_GET_BOARD_REV(val);
1941
return 0;
1942
}
1943
1944
/* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1945
1946
static int __devinit lanai_pci_start(struct lanai_dev *lanai)
1947
{
1948
struct pci_dev *pci = lanai->pci;
1949
int result;
1950
u16 w;
1951
1952
if (pci_enable_device(pci) != 0) {
1953
printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1954
"PCI device", lanai->number);
1955
return -ENXIO;
1956
}
1957
pci_set_master(pci);
1958
if (pci_set_dma_mask(pci, DMA_BIT_MASK(32)) != 0) {
1959
printk(KERN_WARNING DEV_LABEL
1960
"(itf %d): No suitable DMA available.\n", lanai->number);
1961
return -EBUSY;
1962
}
1963
if (pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(32)) != 0) {
1964
printk(KERN_WARNING DEV_LABEL
1965
"(itf %d): No suitable DMA available.\n", lanai->number);
1966
return -EBUSY;
1967
}
1968
result = pci_read_config_word(pci, PCI_SUBSYSTEM_ID, &w);
1969
if (result != PCIBIOS_SUCCESSFUL) {
1970
printk(KERN_ERR DEV_LABEL "(itf %d): can't read "
1971
"PCI_SUBSYSTEM_ID: %d\n", lanai->number, result);
1972
return -EINVAL;
1973
}
1974
result = check_board_id_and_rev("PCI", w, NULL);
1975
if (result != 0)
1976
return result;
1977
/* Set latency timer to zero as per lanai docs */
1978
result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1979
if (result != PCIBIOS_SUCCESSFUL) {
1980
printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1981
"PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1982
return -EINVAL;
1983
}
1984
pcistatus_check(lanai, 1);
1985
pcistatus_check(lanai, 0);
1986
return 0;
1987
}
1988
1989
/* -------------------- VPI/VCI ALLOCATION: */
1990
1991
/*
1992
* We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
1993
* get a CBRZERO interrupt), and we can use it only if no one is receiving
1994
* AAL0 traffic (since they will use the same queue) - according to the
1995
* docs we shouldn't even use it for AAL0 traffic
1996
*/
1997
static inline int vci0_is_ok(struct lanai_dev *lanai,
1998
const struct atm_qos *qos)
1999
{
2000
if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
2001
return 0;
2002
if (qos->rxtp.traffic_class != ATM_NONE) {
2003
if (lanai->naal0 != 0)
2004
return 0;
2005
lanai->conf2 |= CONFIG2_VCI0_NORMAL;
2006
conf2_write_if_powerup(lanai);
2007
}
2008
return 1;
2009
}
2010
2011
/* return true if vci is currently unused, or if requested qos is
2012
* compatible
2013
*/
2014
static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
2015
const struct atm_vcc *atmvcc)
2016
{
2017
const struct atm_qos *qos = &atmvcc->qos;
2018
const struct lanai_vcc *lvcc = lanai->vccs[vci];
2019
if (vci == 0 && !vci0_is_ok(lanai, qos))
2020
return 0;
2021
if (unlikely(lvcc != NULL)) {
2022
if (qos->rxtp.traffic_class != ATM_NONE &&
2023
lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
2024
return 0;
2025
if (qos->txtp.traffic_class != ATM_NONE &&
2026
lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
2027
return 0;
2028
if (qos->txtp.traffic_class == ATM_CBR &&
2029
lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2030
return 0;
2031
}
2032
if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2033
qos->rxtp.traffic_class != ATM_NONE) {
2034
const struct lanai_vcc *vci0 = lanai->vccs[0];
2035
if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2036
return 0;
2037
lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2038
conf2_write_if_powerup(lanai);
2039
}
2040
return 1;
2041
}
2042
2043
static int lanai_normalize_ci(struct lanai_dev *lanai,
2044
const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2045
{
2046
switch (*vpip) {
2047
case ATM_VPI_ANY:
2048
*vpip = 0;
2049
/* FALLTHROUGH */
2050
case 0:
2051
break;
2052
default:
2053
return -EADDRINUSE;
2054
}
2055
switch (*vcip) {
2056
case ATM_VCI_ANY:
2057
for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2058
(*vcip)++)
2059
if (vci_is_ok(lanai, *vcip, atmvcc))
2060
return 0;
2061
return -EADDRINUSE;
2062
default:
2063
if (*vcip >= lanai->num_vci || *vcip < 0 ||
2064
!vci_is_ok(lanai, *vcip, atmvcc))
2065
return -EADDRINUSE;
2066
}
2067
return 0;
2068
}
2069
2070
/* -------------------- MANAGE CBR: */
2071
2072
/*
2073
* CBR ICG is stored as a fixed-point number with 4 fractional bits.
2074
* Note that storing a number greater than 2046.0 will result in
2075
* incorrect shaping
2076
*/
2077
#define CBRICG_FRAC_BITS (4)
2078
#define CBRICG_MAX (2046 << CBRICG_FRAC_BITS)
2079
2080
/*
2081
* ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2082
* where MAXPCR is (according to the docs) 25600000/(54*8),
2083
* which is equal to (3125<<9)/27.
2084
*
2085
* Solving for ICG, we get:
2086
* ICG = MAXPCR/PCR - 1
2087
* ICG = (3125<<9)/(27*PCR) - 1
2088
* ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2089
*
2090
* The end result is supposed to be a fixed-point number with FRAC_BITS
2091
* bits of a fractional part, so we keep everything in the numerator
2092
* shifted by that much as we compute
2093
*
2094
*/
2095
static int pcr_to_cbricg(const struct atm_qos *qos)
2096
{
2097
int rounddown = 0; /* 1 = Round PCR down, i.e. round ICG _up_ */
2098
int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2099
if (pcr == 0) /* Use maximum bandwidth */
2100
return 0;
2101
if (pcr < 0) {
2102
rounddown = 1;
2103
pcr = -pcr;
2104
}
2105
x = pcr * 27;
2106
icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2107
if (rounddown)
2108
icg += x - 1;
2109
icg /= x;
2110
if (icg > CBRICG_MAX)
2111
icg = CBRICG_MAX;
2112
DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2113
pcr, rounddown ? 'Y' : 'N', icg);
2114
return icg;
2115
}
2116
2117
static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2118
{
2119
reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2120
reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2121
lanai->conf2 |= CONFIG2_CBR_ENABLE;
2122
conf2_write(lanai);
2123
}
2124
2125
static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2126
{
2127
lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2128
conf2_write(lanai);
2129
}
2130
2131
/* -------------------- OPERATIONS: */
2132
2133
/* setup a newly detected device */
2134
static int __devinit lanai_dev_open(struct atm_dev *atmdev)
2135
{
2136
struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2137
unsigned long raw_base;
2138
int result;
2139
2140
DPRINTK("In lanai_dev_open()\n");
2141
/* Basic device fields */
2142
lanai->number = atmdev->number;
2143
lanai->num_vci = NUM_VCI;
2144
bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2145
bitmap_zero(lanai->transmit_ready, NUM_VCI);
2146
lanai->naal0 = 0;
2147
#ifdef USE_POWERDOWN
2148
lanai->nbound = 0;
2149
#endif
2150
lanai->cbrvcc = NULL;
2151
memset(&lanai->stats, 0, sizeof lanai->stats);
2152
spin_lock_init(&lanai->endtxlock);
2153
spin_lock_init(&lanai->servicelock);
2154
atmdev->ci_range.vpi_bits = 0;
2155
atmdev->ci_range.vci_bits = 0;
2156
while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2157
atmdev->ci_range.vci_bits++;
2158
atmdev->link_rate = ATM_25_PCR;
2159
2160
/* 3.2: PCI initialization */
2161
if ((result = lanai_pci_start(lanai)) != 0)
2162
goto error;
2163
raw_base = lanai->pci->resource[0].start;
2164
lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2165
if (lanai->base == NULL) {
2166
printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
2167
goto error_pci;
2168
}
2169
/* 3.3: Reset lanai and PHY */
2170
reset_board(lanai);
2171
lanai->conf1 = reg_read(lanai, Config1_Reg);
2172
lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2173
CONFIG1_MASK_LEDMODE);
2174
lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
2175
reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2176
udelay(1000);
2177
conf1_write(lanai);
2178
2179
/*
2180
* 3.4: Turn on endian mode for big-endian hardware
2181
* We don't actually want to do this - the actual bit fields
2182
* in the endian register are not documented anywhere.
2183
* Instead we do the bit-flipping ourselves on big-endian
2184
* hardware.
2185
*
2186
* 3.5: get the board ID/rev by reading the reset register
2187
*/
2188
result = check_board_id_and_rev("register",
2189
reg_read(lanai, Reset_Reg), &lanai->board_rev);
2190
if (result != 0)
2191
goto error_unmap;
2192
2193
/* 3.6: read EEPROM */
2194
if ((result = eeprom_read(lanai)) != 0)
2195
goto error_unmap;
2196
if ((result = eeprom_validate(lanai)) != 0)
2197
goto error_unmap;
2198
2199
/* 3.7: re-reset PHY, do loopback tests, setup PHY */
2200
reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2201
udelay(1000);
2202
conf1_write(lanai);
2203
/* TODO - loopback tests */
2204
lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
2205
conf1_write(lanai);
2206
2207
/* 3.8/3.9: test and initialize card SRAM */
2208
if ((result = sram_test_and_clear(lanai)) != 0)
2209
goto error_unmap;
2210
2211
/* 3.10: initialize lanai registers */
2212
lanai->conf1 |= CONFIG1_DMA_ENABLE;
2213
conf1_write(lanai);
2214
if ((result = service_buffer_allocate(lanai)) != 0)
2215
goto error_unmap;
2216
if ((result = vcc_table_allocate(lanai)) != 0)
2217
goto error_service;
2218
lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2219
CONFIG2_HEC_DROP | /* ??? */ CONFIG2_PTI7_MODE;
2220
conf2_write(lanai);
2221
reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
2222
reg_write(lanai, 0, CBR_ICG_Reg); /* CBR defaults to no limit */
2223
if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2224
DEV_LABEL, lanai)) != 0) {
2225
printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2226
goto error_vcctable;
2227
}
2228
mb(); /* Make sure that all that made it */
2229
intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2230
/* 3.11: initialize loop mode (i.e. turn looping off) */
2231
lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2232
CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
2233
CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
2234
conf1_write(lanai);
2235
lanai->status = reg_read(lanai, Status_Reg);
2236
/* We're now done initializing this card */
2237
#ifdef USE_POWERDOWN
2238
lanai->conf1 |= CONFIG1_POWERDOWN;
2239
conf1_write(lanai);
2240
#endif
2241
memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2242
lanai_timed_poll_start(lanai);
2243
printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=0x%lx, irq=%u "
2244
"(%pMF)\n", lanai->number, (int) lanai->pci->revision,
2245
(unsigned long) lanai->base, lanai->pci->irq, atmdev->esi);
2246
printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2247
"board_rev=%d\n", lanai->number,
2248
lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2249
(unsigned int) lanai->serialno, lanai->board_rev);
2250
return 0;
2251
2252
error_vcctable:
2253
vcc_table_deallocate(lanai);
2254
error_service:
2255
service_buffer_deallocate(lanai);
2256
error_unmap:
2257
reset_board(lanai);
2258
#ifdef USE_POWERDOWN
2259
lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2260
conf1_write(lanai);
2261
#endif
2262
iounmap(lanai->base);
2263
error_pci:
2264
pci_disable_device(lanai->pci);
2265
error:
2266
return result;
2267
}
2268
2269
/* called when device is being shutdown, and all vcc's are gone - higher
2270
* levels will deallocate the atm device for us
2271
*/
2272
static void lanai_dev_close(struct atm_dev *atmdev)
2273
{
2274
struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2275
printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2276
lanai->number);
2277
lanai_timed_poll_stop(lanai);
2278
#ifdef USE_POWERDOWN
2279
lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2280
conf1_write(lanai);
2281
#endif
2282
intr_disable(lanai, INT_ALL);
2283
free_irq(lanai->pci->irq, lanai);
2284
reset_board(lanai);
2285
#ifdef USE_POWERDOWN
2286
lanai->conf1 |= CONFIG1_POWERDOWN;
2287
conf1_write(lanai);
2288
#endif
2289
pci_disable_device(lanai->pci);
2290
vcc_table_deallocate(lanai);
2291
service_buffer_deallocate(lanai);
2292
iounmap(lanai->base);
2293
kfree(lanai);
2294
}
2295
2296
/* close a vcc */
2297
static void lanai_close(struct atm_vcc *atmvcc)
2298
{
2299
struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2300
struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2301
if (lvcc == NULL)
2302
return;
2303
clear_bit(ATM_VF_READY, &atmvcc->flags);
2304
clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2305
if (lvcc->rx.atmvcc == atmvcc) {
2306
lanai_shutdown_rx_vci(lvcc);
2307
if (atmvcc->qos.aal == ATM_AAL0) {
2308
if (--lanai->naal0 <= 0)
2309
aal0_buffer_free(lanai);
2310
} else
2311
lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2312
lvcc->rx.atmvcc = NULL;
2313
}
2314
if (lvcc->tx.atmvcc == atmvcc) {
2315
if (atmvcc == lanai->cbrvcc) {
2316
if (lvcc->vbase != NULL)
2317
lanai_cbr_shutdown(lanai);
2318
lanai->cbrvcc = NULL;
2319
}
2320
lanai_shutdown_tx_vci(lanai, lvcc);
2321
lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2322
lvcc->tx.atmvcc = NULL;
2323
}
2324
if (--lvcc->nref == 0) {
2325
host_vcc_unbind(lanai, lvcc);
2326
kfree(lvcc);
2327
}
2328
atmvcc->dev_data = NULL;
2329
clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2330
}
2331
2332
/* open a vcc on the card to vpi/vci */
2333
static int lanai_open(struct atm_vcc *atmvcc)
2334
{
2335
struct lanai_dev *lanai;
2336
struct lanai_vcc *lvcc;
2337
int result = 0;
2338
int vci = atmvcc->vci;
2339
short vpi = atmvcc->vpi;
2340
/* we don't support partial open - it's not really useful anyway */
2341
if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2342
(vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2343
return -EINVAL;
2344
lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2345
result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2346
if (unlikely(result != 0))
2347
goto out;
2348
set_bit(ATM_VF_ADDR, &atmvcc->flags);
2349
if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2350
return -EINVAL;
2351
DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2352
(int) vpi, vci);
2353
lvcc = lanai->vccs[vci];
2354
if (lvcc == NULL) {
2355
lvcc = new_lanai_vcc();
2356
if (unlikely(lvcc == NULL))
2357
return -ENOMEM;
2358
atmvcc->dev_data = lvcc;
2359
}
2360
lvcc->nref++;
2361
if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2362
APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2363
vci);
2364
if (atmvcc->qos.aal == ATM_AAL0) {
2365
if (lanai->naal0 == 0)
2366
result = aal0_buffer_allocate(lanai);
2367
} else
2368
result = lanai_setup_rx_vci_aal5(
2369
lanai, lvcc, &atmvcc->qos);
2370
if (unlikely(result != 0))
2371
goto out_free;
2372
lvcc->rx.atmvcc = atmvcc;
2373
lvcc->stats.rx_nomem = 0;
2374
lvcc->stats.x.aal5.rx_badlen = 0;
2375
lvcc->stats.x.aal5.service_trash = 0;
2376
lvcc->stats.x.aal5.service_stream = 0;
2377
lvcc->stats.x.aal5.service_rxcrc = 0;
2378
if (atmvcc->qos.aal == ATM_AAL0)
2379
lanai->naal0++;
2380
}
2381
if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2382
APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2383
vci);
2384
result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2385
if (unlikely(result != 0))
2386
goto out_free;
2387
lvcc->tx.atmvcc = atmvcc;
2388
if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2389
APRINTK(lanai->cbrvcc == NULL,
2390
"cbrvcc!=NULL, vci=%d\n", vci);
2391
lanai->cbrvcc = atmvcc;
2392
}
2393
}
2394
host_vcc_bind(lanai, lvcc, vci);
2395
/*
2396
* Make sure everything made it to RAM before we tell the card about
2397
* the VCC
2398
*/
2399
wmb();
2400
if (atmvcc == lvcc->rx.atmvcc)
2401
host_vcc_start_rx(lvcc);
2402
if (atmvcc == lvcc->tx.atmvcc) {
2403
host_vcc_start_tx(lvcc);
2404
if (lanai->cbrvcc == atmvcc)
2405
lanai_cbr_setup(lanai);
2406
}
2407
set_bit(ATM_VF_READY, &atmvcc->flags);
2408
return 0;
2409
out_free:
2410
lanai_close(atmvcc);
2411
out:
2412
return result;
2413
}
2414
2415
static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2416
{
2417
struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2418
struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2419
unsigned long flags;
2420
if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2421
lvcc->tx.atmvcc != atmvcc))
2422
goto einval;
2423
#ifdef DEBUG
2424
if (unlikely(skb == NULL)) {
2425
DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2426
goto einval;
2427
}
2428
if (unlikely(lanai == NULL)) {
2429
DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2430
goto einval;
2431
}
2432
#endif
2433
ATM_SKB(skb)->vcc = atmvcc;
2434
switch (atmvcc->qos.aal) {
2435
case ATM_AAL5:
2436
read_lock_irqsave(&vcc_sklist_lock, flags);
2437
vcc_tx_aal5(lanai, lvcc, skb);
2438
read_unlock_irqrestore(&vcc_sklist_lock, flags);
2439
return 0;
2440
case ATM_AAL0:
2441
if (unlikely(skb->len != ATM_CELL_SIZE-1))
2442
goto einval;
2443
/* NOTE - this next line is technically invalid - we haven't unshared skb */
2444
cpu_to_be32s((u32 *) skb->data);
2445
read_lock_irqsave(&vcc_sklist_lock, flags);
2446
vcc_tx_aal0(lanai, lvcc, skb);
2447
read_unlock_irqrestore(&vcc_sklist_lock, flags);
2448
return 0;
2449
}
2450
DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2451
atmvcc->vci);
2452
einval:
2453
lanai_free_skb(atmvcc, skb);
2454
return -EINVAL;
2455
}
2456
2457
static int lanai_change_qos(struct atm_vcc *atmvcc,
2458
/*const*/ struct atm_qos *qos, int flags)
2459
{
2460
return -EBUSY; /* TODO: need to write this */
2461
}
2462
2463
#ifndef CONFIG_PROC_FS
2464
#define lanai_proc_read NULL
2465
#else
2466
static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2467
{
2468
struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2469
loff_t left = *pos;
2470
struct lanai_vcc *lvcc;
2471
if (left-- == 0)
2472
return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2473
"serial=%u, magic=0x%08X, num_vci=%d\n",
2474
atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2475
(unsigned int) lanai->serialno,
2476
(unsigned int) lanai->magicno, lanai->num_vci);
2477
if (left-- == 0)
2478
return sprintf(page, "revision: board=%d, pci_if=%d\n",
2479
lanai->board_rev, (int) lanai->pci->revision);
2480
if (left-- == 0)
2481
return sprintf(page, "EEPROM ESI: %pM\n",
2482
&lanai->eeprom[EEPROM_MAC]);
2483
if (left-- == 0)
2484
return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2485
"GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2486
(lanai->status & STATUS_LOCD) ? 1 : 0,
2487
(lanai->status & STATUS_LED) ? 1 : 0,
2488
(lanai->status & STATUS_GPIN) ? 1 : 0);
2489
if (left-- == 0)
2490
return sprintf(page, "global buffer sizes: service=%Zu, "
2491
"aal0_rx=%Zu\n", lanai_buf_size(&lanai->service),
2492
lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2493
if (left-- == 0) {
2494
get_statistics(lanai);
2495
return sprintf(page, "cells in error: overflow=%u, "
2496
"closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2497
lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2498
lanai->stats.hec_err, lanai->stats.atm_ovfl);
2499
}
2500
if (left-- == 0)
2501
return sprintf(page, "PCI errors: parity_detect=%u, "
2502
"master_abort=%u, master_target_abort=%u,\n",
2503
lanai->stats.pcierr_parity_detect,
2504
lanai->stats.pcierr_serr_set,
2505
lanai->stats.pcierr_m_target_abort);
2506
if (left-- == 0)
2507
return sprintf(page, " slave_target_abort=%u, "
2508
"master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2509
lanai->stats.pcierr_master_parity);
2510
if (left-- == 0)
2511
return sprintf(page, " no_tx=%u, "
2512
"no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2513
lanai->stats.service_notx,
2514
lanai->stats.service_rxnotaal5);
2515
if (left-- == 0)
2516
return sprintf(page, "resets: dma=%u, card=%u\n",
2517
lanai->stats.dma_reenable, lanai->stats.card_reset);
2518
/* At this point, "left" should be the VCI we're looking for */
2519
read_lock(&vcc_sklist_lock);
2520
for (; ; left++) {
2521
if (left >= NUM_VCI) {
2522
left = 0;
2523
goto out;
2524
}
2525
if ((lvcc = lanai->vccs[left]) != NULL)
2526
break;
2527
(*pos)++;
2528
}
2529
/* Note that we re-use "left" here since we're done with it */
2530
left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u", (vci_t) left,
2531
lvcc->nref, lvcc->stats.rx_nomem);
2532
if (lvcc->rx.atmvcc != NULL) {
2533
left += sprintf(&page[left], ",\n rx_AAL=%d",
2534
lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2535
if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2536
left += sprintf(&page[left], ", rx_buf_size=%Zu, "
2537
"rx_bad_len=%u,\n rx_service_trash=%u, "
2538
"rx_service_stream=%u, rx_bad_crc=%u",
2539
lanai_buf_size(&lvcc->rx.buf),
2540
lvcc->stats.x.aal5.rx_badlen,
2541
lvcc->stats.x.aal5.service_trash,
2542
lvcc->stats.x.aal5.service_stream,
2543
lvcc->stats.x.aal5.service_rxcrc);
2544
}
2545
if (lvcc->tx.atmvcc != NULL)
2546
left += sprintf(&page[left], ",\n tx_AAL=%d, "
2547
"tx_buf_size=%Zu, tx_qos=%cBR, tx_backlogged=%c",
2548
lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2549
lanai_buf_size(&lvcc->tx.buf),
2550
lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2551
vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2552
page[left++] = '\n';
2553
page[left] = '\0';
2554
out:
2555
read_unlock(&vcc_sklist_lock);
2556
return left;
2557
}
2558
#endif /* CONFIG_PROC_FS */
2559
2560
/* -------------------- HOOKS: */
2561
2562
static const struct atmdev_ops ops = {
2563
.dev_close = lanai_dev_close,
2564
.open = lanai_open,
2565
.close = lanai_close,
2566
.getsockopt = NULL,
2567
.setsockopt = NULL,
2568
.send = lanai_send,
2569
.phy_put = NULL,
2570
.phy_get = NULL,
2571
.change_qos = lanai_change_qos,
2572
.proc_read = lanai_proc_read,
2573
.owner = THIS_MODULE
2574
};
2575
2576
/* initialize one probed card */
2577
static int __devinit lanai_init_one(struct pci_dev *pci,
2578
const struct pci_device_id *ident)
2579
{
2580
struct lanai_dev *lanai;
2581
struct atm_dev *atmdev;
2582
int result;
2583
2584
lanai = kmalloc(sizeof(*lanai), GFP_KERNEL);
2585
if (lanai == NULL) {
2586
printk(KERN_ERR DEV_LABEL
2587
": couldn't allocate dev_data structure!\n");
2588
return -ENOMEM;
2589
}
2590
2591
atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL);
2592
if (atmdev == NULL) {
2593
printk(KERN_ERR DEV_LABEL
2594
": couldn't register atm device!\n");
2595
kfree(lanai);
2596
return -EBUSY;
2597
}
2598
2599
atmdev->dev_data = lanai;
2600
lanai->pci = pci;
2601
lanai->type = (enum lanai_type) ident->device;
2602
2603
result = lanai_dev_open(atmdev);
2604
if (result != 0) {
2605
DPRINTK("lanai_start() failed, err=%d\n", -result);
2606
atm_dev_deregister(atmdev);
2607
kfree(lanai);
2608
}
2609
return result;
2610
}
2611
2612
static struct pci_device_id lanai_pci_tbl[] = {
2613
{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
2614
{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
2615
{ 0, } /* terminal entry */
2616
};
2617
MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2618
2619
static struct pci_driver lanai_driver = {
2620
.name = DEV_LABEL,
2621
.id_table = lanai_pci_tbl,
2622
.probe = lanai_init_one,
2623
};
2624
2625
static int __init lanai_module_init(void)
2626
{
2627
int x;
2628
2629
x = pci_register_driver(&lanai_driver);
2630
if (x != 0)
2631
printk(KERN_ERR DEV_LABEL ": no adapter found\n");
2632
return x;
2633
}
2634
2635
static void __exit lanai_module_exit(void)
2636
{
2637
/* We'll only get called when all the interfaces are already
2638
* gone, so there isn't much to do
2639
*/
2640
DPRINTK("cleanup_module()\n");
2641
pci_unregister_driver(&lanai_driver);
2642
}
2643
2644
module_init(lanai_module_init);
2645
module_exit(lanai_module_exit);
2646
2647
MODULE_AUTHOR("Mitchell Blank Jr <[email protected]>");
2648
MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2649
MODULE_LICENSE("GPL");
2650
2651