Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/block/cciss.c
15111 views
1
/*
2
* Disk Array driver for HP Smart Array controllers.
3
* (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4
*
5
* This program is free software; you can redistribute it and/or modify
6
* it under the terms of the GNU General Public License as published by
7
* the Free Software Foundation; version 2 of the License.
8
*
9
* This program is distributed in the hope that it will be useful,
10
* but WITHOUT ANY WARRANTY; without even the implied warranty of
11
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12
* General Public License for more details.
13
*
14
* You should have received a copy of the GNU General Public License
15
* along with this program; if not, write to the Free Software
16
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17
* 02111-1307, USA.
18
*
19
* Questions/Comments/Bugfixes to [email protected]
20
*
21
*/
22
23
#include <linux/module.h>
24
#include <linux/interrupt.h>
25
#include <linux/types.h>
26
#include <linux/pci.h>
27
#include <linux/kernel.h>
28
#include <linux/slab.h>
29
#include <linux/delay.h>
30
#include <linux/major.h>
31
#include <linux/fs.h>
32
#include <linux/bio.h>
33
#include <linux/blkpg.h>
34
#include <linux/timer.h>
35
#include <linux/proc_fs.h>
36
#include <linux/seq_file.h>
37
#include <linux/init.h>
38
#include <linux/jiffies.h>
39
#include <linux/hdreg.h>
40
#include <linux/spinlock.h>
41
#include <linux/compat.h>
42
#include <linux/mutex.h>
43
#include <asm/uaccess.h>
44
#include <asm/io.h>
45
46
#include <linux/dma-mapping.h>
47
#include <linux/blkdev.h>
48
#include <linux/genhd.h>
49
#include <linux/completion.h>
50
#include <scsi/scsi.h>
51
#include <scsi/sg.h>
52
#include <scsi/scsi_ioctl.h>
53
#include <linux/cdrom.h>
54
#include <linux/scatterlist.h>
55
#include <linux/kthread.h>
56
57
#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
58
#define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
59
#define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
60
61
/* Embedded module documentation macros - see modules.h */
62
MODULE_AUTHOR("Hewlett-Packard Company");
63
MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
64
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
65
MODULE_VERSION("3.6.26");
66
MODULE_LICENSE("GPL");
67
static int cciss_tape_cmds = 6;
68
module_param(cciss_tape_cmds, int, 0644);
69
MODULE_PARM_DESC(cciss_tape_cmds,
70
"number of commands to allocate for tape devices (default: 6)");
71
72
static DEFINE_MUTEX(cciss_mutex);
73
static struct proc_dir_entry *proc_cciss;
74
75
#include "cciss_cmd.h"
76
#include "cciss.h"
77
#include <linux/cciss_ioctl.h>
78
79
/* define the PCI info for the cards we can control */
80
static const struct pci_device_id cciss_pci_device_id[] = {
81
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
82
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
83
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
84
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
85
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
86
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
87
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
88
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
89
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
90
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
91
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
92
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
93
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
94
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
95
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
96
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
97
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
98
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
99
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
100
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
101
{0,}
102
};
103
104
MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
105
106
/* board_id = Subsystem Device ID & Vendor ID
107
* product = Marketing Name for the board
108
* access = Address of the struct of function pointers
109
*/
110
static struct board_type products[] = {
111
{0x40700E11, "Smart Array 5300", &SA5_access},
112
{0x40800E11, "Smart Array 5i", &SA5B_access},
113
{0x40820E11, "Smart Array 532", &SA5B_access},
114
{0x40830E11, "Smart Array 5312", &SA5B_access},
115
{0x409A0E11, "Smart Array 641", &SA5_access},
116
{0x409B0E11, "Smart Array 642", &SA5_access},
117
{0x409C0E11, "Smart Array 6400", &SA5_access},
118
{0x409D0E11, "Smart Array 6400 EM", &SA5_access},
119
{0x40910E11, "Smart Array 6i", &SA5_access},
120
{0x3225103C, "Smart Array P600", &SA5_access},
121
{0x3223103C, "Smart Array P800", &SA5_access},
122
{0x3234103C, "Smart Array P400", &SA5_access},
123
{0x3235103C, "Smart Array P400i", &SA5_access},
124
{0x3211103C, "Smart Array E200i", &SA5_access},
125
{0x3212103C, "Smart Array E200", &SA5_access},
126
{0x3213103C, "Smart Array E200i", &SA5_access},
127
{0x3214103C, "Smart Array E200i", &SA5_access},
128
{0x3215103C, "Smart Array E200i", &SA5_access},
129
{0x3237103C, "Smart Array E500", &SA5_access},
130
{0x3223103C, "Smart Array P800", &SA5_access},
131
{0x3234103C, "Smart Array P400", &SA5_access},
132
{0x323D103C, "Smart Array P700m", &SA5_access},
133
};
134
135
/* How long to wait (in milliseconds) for board to go into simple mode */
136
#define MAX_CONFIG_WAIT 30000
137
#define MAX_IOCTL_CONFIG_WAIT 1000
138
139
/*define how many times we will try a command because of bus resets */
140
#define MAX_CMD_RETRIES 3
141
142
#define MAX_CTLR 32
143
144
/* Originally cciss driver only supports 8 major numbers */
145
#define MAX_CTLR_ORIG 8
146
147
static ctlr_info_t *hba[MAX_CTLR];
148
149
static struct task_struct *cciss_scan_thread;
150
static DEFINE_MUTEX(scan_mutex);
151
static LIST_HEAD(scan_q);
152
153
static void do_cciss_request(struct request_queue *q);
154
static irqreturn_t do_cciss_intx(int irq, void *dev_id);
155
static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
156
static int cciss_open(struct block_device *bdev, fmode_t mode);
157
static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
158
static int cciss_release(struct gendisk *disk, fmode_t mode);
159
static int do_ioctl(struct block_device *bdev, fmode_t mode,
160
unsigned int cmd, unsigned long arg);
161
static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
162
unsigned int cmd, unsigned long arg);
163
static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
164
165
static int cciss_revalidate(struct gendisk *disk);
166
static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
167
static int deregister_disk(ctlr_info_t *h, int drv_index,
168
int clear_all, int via_ioctl);
169
170
static void cciss_read_capacity(ctlr_info_t *h, int logvol,
171
sector_t *total_size, unsigned int *block_size);
172
static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
173
sector_t *total_size, unsigned int *block_size);
174
static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
175
sector_t total_size,
176
unsigned int block_size, InquiryData_struct *inq_buff,
177
drive_info_struct *drv);
178
static void __devinit cciss_interrupt_mode(ctlr_info_t *);
179
static void start_io(ctlr_info_t *h);
180
static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
181
__u8 page_code, unsigned char scsi3addr[],
182
int cmd_type);
183
static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
184
int attempt_retry);
185
static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
186
187
static int add_to_scan_list(struct ctlr_info *h);
188
static int scan_thread(void *data);
189
static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
190
static void cciss_hba_release(struct device *dev);
191
static void cciss_device_release(struct device *dev);
192
static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
193
static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
194
static inline u32 next_command(ctlr_info_t *h);
195
static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
196
void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
197
u64 *cfg_offset);
198
static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
199
unsigned long *memory_bar);
200
static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
201
static __devinit int write_driver_ver_to_cfgtable(
202
CfgTable_struct __iomem *cfgtable);
203
204
/* performant mode helper functions */
205
static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
206
int *bucket_map);
207
static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
208
209
#ifdef CONFIG_PROC_FS
210
static void cciss_procinit(ctlr_info_t *h);
211
#else
212
static void cciss_procinit(ctlr_info_t *h)
213
{
214
}
215
#endif /* CONFIG_PROC_FS */
216
217
#ifdef CONFIG_COMPAT
218
static int cciss_compat_ioctl(struct block_device *, fmode_t,
219
unsigned, unsigned long);
220
#endif
221
222
static const struct block_device_operations cciss_fops = {
223
.owner = THIS_MODULE,
224
.open = cciss_unlocked_open,
225
.release = cciss_release,
226
.ioctl = do_ioctl,
227
.getgeo = cciss_getgeo,
228
#ifdef CONFIG_COMPAT
229
.compat_ioctl = cciss_compat_ioctl,
230
#endif
231
.revalidate_disk = cciss_revalidate,
232
};
233
234
/* set_performant_mode: Modify the tag for cciss performant
235
* set bit 0 for pull model, bits 3-1 for block fetch
236
* register number
237
*/
238
static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
239
{
240
if (likely(h->transMethod & CFGTBL_Trans_Performant))
241
c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
242
}
243
244
/*
245
* Enqueuing and dequeuing functions for cmdlists.
246
*/
247
static inline void addQ(struct list_head *list, CommandList_struct *c)
248
{
249
list_add_tail(&c->list, list);
250
}
251
252
static inline void removeQ(CommandList_struct *c)
253
{
254
/*
255
* After kexec/dump some commands might still
256
* be in flight, which the firmware will try
257
* to complete. Resetting the firmware doesn't work
258
* with old fw revisions, so we have to mark
259
* them off as 'stale' to prevent the driver from
260
* falling over.
261
*/
262
if (WARN_ON(list_empty(&c->list))) {
263
c->cmd_type = CMD_MSG_STALE;
264
return;
265
}
266
267
list_del_init(&c->list);
268
}
269
270
static void enqueue_cmd_and_start_io(ctlr_info_t *h,
271
CommandList_struct *c)
272
{
273
unsigned long flags;
274
set_performant_mode(h, c);
275
spin_lock_irqsave(&h->lock, flags);
276
addQ(&h->reqQ, c);
277
h->Qdepth++;
278
if (h->Qdepth > h->maxQsinceinit)
279
h->maxQsinceinit = h->Qdepth;
280
start_io(h);
281
spin_unlock_irqrestore(&h->lock, flags);
282
}
283
284
static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
285
int nr_cmds)
286
{
287
int i;
288
289
if (!cmd_sg_list)
290
return;
291
for (i = 0; i < nr_cmds; i++) {
292
kfree(cmd_sg_list[i]);
293
cmd_sg_list[i] = NULL;
294
}
295
kfree(cmd_sg_list);
296
}
297
298
static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
299
ctlr_info_t *h, int chainsize, int nr_cmds)
300
{
301
int j;
302
SGDescriptor_struct **cmd_sg_list;
303
304
if (chainsize <= 0)
305
return NULL;
306
307
cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
308
if (!cmd_sg_list)
309
return NULL;
310
311
/* Build up chain blocks for each command */
312
for (j = 0; j < nr_cmds; j++) {
313
/* Need a block of chainsized s/g elements. */
314
cmd_sg_list[j] = kmalloc((chainsize *
315
sizeof(*cmd_sg_list[j])), GFP_KERNEL);
316
if (!cmd_sg_list[j]) {
317
dev_err(&h->pdev->dev, "Cannot get memory "
318
"for s/g chains.\n");
319
goto clean;
320
}
321
}
322
return cmd_sg_list;
323
clean:
324
cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
325
return NULL;
326
}
327
328
static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
329
{
330
SGDescriptor_struct *chain_sg;
331
u64bit temp64;
332
333
if (c->Header.SGTotal <= h->max_cmd_sgentries)
334
return;
335
336
chain_sg = &c->SG[h->max_cmd_sgentries - 1];
337
temp64.val32.lower = chain_sg->Addr.lower;
338
temp64.val32.upper = chain_sg->Addr.upper;
339
pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
340
}
341
342
static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
343
SGDescriptor_struct *chain_block, int len)
344
{
345
SGDescriptor_struct *chain_sg;
346
u64bit temp64;
347
348
chain_sg = &c->SG[h->max_cmd_sgentries - 1];
349
chain_sg->Ext = CCISS_SG_CHAIN;
350
chain_sg->Len = len;
351
temp64.val = pci_map_single(h->pdev, chain_block, len,
352
PCI_DMA_TODEVICE);
353
chain_sg->Addr.lower = temp64.val32.lower;
354
chain_sg->Addr.upper = temp64.val32.upper;
355
}
356
357
#include "cciss_scsi.c" /* For SCSI tape support */
358
359
static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
360
"UNKNOWN"
361
};
362
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
363
364
#ifdef CONFIG_PROC_FS
365
366
/*
367
* Report information about this controller.
368
*/
369
#define ENG_GIG 1000000000
370
#define ENG_GIG_FACTOR (ENG_GIG/512)
371
#define ENGAGE_SCSI "engage scsi"
372
373
static void cciss_seq_show_header(struct seq_file *seq)
374
{
375
ctlr_info_t *h = seq->private;
376
377
seq_printf(seq, "%s: HP %s Controller\n"
378
"Board ID: 0x%08lx\n"
379
"Firmware Version: %c%c%c%c\n"
380
"IRQ: %d\n"
381
"Logical drives: %d\n"
382
"Current Q depth: %d\n"
383
"Current # commands on controller: %d\n"
384
"Max Q depth since init: %d\n"
385
"Max # commands on controller since init: %d\n"
386
"Max SG entries since init: %d\n",
387
h->devname,
388
h->product_name,
389
(unsigned long)h->board_id,
390
h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
391
h->firm_ver[3], (unsigned int)h->intr[PERF_MODE_INT],
392
h->num_luns,
393
h->Qdepth, h->commands_outstanding,
394
h->maxQsinceinit, h->max_outstanding, h->maxSG);
395
396
#ifdef CONFIG_CISS_SCSI_TAPE
397
cciss_seq_tape_report(seq, h);
398
#endif /* CONFIG_CISS_SCSI_TAPE */
399
}
400
401
static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
402
{
403
ctlr_info_t *h = seq->private;
404
unsigned long flags;
405
406
/* prevent displaying bogus info during configuration
407
* or deconfiguration of a logical volume
408
*/
409
spin_lock_irqsave(&h->lock, flags);
410
if (h->busy_configuring) {
411
spin_unlock_irqrestore(&h->lock, flags);
412
return ERR_PTR(-EBUSY);
413
}
414
h->busy_configuring = 1;
415
spin_unlock_irqrestore(&h->lock, flags);
416
417
if (*pos == 0)
418
cciss_seq_show_header(seq);
419
420
return pos;
421
}
422
423
static int cciss_seq_show(struct seq_file *seq, void *v)
424
{
425
sector_t vol_sz, vol_sz_frac;
426
ctlr_info_t *h = seq->private;
427
unsigned ctlr = h->ctlr;
428
loff_t *pos = v;
429
drive_info_struct *drv = h->drv[*pos];
430
431
if (*pos > h->highest_lun)
432
return 0;
433
434
if (drv == NULL) /* it's possible for h->drv[] to have holes. */
435
return 0;
436
437
if (drv->heads == 0)
438
return 0;
439
440
vol_sz = drv->nr_blocks;
441
vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
442
vol_sz_frac *= 100;
443
sector_div(vol_sz_frac, ENG_GIG_FACTOR);
444
445
if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
446
drv->raid_level = RAID_UNKNOWN;
447
seq_printf(seq, "cciss/c%dd%d:"
448
"\t%4u.%02uGB\tRAID %s\n",
449
ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
450
raid_label[drv->raid_level]);
451
return 0;
452
}
453
454
static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
455
{
456
ctlr_info_t *h = seq->private;
457
458
if (*pos > h->highest_lun)
459
return NULL;
460
*pos += 1;
461
462
return pos;
463
}
464
465
static void cciss_seq_stop(struct seq_file *seq, void *v)
466
{
467
ctlr_info_t *h = seq->private;
468
469
/* Only reset h->busy_configuring if we succeeded in setting
470
* it during cciss_seq_start. */
471
if (v == ERR_PTR(-EBUSY))
472
return;
473
474
h->busy_configuring = 0;
475
}
476
477
static const struct seq_operations cciss_seq_ops = {
478
.start = cciss_seq_start,
479
.show = cciss_seq_show,
480
.next = cciss_seq_next,
481
.stop = cciss_seq_stop,
482
};
483
484
static int cciss_seq_open(struct inode *inode, struct file *file)
485
{
486
int ret = seq_open(file, &cciss_seq_ops);
487
struct seq_file *seq = file->private_data;
488
489
if (!ret)
490
seq->private = PDE(inode)->data;
491
492
return ret;
493
}
494
495
static ssize_t
496
cciss_proc_write(struct file *file, const char __user *buf,
497
size_t length, loff_t *ppos)
498
{
499
int err;
500
char *buffer;
501
502
#ifndef CONFIG_CISS_SCSI_TAPE
503
return -EINVAL;
504
#endif
505
506
if (!buf || length > PAGE_SIZE - 1)
507
return -EINVAL;
508
509
buffer = (char *)__get_free_page(GFP_KERNEL);
510
if (!buffer)
511
return -ENOMEM;
512
513
err = -EFAULT;
514
if (copy_from_user(buffer, buf, length))
515
goto out;
516
buffer[length] = '\0';
517
518
#ifdef CONFIG_CISS_SCSI_TAPE
519
if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
520
struct seq_file *seq = file->private_data;
521
ctlr_info_t *h = seq->private;
522
523
err = cciss_engage_scsi(h);
524
if (err == 0)
525
err = length;
526
} else
527
#endif /* CONFIG_CISS_SCSI_TAPE */
528
err = -EINVAL;
529
/* might be nice to have "disengage" too, but it's not
530
safely possible. (only 1 module use count, lock issues.) */
531
532
out:
533
free_page((unsigned long)buffer);
534
return err;
535
}
536
537
static const struct file_operations cciss_proc_fops = {
538
.owner = THIS_MODULE,
539
.open = cciss_seq_open,
540
.read = seq_read,
541
.llseek = seq_lseek,
542
.release = seq_release,
543
.write = cciss_proc_write,
544
};
545
546
static void __devinit cciss_procinit(ctlr_info_t *h)
547
{
548
struct proc_dir_entry *pde;
549
550
if (proc_cciss == NULL)
551
proc_cciss = proc_mkdir("driver/cciss", NULL);
552
if (!proc_cciss)
553
return;
554
pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
555
S_IROTH, proc_cciss,
556
&cciss_proc_fops, h);
557
}
558
#endif /* CONFIG_PROC_FS */
559
560
#define MAX_PRODUCT_NAME_LEN 19
561
562
#define to_hba(n) container_of(n, struct ctlr_info, dev)
563
#define to_drv(n) container_of(n, drive_info_struct, dev)
564
565
/* List of controllers which cannot be hard reset on kexec with reset_devices */
566
static u32 unresettable_controller[] = {
567
0x324a103C, /* Smart Array P712m */
568
0x324b103C, /* SmartArray P711m */
569
0x3223103C, /* Smart Array P800 */
570
0x3234103C, /* Smart Array P400 */
571
0x3235103C, /* Smart Array P400i */
572
0x3211103C, /* Smart Array E200i */
573
0x3212103C, /* Smart Array E200 */
574
0x3213103C, /* Smart Array E200i */
575
0x3214103C, /* Smart Array E200i */
576
0x3215103C, /* Smart Array E200i */
577
0x3237103C, /* Smart Array E500 */
578
0x323D103C, /* Smart Array P700m */
579
0x409C0E11, /* Smart Array 6400 */
580
0x409D0E11, /* Smart Array 6400 EM */
581
};
582
583
/* List of controllers which cannot even be soft reset */
584
static u32 soft_unresettable_controller[] = {
585
0x409C0E11, /* Smart Array 6400 */
586
0x409D0E11, /* Smart Array 6400 EM */
587
};
588
589
static int ctlr_is_hard_resettable(u32 board_id)
590
{
591
int i;
592
593
for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
594
if (unresettable_controller[i] == board_id)
595
return 0;
596
return 1;
597
}
598
599
static int ctlr_is_soft_resettable(u32 board_id)
600
{
601
int i;
602
603
for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
604
if (soft_unresettable_controller[i] == board_id)
605
return 0;
606
return 1;
607
}
608
609
static int ctlr_is_resettable(u32 board_id)
610
{
611
return ctlr_is_hard_resettable(board_id) ||
612
ctlr_is_soft_resettable(board_id);
613
}
614
615
static ssize_t host_show_resettable(struct device *dev,
616
struct device_attribute *attr,
617
char *buf)
618
{
619
struct ctlr_info *h = to_hba(dev);
620
621
return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
622
}
623
static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
624
625
static ssize_t host_store_rescan(struct device *dev,
626
struct device_attribute *attr,
627
const char *buf, size_t count)
628
{
629
struct ctlr_info *h = to_hba(dev);
630
631
add_to_scan_list(h);
632
wake_up_process(cciss_scan_thread);
633
wait_for_completion_interruptible(&h->scan_wait);
634
635
return count;
636
}
637
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
638
639
static ssize_t dev_show_unique_id(struct device *dev,
640
struct device_attribute *attr,
641
char *buf)
642
{
643
drive_info_struct *drv = to_drv(dev);
644
struct ctlr_info *h = to_hba(drv->dev.parent);
645
__u8 sn[16];
646
unsigned long flags;
647
int ret = 0;
648
649
spin_lock_irqsave(&h->lock, flags);
650
if (h->busy_configuring)
651
ret = -EBUSY;
652
else
653
memcpy(sn, drv->serial_no, sizeof(sn));
654
spin_unlock_irqrestore(&h->lock, flags);
655
656
if (ret)
657
return ret;
658
else
659
return snprintf(buf, 16 * 2 + 2,
660
"%02X%02X%02X%02X%02X%02X%02X%02X"
661
"%02X%02X%02X%02X%02X%02X%02X%02X\n",
662
sn[0], sn[1], sn[2], sn[3],
663
sn[4], sn[5], sn[6], sn[7],
664
sn[8], sn[9], sn[10], sn[11],
665
sn[12], sn[13], sn[14], sn[15]);
666
}
667
static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
668
669
static ssize_t dev_show_vendor(struct device *dev,
670
struct device_attribute *attr,
671
char *buf)
672
{
673
drive_info_struct *drv = to_drv(dev);
674
struct ctlr_info *h = to_hba(drv->dev.parent);
675
char vendor[VENDOR_LEN + 1];
676
unsigned long flags;
677
int ret = 0;
678
679
spin_lock_irqsave(&h->lock, flags);
680
if (h->busy_configuring)
681
ret = -EBUSY;
682
else
683
memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
684
spin_unlock_irqrestore(&h->lock, flags);
685
686
if (ret)
687
return ret;
688
else
689
return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
690
}
691
static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
692
693
static ssize_t dev_show_model(struct device *dev,
694
struct device_attribute *attr,
695
char *buf)
696
{
697
drive_info_struct *drv = to_drv(dev);
698
struct ctlr_info *h = to_hba(drv->dev.parent);
699
char model[MODEL_LEN + 1];
700
unsigned long flags;
701
int ret = 0;
702
703
spin_lock_irqsave(&h->lock, flags);
704
if (h->busy_configuring)
705
ret = -EBUSY;
706
else
707
memcpy(model, drv->model, MODEL_LEN + 1);
708
spin_unlock_irqrestore(&h->lock, flags);
709
710
if (ret)
711
return ret;
712
else
713
return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
714
}
715
static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
716
717
static ssize_t dev_show_rev(struct device *dev,
718
struct device_attribute *attr,
719
char *buf)
720
{
721
drive_info_struct *drv = to_drv(dev);
722
struct ctlr_info *h = to_hba(drv->dev.parent);
723
char rev[REV_LEN + 1];
724
unsigned long flags;
725
int ret = 0;
726
727
spin_lock_irqsave(&h->lock, flags);
728
if (h->busy_configuring)
729
ret = -EBUSY;
730
else
731
memcpy(rev, drv->rev, REV_LEN + 1);
732
spin_unlock_irqrestore(&h->lock, flags);
733
734
if (ret)
735
return ret;
736
else
737
return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
738
}
739
static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
740
741
static ssize_t cciss_show_lunid(struct device *dev,
742
struct device_attribute *attr, char *buf)
743
{
744
drive_info_struct *drv = to_drv(dev);
745
struct ctlr_info *h = to_hba(drv->dev.parent);
746
unsigned long flags;
747
unsigned char lunid[8];
748
749
spin_lock_irqsave(&h->lock, flags);
750
if (h->busy_configuring) {
751
spin_unlock_irqrestore(&h->lock, flags);
752
return -EBUSY;
753
}
754
if (!drv->heads) {
755
spin_unlock_irqrestore(&h->lock, flags);
756
return -ENOTTY;
757
}
758
memcpy(lunid, drv->LunID, sizeof(lunid));
759
spin_unlock_irqrestore(&h->lock, flags);
760
return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
761
lunid[0], lunid[1], lunid[2], lunid[3],
762
lunid[4], lunid[5], lunid[6], lunid[7]);
763
}
764
static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
765
766
static ssize_t cciss_show_raid_level(struct device *dev,
767
struct device_attribute *attr, char *buf)
768
{
769
drive_info_struct *drv = to_drv(dev);
770
struct ctlr_info *h = to_hba(drv->dev.parent);
771
int raid;
772
unsigned long flags;
773
774
spin_lock_irqsave(&h->lock, flags);
775
if (h->busy_configuring) {
776
spin_unlock_irqrestore(&h->lock, flags);
777
return -EBUSY;
778
}
779
raid = drv->raid_level;
780
spin_unlock_irqrestore(&h->lock, flags);
781
if (raid < 0 || raid > RAID_UNKNOWN)
782
raid = RAID_UNKNOWN;
783
784
return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
785
raid_label[raid]);
786
}
787
static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
788
789
static ssize_t cciss_show_usage_count(struct device *dev,
790
struct device_attribute *attr, char *buf)
791
{
792
drive_info_struct *drv = to_drv(dev);
793
struct ctlr_info *h = to_hba(drv->dev.parent);
794
unsigned long flags;
795
int count;
796
797
spin_lock_irqsave(&h->lock, flags);
798
if (h->busy_configuring) {
799
spin_unlock_irqrestore(&h->lock, flags);
800
return -EBUSY;
801
}
802
count = drv->usage_count;
803
spin_unlock_irqrestore(&h->lock, flags);
804
return snprintf(buf, 20, "%d\n", count);
805
}
806
static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
807
808
static struct attribute *cciss_host_attrs[] = {
809
&dev_attr_rescan.attr,
810
&dev_attr_resettable.attr,
811
NULL
812
};
813
814
static struct attribute_group cciss_host_attr_group = {
815
.attrs = cciss_host_attrs,
816
};
817
818
static const struct attribute_group *cciss_host_attr_groups[] = {
819
&cciss_host_attr_group,
820
NULL
821
};
822
823
static struct device_type cciss_host_type = {
824
.name = "cciss_host",
825
.groups = cciss_host_attr_groups,
826
.release = cciss_hba_release,
827
};
828
829
static struct attribute *cciss_dev_attrs[] = {
830
&dev_attr_unique_id.attr,
831
&dev_attr_model.attr,
832
&dev_attr_vendor.attr,
833
&dev_attr_rev.attr,
834
&dev_attr_lunid.attr,
835
&dev_attr_raid_level.attr,
836
&dev_attr_usage_count.attr,
837
NULL
838
};
839
840
static struct attribute_group cciss_dev_attr_group = {
841
.attrs = cciss_dev_attrs,
842
};
843
844
static const struct attribute_group *cciss_dev_attr_groups[] = {
845
&cciss_dev_attr_group,
846
NULL
847
};
848
849
static struct device_type cciss_dev_type = {
850
.name = "cciss_device",
851
.groups = cciss_dev_attr_groups,
852
.release = cciss_device_release,
853
};
854
855
static struct bus_type cciss_bus_type = {
856
.name = "cciss",
857
};
858
859
/*
860
* cciss_hba_release is called when the reference count
861
* of h->dev goes to zero.
862
*/
863
static void cciss_hba_release(struct device *dev)
864
{
865
/*
866
* nothing to do, but need this to avoid a warning
867
* about not having a release handler from lib/kref.c.
868
*/
869
}
870
871
/*
872
* Initialize sysfs entry for each controller. This sets up and registers
873
* the 'cciss#' directory for each individual controller under
874
* /sys/bus/pci/devices/<dev>/.
875
*/
876
static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
877
{
878
device_initialize(&h->dev);
879
h->dev.type = &cciss_host_type;
880
h->dev.bus = &cciss_bus_type;
881
dev_set_name(&h->dev, "%s", h->devname);
882
h->dev.parent = &h->pdev->dev;
883
884
return device_add(&h->dev);
885
}
886
887
/*
888
* Remove sysfs entries for an hba.
889
*/
890
static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
891
{
892
device_del(&h->dev);
893
put_device(&h->dev); /* final put. */
894
}
895
896
/* cciss_device_release is called when the reference count
897
* of h->drv[x]dev goes to zero.
898
*/
899
static void cciss_device_release(struct device *dev)
900
{
901
drive_info_struct *drv = to_drv(dev);
902
kfree(drv);
903
}
904
905
/*
906
* Initialize sysfs for each logical drive. This sets up and registers
907
* the 'c#d#' directory for each individual logical drive under
908
* /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
909
* /sys/block/cciss!c#d# to this entry.
910
*/
911
static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
912
int drv_index)
913
{
914
struct device *dev;
915
916
if (h->drv[drv_index]->device_initialized)
917
return 0;
918
919
dev = &h->drv[drv_index]->dev;
920
device_initialize(dev);
921
dev->type = &cciss_dev_type;
922
dev->bus = &cciss_bus_type;
923
dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
924
dev->parent = &h->dev;
925
h->drv[drv_index]->device_initialized = 1;
926
return device_add(dev);
927
}
928
929
/*
930
* Remove sysfs entries for a logical drive.
931
*/
932
static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
933
int ctlr_exiting)
934
{
935
struct device *dev = &h->drv[drv_index]->dev;
936
937
/* special case for c*d0, we only destroy it on controller exit */
938
if (drv_index == 0 && !ctlr_exiting)
939
return;
940
941
device_del(dev);
942
put_device(dev); /* the "final" put. */
943
h->drv[drv_index] = NULL;
944
}
945
946
/*
947
* For operations that cannot sleep, a command block is allocated at init,
948
* and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
949
* which ones are free or in use.
950
*/
951
static CommandList_struct *cmd_alloc(ctlr_info_t *h)
952
{
953
CommandList_struct *c;
954
int i;
955
u64bit temp64;
956
dma_addr_t cmd_dma_handle, err_dma_handle;
957
958
do {
959
i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
960
if (i == h->nr_cmds)
961
return NULL;
962
} while (test_and_set_bit(i & (BITS_PER_LONG - 1),
963
h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
964
c = h->cmd_pool + i;
965
memset(c, 0, sizeof(CommandList_struct));
966
cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
967
c->err_info = h->errinfo_pool + i;
968
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
969
err_dma_handle = h->errinfo_pool_dhandle
970
+ i * sizeof(ErrorInfo_struct);
971
h->nr_allocs++;
972
973
c->cmdindex = i;
974
975
INIT_LIST_HEAD(&c->list);
976
c->busaddr = (__u32) cmd_dma_handle;
977
temp64.val = (__u64) err_dma_handle;
978
c->ErrDesc.Addr.lower = temp64.val32.lower;
979
c->ErrDesc.Addr.upper = temp64.val32.upper;
980
c->ErrDesc.Len = sizeof(ErrorInfo_struct);
981
982
c->ctlr = h->ctlr;
983
return c;
984
}
985
986
/* allocate a command using pci_alloc_consistent, used for ioctls,
987
* etc., not for the main i/o path.
988
*/
989
static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
990
{
991
CommandList_struct *c;
992
u64bit temp64;
993
dma_addr_t cmd_dma_handle, err_dma_handle;
994
995
c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
996
sizeof(CommandList_struct), &cmd_dma_handle);
997
if (c == NULL)
998
return NULL;
999
memset(c, 0, sizeof(CommandList_struct));
1000
1001
c->cmdindex = -1;
1002
1003
c->err_info = (ErrorInfo_struct *)
1004
pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1005
&err_dma_handle);
1006
1007
if (c->err_info == NULL) {
1008
pci_free_consistent(h->pdev,
1009
sizeof(CommandList_struct), c, cmd_dma_handle);
1010
return NULL;
1011
}
1012
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1013
1014
INIT_LIST_HEAD(&c->list);
1015
c->busaddr = (__u32) cmd_dma_handle;
1016
temp64.val = (__u64) err_dma_handle;
1017
c->ErrDesc.Addr.lower = temp64.val32.lower;
1018
c->ErrDesc.Addr.upper = temp64.val32.upper;
1019
c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1020
1021
c->ctlr = h->ctlr;
1022
return c;
1023
}
1024
1025
static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1026
{
1027
int i;
1028
1029
i = c - h->cmd_pool;
1030
clear_bit(i & (BITS_PER_LONG - 1),
1031
h->cmd_pool_bits + (i / BITS_PER_LONG));
1032
h->nr_frees++;
1033
}
1034
1035
static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1036
{
1037
u64bit temp64;
1038
1039
temp64.val32.lower = c->ErrDesc.Addr.lower;
1040
temp64.val32.upper = c->ErrDesc.Addr.upper;
1041
pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1042
c->err_info, (dma_addr_t) temp64.val);
1043
pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1044
(dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1045
}
1046
1047
static inline ctlr_info_t *get_host(struct gendisk *disk)
1048
{
1049
return disk->queue->queuedata;
1050
}
1051
1052
static inline drive_info_struct *get_drv(struct gendisk *disk)
1053
{
1054
return disk->private_data;
1055
}
1056
1057
/*
1058
* Open. Make sure the device is really there.
1059
*/
1060
static int cciss_open(struct block_device *bdev, fmode_t mode)
1061
{
1062
ctlr_info_t *h = get_host(bdev->bd_disk);
1063
drive_info_struct *drv = get_drv(bdev->bd_disk);
1064
1065
dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1066
if (drv->busy_configuring)
1067
return -EBUSY;
1068
/*
1069
* Root is allowed to open raw volume zero even if it's not configured
1070
* so array config can still work. Root is also allowed to open any
1071
* volume that has a LUN ID, so it can issue IOCTL to reread the
1072
* disk information. I don't think I really like this
1073
* but I'm already using way to many device nodes to claim another one
1074
* for "raw controller".
1075
*/
1076
if (drv->heads == 0) {
1077
if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1078
/* if not node 0 make sure it is a partition = 0 */
1079
if (MINOR(bdev->bd_dev) & 0x0f) {
1080
return -ENXIO;
1081
/* if it is, make sure we have a LUN ID */
1082
} else if (memcmp(drv->LunID, CTLR_LUNID,
1083
sizeof(drv->LunID))) {
1084
return -ENXIO;
1085
}
1086
}
1087
if (!capable(CAP_SYS_ADMIN))
1088
return -EPERM;
1089
}
1090
drv->usage_count++;
1091
h->usage_count++;
1092
return 0;
1093
}
1094
1095
static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1096
{
1097
int ret;
1098
1099
mutex_lock(&cciss_mutex);
1100
ret = cciss_open(bdev, mode);
1101
mutex_unlock(&cciss_mutex);
1102
1103
return ret;
1104
}
1105
1106
/*
1107
* Close. Sync first.
1108
*/
1109
static int cciss_release(struct gendisk *disk, fmode_t mode)
1110
{
1111
ctlr_info_t *h;
1112
drive_info_struct *drv;
1113
1114
mutex_lock(&cciss_mutex);
1115
h = get_host(disk);
1116
drv = get_drv(disk);
1117
dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1118
drv->usage_count--;
1119
h->usage_count--;
1120
mutex_unlock(&cciss_mutex);
1121
return 0;
1122
}
1123
1124
static int do_ioctl(struct block_device *bdev, fmode_t mode,
1125
unsigned cmd, unsigned long arg)
1126
{
1127
int ret;
1128
mutex_lock(&cciss_mutex);
1129
ret = cciss_ioctl(bdev, mode, cmd, arg);
1130
mutex_unlock(&cciss_mutex);
1131
return ret;
1132
}
1133
1134
#ifdef CONFIG_COMPAT
1135
1136
static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1137
unsigned cmd, unsigned long arg);
1138
static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1139
unsigned cmd, unsigned long arg);
1140
1141
static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1142
unsigned cmd, unsigned long arg)
1143
{
1144
switch (cmd) {
1145
case CCISS_GETPCIINFO:
1146
case CCISS_GETINTINFO:
1147
case CCISS_SETINTINFO:
1148
case CCISS_GETNODENAME:
1149
case CCISS_SETNODENAME:
1150
case CCISS_GETHEARTBEAT:
1151
case CCISS_GETBUSTYPES:
1152
case CCISS_GETFIRMVER:
1153
case CCISS_GETDRIVVER:
1154
case CCISS_REVALIDVOLS:
1155
case CCISS_DEREGDISK:
1156
case CCISS_REGNEWDISK:
1157
case CCISS_REGNEWD:
1158
case CCISS_RESCANDISK:
1159
case CCISS_GETLUNINFO:
1160
return do_ioctl(bdev, mode, cmd, arg);
1161
1162
case CCISS_PASSTHRU32:
1163
return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1164
case CCISS_BIG_PASSTHRU32:
1165
return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1166
1167
default:
1168
return -ENOIOCTLCMD;
1169
}
1170
}
1171
1172
static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1173
unsigned cmd, unsigned long arg)
1174
{
1175
IOCTL32_Command_struct __user *arg32 =
1176
(IOCTL32_Command_struct __user *) arg;
1177
IOCTL_Command_struct arg64;
1178
IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1179
int err;
1180
u32 cp;
1181
1182
err = 0;
1183
err |=
1184
copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1185
sizeof(arg64.LUN_info));
1186
err |=
1187
copy_from_user(&arg64.Request, &arg32->Request,
1188
sizeof(arg64.Request));
1189
err |=
1190
copy_from_user(&arg64.error_info, &arg32->error_info,
1191
sizeof(arg64.error_info));
1192
err |= get_user(arg64.buf_size, &arg32->buf_size);
1193
err |= get_user(cp, &arg32->buf);
1194
arg64.buf = compat_ptr(cp);
1195
err |= copy_to_user(p, &arg64, sizeof(arg64));
1196
1197
if (err)
1198
return -EFAULT;
1199
1200
err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1201
if (err)
1202
return err;
1203
err |=
1204
copy_in_user(&arg32->error_info, &p->error_info,
1205
sizeof(arg32->error_info));
1206
if (err)
1207
return -EFAULT;
1208
return err;
1209
}
1210
1211
static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1212
unsigned cmd, unsigned long arg)
1213
{
1214
BIG_IOCTL32_Command_struct __user *arg32 =
1215
(BIG_IOCTL32_Command_struct __user *) arg;
1216
BIG_IOCTL_Command_struct arg64;
1217
BIG_IOCTL_Command_struct __user *p =
1218
compat_alloc_user_space(sizeof(arg64));
1219
int err;
1220
u32 cp;
1221
1222
memset(&arg64, 0, sizeof(arg64));
1223
err = 0;
1224
err |=
1225
copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1226
sizeof(arg64.LUN_info));
1227
err |=
1228
copy_from_user(&arg64.Request, &arg32->Request,
1229
sizeof(arg64.Request));
1230
err |=
1231
copy_from_user(&arg64.error_info, &arg32->error_info,
1232
sizeof(arg64.error_info));
1233
err |= get_user(arg64.buf_size, &arg32->buf_size);
1234
err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1235
err |= get_user(cp, &arg32->buf);
1236
arg64.buf = compat_ptr(cp);
1237
err |= copy_to_user(p, &arg64, sizeof(arg64));
1238
1239
if (err)
1240
return -EFAULT;
1241
1242
err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1243
if (err)
1244
return err;
1245
err |=
1246
copy_in_user(&arg32->error_info, &p->error_info,
1247
sizeof(arg32->error_info));
1248
if (err)
1249
return -EFAULT;
1250
return err;
1251
}
1252
#endif
1253
1254
static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1255
{
1256
drive_info_struct *drv = get_drv(bdev->bd_disk);
1257
1258
if (!drv->cylinders)
1259
return -ENXIO;
1260
1261
geo->heads = drv->heads;
1262
geo->sectors = drv->sectors;
1263
geo->cylinders = drv->cylinders;
1264
return 0;
1265
}
1266
1267
static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1268
{
1269
if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1270
c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1271
(void)check_for_unit_attention(h, c);
1272
}
1273
1274
static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1275
{
1276
cciss_pci_info_struct pciinfo;
1277
1278
if (!argp)
1279
return -EINVAL;
1280
pciinfo.domain = pci_domain_nr(h->pdev->bus);
1281
pciinfo.bus = h->pdev->bus->number;
1282
pciinfo.dev_fn = h->pdev->devfn;
1283
pciinfo.board_id = h->board_id;
1284
if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1285
return -EFAULT;
1286
return 0;
1287
}
1288
1289
static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1290
{
1291
cciss_coalint_struct intinfo;
1292
1293
if (!argp)
1294
return -EINVAL;
1295
intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1296
intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1297
if (copy_to_user
1298
(argp, &intinfo, sizeof(cciss_coalint_struct)))
1299
return -EFAULT;
1300
return 0;
1301
}
1302
1303
static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1304
{
1305
cciss_coalint_struct intinfo;
1306
unsigned long flags;
1307
int i;
1308
1309
if (!argp)
1310
return -EINVAL;
1311
if (!capable(CAP_SYS_ADMIN))
1312
return -EPERM;
1313
if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1314
return -EFAULT;
1315
if ((intinfo.delay == 0) && (intinfo.count == 0))
1316
return -EINVAL;
1317
spin_lock_irqsave(&h->lock, flags);
1318
/* Update the field, and then ring the doorbell */
1319
writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1320
writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1321
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1322
1323
for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1324
if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1325
break;
1326
udelay(1000); /* delay and try again */
1327
}
1328
spin_unlock_irqrestore(&h->lock, flags);
1329
if (i >= MAX_IOCTL_CONFIG_WAIT)
1330
return -EAGAIN;
1331
return 0;
1332
}
1333
1334
static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1335
{
1336
NodeName_type NodeName;
1337
int i;
1338
1339
if (!argp)
1340
return -EINVAL;
1341
for (i = 0; i < 16; i++)
1342
NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1343
if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1344
return -EFAULT;
1345
return 0;
1346
}
1347
1348
static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1349
{
1350
NodeName_type NodeName;
1351
unsigned long flags;
1352
int i;
1353
1354
if (!argp)
1355
return -EINVAL;
1356
if (!capable(CAP_SYS_ADMIN))
1357
return -EPERM;
1358
if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1359
return -EFAULT;
1360
spin_lock_irqsave(&h->lock, flags);
1361
/* Update the field, and then ring the doorbell */
1362
for (i = 0; i < 16; i++)
1363
writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1364
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1365
for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1366
if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1367
break;
1368
udelay(1000); /* delay and try again */
1369
}
1370
spin_unlock_irqrestore(&h->lock, flags);
1371
if (i >= MAX_IOCTL_CONFIG_WAIT)
1372
return -EAGAIN;
1373
return 0;
1374
}
1375
1376
static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1377
{
1378
Heartbeat_type heartbeat;
1379
1380
if (!argp)
1381
return -EINVAL;
1382
heartbeat = readl(&h->cfgtable->HeartBeat);
1383
if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1384
return -EFAULT;
1385
return 0;
1386
}
1387
1388
static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1389
{
1390
BusTypes_type BusTypes;
1391
1392
if (!argp)
1393
return -EINVAL;
1394
BusTypes = readl(&h->cfgtable->BusTypes);
1395
if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1396
return -EFAULT;
1397
return 0;
1398
}
1399
1400
static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1401
{
1402
FirmwareVer_type firmware;
1403
1404
if (!argp)
1405
return -EINVAL;
1406
memcpy(firmware, h->firm_ver, 4);
1407
1408
if (copy_to_user
1409
(argp, firmware, sizeof(FirmwareVer_type)))
1410
return -EFAULT;
1411
return 0;
1412
}
1413
1414
static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1415
{
1416
DriverVer_type DriverVer = DRIVER_VERSION;
1417
1418
if (!argp)
1419
return -EINVAL;
1420
if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1421
return -EFAULT;
1422
return 0;
1423
}
1424
1425
static int cciss_getluninfo(ctlr_info_t *h,
1426
struct gendisk *disk, void __user *argp)
1427
{
1428
LogvolInfo_struct luninfo;
1429
drive_info_struct *drv = get_drv(disk);
1430
1431
if (!argp)
1432
return -EINVAL;
1433
memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1434
luninfo.num_opens = drv->usage_count;
1435
luninfo.num_parts = 0;
1436
if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1437
return -EFAULT;
1438
return 0;
1439
}
1440
1441
static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1442
{
1443
IOCTL_Command_struct iocommand;
1444
CommandList_struct *c;
1445
char *buff = NULL;
1446
u64bit temp64;
1447
DECLARE_COMPLETION_ONSTACK(wait);
1448
1449
if (!argp)
1450
return -EINVAL;
1451
1452
if (!capable(CAP_SYS_RAWIO))
1453
return -EPERM;
1454
1455
if (copy_from_user
1456
(&iocommand, argp, sizeof(IOCTL_Command_struct)))
1457
return -EFAULT;
1458
if ((iocommand.buf_size < 1) &&
1459
(iocommand.Request.Type.Direction != XFER_NONE)) {
1460
return -EINVAL;
1461
}
1462
if (iocommand.buf_size > 0) {
1463
buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1464
if (buff == NULL)
1465
return -EFAULT;
1466
}
1467
if (iocommand.Request.Type.Direction == XFER_WRITE) {
1468
/* Copy the data into the buffer we created */
1469
if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1470
kfree(buff);
1471
return -EFAULT;
1472
}
1473
} else {
1474
memset(buff, 0, iocommand.buf_size);
1475
}
1476
c = cmd_special_alloc(h);
1477
if (!c) {
1478
kfree(buff);
1479
return -ENOMEM;
1480
}
1481
/* Fill in the command type */
1482
c->cmd_type = CMD_IOCTL_PEND;
1483
/* Fill in Command Header */
1484
c->Header.ReplyQueue = 0; /* unused in simple mode */
1485
if (iocommand.buf_size > 0) { /* buffer to fill */
1486
c->Header.SGList = 1;
1487
c->Header.SGTotal = 1;
1488
} else { /* no buffers to fill */
1489
c->Header.SGList = 0;
1490
c->Header.SGTotal = 0;
1491
}
1492
c->Header.LUN = iocommand.LUN_info;
1493
/* use the kernel address the cmd block for tag */
1494
c->Header.Tag.lower = c->busaddr;
1495
1496
/* Fill in Request block */
1497
c->Request = iocommand.Request;
1498
1499
/* Fill in the scatter gather information */
1500
if (iocommand.buf_size > 0) {
1501
temp64.val = pci_map_single(h->pdev, buff,
1502
iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1503
c->SG[0].Addr.lower = temp64.val32.lower;
1504
c->SG[0].Addr.upper = temp64.val32.upper;
1505
c->SG[0].Len = iocommand.buf_size;
1506
c->SG[0].Ext = 0; /* we are not chaining */
1507
}
1508
c->waiting = &wait;
1509
1510
enqueue_cmd_and_start_io(h, c);
1511
wait_for_completion(&wait);
1512
1513
/* unlock the buffers from DMA */
1514
temp64.val32.lower = c->SG[0].Addr.lower;
1515
temp64.val32.upper = c->SG[0].Addr.upper;
1516
pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1517
PCI_DMA_BIDIRECTIONAL);
1518
check_ioctl_unit_attention(h, c);
1519
1520
/* Copy the error information out */
1521
iocommand.error_info = *(c->err_info);
1522
if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1523
kfree(buff);
1524
cmd_special_free(h, c);
1525
return -EFAULT;
1526
}
1527
1528
if (iocommand.Request.Type.Direction == XFER_READ) {
1529
/* Copy the data out of the buffer we created */
1530
if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1531
kfree(buff);
1532
cmd_special_free(h, c);
1533
return -EFAULT;
1534
}
1535
}
1536
kfree(buff);
1537
cmd_special_free(h, c);
1538
return 0;
1539
}
1540
1541
static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1542
{
1543
BIG_IOCTL_Command_struct *ioc;
1544
CommandList_struct *c;
1545
unsigned char **buff = NULL;
1546
int *buff_size = NULL;
1547
u64bit temp64;
1548
BYTE sg_used = 0;
1549
int status = 0;
1550
int i;
1551
DECLARE_COMPLETION_ONSTACK(wait);
1552
__u32 left;
1553
__u32 sz;
1554
BYTE __user *data_ptr;
1555
1556
if (!argp)
1557
return -EINVAL;
1558
if (!capable(CAP_SYS_RAWIO))
1559
return -EPERM;
1560
ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1561
if (!ioc) {
1562
status = -ENOMEM;
1563
goto cleanup1;
1564
}
1565
if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1566
status = -EFAULT;
1567
goto cleanup1;
1568
}
1569
if ((ioc->buf_size < 1) &&
1570
(ioc->Request.Type.Direction != XFER_NONE)) {
1571
status = -EINVAL;
1572
goto cleanup1;
1573
}
1574
/* Check kmalloc limits using all SGs */
1575
if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1576
status = -EINVAL;
1577
goto cleanup1;
1578
}
1579
if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1580
status = -EINVAL;
1581
goto cleanup1;
1582
}
1583
buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1584
if (!buff) {
1585
status = -ENOMEM;
1586
goto cleanup1;
1587
}
1588
buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1589
if (!buff_size) {
1590
status = -ENOMEM;
1591
goto cleanup1;
1592
}
1593
left = ioc->buf_size;
1594
data_ptr = ioc->buf;
1595
while (left) {
1596
sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1597
buff_size[sg_used] = sz;
1598
buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1599
if (buff[sg_used] == NULL) {
1600
status = -ENOMEM;
1601
goto cleanup1;
1602
}
1603
if (ioc->Request.Type.Direction == XFER_WRITE) {
1604
if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1605
status = -EFAULT;
1606
goto cleanup1;
1607
}
1608
} else {
1609
memset(buff[sg_used], 0, sz);
1610
}
1611
left -= sz;
1612
data_ptr += sz;
1613
sg_used++;
1614
}
1615
c = cmd_special_alloc(h);
1616
if (!c) {
1617
status = -ENOMEM;
1618
goto cleanup1;
1619
}
1620
c->cmd_type = CMD_IOCTL_PEND;
1621
c->Header.ReplyQueue = 0;
1622
c->Header.SGList = sg_used;
1623
c->Header.SGTotal = sg_used;
1624
c->Header.LUN = ioc->LUN_info;
1625
c->Header.Tag.lower = c->busaddr;
1626
1627
c->Request = ioc->Request;
1628
for (i = 0; i < sg_used; i++) {
1629
temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1630
PCI_DMA_BIDIRECTIONAL);
1631
c->SG[i].Addr.lower = temp64.val32.lower;
1632
c->SG[i].Addr.upper = temp64.val32.upper;
1633
c->SG[i].Len = buff_size[i];
1634
c->SG[i].Ext = 0; /* we are not chaining */
1635
}
1636
c->waiting = &wait;
1637
enqueue_cmd_and_start_io(h, c);
1638
wait_for_completion(&wait);
1639
/* unlock the buffers from DMA */
1640
for (i = 0; i < sg_used; i++) {
1641
temp64.val32.lower = c->SG[i].Addr.lower;
1642
temp64.val32.upper = c->SG[i].Addr.upper;
1643
pci_unmap_single(h->pdev,
1644
(dma_addr_t) temp64.val, buff_size[i],
1645
PCI_DMA_BIDIRECTIONAL);
1646
}
1647
check_ioctl_unit_attention(h, c);
1648
/* Copy the error information out */
1649
ioc->error_info = *(c->err_info);
1650
if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1651
cmd_special_free(h, c);
1652
status = -EFAULT;
1653
goto cleanup1;
1654
}
1655
if (ioc->Request.Type.Direction == XFER_READ) {
1656
/* Copy the data out of the buffer we created */
1657
BYTE __user *ptr = ioc->buf;
1658
for (i = 0; i < sg_used; i++) {
1659
if (copy_to_user(ptr, buff[i], buff_size[i])) {
1660
cmd_special_free(h, c);
1661
status = -EFAULT;
1662
goto cleanup1;
1663
}
1664
ptr += buff_size[i];
1665
}
1666
}
1667
cmd_special_free(h, c);
1668
status = 0;
1669
cleanup1:
1670
if (buff) {
1671
for (i = 0; i < sg_used; i++)
1672
kfree(buff[i]);
1673
kfree(buff);
1674
}
1675
kfree(buff_size);
1676
kfree(ioc);
1677
return status;
1678
}
1679
1680
static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1681
unsigned int cmd, unsigned long arg)
1682
{
1683
struct gendisk *disk = bdev->bd_disk;
1684
ctlr_info_t *h = get_host(disk);
1685
void __user *argp = (void __user *)arg;
1686
1687
dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1688
cmd, arg);
1689
switch (cmd) {
1690
case CCISS_GETPCIINFO:
1691
return cciss_getpciinfo(h, argp);
1692
case CCISS_GETINTINFO:
1693
return cciss_getintinfo(h, argp);
1694
case CCISS_SETINTINFO:
1695
return cciss_setintinfo(h, argp);
1696
case CCISS_GETNODENAME:
1697
return cciss_getnodename(h, argp);
1698
case CCISS_SETNODENAME:
1699
return cciss_setnodename(h, argp);
1700
case CCISS_GETHEARTBEAT:
1701
return cciss_getheartbeat(h, argp);
1702
case CCISS_GETBUSTYPES:
1703
return cciss_getbustypes(h, argp);
1704
case CCISS_GETFIRMVER:
1705
return cciss_getfirmver(h, argp);
1706
case CCISS_GETDRIVVER:
1707
return cciss_getdrivver(h, argp);
1708
case CCISS_DEREGDISK:
1709
case CCISS_REGNEWD:
1710
case CCISS_REVALIDVOLS:
1711
return rebuild_lun_table(h, 0, 1);
1712
case CCISS_GETLUNINFO:
1713
return cciss_getluninfo(h, disk, argp);
1714
case CCISS_PASSTHRU:
1715
return cciss_passthru(h, argp);
1716
case CCISS_BIG_PASSTHRU:
1717
return cciss_bigpassthru(h, argp);
1718
1719
/* scsi_cmd_ioctl handles these, below, though some are not */
1720
/* very meaningful for cciss. SG_IO is the main one people want. */
1721
1722
case SG_GET_VERSION_NUM:
1723
case SG_SET_TIMEOUT:
1724
case SG_GET_TIMEOUT:
1725
case SG_GET_RESERVED_SIZE:
1726
case SG_SET_RESERVED_SIZE:
1727
case SG_EMULATED_HOST:
1728
case SG_IO:
1729
case SCSI_IOCTL_SEND_COMMAND:
1730
return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1731
1732
/* scsi_cmd_ioctl would normally handle these, below, but */
1733
/* they aren't a good fit for cciss, as CD-ROMs are */
1734
/* not supported, and we don't have any bus/target/lun */
1735
/* which we present to the kernel. */
1736
1737
case CDROM_SEND_PACKET:
1738
case CDROMCLOSETRAY:
1739
case CDROMEJECT:
1740
case SCSI_IOCTL_GET_IDLUN:
1741
case SCSI_IOCTL_GET_BUS_NUMBER:
1742
default:
1743
return -ENOTTY;
1744
}
1745
}
1746
1747
static void cciss_check_queues(ctlr_info_t *h)
1748
{
1749
int start_queue = h->next_to_run;
1750
int i;
1751
1752
/* check to see if we have maxed out the number of commands that can
1753
* be placed on the queue. If so then exit. We do this check here
1754
* in case the interrupt we serviced was from an ioctl and did not
1755
* free any new commands.
1756
*/
1757
if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1758
return;
1759
1760
/* We have room on the queue for more commands. Now we need to queue
1761
* them up. We will also keep track of the next queue to run so
1762
* that every queue gets a chance to be started first.
1763
*/
1764
for (i = 0; i < h->highest_lun + 1; i++) {
1765
int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1766
/* make sure the disk has been added and the drive is real
1767
* because this can be called from the middle of init_one.
1768
*/
1769
if (!h->drv[curr_queue])
1770
continue;
1771
if (!(h->drv[curr_queue]->queue) ||
1772
!(h->drv[curr_queue]->heads))
1773
continue;
1774
blk_start_queue(h->gendisk[curr_queue]->queue);
1775
1776
/* check to see if we have maxed out the number of commands
1777
* that can be placed on the queue.
1778
*/
1779
if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1780
if (curr_queue == start_queue) {
1781
h->next_to_run =
1782
(start_queue + 1) % (h->highest_lun + 1);
1783
break;
1784
} else {
1785
h->next_to_run = curr_queue;
1786
break;
1787
}
1788
}
1789
}
1790
}
1791
1792
static void cciss_softirq_done(struct request *rq)
1793
{
1794
CommandList_struct *c = rq->completion_data;
1795
ctlr_info_t *h = hba[c->ctlr];
1796
SGDescriptor_struct *curr_sg = c->SG;
1797
u64bit temp64;
1798
unsigned long flags;
1799
int i, ddir;
1800
int sg_index = 0;
1801
1802
if (c->Request.Type.Direction == XFER_READ)
1803
ddir = PCI_DMA_FROMDEVICE;
1804
else
1805
ddir = PCI_DMA_TODEVICE;
1806
1807
/* command did not need to be retried */
1808
/* unmap the DMA mapping for all the scatter gather elements */
1809
for (i = 0; i < c->Header.SGList; i++) {
1810
if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1811
cciss_unmap_sg_chain_block(h, c);
1812
/* Point to the next block */
1813
curr_sg = h->cmd_sg_list[c->cmdindex];
1814
sg_index = 0;
1815
}
1816
temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1817
temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1818
pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1819
ddir);
1820
++sg_index;
1821
}
1822
1823
dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1824
1825
/* set the residual count for pc requests */
1826
if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1827
rq->resid_len = c->err_info->ResidualCnt;
1828
1829
blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1830
1831
spin_lock_irqsave(&h->lock, flags);
1832
cmd_free(h, c);
1833
cciss_check_queues(h);
1834
spin_unlock_irqrestore(&h->lock, flags);
1835
}
1836
1837
static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1838
unsigned char scsi3addr[], uint32_t log_unit)
1839
{
1840
memcpy(scsi3addr, h->drv[log_unit]->LunID,
1841
sizeof(h->drv[log_unit]->LunID));
1842
}
1843
1844
/* This function gets the SCSI vendor, model, and revision of a logical drive
1845
* via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1846
* they cannot be read.
1847
*/
1848
static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1849
char *vendor, char *model, char *rev)
1850
{
1851
int rc;
1852
InquiryData_struct *inq_buf;
1853
unsigned char scsi3addr[8];
1854
1855
*vendor = '\0';
1856
*model = '\0';
1857
*rev = '\0';
1858
1859
inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1860
if (!inq_buf)
1861
return;
1862
1863
log_unit_to_scsi3addr(h, scsi3addr, logvol);
1864
rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1865
scsi3addr, TYPE_CMD);
1866
if (rc == IO_OK) {
1867
memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1868
vendor[VENDOR_LEN] = '\0';
1869
memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1870
model[MODEL_LEN] = '\0';
1871
memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1872
rev[REV_LEN] = '\0';
1873
}
1874
1875
kfree(inq_buf);
1876
return;
1877
}
1878
1879
/* This function gets the serial number of a logical drive via
1880
* inquiry page 0x83. Serial no. is 16 bytes. If the serial
1881
* number cannot be had, for whatever reason, 16 bytes of 0xff
1882
* are returned instead.
1883
*/
1884
static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1885
unsigned char *serial_no, int buflen)
1886
{
1887
#define PAGE_83_INQ_BYTES 64
1888
int rc;
1889
unsigned char *buf;
1890
unsigned char scsi3addr[8];
1891
1892
if (buflen > 16)
1893
buflen = 16;
1894
memset(serial_no, 0xff, buflen);
1895
buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1896
if (!buf)
1897
return;
1898
memset(serial_no, 0, buflen);
1899
log_unit_to_scsi3addr(h, scsi3addr, logvol);
1900
rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1901
PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1902
if (rc == IO_OK)
1903
memcpy(serial_no, &buf[8], buflen);
1904
kfree(buf);
1905
return;
1906
}
1907
1908
/*
1909
* cciss_add_disk sets up the block device queue for a logical drive
1910
*/
1911
static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1912
int drv_index)
1913
{
1914
disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1915
if (!disk->queue)
1916
goto init_queue_failure;
1917
sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1918
disk->major = h->major;
1919
disk->first_minor = drv_index << NWD_SHIFT;
1920
disk->fops = &cciss_fops;
1921
if (cciss_create_ld_sysfs_entry(h, drv_index))
1922
goto cleanup_queue;
1923
disk->private_data = h->drv[drv_index];
1924
disk->driverfs_dev = &h->drv[drv_index]->dev;
1925
1926
/* Set up queue information */
1927
blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1928
1929
/* This is a hardware imposed limit. */
1930
blk_queue_max_segments(disk->queue, h->maxsgentries);
1931
1932
blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1933
1934
blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1935
1936
disk->queue->queuedata = h;
1937
1938
blk_queue_logical_block_size(disk->queue,
1939
h->drv[drv_index]->block_size);
1940
1941
/* Make sure all queue data is written out before */
1942
/* setting h->drv[drv_index]->queue, as setting this */
1943
/* allows the interrupt handler to start the queue */
1944
wmb();
1945
h->drv[drv_index]->queue = disk->queue;
1946
add_disk(disk);
1947
return 0;
1948
1949
cleanup_queue:
1950
blk_cleanup_queue(disk->queue);
1951
disk->queue = NULL;
1952
init_queue_failure:
1953
return -1;
1954
}
1955
1956
/* This function will check the usage_count of the drive to be updated/added.
1957
* If the usage_count is zero and it is a heretofore unknown drive, or,
1958
* the drive's capacity, geometry, or serial number has changed,
1959
* then the drive information will be updated and the disk will be
1960
* re-registered with the kernel. If these conditions don't hold,
1961
* then it will be left alone for the next reboot. The exception to this
1962
* is disk 0 which will always be left registered with the kernel since it
1963
* is also the controller node. Any changes to disk 0 will show up on
1964
* the next reboot.
1965
*/
1966
static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1967
int first_time, int via_ioctl)
1968
{
1969
struct gendisk *disk;
1970
InquiryData_struct *inq_buff = NULL;
1971
unsigned int block_size;
1972
sector_t total_size;
1973
unsigned long flags = 0;
1974
int ret = 0;
1975
drive_info_struct *drvinfo;
1976
1977
/* Get information about the disk and modify the driver structure */
1978
inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1979
drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1980
if (inq_buff == NULL || drvinfo == NULL)
1981
goto mem_msg;
1982
1983
/* testing to see if 16-byte CDBs are already being used */
1984
if (h->cciss_read == CCISS_READ_16) {
1985
cciss_read_capacity_16(h, drv_index,
1986
&total_size, &block_size);
1987
1988
} else {
1989
cciss_read_capacity(h, drv_index, &total_size, &block_size);
1990
/* if read_capacity returns all F's this volume is >2TB */
1991
/* in size so we switch to 16-byte CDB's for all */
1992
/* read/write ops */
1993
if (total_size == 0xFFFFFFFFULL) {
1994
cciss_read_capacity_16(h, drv_index,
1995
&total_size, &block_size);
1996
h->cciss_read = CCISS_READ_16;
1997
h->cciss_write = CCISS_WRITE_16;
1998
} else {
1999
h->cciss_read = CCISS_READ_10;
2000
h->cciss_write = CCISS_WRITE_10;
2001
}
2002
}
2003
2004
cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2005
inq_buff, drvinfo);
2006
drvinfo->block_size = block_size;
2007
drvinfo->nr_blocks = total_size + 1;
2008
2009
cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2010
drvinfo->model, drvinfo->rev);
2011
cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2012
sizeof(drvinfo->serial_no));
2013
/* Save the lunid in case we deregister the disk, below. */
2014
memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2015
sizeof(drvinfo->LunID));
2016
2017
/* Is it the same disk we already know, and nothing's changed? */
2018
if (h->drv[drv_index]->raid_level != -1 &&
2019
((memcmp(drvinfo->serial_no,
2020
h->drv[drv_index]->serial_no, 16) == 0) &&
2021
drvinfo->block_size == h->drv[drv_index]->block_size &&
2022
drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2023
drvinfo->heads == h->drv[drv_index]->heads &&
2024
drvinfo->sectors == h->drv[drv_index]->sectors &&
2025
drvinfo->cylinders == h->drv[drv_index]->cylinders))
2026
/* The disk is unchanged, nothing to update */
2027
goto freeret;
2028
2029
/* If we get here it's not the same disk, or something's changed,
2030
* so we need to * deregister it, and re-register it, if it's not
2031
* in use.
2032
* If the disk already exists then deregister it before proceeding
2033
* (unless it's the first disk (for the controller node).
2034
*/
2035
if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2036
dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2037
spin_lock_irqsave(&h->lock, flags);
2038
h->drv[drv_index]->busy_configuring = 1;
2039
spin_unlock_irqrestore(&h->lock, flags);
2040
2041
/* deregister_disk sets h->drv[drv_index]->queue = NULL
2042
* which keeps the interrupt handler from starting
2043
* the queue.
2044
*/
2045
ret = deregister_disk(h, drv_index, 0, via_ioctl);
2046
}
2047
2048
/* If the disk is in use return */
2049
if (ret)
2050
goto freeret;
2051
2052
/* Save the new information from cciss_geometry_inquiry
2053
* and serial number inquiry. If the disk was deregistered
2054
* above, then h->drv[drv_index] will be NULL.
2055
*/
2056
if (h->drv[drv_index] == NULL) {
2057
drvinfo->device_initialized = 0;
2058
h->drv[drv_index] = drvinfo;
2059
drvinfo = NULL; /* so it won't be freed below. */
2060
} else {
2061
/* special case for cxd0 */
2062
h->drv[drv_index]->block_size = drvinfo->block_size;
2063
h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2064
h->drv[drv_index]->heads = drvinfo->heads;
2065
h->drv[drv_index]->sectors = drvinfo->sectors;
2066
h->drv[drv_index]->cylinders = drvinfo->cylinders;
2067
h->drv[drv_index]->raid_level = drvinfo->raid_level;
2068
memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2069
memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2070
VENDOR_LEN + 1);
2071
memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2072
memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2073
}
2074
2075
++h->num_luns;
2076
disk = h->gendisk[drv_index];
2077
set_capacity(disk, h->drv[drv_index]->nr_blocks);
2078
2079
/* If it's not disk 0 (drv_index != 0)
2080
* or if it was disk 0, but there was previously
2081
* no actual corresponding configured logical drive
2082
* (raid_leve == -1) then we want to update the
2083
* logical drive's information.
2084
*/
2085
if (drv_index || first_time) {
2086
if (cciss_add_disk(h, disk, drv_index) != 0) {
2087
cciss_free_gendisk(h, drv_index);
2088
cciss_free_drive_info(h, drv_index);
2089
dev_warn(&h->pdev->dev, "could not update disk %d\n",
2090
drv_index);
2091
--h->num_luns;
2092
}
2093
}
2094
2095
freeret:
2096
kfree(inq_buff);
2097
kfree(drvinfo);
2098
return;
2099
mem_msg:
2100
dev_err(&h->pdev->dev, "out of memory\n");
2101
goto freeret;
2102
}
2103
2104
/* This function will find the first index of the controllers drive array
2105
* that has a null drv pointer and allocate the drive info struct and
2106
* will return that index This is where new drives will be added.
2107
* If the index to be returned is greater than the highest_lun index for
2108
* the controller then highest_lun is set * to this new index.
2109
* If there are no available indexes or if tha allocation fails, then -1
2110
* is returned. * "controller_node" is used to know if this is a real
2111
* logical drive, or just the controller node, which determines if this
2112
* counts towards highest_lun.
2113
*/
2114
static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2115
{
2116
int i;
2117
drive_info_struct *drv;
2118
2119
/* Search for an empty slot for our drive info */
2120
for (i = 0; i < CISS_MAX_LUN; i++) {
2121
2122
/* if not cxd0 case, and it's occupied, skip it. */
2123
if (h->drv[i] && i != 0)
2124
continue;
2125
/*
2126
* If it's cxd0 case, and drv is alloc'ed already, and a
2127
* disk is configured there, skip it.
2128
*/
2129
if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2130
continue;
2131
2132
/*
2133
* We've found an empty slot. Update highest_lun
2134
* provided this isn't just the fake cxd0 controller node.
2135
*/
2136
if (i > h->highest_lun && !controller_node)
2137
h->highest_lun = i;
2138
2139
/* If adding a real disk at cxd0, and it's already alloc'ed */
2140
if (i == 0 && h->drv[i] != NULL)
2141
return i;
2142
2143
/*
2144
* Found an empty slot, not already alloc'ed. Allocate it.
2145
* Mark it with raid_level == -1, so we know it's new later on.
2146
*/
2147
drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2148
if (!drv)
2149
return -1;
2150
drv->raid_level = -1; /* so we know it's new */
2151
h->drv[i] = drv;
2152
return i;
2153
}
2154
return -1;
2155
}
2156
2157
static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2158
{
2159
kfree(h->drv[drv_index]);
2160
h->drv[drv_index] = NULL;
2161
}
2162
2163
static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2164
{
2165
put_disk(h->gendisk[drv_index]);
2166
h->gendisk[drv_index] = NULL;
2167
}
2168
2169
/* cciss_add_gendisk finds a free hba[]->drv structure
2170
* and allocates a gendisk if needed, and sets the lunid
2171
* in the drvinfo structure. It returns the index into
2172
* the ->drv[] array, or -1 if none are free.
2173
* is_controller_node indicates whether highest_lun should
2174
* count this disk, or if it's only being added to provide
2175
* a means to talk to the controller in case no logical
2176
* drives have yet been configured.
2177
*/
2178
static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2179
int controller_node)
2180
{
2181
int drv_index;
2182
2183
drv_index = cciss_alloc_drive_info(h, controller_node);
2184
if (drv_index == -1)
2185
return -1;
2186
2187
/*Check if the gendisk needs to be allocated */
2188
if (!h->gendisk[drv_index]) {
2189
h->gendisk[drv_index] =
2190
alloc_disk(1 << NWD_SHIFT);
2191
if (!h->gendisk[drv_index]) {
2192
dev_err(&h->pdev->dev,
2193
"could not allocate a new disk %d\n",
2194
drv_index);
2195
goto err_free_drive_info;
2196
}
2197
}
2198
memcpy(h->drv[drv_index]->LunID, lunid,
2199
sizeof(h->drv[drv_index]->LunID));
2200
if (cciss_create_ld_sysfs_entry(h, drv_index))
2201
goto err_free_disk;
2202
/* Don't need to mark this busy because nobody */
2203
/* else knows about this disk yet to contend */
2204
/* for access to it. */
2205
h->drv[drv_index]->busy_configuring = 0;
2206
wmb();
2207
return drv_index;
2208
2209
err_free_disk:
2210
cciss_free_gendisk(h, drv_index);
2211
err_free_drive_info:
2212
cciss_free_drive_info(h, drv_index);
2213
return -1;
2214
}
2215
2216
/* This is for the special case of a controller which
2217
* has no logical drives. In this case, we still need
2218
* to register a disk so the controller can be accessed
2219
* by the Array Config Utility.
2220
*/
2221
static void cciss_add_controller_node(ctlr_info_t *h)
2222
{
2223
struct gendisk *disk;
2224
int drv_index;
2225
2226
if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2227
return;
2228
2229
drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2230
if (drv_index == -1)
2231
goto error;
2232
h->drv[drv_index]->block_size = 512;
2233
h->drv[drv_index]->nr_blocks = 0;
2234
h->drv[drv_index]->heads = 0;
2235
h->drv[drv_index]->sectors = 0;
2236
h->drv[drv_index]->cylinders = 0;
2237
h->drv[drv_index]->raid_level = -1;
2238
memset(h->drv[drv_index]->serial_no, 0, 16);
2239
disk = h->gendisk[drv_index];
2240
if (cciss_add_disk(h, disk, drv_index) == 0)
2241
return;
2242
cciss_free_gendisk(h, drv_index);
2243
cciss_free_drive_info(h, drv_index);
2244
error:
2245
dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2246
return;
2247
}
2248
2249
/* This function will add and remove logical drives from the Logical
2250
* drive array of the controller and maintain persistency of ordering
2251
* so that mount points are preserved until the next reboot. This allows
2252
* for the removal of logical drives in the middle of the drive array
2253
* without a re-ordering of those drives.
2254
* INPUT
2255
* h = The controller to perform the operations on
2256
*/
2257
static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2258
int via_ioctl)
2259
{
2260
int num_luns;
2261
ReportLunData_struct *ld_buff = NULL;
2262
int return_code;
2263
int listlength = 0;
2264
int i;
2265
int drv_found;
2266
int drv_index = 0;
2267
unsigned char lunid[8] = CTLR_LUNID;
2268
unsigned long flags;
2269
2270
if (!capable(CAP_SYS_RAWIO))
2271
return -EPERM;
2272
2273
/* Set busy_configuring flag for this operation */
2274
spin_lock_irqsave(&h->lock, flags);
2275
if (h->busy_configuring) {
2276
spin_unlock_irqrestore(&h->lock, flags);
2277
return -EBUSY;
2278
}
2279
h->busy_configuring = 1;
2280
spin_unlock_irqrestore(&h->lock, flags);
2281
2282
ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2283
if (ld_buff == NULL)
2284
goto mem_msg;
2285
2286
return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2287
sizeof(ReportLunData_struct),
2288
0, CTLR_LUNID, TYPE_CMD);
2289
2290
if (return_code == IO_OK)
2291
listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2292
else { /* reading number of logical volumes failed */
2293
dev_warn(&h->pdev->dev,
2294
"report logical volume command failed\n");
2295
listlength = 0;
2296
goto freeret;
2297
}
2298
2299
num_luns = listlength / 8; /* 8 bytes per entry */
2300
if (num_luns > CISS_MAX_LUN) {
2301
num_luns = CISS_MAX_LUN;
2302
dev_warn(&h->pdev->dev, "more luns configured"
2303
" on controller than can be handled by"
2304
" this driver.\n");
2305
}
2306
2307
if (num_luns == 0)
2308
cciss_add_controller_node(h);
2309
2310
/* Compare controller drive array to driver's drive array
2311
* to see if any drives are missing on the controller due
2312
* to action of Array Config Utility (user deletes drive)
2313
* and deregister logical drives which have disappeared.
2314
*/
2315
for (i = 0; i <= h->highest_lun; i++) {
2316
int j;
2317
drv_found = 0;
2318
2319
/* skip holes in the array from already deleted drives */
2320
if (h->drv[i] == NULL)
2321
continue;
2322
2323
for (j = 0; j < num_luns; j++) {
2324
memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2325
if (memcmp(h->drv[i]->LunID, lunid,
2326
sizeof(lunid)) == 0) {
2327
drv_found = 1;
2328
break;
2329
}
2330
}
2331
if (!drv_found) {
2332
/* Deregister it from the OS, it's gone. */
2333
spin_lock_irqsave(&h->lock, flags);
2334
h->drv[i]->busy_configuring = 1;
2335
spin_unlock_irqrestore(&h->lock, flags);
2336
return_code = deregister_disk(h, i, 1, via_ioctl);
2337
if (h->drv[i] != NULL)
2338
h->drv[i]->busy_configuring = 0;
2339
}
2340
}
2341
2342
/* Compare controller drive array to driver's drive array.
2343
* Check for updates in the drive information and any new drives
2344
* on the controller due to ACU adding logical drives, or changing
2345
* a logical drive's size, etc. Reregister any new/changed drives
2346
*/
2347
for (i = 0; i < num_luns; i++) {
2348
int j;
2349
2350
drv_found = 0;
2351
2352
memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2353
/* Find if the LUN is already in the drive array
2354
* of the driver. If so then update its info
2355
* if not in use. If it does not exist then find
2356
* the first free index and add it.
2357
*/
2358
for (j = 0; j <= h->highest_lun; j++) {
2359
if (h->drv[j] != NULL &&
2360
memcmp(h->drv[j]->LunID, lunid,
2361
sizeof(h->drv[j]->LunID)) == 0) {
2362
drv_index = j;
2363
drv_found = 1;
2364
break;
2365
}
2366
}
2367
2368
/* check if the drive was found already in the array */
2369
if (!drv_found) {
2370
drv_index = cciss_add_gendisk(h, lunid, 0);
2371
if (drv_index == -1)
2372
goto freeret;
2373
}
2374
cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2375
} /* end for */
2376
2377
freeret:
2378
kfree(ld_buff);
2379
h->busy_configuring = 0;
2380
/* We return -1 here to tell the ACU that we have registered/updated
2381
* all of the drives that we can and to keep it from calling us
2382
* additional times.
2383
*/
2384
return -1;
2385
mem_msg:
2386
dev_err(&h->pdev->dev, "out of memory\n");
2387
h->busy_configuring = 0;
2388
goto freeret;
2389
}
2390
2391
static void cciss_clear_drive_info(drive_info_struct *drive_info)
2392
{
2393
/* zero out the disk size info */
2394
drive_info->nr_blocks = 0;
2395
drive_info->block_size = 0;
2396
drive_info->heads = 0;
2397
drive_info->sectors = 0;
2398
drive_info->cylinders = 0;
2399
drive_info->raid_level = -1;
2400
memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2401
memset(drive_info->model, 0, sizeof(drive_info->model));
2402
memset(drive_info->rev, 0, sizeof(drive_info->rev));
2403
memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2404
/*
2405
* don't clear the LUNID though, we need to remember which
2406
* one this one is.
2407
*/
2408
}
2409
2410
/* This function will deregister the disk and it's queue from the
2411
* kernel. It must be called with the controller lock held and the
2412
* drv structures busy_configuring flag set. It's parameters are:
2413
*
2414
* disk = This is the disk to be deregistered
2415
* drv = This is the drive_info_struct associated with the disk to be
2416
* deregistered. It contains information about the disk used
2417
* by the driver.
2418
* clear_all = This flag determines whether or not the disk information
2419
* is going to be completely cleared out and the highest_lun
2420
* reset. Sometimes we want to clear out information about
2421
* the disk in preparation for re-adding it. In this case
2422
* the highest_lun should be left unchanged and the LunID
2423
* should not be cleared.
2424
* via_ioctl
2425
* This indicates whether we've reached this path via ioctl.
2426
* This affects the maximum usage count allowed for c0d0 to be messed with.
2427
* If this path is reached via ioctl(), then the max_usage_count will
2428
* be 1, as the process calling ioctl() has got to have the device open.
2429
* If we get here via sysfs, then the max usage count will be zero.
2430
*/
2431
static int deregister_disk(ctlr_info_t *h, int drv_index,
2432
int clear_all, int via_ioctl)
2433
{
2434
int i;
2435
struct gendisk *disk;
2436
drive_info_struct *drv;
2437
int recalculate_highest_lun;
2438
2439
if (!capable(CAP_SYS_RAWIO))
2440
return -EPERM;
2441
2442
drv = h->drv[drv_index];
2443
disk = h->gendisk[drv_index];
2444
2445
/* make sure logical volume is NOT is use */
2446
if (clear_all || (h->gendisk[0] == disk)) {
2447
if (drv->usage_count > via_ioctl)
2448
return -EBUSY;
2449
} else if (drv->usage_count > 0)
2450
return -EBUSY;
2451
2452
recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2453
2454
/* invalidate the devices and deregister the disk. If it is disk
2455
* zero do not deregister it but just zero out it's values. This
2456
* allows us to delete disk zero but keep the controller registered.
2457
*/
2458
if (h->gendisk[0] != disk) {
2459
struct request_queue *q = disk->queue;
2460
if (disk->flags & GENHD_FL_UP) {
2461
cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2462
del_gendisk(disk);
2463
}
2464
if (q)
2465
blk_cleanup_queue(q);
2466
/* If clear_all is set then we are deleting the logical
2467
* drive, not just refreshing its info. For drives
2468
* other than disk 0 we will call put_disk. We do not
2469
* do this for disk 0 as we need it to be able to
2470
* configure the controller.
2471
*/
2472
if (clear_all){
2473
/* This isn't pretty, but we need to find the
2474
* disk in our array and NULL our the pointer.
2475
* This is so that we will call alloc_disk if
2476
* this index is used again later.
2477
*/
2478
for (i=0; i < CISS_MAX_LUN; i++){
2479
if (h->gendisk[i] == disk) {
2480
h->gendisk[i] = NULL;
2481
break;
2482
}
2483
}
2484
put_disk(disk);
2485
}
2486
} else {
2487
set_capacity(disk, 0);
2488
cciss_clear_drive_info(drv);
2489
}
2490
2491
--h->num_luns;
2492
2493
/* if it was the last disk, find the new hightest lun */
2494
if (clear_all && recalculate_highest_lun) {
2495
int newhighest = -1;
2496
for (i = 0; i <= h->highest_lun; i++) {
2497
/* if the disk has size > 0, it is available */
2498
if (h->drv[i] && h->drv[i]->heads)
2499
newhighest = i;
2500
}
2501
h->highest_lun = newhighest;
2502
}
2503
return 0;
2504
}
2505
2506
static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2507
size_t size, __u8 page_code, unsigned char *scsi3addr,
2508
int cmd_type)
2509
{
2510
u64bit buff_dma_handle;
2511
int status = IO_OK;
2512
2513
c->cmd_type = CMD_IOCTL_PEND;
2514
c->Header.ReplyQueue = 0;
2515
if (buff != NULL) {
2516
c->Header.SGList = 1;
2517
c->Header.SGTotal = 1;
2518
} else {
2519
c->Header.SGList = 0;
2520
c->Header.SGTotal = 0;
2521
}
2522
c->Header.Tag.lower = c->busaddr;
2523
memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2524
2525
c->Request.Type.Type = cmd_type;
2526
if (cmd_type == TYPE_CMD) {
2527
switch (cmd) {
2528
case CISS_INQUIRY:
2529
/* are we trying to read a vital product page */
2530
if (page_code != 0) {
2531
c->Request.CDB[1] = 0x01;
2532
c->Request.CDB[2] = page_code;
2533
}
2534
c->Request.CDBLen = 6;
2535
c->Request.Type.Attribute = ATTR_SIMPLE;
2536
c->Request.Type.Direction = XFER_READ;
2537
c->Request.Timeout = 0;
2538
c->Request.CDB[0] = CISS_INQUIRY;
2539
c->Request.CDB[4] = size & 0xFF;
2540
break;
2541
case CISS_REPORT_LOG:
2542
case CISS_REPORT_PHYS:
2543
/* Talking to controller so It's a physical command
2544
mode = 00 target = 0. Nothing to write.
2545
*/
2546
c->Request.CDBLen = 12;
2547
c->Request.Type.Attribute = ATTR_SIMPLE;
2548
c->Request.Type.Direction = XFER_READ;
2549
c->Request.Timeout = 0;
2550
c->Request.CDB[0] = cmd;
2551
c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2552
c->Request.CDB[7] = (size >> 16) & 0xFF;
2553
c->Request.CDB[8] = (size >> 8) & 0xFF;
2554
c->Request.CDB[9] = size & 0xFF;
2555
break;
2556
2557
case CCISS_READ_CAPACITY:
2558
c->Request.CDBLen = 10;
2559
c->Request.Type.Attribute = ATTR_SIMPLE;
2560
c->Request.Type.Direction = XFER_READ;
2561
c->Request.Timeout = 0;
2562
c->Request.CDB[0] = cmd;
2563
break;
2564
case CCISS_READ_CAPACITY_16:
2565
c->Request.CDBLen = 16;
2566
c->Request.Type.Attribute = ATTR_SIMPLE;
2567
c->Request.Type.Direction = XFER_READ;
2568
c->Request.Timeout = 0;
2569
c->Request.CDB[0] = cmd;
2570
c->Request.CDB[1] = 0x10;
2571
c->Request.CDB[10] = (size >> 24) & 0xFF;
2572
c->Request.CDB[11] = (size >> 16) & 0xFF;
2573
c->Request.CDB[12] = (size >> 8) & 0xFF;
2574
c->Request.CDB[13] = size & 0xFF;
2575
c->Request.Timeout = 0;
2576
c->Request.CDB[0] = cmd;
2577
break;
2578
case CCISS_CACHE_FLUSH:
2579
c->Request.CDBLen = 12;
2580
c->Request.Type.Attribute = ATTR_SIMPLE;
2581
c->Request.Type.Direction = XFER_WRITE;
2582
c->Request.Timeout = 0;
2583
c->Request.CDB[0] = BMIC_WRITE;
2584
c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2585
break;
2586
case TEST_UNIT_READY:
2587
c->Request.CDBLen = 6;
2588
c->Request.Type.Attribute = ATTR_SIMPLE;
2589
c->Request.Type.Direction = XFER_NONE;
2590
c->Request.Timeout = 0;
2591
break;
2592
default:
2593
dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2594
return IO_ERROR;
2595
}
2596
} else if (cmd_type == TYPE_MSG) {
2597
switch (cmd) {
2598
case CCISS_ABORT_MSG:
2599
c->Request.CDBLen = 12;
2600
c->Request.Type.Attribute = ATTR_SIMPLE;
2601
c->Request.Type.Direction = XFER_WRITE;
2602
c->Request.Timeout = 0;
2603
c->Request.CDB[0] = cmd; /* abort */
2604
c->Request.CDB[1] = 0; /* abort a command */
2605
/* buff contains the tag of the command to abort */
2606
memcpy(&c->Request.CDB[4], buff, 8);
2607
break;
2608
case CCISS_RESET_MSG:
2609
c->Request.CDBLen = 16;
2610
c->Request.Type.Attribute = ATTR_SIMPLE;
2611
c->Request.Type.Direction = XFER_NONE;
2612
c->Request.Timeout = 0;
2613
memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2614
c->Request.CDB[0] = cmd; /* reset */
2615
c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2616
break;
2617
case CCISS_NOOP_MSG:
2618
c->Request.CDBLen = 1;
2619
c->Request.Type.Attribute = ATTR_SIMPLE;
2620
c->Request.Type.Direction = XFER_WRITE;
2621
c->Request.Timeout = 0;
2622
c->Request.CDB[0] = cmd;
2623
break;
2624
default:
2625
dev_warn(&h->pdev->dev,
2626
"unknown message type %d\n", cmd);
2627
return IO_ERROR;
2628
}
2629
} else {
2630
dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2631
return IO_ERROR;
2632
}
2633
/* Fill in the scatter gather information */
2634
if (size > 0) {
2635
buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2636
buff, size,
2637
PCI_DMA_BIDIRECTIONAL);
2638
c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2639
c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2640
c->SG[0].Len = size;
2641
c->SG[0].Ext = 0; /* we are not chaining */
2642
}
2643
return status;
2644
}
2645
2646
static int __devinit cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2647
u8 reset_type)
2648
{
2649
CommandList_struct *c;
2650
int return_status;
2651
2652
c = cmd_alloc(h);
2653
if (!c)
2654
return -ENOMEM;
2655
return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2656
CTLR_LUNID, TYPE_MSG);
2657
c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2658
if (return_status != IO_OK) {
2659
cmd_special_free(h, c);
2660
return return_status;
2661
}
2662
c->waiting = NULL;
2663
enqueue_cmd_and_start_io(h, c);
2664
/* Don't wait for completion, the reset won't complete. Don't free
2665
* the command either. This is the last command we will send before
2666
* re-initializing everything, so it doesn't matter and won't leak.
2667
*/
2668
return 0;
2669
}
2670
2671
static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2672
{
2673
switch (c->err_info->ScsiStatus) {
2674
case SAM_STAT_GOOD:
2675
return IO_OK;
2676
case SAM_STAT_CHECK_CONDITION:
2677
switch (0xf & c->err_info->SenseInfo[2]) {
2678
case 0: return IO_OK; /* no sense */
2679
case 1: return IO_OK; /* recovered error */
2680
default:
2681
if (check_for_unit_attention(h, c))
2682
return IO_NEEDS_RETRY;
2683
dev_warn(&h->pdev->dev, "cmd 0x%02x "
2684
"check condition, sense key = 0x%02x\n",
2685
c->Request.CDB[0], c->err_info->SenseInfo[2]);
2686
}
2687
break;
2688
default:
2689
dev_warn(&h->pdev->dev, "cmd 0x%02x"
2690
"scsi status = 0x%02x\n",
2691
c->Request.CDB[0], c->err_info->ScsiStatus);
2692
break;
2693
}
2694
return IO_ERROR;
2695
}
2696
2697
static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2698
{
2699
int return_status = IO_OK;
2700
2701
if (c->err_info->CommandStatus == CMD_SUCCESS)
2702
return IO_OK;
2703
2704
switch (c->err_info->CommandStatus) {
2705
case CMD_TARGET_STATUS:
2706
return_status = check_target_status(h, c);
2707
break;
2708
case CMD_DATA_UNDERRUN:
2709
case CMD_DATA_OVERRUN:
2710
/* expected for inquiry and report lun commands */
2711
break;
2712
case CMD_INVALID:
2713
dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2714
"reported invalid\n", c->Request.CDB[0]);
2715
return_status = IO_ERROR;
2716
break;
2717
case CMD_PROTOCOL_ERR:
2718
dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2719
"protocol error\n", c->Request.CDB[0]);
2720
return_status = IO_ERROR;
2721
break;
2722
case CMD_HARDWARE_ERR:
2723
dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2724
" hardware error\n", c->Request.CDB[0]);
2725
return_status = IO_ERROR;
2726
break;
2727
case CMD_CONNECTION_LOST:
2728
dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2729
"connection lost\n", c->Request.CDB[0]);
2730
return_status = IO_ERROR;
2731
break;
2732
case CMD_ABORTED:
2733
dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2734
"aborted\n", c->Request.CDB[0]);
2735
return_status = IO_ERROR;
2736
break;
2737
case CMD_ABORT_FAILED:
2738
dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2739
"abort failed\n", c->Request.CDB[0]);
2740
return_status = IO_ERROR;
2741
break;
2742
case CMD_UNSOLICITED_ABORT:
2743
dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2744
c->Request.CDB[0]);
2745
return_status = IO_NEEDS_RETRY;
2746
break;
2747
case CMD_UNABORTABLE:
2748
dev_warn(&h->pdev->dev, "cmd unabortable\n");
2749
return_status = IO_ERROR;
2750
break;
2751
default:
2752
dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2753
"unknown status %x\n", c->Request.CDB[0],
2754
c->err_info->CommandStatus);
2755
return_status = IO_ERROR;
2756
}
2757
return return_status;
2758
}
2759
2760
static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2761
int attempt_retry)
2762
{
2763
DECLARE_COMPLETION_ONSTACK(wait);
2764
u64bit buff_dma_handle;
2765
int return_status = IO_OK;
2766
2767
resend_cmd2:
2768
c->waiting = &wait;
2769
enqueue_cmd_and_start_io(h, c);
2770
2771
wait_for_completion(&wait);
2772
2773
if (c->err_info->CommandStatus == 0 || !attempt_retry)
2774
goto command_done;
2775
2776
return_status = process_sendcmd_error(h, c);
2777
2778
if (return_status == IO_NEEDS_RETRY &&
2779
c->retry_count < MAX_CMD_RETRIES) {
2780
dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2781
c->Request.CDB[0]);
2782
c->retry_count++;
2783
/* erase the old error information */
2784
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2785
return_status = IO_OK;
2786
INIT_COMPLETION(wait);
2787
goto resend_cmd2;
2788
}
2789
2790
command_done:
2791
/* unlock the buffers from DMA */
2792
buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2793
buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2794
pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2795
c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2796
return return_status;
2797
}
2798
2799
static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2800
__u8 page_code, unsigned char scsi3addr[],
2801
int cmd_type)
2802
{
2803
CommandList_struct *c;
2804
int return_status;
2805
2806
c = cmd_special_alloc(h);
2807
if (!c)
2808
return -ENOMEM;
2809
return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2810
scsi3addr, cmd_type);
2811
if (return_status == IO_OK)
2812
return_status = sendcmd_withirq_core(h, c, 1);
2813
2814
cmd_special_free(h, c);
2815
return return_status;
2816
}
2817
2818
static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2819
sector_t total_size,
2820
unsigned int block_size,
2821
InquiryData_struct *inq_buff,
2822
drive_info_struct *drv)
2823
{
2824
int return_code;
2825
unsigned long t;
2826
unsigned char scsi3addr[8];
2827
2828
memset(inq_buff, 0, sizeof(InquiryData_struct));
2829
log_unit_to_scsi3addr(h, scsi3addr, logvol);
2830
return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2831
sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2832
if (return_code == IO_OK) {
2833
if (inq_buff->data_byte[8] == 0xFF) {
2834
dev_warn(&h->pdev->dev,
2835
"reading geometry failed, volume "
2836
"does not support reading geometry\n");
2837
drv->heads = 255;
2838
drv->sectors = 32; /* Sectors per track */
2839
drv->cylinders = total_size + 1;
2840
drv->raid_level = RAID_UNKNOWN;
2841
} else {
2842
drv->heads = inq_buff->data_byte[6];
2843
drv->sectors = inq_buff->data_byte[7];
2844
drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2845
drv->cylinders += inq_buff->data_byte[5];
2846
drv->raid_level = inq_buff->data_byte[8];
2847
}
2848
drv->block_size = block_size;
2849
drv->nr_blocks = total_size + 1;
2850
t = drv->heads * drv->sectors;
2851
if (t > 1) {
2852
sector_t real_size = total_size + 1;
2853
unsigned long rem = sector_div(real_size, t);
2854
if (rem)
2855
real_size++;
2856
drv->cylinders = real_size;
2857
}
2858
} else { /* Get geometry failed */
2859
dev_warn(&h->pdev->dev, "reading geometry failed\n");
2860
}
2861
}
2862
2863
static void
2864
cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2865
unsigned int *block_size)
2866
{
2867
ReadCapdata_struct *buf;
2868
int return_code;
2869
unsigned char scsi3addr[8];
2870
2871
buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2872
if (!buf) {
2873
dev_warn(&h->pdev->dev, "out of memory\n");
2874
return;
2875
}
2876
2877
log_unit_to_scsi3addr(h, scsi3addr, logvol);
2878
return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2879
sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2880
if (return_code == IO_OK) {
2881
*total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2882
*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2883
} else { /* read capacity command failed */
2884
dev_warn(&h->pdev->dev, "read capacity failed\n");
2885
*total_size = 0;
2886
*block_size = BLOCK_SIZE;
2887
}
2888
kfree(buf);
2889
}
2890
2891
static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2892
sector_t *total_size, unsigned int *block_size)
2893
{
2894
ReadCapdata_struct_16 *buf;
2895
int return_code;
2896
unsigned char scsi3addr[8];
2897
2898
buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2899
if (!buf) {
2900
dev_warn(&h->pdev->dev, "out of memory\n");
2901
return;
2902
}
2903
2904
log_unit_to_scsi3addr(h, scsi3addr, logvol);
2905
return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2906
buf, sizeof(ReadCapdata_struct_16),
2907
0, scsi3addr, TYPE_CMD);
2908
if (return_code == IO_OK) {
2909
*total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2910
*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2911
} else { /* read capacity command failed */
2912
dev_warn(&h->pdev->dev, "read capacity failed\n");
2913
*total_size = 0;
2914
*block_size = BLOCK_SIZE;
2915
}
2916
dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n",
2917
(unsigned long long)*total_size+1, *block_size);
2918
kfree(buf);
2919
}
2920
2921
static int cciss_revalidate(struct gendisk *disk)
2922
{
2923
ctlr_info_t *h = get_host(disk);
2924
drive_info_struct *drv = get_drv(disk);
2925
int logvol;
2926
int FOUND = 0;
2927
unsigned int block_size;
2928
sector_t total_size;
2929
InquiryData_struct *inq_buff = NULL;
2930
2931
for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2932
if (!h->drv[logvol])
2933
continue;
2934
if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2935
sizeof(drv->LunID)) == 0) {
2936
FOUND = 1;
2937
break;
2938
}
2939
}
2940
2941
if (!FOUND)
2942
return 1;
2943
2944
inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2945
if (inq_buff == NULL) {
2946
dev_warn(&h->pdev->dev, "out of memory\n");
2947
return 1;
2948
}
2949
if (h->cciss_read == CCISS_READ_10) {
2950
cciss_read_capacity(h, logvol,
2951
&total_size, &block_size);
2952
} else {
2953
cciss_read_capacity_16(h, logvol,
2954
&total_size, &block_size);
2955
}
2956
cciss_geometry_inquiry(h, logvol, total_size, block_size,
2957
inq_buff, drv);
2958
2959
blk_queue_logical_block_size(drv->queue, drv->block_size);
2960
set_capacity(disk, drv->nr_blocks);
2961
2962
kfree(inq_buff);
2963
return 0;
2964
}
2965
2966
/*
2967
* Map (physical) PCI mem into (virtual) kernel space
2968
*/
2969
static void __iomem *remap_pci_mem(ulong base, ulong size)
2970
{
2971
ulong page_base = ((ulong) base) & PAGE_MASK;
2972
ulong page_offs = ((ulong) base) - page_base;
2973
void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2974
2975
return page_remapped ? (page_remapped + page_offs) : NULL;
2976
}
2977
2978
/*
2979
* Takes jobs of the Q and sends them to the hardware, then puts it on
2980
* the Q to wait for completion.
2981
*/
2982
static void start_io(ctlr_info_t *h)
2983
{
2984
CommandList_struct *c;
2985
2986
while (!list_empty(&h->reqQ)) {
2987
c = list_entry(h->reqQ.next, CommandList_struct, list);
2988
/* can't do anything if fifo is full */
2989
if ((h->access.fifo_full(h))) {
2990
dev_warn(&h->pdev->dev, "fifo full\n");
2991
break;
2992
}
2993
2994
/* Get the first entry from the Request Q */
2995
removeQ(c);
2996
h->Qdepth--;
2997
2998
/* Tell the controller execute command */
2999
h->access.submit_command(h, c);
3000
3001
/* Put job onto the completed Q */
3002
addQ(&h->cmpQ, c);
3003
}
3004
}
3005
3006
/* Assumes that h->lock is held. */
3007
/* Zeros out the error record and then resends the command back */
3008
/* to the controller */
3009
static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3010
{
3011
/* erase the old error information */
3012
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3013
3014
/* add it to software queue and then send it to the controller */
3015
addQ(&h->reqQ, c);
3016
h->Qdepth++;
3017
if (h->Qdepth > h->maxQsinceinit)
3018
h->maxQsinceinit = h->Qdepth;
3019
3020
start_io(h);
3021
}
3022
3023
static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3024
unsigned int msg_byte, unsigned int host_byte,
3025
unsigned int driver_byte)
3026
{
3027
/* inverse of macros in scsi.h */
3028
return (scsi_status_byte & 0xff) |
3029
((msg_byte & 0xff) << 8) |
3030
((host_byte & 0xff) << 16) |
3031
((driver_byte & 0xff) << 24);
3032
}
3033
3034
static inline int evaluate_target_status(ctlr_info_t *h,
3035
CommandList_struct *cmd, int *retry_cmd)
3036
{
3037
unsigned char sense_key;
3038
unsigned char status_byte, msg_byte, host_byte, driver_byte;
3039
int error_value;
3040
3041
*retry_cmd = 0;
3042
/* If we get in here, it means we got "target status", that is, scsi status */
3043
status_byte = cmd->err_info->ScsiStatus;
3044
driver_byte = DRIVER_OK;
3045
msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
3046
3047
if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3048
host_byte = DID_PASSTHROUGH;
3049
else
3050
host_byte = DID_OK;
3051
3052
error_value = make_status_bytes(status_byte, msg_byte,
3053
host_byte, driver_byte);
3054
3055
if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3056
if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3057
dev_warn(&h->pdev->dev, "cmd %p "
3058
"has SCSI Status 0x%x\n",
3059
cmd, cmd->err_info->ScsiStatus);
3060
return error_value;
3061
}
3062
3063
/* check the sense key */
3064
sense_key = 0xf & cmd->err_info->SenseInfo[2];
3065
/* no status or recovered error */
3066
if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3067
(cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3068
error_value = 0;
3069
3070
if (check_for_unit_attention(h, cmd)) {
3071
*retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3072
return 0;
3073
}
3074
3075
/* Not SG_IO or similar? */
3076
if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3077
if (error_value != 0)
3078
dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3079
" sense key = 0x%x\n", cmd, sense_key);
3080
return error_value;
3081
}
3082
3083
/* SG_IO or similar, copy sense data back */
3084
if (cmd->rq->sense) {
3085
if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3086
cmd->rq->sense_len = cmd->err_info->SenseLen;
3087
memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3088
cmd->rq->sense_len);
3089
} else
3090
cmd->rq->sense_len = 0;
3091
3092
return error_value;
3093
}
3094
3095
/* checks the status of the job and calls complete buffers to mark all
3096
* buffers for the completed job. Note that this function does not need
3097
* to hold the hba/queue lock.
3098
*/
3099
static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3100
int timeout)
3101
{
3102
int retry_cmd = 0;
3103
struct request *rq = cmd->rq;
3104
3105
rq->errors = 0;
3106
3107
if (timeout)
3108
rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3109
3110
if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3111
goto after_error_processing;
3112
3113
switch (cmd->err_info->CommandStatus) {
3114
case CMD_TARGET_STATUS:
3115
rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3116
break;
3117
case CMD_DATA_UNDERRUN:
3118
if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3119
dev_warn(&h->pdev->dev, "cmd %p has"
3120
" completed with data underrun "
3121
"reported\n", cmd);
3122
cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3123
}
3124
break;
3125
case CMD_DATA_OVERRUN:
3126
if (cmd->rq->cmd_type == REQ_TYPE_FS)
3127
dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3128
" completed with data overrun "
3129
"reported\n", cmd);
3130
break;
3131
case CMD_INVALID:
3132
dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3133
"reported invalid\n", cmd);
3134
rq->errors = make_status_bytes(SAM_STAT_GOOD,
3135
cmd->err_info->CommandStatus, DRIVER_OK,
3136
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3137
DID_PASSTHROUGH : DID_ERROR);
3138
break;
3139
case CMD_PROTOCOL_ERR:
3140
dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3141
"protocol error\n", cmd);
3142
rq->errors = make_status_bytes(SAM_STAT_GOOD,
3143
cmd->err_info->CommandStatus, DRIVER_OK,
3144
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3145
DID_PASSTHROUGH : DID_ERROR);
3146
break;
3147
case CMD_HARDWARE_ERR:
3148
dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3149
" hardware error\n", cmd);
3150
rq->errors = make_status_bytes(SAM_STAT_GOOD,
3151
cmd->err_info->CommandStatus, DRIVER_OK,
3152
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3153
DID_PASSTHROUGH : DID_ERROR);
3154
break;
3155
case CMD_CONNECTION_LOST:
3156
dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3157
"connection lost\n", cmd);
3158
rq->errors = make_status_bytes(SAM_STAT_GOOD,
3159
cmd->err_info->CommandStatus, DRIVER_OK,
3160
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3161
DID_PASSTHROUGH : DID_ERROR);
3162
break;
3163
case CMD_ABORTED:
3164
dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3165
"aborted\n", cmd);
3166
rq->errors = make_status_bytes(SAM_STAT_GOOD,
3167
cmd->err_info->CommandStatus, DRIVER_OK,
3168
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3169
DID_PASSTHROUGH : DID_ABORT);
3170
break;
3171
case CMD_ABORT_FAILED:
3172
dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3173
"abort failed\n", cmd);
3174
rq->errors = make_status_bytes(SAM_STAT_GOOD,
3175
cmd->err_info->CommandStatus, DRIVER_OK,
3176
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3177
DID_PASSTHROUGH : DID_ERROR);
3178
break;
3179
case CMD_UNSOLICITED_ABORT:
3180
dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3181
"abort %p\n", h->ctlr, cmd);
3182
if (cmd->retry_count < MAX_CMD_RETRIES) {
3183
retry_cmd = 1;
3184
dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3185
cmd->retry_count++;
3186
} else
3187
dev_warn(&h->pdev->dev,
3188
"%p retried too many times\n", cmd);
3189
rq->errors = make_status_bytes(SAM_STAT_GOOD,
3190
cmd->err_info->CommandStatus, DRIVER_OK,
3191
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3192
DID_PASSTHROUGH : DID_ABORT);
3193
break;
3194
case CMD_TIMEOUT:
3195
dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3196
rq->errors = make_status_bytes(SAM_STAT_GOOD,
3197
cmd->err_info->CommandStatus, DRIVER_OK,
3198
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3199
DID_PASSTHROUGH : DID_ERROR);
3200
break;
3201
case CMD_UNABORTABLE:
3202
dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3203
rq->errors = make_status_bytes(SAM_STAT_GOOD,
3204
cmd->err_info->CommandStatus, DRIVER_OK,
3205
cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3206
DID_PASSTHROUGH : DID_ERROR);
3207
break;
3208
default:
3209
dev_warn(&h->pdev->dev, "cmd %p returned "
3210
"unknown status %x\n", cmd,
3211
cmd->err_info->CommandStatus);
3212
rq->errors = make_status_bytes(SAM_STAT_GOOD,
3213
cmd->err_info->CommandStatus, DRIVER_OK,
3214
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3215
DID_PASSTHROUGH : DID_ERROR);
3216
}
3217
3218
after_error_processing:
3219
3220
/* We need to return this command */
3221
if (retry_cmd) {
3222
resend_cciss_cmd(h, cmd);
3223
return;
3224
}
3225
cmd->rq->completion_data = cmd;
3226
blk_complete_request(cmd->rq);
3227
}
3228
3229
static inline u32 cciss_tag_contains_index(u32 tag)
3230
{
3231
#define DIRECT_LOOKUP_BIT 0x10
3232
return tag & DIRECT_LOOKUP_BIT;
3233
}
3234
3235
static inline u32 cciss_tag_to_index(u32 tag)
3236
{
3237
#define DIRECT_LOOKUP_SHIFT 5
3238
return tag >> DIRECT_LOOKUP_SHIFT;
3239
}
3240
3241
static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3242
{
3243
#define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3244
#define CCISS_SIMPLE_ERROR_BITS 0x03
3245
if (likely(h->transMethod & CFGTBL_Trans_Performant))
3246
return tag & ~CCISS_PERF_ERROR_BITS;
3247
return tag & ~CCISS_SIMPLE_ERROR_BITS;
3248
}
3249
3250
static inline void cciss_mark_tag_indexed(u32 *tag)
3251
{
3252
*tag |= DIRECT_LOOKUP_BIT;
3253
}
3254
3255
static inline void cciss_set_tag_index(u32 *tag, u32 index)
3256
{
3257
*tag |= (index << DIRECT_LOOKUP_SHIFT);
3258
}
3259
3260
/*
3261
* Get a request and submit it to the controller.
3262
*/
3263
static void do_cciss_request(struct request_queue *q)
3264
{
3265
ctlr_info_t *h = q->queuedata;
3266
CommandList_struct *c;
3267
sector_t start_blk;
3268
int seg;
3269
struct request *creq;
3270
u64bit temp64;
3271
struct scatterlist *tmp_sg;
3272
SGDescriptor_struct *curr_sg;
3273
drive_info_struct *drv;
3274
int i, dir;
3275
int sg_index = 0;
3276
int chained = 0;
3277
3278
queue:
3279
creq = blk_peek_request(q);
3280
if (!creq)
3281
goto startio;
3282
3283
BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3284
3285
c = cmd_alloc(h);
3286
if (!c)
3287
goto full;
3288
3289
blk_start_request(creq);
3290
3291
tmp_sg = h->scatter_list[c->cmdindex];
3292
spin_unlock_irq(q->queue_lock);
3293
3294
c->cmd_type = CMD_RWREQ;
3295
c->rq = creq;
3296
3297
/* fill in the request */
3298
drv = creq->rq_disk->private_data;
3299
c->Header.ReplyQueue = 0; /* unused in simple mode */
3300
/* got command from pool, so use the command block index instead */
3301
/* for direct lookups. */
3302
/* The first 2 bits are reserved for controller error reporting. */
3303
cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3304
cciss_mark_tag_indexed(&c->Header.Tag.lower);
3305
memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3306
c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3307
c->Request.Type.Type = TYPE_CMD; /* It is a command. */
3308
c->Request.Type.Attribute = ATTR_SIMPLE;
3309
c->Request.Type.Direction =
3310
(rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3311
c->Request.Timeout = 0; /* Don't time out */
3312
c->Request.CDB[0] =
3313
(rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3314
start_blk = blk_rq_pos(creq);
3315
dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3316
(int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3317
sg_init_table(tmp_sg, h->maxsgentries);
3318
seg = blk_rq_map_sg(q, creq, tmp_sg);
3319
3320
/* get the DMA records for the setup */
3321
if (c->Request.Type.Direction == XFER_READ)
3322
dir = PCI_DMA_FROMDEVICE;
3323
else
3324
dir = PCI_DMA_TODEVICE;
3325
3326
curr_sg = c->SG;
3327
sg_index = 0;
3328
chained = 0;
3329
3330
for (i = 0; i < seg; i++) {
3331
if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3332
!chained && ((seg - i) > 1)) {
3333
/* Point to next chain block. */
3334
curr_sg = h->cmd_sg_list[c->cmdindex];
3335
sg_index = 0;
3336
chained = 1;
3337
}
3338
curr_sg[sg_index].Len = tmp_sg[i].length;
3339
temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3340
tmp_sg[i].offset,
3341
tmp_sg[i].length, dir);
3342
curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3343
curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3344
curr_sg[sg_index].Ext = 0; /* we are not chaining */
3345
++sg_index;
3346
}
3347
if (chained)
3348
cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3349
(seg - (h->max_cmd_sgentries - 1)) *
3350
sizeof(SGDescriptor_struct));
3351
3352
/* track how many SG entries we are using */
3353
if (seg > h->maxSG)
3354
h->maxSG = seg;
3355
3356
dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3357
"chained[%d]\n",
3358
blk_rq_sectors(creq), seg, chained);
3359
3360
c->Header.SGTotal = seg + chained;
3361
if (seg <= h->max_cmd_sgentries)
3362
c->Header.SGList = c->Header.SGTotal;
3363
else
3364
c->Header.SGList = h->max_cmd_sgentries;
3365
set_performant_mode(h, c);
3366
3367
if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3368
if(h->cciss_read == CCISS_READ_10) {
3369
c->Request.CDB[1] = 0;
3370
c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3371
c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3372
c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3373
c->Request.CDB[5] = start_blk & 0xff;
3374
c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3375
c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3376
c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3377
c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3378
} else {
3379
u32 upper32 = upper_32_bits(start_blk);
3380
3381
c->Request.CDBLen = 16;
3382
c->Request.CDB[1]= 0;
3383
c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3384
c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3385
c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3386
c->Request.CDB[5]= upper32 & 0xff;
3387
c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3388
c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3389
c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3390
c->Request.CDB[9]= start_blk & 0xff;
3391
c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3392
c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3393
c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3394
c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3395
c->Request.CDB[14] = c->Request.CDB[15] = 0;
3396
}
3397
} else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3398
c->Request.CDBLen = creq->cmd_len;
3399
memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3400
} else {
3401
dev_warn(&h->pdev->dev, "bad request type %d\n",
3402
creq->cmd_type);
3403
BUG();
3404
}
3405
3406
spin_lock_irq(q->queue_lock);
3407
3408
addQ(&h->reqQ, c);
3409
h->Qdepth++;
3410
if (h->Qdepth > h->maxQsinceinit)
3411
h->maxQsinceinit = h->Qdepth;
3412
3413
goto queue;
3414
full:
3415
blk_stop_queue(q);
3416
startio:
3417
/* We will already have the driver lock here so not need
3418
* to lock it.
3419
*/
3420
start_io(h);
3421
}
3422
3423
static inline unsigned long get_next_completion(ctlr_info_t *h)
3424
{
3425
return h->access.command_completed(h);
3426
}
3427
3428
static inline int interrupt_pending(ctlr_info_t *h)
3429
{
3430
return h->access.intr_pending(h);
3431
}
3432
3433
static inline long interrupt_not_for_us(ctlr_info_t *h)
3434
{
3435
return ((h->access.intr_pending(h) == 0) ||
3436
(h->interrupts_enabled == 0));
3437
}
3438
3439
static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3440
u32 raw_tag)
3441
{
3442
if (unlikely(tag_index >= h->nr_cmds)) {
3443
dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3444
return 1;
3445
}
3446
return 0;
3447
}
3448
3449
static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3450
u32 raw_tag)
3451
{
3452
removeQ(c);
3453
if (likely(c->cmd_type == CMD_RWREQ))
3454
complete_command(h, c, 0);
3455
else if (c->cmd_type == CMD_IOCTL_PEND)
3456
complete(c->waiting);
3457
#ifdef CONFIG_CISS_SCSI_TAPE
3458
else if (c->cmd_type == CMD_SCSI)
3459
complete_scsi_command(c, 0, raw_tag);
3460
#endif
3461
}
3462
3463
static inline u32 next_command(ctlr_info_t *h)
3464
{
3465
u32 a;
3466
3467
if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3468
return h->access.command_completed(h);
3469
3470
if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3471
a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3472
(h->reply_pool_head)++;
3473
h->commands_outstanding--;
3474
} else {
3475
a = FIFO_EMPTY;
3476
}
3477
/* Check for wraparound */
3478
if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3479
h->reply_pool_head = h->reply_pool;
3480
h->reply_pool_wraparound ^= 1;
3481
}
3482
return a;
3483
}
3484
3485
/* process completion of an indexed ("direct lookup") command */
3486
static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3487
{
3488
u32 tag_index;
3489
CommandList_struct *c;
3490
3491
tag_index = cciss_tag_to_index(raw_tag);
3492
if (bad_tag(h, tag_index, raw_tag))
3493
return next_command(h);
3494
c = h->cmd_pool + tag_index;
3495
finish_cmd(h, c, raw_tag);
3496
return next_command(h);
3497
}
3498
3499
/* process completion of a non-indexed command */
3500
static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3501
{
3502
CommandList_struct *c = NULL;
3503
__u32 busaddr_masked, tag_masked;
3504
3505
tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3506
list_for_each_entry(c, &h->cmpQ, list) {
3507
busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3508
if (busaddr_masked == tag_masked) {
3509
finish_cmd(h, c, raw_tag);
3510
return next_command(h);
3511
}
3512
}
3513
bad_tag(h, h->nr_cmds + 1, raw_tag);
3514
return next_command(h);
3515
}
3516
3517
/* Some controllers, like p400, will give us one interrupt
3518
* after a soft reset, even if we turned interrupts off.
3519
* Only need to check for this in the cciss_xxx_discard_completions
3520
* functions.
3521
*/
3522
static int ignore_bogus_interrupt(ctlr_info_t *h)
3523
{
3524
if (likely(!reset_devices))
3525
return 0;
3526
3527
if (likely(h->interrupts_enabled))
3528
return 0;
3529
3530
dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3531
"(known firmware bug.) Ignoring.\n");
3532
3533
return 1;
3534
}
3535
3536
static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3537
{
3538
ctlr_info_t *h = dev_id;
3539
unsigned long flags;
3540
u32 raw_tag;
3541
3542
if (ignore_bogus_interrupt(h))
3543
return IRQ_NONE;
3544
3545
if (interrupt_not_for_us(h))
3546
return IRQ_NONE;
3547
spin_lock_irqsave(&h->lock, flags);
3548
while (interrupt_pending(h)) {
3549
raw_tag = get_next_completion(h);
3550
while (raw_tag != FIFO_EMPTY)
3551
raw_tag = next_command(h);
3552
}
3553
spin_unlock_irqrestore(&h->lock, flags);
3554
return IRQ_HANDLED;
3555
}
3556
3557
static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3558
{
3559
ctlr_info_t *h = dev_id;
3560
unsigned long flags;
3561
u32 raw_tag;
3562
3563
if (ignore_bogus_interrupt(h))
3564
return IRQ_NONE;
3565
3566
spin_lock_irqsave(&h->lock, flags);
3567
raw_tag = get_next_completion(h);
3568
while (raw_tag != FIFO_EMPTY)
3569
raw_tag = next_command(h);
3570
spin_unlock_irqrestore(&h->lock, flags);
3571
return IRQ_HANDLED;
3572
}
3573
3574
static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3575
{
3576
ctlr_info_t *h = dev_id;
3577
unsigned long flags;
3578
u32 raw_tag;
3579
3580
if (interrupt_not_for_us(h))
3581
return IRQ_NONE;
3582
spin_lock_irqsave(&h->lock, flags);
3583
while (interrupt_pending(h)) {
3584
raw_tag = get_next_completion(h);
3585
while (raw_tag != FIFO_EMPTY) {
3586
if (cciss_tag_contains_index(raw_tag))
3587
raw_tag = process_indexed_cmd(h, raw_tag);
3588
else
3589
raw_tag = process_nonindexed_cmd(h, raw_tag);
3590
}
3591
}
3592
spin_unlock_irqrestore(&h->lock, flags);
3593
return IRQ_HANDLED;
3594
}
3595
3596
/* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3597
* check the interrupt pending register because it is not set.
3598
*/
3599
static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3600
{
3601
ctlr_info_t *h = dev_id;
3602
unsigned long flags;
3603
u32 raw_tag;
3604
3605
spin_lock_irqsave(&h->lock, flags);
3606
raw_tag = get_next_completion(h);
3607
while (raw_tag != FIFO_EMPTY) {
3608
if (cciss_tag_contains_index(raw_tag))
3609
raw_tag = process_indexed_cmd(h, raw_tag);
3610
else
3611
raw_tag = process_nonindexed_cmd(h, raw_tag);
3612
}
3613
spin_unlock_irqrestore(&h->lock, flags);
3614
return IRQ_HANDLED;
3615
}
3616
3617
/**
3618
* add_to_scan_list() - add controller to rescan queue
3619
* @h: Pointer to the controller.
3620
*
3621
* Adds the controller to the rescan queue if not already on the queue.
3622
*
3623
* returns 1 if added to the queue, 0 if skipped (could be on the
3624
* queue already, or the controller could be initializing or shutting
3625
* down).
3626
**/
3627
static int add_to_scan_list(struct ctlr_info *h)
3628
{
3629
struct ctlr_info *test_h;
3630
int found = 0;
3631
int ret = 0;
3632
3633
if (h->busy_initializing)
3634
return 0;
3635
3636
if (!mutex_trylock(&h->busy_shutting_down))
3637
return 0;
3638
3639
mutex_lock(&scan_mutex);
3640
list_for_each_entry(test_h, &scan_q, scan_list) {
3641
if (test_h == h) {
3642
found = 1;
3643
break;
3644
}
3645
}
3646
if (!found && !h->busy_scanning) {
3647
INIT_COMPLETION(h->scan_wait);
3648
list_add_tail(&h->scan_list, &scan_q);
3649
ret = 1;
3650
}
3651
mutex_unlock(&scan_mutex);
3652
mutex_unlock(&h->busy_shutting_down);
3653
3654
return ret;
3655
}
3656
3657
/**
3658
* remove_from_scan_list() - remove controller from rescan queue
3659
* @h: Pointer to the controller.
3660
*
3661
* Removes the controller from the rescan queue if present. Blocks if
3662
* the controller is currently conducting a rescan. The controller
3663
* can be in one of three states:
3664
* 1. Doesn't need a scan
3665
* 2. On the scan list, but not scanning yet (we remove it)
3666
* 3. Busy scanning (and not on the list). In this case we want to wait for
3667
* the scan to complete to make sure the scanning thread for this
3668
* controller is completely idle.
3669
**/
3670
static void remove_from_scan_list(struct ctlr_info *h)
3671
{
3672
struct ctlr_info *test_h, *tmp_h;
3673
3674
mutex_lock(&scan_mutex);
3675
list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3676
if (test_h == h) { /* state 2. */
3677
list_del(&h->scan_list);
3678
complete_all(&h->scan_wait);
3679
mutex_unlock(&scan_mutex);
3680
return;
3681
}
3682
}
3683
if (h->busy_scanning) { /* state 3. */
3684
mutex_unlock(&scan_mutex);
3685
wait_for_completion(&h->scan_wait);
3686
} else { /* state 1, nothing to do. */
3687
mutex_unlock(&scan_mutex);
3688
}
3689
}
3690
3691
/**
3692
* scan_thread() - kernel thread used to rescan controllers
3693
* @data: Ignored.
3694
*
3695
* A kernel thread used scan for drive topology changes on
3696
* controllers. The thread processes only one controller at a time
3697
* using a queue. Controllers are added to the queue using
3698
* add_to_scan_list() and removed from the queue either after done
3699
* processing or using remove_from_scan_list().
3700
*
3701
* returns 0.
3702
**/
3703
static int scan_thread(void *data)
3704
{
3705
struct ctlr_info *h;
3706
3707
while (1) {
3708
set_current_state(TASK_INTERRUPTIBLE);
3709
schedule();
3710
if (kthread_should_stop())
3711
break;
3712
3713
while (1) {
3714
mutex_lock(&scan_mutex);
3715
if (list_empty(&scan_q)) {
3716
mutex_unlock(&scan_mutex);
3717
break;
3718
}
3719
3720
h = list_entry(scan_q.next,
3721
struct ctlr_info,
3722
scan_list);
3723
list_del(&h->scan_list);
3724
h->busy_scanning = 1;
3725
mutex_unlock(&scan_mutex);
3726
3727
rebuild_lun_table(h, 0, 0);
3728
complete_all(&h->scan_wait);
3729
mutex_lock(&scan_mutex);
3730
h->busy_scanning = 0;
3731
mutex_unlock(&scan_mutex);
3732
}
3733
}
3734
3735
return 0;
3736
}
3737
3738
static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3739
{
3740
if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3741
return 0;
3742
3743
switch (c->err_info->SenseInfo[12]) {
3744
case STATE_CHANGED:
3745
dev_warn(&h->pdev->dev, "a state change "
3746
"detected, command retried\n");
3747
return 1;
3748
break;
3749
case LUN_FAILED:
3750
dev_warn(&h->pdev->dev, "LUN failure "
3751
"detected, action required\n");
3752
return 1;
3753
break;
3754
case REPORT_LUNS_CHANGED:
3755
dev_warn(&h->pdev->dev, "report LUN data changed\n");
3756
/*
3757
* Here, we could call add_to_scan_list and wake up the scan thread,
3758
* except that it's quite likely that we will get more than one
3759
* REPORT_LUNS_CHANGED condition in quick succession, which means
3760
* that those which occur after the first one will likely happen
3761
* *during* the scan_thread's rescan. And the rescan code is not
3762
* robust enough to restart in the middle, undoing what it has already
3763
* done, and it's not clear that it's even possible to do this, since
3764
* part of what it does is notify the block layer, which starts
3765
* doing it's own i/o to read partition tables and so on, and the
3766
* driver doesn't have visibility to know what might need undoing.
3767
* In any event, if possible, it is horribly complicated to get right
3768
* so we just don't do it for now.
3769
*
3770
* Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3771
*/
3772
return 1;
3773
break;
3774
case POWER_OR_RESET:
3775
dev_warn(&h->pdev->dev,
3776
"a power on or device reset detected\n");
3777
return 1;
3778
break;
3779
case UNIT_ATTENTION_CLEARED:
3780
dev_warn(&h->pdev->dev,
3781
"unit attention cleared by another initiator\n");
3782
return 1;
3783
break;
3784
default:
3785
dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3786
return 1;
3787
}
3788
}
3789
3790
/*
3791
* We cannot read the structure directly, for portability we must use
3792
* the io functions.
3793
* This is for debug only.
3794
*/
3795
static void print_cfg_table(ctlr_info_t *h)
3796
{
3797
int i;
3798
char temp_name[17];
3799
CfgTable_struct *tb = h->cfgtable;
3800
3801
dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3802
dev_dbg(&h->pdev->dev, "------------------------------------\n");
3803
for (i = 0; i < 4; i++)
3804
temp_name[i] = readb(&(tb->Signature[i]));
3805
temp_name[4] = '\0';
3806
dev_dbg(&h->pdev->dev, " Signature = %s\n", temp_name);
3807
dev_dbg(&h->pdev->dev, " Spec Number = %d\n",
3808
readl(&(tb->SpecValence)));
3809
dev_dbg(&h->pdev->dev, " Transport methods supported = 0x%x\n",
3810
readl(&(tb->TransportSupport)));
3811
dev_dbg(&h->pdev->dev, " Transport methods active = 0x%x\n",
3812
readl(&(tb->TransportActive)));
3813
dev_dbg(&h->pdev->dev, " Requested transport Method = 0x%x\n",
3814
readl(&(tb->HostWrite.TransportRequest)));
3815
dev_dbg(&h->pdev->dev, " Coalesce Interrupt Delay = 0x%x\n",
3816
readl(&(tb->HostWrite.CoalIntDelay)));
3817
dev_dbg(&h->pdev->dev, " Coalesce Interrupt Count = 0x%x\n",
3818
readl(&(tb->HostWrite.CoalIntCount)));
3819
dev_dbg(&h->pdev->dev, " Max outstanding commands = 0x%d\n",
3820
readl(&(tb->CmdsOutMax)));
3821
dev_dbg(&h->pdev->dev, " Bus Types = 0x%x\n",
3822
readl(&(tb->BusTypes)));
3823
for (i = 0; i < 16; i++)
3824
temp_name[i] = readb(&(tb->ServerName[i]));
3825
temp_name[16] = '\0';
3826
dev_dbg(&h->pdev->dev, " Server Name = %s\n", temp_name);
3827
dev_dbg(&h->pdev->dev, " Heartbeat Counter = 0x%x\n\n\n",
3828
readl(&(tb->HeartBeat)));
3829
}
3830
3831
static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3832
{
3833
int i, offset, mem_type, bar_type;
3834
if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3835
return 0;
3836
offset = 0;
3837
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3838
bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3839
if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3840
offset += 4;
3841
else {
3842
mem_type = pci_resource_flags(pdev, i) &
3843
PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3844
switch (mem_type) {
3845
case PCI_BASE_ADDRESS_MEM_TYPE_32:
3846
case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3847
offset += 4; /* 32 bit */
3848
break;
3849
case PCI_BASE_ADDRESS_MEM_TYPE_64:
3850
offset += 8;
3851
break;
3852
default: /* reserved in PCI 2.2 */
3853
dev_warn(&pdev->dev,
3854
"Base address is invalid\n");
3855
return -1;
3856
break;
3857
}
3858
}
3859
if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3860
return i + 1;
3861
}
3862
return -1;
3863
}
3864
3865
/* Fill in bucket_map[], given nsgs (the max number of
3866
* scatter gather elements supported) and bucket[],
3867
* which is an array of 8 integers. The bucket[] array
3868
* contains 8 different DMA transfer sizes (in 16
3869
* byte increments) which the controller uses to fetch
3870
* commands. This function fills in bucket_map[], which
3871
* maps a given number of scatter gather elements to one of
3872
* the 8 DMA transfer sizes. The point of it is to allow the
3873
* controller to only do as much DMA as needed to fetch the
3874
* command, with the DMA transfer size encoded in the lower
3875
* bits of the command address.
3876
*/
3877
static void calc_bucket_map(int bucket[], int num_buckets,
3878
int nsgs, int *bucket_map)
3879
{
3880
int i, j, b, size;
3881
3882
/* even a command with 0 SGs requires 4 blocks */
3883
#define MINIMUM_TRANSFER_BLOCKS 4
3884
#define NUM_BUCKETS 8
3885
/* Note, bucket_map must have nsgs+1 entries. */
3886
for (i = 0; i <= nsgs; i++) {
3887
/* Compute size of a command with i SG entries */
3888
size = i + MINIMUM_TRANSFER_BLOCKS;
3889
b = num_buckets; /* Assume the biggest bucket */
3890
/* Find the bucket that is just big enough */
3891
for (j = 0; j < 8; j++) {
3892
if (bucket[j] >= size) {
3893
b = j;
3894
break;
3895
}
3896
}
3897
/* for a command with i SG entries, use bucket b. */
3898
bucket_map[i] = b;
3899
}
3900
}
3901
3902
static void __devinit cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3903
{
3904
int i;
3905
3906
/* under certain very rare conditions, this can take awhile.
3907
* (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3908
* as we enter this code.) */
3909
for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3910
if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3911
break;
3912
usleep_range(10000, 20000);
3913
}
3914
}
3915
3916
static __devinit void cciss_enter_performant_mode(ctlr_info_t *h,
3917
u32 use_short_tags)
3918
{
3919
/* This is a bit complicated. There are 8 registers on
3920
* the controller which we write to to tell it 8 different
3921
* sizes of commands which there may be. It's a way of
3922
* reducing the DMA done to fetch each command. Encoded into
3923
* each command's tag are 3 bits which communicate to the controller
3924
* which of the eight sizes that command fits within. The size of
3925
* each command depends on how many scatter gather entries there are.
3926
* Each SG entry requires 16 bytes. The eight registers are programmed
3927
* with the number of 16-byte blocks a command of that size requires.
3928
* The smallest command possible requires 5 such 16 byte blocks.
3929
* the largest command possible requires MAXSGENTRIES + 4 16-byte
3930
* blocks. Note, this only extends to the SG entries contained
3931
* within the command block, and does not extend to chained blocks
3932
* of SG elements. bft[] contains the eight values we write to
3933
* the registers. They are not evenly distributed, but have more
3934
* sizes for small commands, and fewer sizes for larger commands.
3935
*/
3936
__u32 trans_offset;
3937
int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3938
/*
3939
* 5 = 1 s/g entry or 4k
3940
* 6 = 2 s/g entry or 8k
3941
* 8 = 4 s/g entry or 16k
3942
* 10 = 6 s/g entry or 24k
3943
*/
3944
unsigned long register_value;
3945
BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3946
3947
h->reply_pool_wraparound = 1; /* spec: init to 1 */
3948
3949
/* Controller spec: zero out this buffer. */
3950
memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3951
h->reply_pool_head = h->reply_pool;
3952
3953
trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3954
calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3955
h->blockFetchTable);
3956
writel(bft[0], &h->transtable->BlockFetch0);
3957
writel(bft[1], &h->transtable->BlockFetch1);
3958
writel(bft[2], &h->transtable->BlockFetch2);
3959
writel(bft[3], &h->transtable->BlockFetch3);
3960
writel(bft[4], &h->transtable->BlockFetch4);
3961
writel(bft[5], &h->transtable->BlockFetch5);
3962
writel(bft[6], &h->transtable->BlockFetch6);
3963
writel(bft[7], &h->transtable->BlockFetch7);
3964
3965
/* size of controller ring buffer */
3966
writel(h->max_commands, &h->transtable->RepQSize);
3967
writel(1, &h->transtable->RepQCount);
3968
writel(0, &h->transtable->RepQCtrAddrLow32);
3969
writel(0, &h->transtable->RepQCtrAddrHigh32);
3970
writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3971
writel(0, &h->transtable->RepQAddr0High32);
3972
writel(CFGTBL_Trans_Performant | use_short_tags,
3973
&(h->cfgtable->HostWrite.TransportRequest));
3974
3975
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3976
cciss_wait_for_mode_change_ack(h);
3977
register_value = readl(&(h->cfgtable->TransportActive));
3978
if (!(register_value & CFGTBL_Trans_Performant))
3979
dev_warn(&h->pdev->dev, "cciss: unable to get board into"
3980
" performant mode\n");
3981
}
3982
3983
static void __devinit cciss_put_controller_into_performant_mode(ctlr_info_t *h)
3984
{
3985
__u32 trans_support;
3986
3987
dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
3988
/* Attempt to put controller into performant mode if supported */
3989
/* Does board support performant mode? */
3990
trans_support = readl(&(h->cfgtable->TransportSupport));
3991
if (!(trans_support & PERFORMANT_MODE))
3992
return;
3993
3994
dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
3995
/* Performant mode demands commands on a 32 byte boundary
3996
* pci_alloc_consistent aligns on page boundarys already.
3997
* Just need to check if divisible by 32
3998
*/
3999
if ((sizeof(CommandList_struct) % 32) != 0) {
4000
dev_warn(&h->pdev->dev, "%s %d %s\n",
4001
"cciss info: command size[",
4002
(int)sizeof(CommandList_struct),
4003
"] not divisible by 32, no performant mode..\n");
4004
return;
4005
}
4006
4007
/* Performant mode ring buffer and supporting data structures */
4008
h->reply_pool = (__u64 *)pci_alloc_consistent(
4009
h->pdev, h->max_commands * sizeof(__u64),
4010
&(h->reply_pool_dhandle));
4011
4012
/* Need a block fetch table for performant mode */
4013
h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4014
sizeof(__u32)), GFP_KERNEL);
4015
4016
if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4017
goto clean_up;
4018
4019
cciss_enter_performant_mode(h,
4020
trans_support & CFGTBL_Trans_use_short_tags);
4021
4022
/* Change the access methods to the performant access methods */
4023
h->access = SA5_performant_access;
4024
h->transMethod = CFGTBL_Trans_Performant;
4025
4026
return;
4027
clean_up:
4028
kfree(h->blockFetchTable);
4029
if (h->reply_pool)
4030
pci_free_consistent(h->pdev,
4031
h->max_commands * sizeof(__u64),
4032
h->reply_pool,
4033
h->reply_pool_dhandle);
4034
return;
4035
4036
} /* cciss_put_controller_into_performant_mode */
4037
4038
/* If MSI/MSI-X is supported by the kernel we will try to enable it on
4039
* controllers that are capable. If not, we use IO-APIC mode.
4040
*/
4041
4042
static void __devinit cciss_interrupt_mode(ctlr_info_t *h)
4043
{
4044
#ifdef CONFIG_PCI_MSI
4045
int err;
4046
struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4047
{0, 2}, {0, 3}
4048
};
4049
4050
/* Some boards advertise MSI but don't really support it */
4051
if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4052
(h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4053
goto default_int_mode;
4054
4055
if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4056
err = pci_enable_msix(h->pdev, cciss_msix_entries, 4);
4057
if (!err) {
4058
h->intr[0] = cciss_msix_entries[0].vector;
4059
h->intr[1] = cciss_msix_entries[1].vector;
4060
h->intr[2] = cciss_msix_entries[2].vector;
4061
h->intr[3] = cciss_msix_entries[3].vector;
4062
h->msix_vector = 1;
4063
return;
4064
}
4065
if (err > 0) {
4066
dev_warn(&h->pdev->dev,
4067
"only %d MSI-X vectors available\n", err);
4068
goto default_int_mode;
4069
} else {
4070
dev_warn(&h->pdev->dev,
4071
"MSI-X init failed %d\n", err);
4072
goto default_int_mode;
4073
}
4074
}
4075
if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4076
if (!pci_enable_msi(h->pdev))
4077
h->msi_vector = 1;
4078
else
4079
dev_warn(&h->pdev->dev, "MSI init failed\n");
4080
}
4081
default_int_mode:
4082
#endif /* CONFIG_PCI_MSI */
4083
/* if we get here we're going to use the default interrupt mode */
4084
h->intr[PERF_MODE_INT] = h->pdev->irq;
4085
return;
4086
}
4087
4088
static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4089
{
4090
int i;
4091
u32 subsystem_vendor_id, subsystem_device_id;
4092
4093
subsystem_vendor_id = pdev->subsystem_vendor;
4094
subsystem_device_id = pdev->subsystem_device;
4095
*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4096
subsystem_vendor_id;
4097
4098
for (i = 0; i < ARRAY_SIZE(products); i++)
4099
if (*board_id == products[i].board_id)
4100
return i;
4101
dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4102
*board_id);
4103
return -ENODEV;
4104
}
4105
4106
static inline bool cciss_board_disabled(ctlr_info_t *h)
4107
{
4108
u16 command;
4109
4110
(void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4111
return ((command & PCI_COMMAND_MEMORY) == 0);
4112
}
4113
4114
static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4115
unsigned long *memory_bar)
4116
{
4117
int i;
4118
4119
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4120
if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4121
/* addressing mode bits already removed */
4122
*memory_bar = pci_resource_start(pdev, i);
4123
dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4124
*memory_bar);
4125
return 0;
4126
}
4127
dev_warn(&pdev->dev, "no memory BAR found\n");
4128
return -ENODEV;
4129
}
4130
4131
static int __devinit cciss_wait_for_board_state(struct pci_dev *pdev,
4132
void __iomem *vaddr, int wait_for_ready)
4133
#define BOARD_READY 1
4134
#define BOARD_NOT_READY 0
4135
{
4136
int i, iterations;
4137
u32 scratchpad;
4138
4139
if (wait_for_ready)
4140
iterations = CCISS_BOARD_READY_ITERATIONS;
4141
else
4142
iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4143
4144
for (i = 0; i < iterations; i++) {
4145
scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4146
if (wait_for_ready) {
4147
if (scratchpad == CCISS_FIRMWARE_READY)
4148
return 0;
4149
} else {
4150
if (scratchpad != CCISS_FIRMWARE_READY)
4151
return 0;
4152
}
4153
msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4154
}
4155
dev_warn(&pdev->dev, "board not ready, timed out.\n");
4156
return -ENODEV;
4157
}
4158
4159
static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
4160
void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4161
u64 *cfg_offset)
4162
{
4163
*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4164
*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4165
*cfg_base_addr &= (u32) 0x0000ffff;
4166
*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4167
if (*cfg_base_addr_index == -1) {
4168
dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4169
"*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4170
return -ENODEV;
4171
}
4172
return 0;
4173
}
4174
4175
static int __devinit cciss_find_cfgtables(ctlr_info_t *h)
4176
{
4177
u64 cfg_offset;
4178
u32 cfg_base_addr;
4179
u64 cfg_base_addr_index;
4180
u32 trans_offset;
4181
int rc;
4182
4183
rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4184
&cfg_base_addr_index, &cfg_offset);
4185
if (rc)
4186
return rc;
4187
h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4188
cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable));
4189
if (!h->cfgtable)
4190
return -ENOMEM;
4191
rc = write_driver_ver_to_cfgtable(h->cfgtable);
4192
if (rc)
4193
return rc;
4194
/* Find performant mode table. */
4195
trans_offset = readl(&h->cfgtable->TransMethodOffset);
4196
h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4197
cfg_base_addr_index)+cfg_offset+trans_offset,
4198
sizeof(*h->transtable));
4199
if (!h->transtable)
4200
return -ENOMEM;
4201
return 0;
4202
}
4203
4204
static void __devinit cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4205
{
4206
h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4207
4208
/* Limit commands in memory limited kdump scenario. */
4209
if (reset_devices && h->max_commands > 32)
4210
h->max_commands = 32;
4211
4212
if (h->max_commands < 16) {
4213
dev_warn(&h->pdev->dev, "Controller reports "
4214
"max supported commands of %d, an obvious lie. "
4215
"Using 16. Ensure that firmware is up to date.\n",
4216
h->max_commands);
4217
h->max_commands = 16;
4218
}
4219
}
4220
4221
/* Interrogate the hardware for some limits:
4222
* max commands, max SG elements without chaining, and with chaining,
4223
* SG chain block size, etc.
4224
*/
4225
static void __devinit cciss_find_board_params(ctlr_info_t *h)
4226
{
4227
cciss_get_max_perf_mode_cmds(h);
4228
h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4229
h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4230
/*
4231
* Limit in-command s/g elements to 32 save dma'able memory.
4232
* Howvever spec says if 0, use 31
4233
*/
4234
h->max_cmd_sgentries = 31;
4235
if (h->maxsgentries > 512) {
4236
h->max_cmd_sgentries = 32;
4237
h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4238
h->maxsgentries--; /* save one for chain pointer */
4239
} else {
4240
h->maxsgentries = 31; /* default to traditional values */
4241
h->chainsize = 0;
4242
}
4243
}
4244
4245
static inline bool CISS_signature_present(ctlr_info_t *h)
4246
{
4247
if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
4248
(readb(&h->cfgtable->Signature[1]) != 'I') ||
4249
(readb(&h->cfgtable->Signature[2]) != 'S') ||
4250
(readb(&h->cfgtable->Signature[3]) != 'S')) {
4251
dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4252
return false;
4253
}
4254
return true;
4255
}
4256
4257
/* Need to enable prefetch in the SCSI core for 6400 in x86 */
4258
static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4259
{
4260
#ifdef CONFIG_X86
4261
u32 prefetch;
4262
4263
prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4264
prefetch |= 0x100;
4265
writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4266
#endif
4267
}
4268
4269
/* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4270
* in a prefetch beyond physical memory.
4271
*/
4272
static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4273
{
4274
u32 dma_prefetch;
4275
__u32 dma_refetch;
4276
4277
if (h->board_id != 0x3225103C)
4278
return;
4279
dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4280
dma_prefetch |= 0x8000;
4281
writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4282
pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4283
dma_refetch |= 0x1;
4284
pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4285
}
4286
4287
static int __devinit cciss_pci_init(ctlr_info_t *h)
4288
{
4289
int prod_index, err;
4290
4291
prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4292
if (prod_index < 0)
4293
return -ENODEV;
4294
h->product_name = products[prod_index].product_name;
4295
h->access = *(products[prod_index].access);
4296
4297
if (cciss_board_disabled(h)) {
4298
dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4299
return -ENODEV;
4300
}
4301
err = pci_enable_device(h->pdev);
4302
if (err) {
4303
dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4304
return err;
4305
}
4306
4307
err = pci_request_regions(h->pdev, "cciss");
4308
if (err) {
4309
dev_warn(&h->pdev->dev,
4310
"Cannot obtain PCI resources, aborting\n");
4311
return err;
4312
}
4313
4314
dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4315
dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4316
4317
/* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4318
* else we use the IO-APIC interrupt assigned to us by system ROM.
4319
*/
4320
cciss_interrupt_mode(h);
4321
err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4322
if (err)
4323
goto err_out_free_res;
4324
h->vaddr = remap_pci_mem(h->paddr, 0x250);
4325
if (!h->vaddr) {
4326
err = -ENOMEM;
4327
goto err_out_free_res;
4328
}
4329
err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4330
if (err)
4331
goto err_out_free_res;
4332
err = cciss_find_cfgtables(h);
4333
if (err)
4334
goto err_out_free_res;
4335
print_cfg_table(h);
4336
cciss_find_board_params(h);
4337
4338
if (!CISS_signature_present(h)) {
4339
err = -ENODEV;
4340
goto err_out_free_res;
4341
}
4342
cciss_enable_scsi_prefetch(h);
4343
cciss_p600_dma_prefetch_quirk(h);
4344
cciss_put_controller_into_performant_mode(h);
4345
return 0;
4346
4347
err_out_free_res:
4348
/*
4349
* Deliberately omit pci_disable_device(): it does something nasty to
4350
* Smart Array controllers that pci_enable_device does not undo
4351
*/
4352
if (h->transtable)
4353
iounmap(h->transtable);
4354
if (h->cfgtable)
4355
iounmap(h->cfgtable);
4356
if (h->vaddr)
4357
iounmap(h->vaddr);
4358
pci_release_regions(h->pdev);
4359
return err;
4360
}
4361
4362
/* Function to find the first free pointer into our hba[] array
4363
* Returns -1 if no free entries are left.
4364
*/
4365
static int alloc_cciss_hba(struct pci_dev *pdev)
4366
{
4367
int i;
4368
4369
for (i = 0; i < MAX_CTLR; i++) {
4370
if (!hba[i]) {
4371
ctlr_info_t *h;
4372
4373
h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4374
if (!h)
4375
goto Enomem;
4376
hba[i] = h;
4377
return i;
4378
}
4379
}
4380
dev_warn(&pdev->dev, "This driver supports a maximum"
4381
" of %d controllers.\n", MAX_CTLR);
4382
return -1;
4383
Enomem:
4384
dev_warn(&pdev->dev, "out of memory.\n");
4385
return -1;
4386
}
4387
4388
static void free_hba(ctlr_info_t *h)
4389
{
4390
int i;
4391
4392
hba[h->ctlr] = NULL;
4393
for (i = 0; i < h->highest_lun + 1; i++)
4394
if (h->gendisk[i] != NULL)
4395
put_disk(h->gendisk[i]);
4396
kfree(h);
4397
}
4398
4399
/* Send a message CDB to the firmware. */
4400
static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4401
{
4402
typedef struct {
4403
CommandListHeader_struct CommandHeader;
4404
RequestBlock_struct Request;
4405
ErrDescriptor_struct ErrorDescriptor;
4406
} Command;
4407
static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4408
Command *cmd;
4409
dma_addr_t paddr64;
4410
uint32_t paddr32, tag;
4411
void __iomem *vaddr;
4412
int i, err;
4413
4414
vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4415
if (vaddr == NULL)
4416
return -ENOMEM;
4417
4418
/* The Inbound Post Queue only accepts 32-bit physical addresses for the
4419
CCISS commands, so they must be allocated from the lower 4GiB of
4420
memory. */
4421
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4422
if (err) {
4423
iounmap(vaddr);
4424
return -ENOMEM;
4425
}
4426
4427
cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4428
if (cmd == NULL) {
4429
iounmap(vaddr);
4430
return -ENOMEM;
4431
}
4432
4433
/* This must fit, because of the 32-bit consistent DMA mask. Also,
4434
although there's no guarantee, we assume that the address is at
4435
least 4-byte aligned (most likely, it's page-aligned). */
4436
paddr32 = paddr64;
4437
4438
cmd->CommandHeader.ReplyQueue = 0;
4439
cmd->CommandHeader.SGList = 0;
4440
cmd->CommandHeader.SGTotal = 0;
4441
cmd->CommandHeader.Tag.lower = paddr32;
4442
cmd->CommandHeader.Tag.upper = 0;
4443
memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4444
4445
cmd->Request.CDBLen = 16;
4446
cmd->Request.Type.Type = TYPE_MSG;
4447
cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4448
cmd->Request.Type.Direction = XFER_NONE;
4449
cmd->Request.Timeout = 0; /* Don't time out */
4450
cmd->Request.CDB[0] = opcode;
4451
cmd->Request.CDB[1] = type;
4452
memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4453
4454
cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4455
cmd->ErrorDescriptor.Addr.upper = 0;
4456
cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4457
4458
writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4459
4460
for (i = 0; i < 10; i++) {
4461
tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4462
if ((tag & ~3) == paddr32)
4463
break;
4464
msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4465
}
4466
4467
iounmap(vaddr);
4468
4469
/* we leak the DMA buffer here ... no choice since the controller could
4470
still complete the command. */
4471
if (i == 10) {
4472
dev_err(&pdev->dev,
4473
"controller message %02x:%02x timed out\n",
4474
opcode, type);
4475
return -ETIMEDOUT;
4476
}
4477
4478
pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4479
4480
if (tag & 2) {
4481
dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4482
opcode, type);
4483
return -EIO;
4484
}
4485
4486
dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4487
opcode, type);
4488
return 0;
4489
}
4490
4491
#define cciss_noop(p) cciss_message(p, 3, 0)
4492
4493
static int cciss_controller_hard_reset(struct pci_dev *pdev,
4494
void * __iomem vaddr, u32 use_doorbell)
4495
{
4496
u16 pmcsr;
4497
int pos;
4498
4499
if (use_doorbell) {
4500
/* For everything after the P600, the PCI power state method
4501
* of resetting the controller doesn't work, so we have this
4502
* other way using the doorbell register.
4503
*/
4504
dev_info(&pdev->dev, "using doorbell to reset controller\n");
4505
writel(use_doorbell, vaddr + SA5_DOORBELL);
4506
} else { /* Try to do it the PCI power state way */
4507
4508
/* Quoting from the Open CISS Specification: "The Power
4509
* Management Control/Status Register (CSR) controls the power
4510
* state of the device. The normal operating state is D0,
4511
* CSR=00h. The software off state is D3, CSR=03h. To reset
4512
* the controller, place the interface device in D3 then to D0,
4513
* this causes a secondary PCI reset which will reset the
4514
* controller." */
4515
4516
pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4517
if (pos == 0) {
4518
dev_err(&pdev->dev,
4519
"cciss_controller_hard_reset: "
4520
"PCI PM not supported\n");
4521
return -ENODEV;
4522
}
4523
dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4524
/* enter the D3hot power management state */
4525
pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4526
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4527
pmcsr |= PCI_D3hot;
4528
pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4529
4530
msleep(500);
4531
4532
/* enter the D0 power management state */
4533
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4534
pmcsr |= PCI_D0;
4535
pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4536
}
4537
return 0;
4538
}
4539
4540
static __devinit void init_driver_version(char *driver_version, int len)
4541
{
4542
memset(driver_version, 0, len);
4543
strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4544
}
4545
4546
static __devinit int write_driver_ver_to_cfgtable(
4547
CfgTable_struct __iomem *cfgtable)
4548
{
4549
char *driver_version;
4550
int i, size = sizeof(cfgtable->driver_version);
4551
4552
driver_version = kmalloc(size, GFP_KERNEL);
4553
if (!driver_version)
4554
return -ENOMEM;
4555
4556
init_driver_version(driver_version, size);
4557
for (i = 0; i < size; i++)
4558
writeb(driver_version[i], &cfgtable->driver_version[i]);
4559
kfree(driver_version);
4560
return 0;
4561
}
4562
4563
static __devinit void read_driver_ver_from_cfgtable(
4564
CfgTable_struct __iomem *cfgtable, unsigned char *driver_ver)
4565
{
4566
int i;
4567
4568
for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4569
driver_ver[i] = readb(&cfgtable->driver_version[i]);
4570
}
4571
4572
static __devinit int controller_reset_failed(
4573
CfgTable_struct __iomem *cfgtable)
4574
{
4575
4576
char *driver_ver, *old_driver_ver;
4577
int rc, size = sizeof(cfgtable->driver_version);
4578
4579
old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4580
if (!old_driver_ver)
4581
return -ENOMEM;
4582
driver_ver = old_driver_ver + size;
4583
4584
/* After a reset, the 32 bytes of "driver version" in the cfgtable
4585
* should have been changed, otherwise we know the reset failed.
4586
*/
4587
init_driver_version(old_driver_ver, size);
4588
read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4589
rc = !memcmp(driver_ver, old_driver_ver, size);
4590
kfree(old_driver_ver);
4591
return rc;
4592
}
4593
4594
/* This does a hard reset of the controller using PCI power management
4595
* states or using the doorbell register. */
4596
static __devinit int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4597
{
4598
u64 cfg_offset;
4599
u32 cfg_base_addr;
4600
u64 cfg_base_addr_index;
4601
void __iomem *vaddr;
4602
unsigned long paddr;
4603
u32 misc_fw_support;
4604
int rc;
4605
CfgTable_struct __iomem *cfgtable;
4606
u32 use_doorbell;
4607
u32 board_id;
4608
u16 command_register;
4609
4610
/* For controllers as old a the p600, this is very nearly
4611
* the same thing as
4612
*
4613
* pci_save_state(pci_dev);
4614
* pci_set_power_state(pci_dev, PCI_D3hot);
4615
* pci_set_power_state(pci_dev, PCI_D0);
4616
* pci_restore_state(pci_dev);
4617
*
4618
* For controllers newer than the P600, the pci power state
4619
* method of resetting doesn't work so we have another way
4620
* using the doorbell register.
4621
*/
4622
4623
/* Exclude 640x boards. These are two pci devices in one slot
4624
* which share a battery backed cache module. One controls the
4625
* cache, the other accesses the cache through the one that controls
4626
* it. If we reset the one controlling the cache, the other will
4627
* likely not be happy. Just forbid resetting this conjoined mess.
4628
*/
4629
cciss_lookup_board_id(pdev, &board_id);
4630
if (!ctlr_is_resettable(board_id)) {
4631
dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
4632
"due to shared cache module.");
4633
return -ENODEV;
4634
}
4635
4636
/* if controller is soft- but not hard resettable... */
4637
if (!ctlr_is_hard_resettable(board_id))
4638
return -ENOTSUPP; /* try soft reset later. */
4639
4640
/* Save the PCI command register */
4641
pci_read_config_word(pdev, 4, &command_register);
4642
/* Turn the board off. This is so that later pci_restore_state()
4643
* won't turn the board on before the rest of config space is ready.
4644
*/
4645
pci_disable_device(pdev);
4646
pci_save_state(pdev);
4647
4648
/* find the first memory BAR, so we can find the cfg table */
4649
rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4650
if (rc)
4651
return rc;
4652
vaddr = remap_pci_mem(paddr, 0x250);
4653
if (!vaddr)
4654
return -ENOMEM;
4655
4656
/* find cfgtable in order to check if reset via doorbell is supported */
4657
rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4658
&cfg_base_addr_index, &cfg_offset);
4659
if (rc)
4660
goto unmap_vaddr;
4661
cfgtable = remap_pci_mem(pci_resource_start(pdev,
4662
cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4663
if (!cfgtable) {
4664
rc = -ENOMEM;
4665
goto unmap_vaddr;
4666
}
4667
rc = write_driver_ver_to_cfgtable(cfgtable);
4668
if (rc)
4669
goto unmap_vaddr;
4670
4671
/* If reset via doorbell register is supported, use that.
4672
* There are two such methods. Favor the newest method.
4673
*/
4674
misc_fw_support = readl(&cfgtable->misc_fw_support);
4675
use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4676
if (use_doorbell) {
4677
use_doorbell = DOORBELL_CTLR_RESET2;
4678
} else {
4679
use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4680
if (use_doorbell) {
4681
dev_warn(&pdev->dev, "Controller claims that "
4682
"'Bit 2 doorbell reset' is "
4683
"supported, but not 'bit 5 doorbell reset'. "
4684
"Firmware update is recommended.\n");
4685
rc = -ENOTSUPP; /* use the soft reset */
4686
goto unmap_cfgtable;
4687
}
4688
}
4689
4690
rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4691
if (rc)
4692
goto unmap_cfgtable;
4693
pci_restore_state(pdev);
4694
rc = pci_enable_device(pdev);
4695
if (rc) {
4696
dev_warn(&pdev->dev, "failed to enable device.\n");
4697
goto unmap_cfgtable;
4698
}
4699
pci_write_config_word(pdev, 4, command_register);
4700
4701
/* Some devices (notably the HP Smart Array 5i Controller)
4702
need a little pause here */
4703
msleep(CCISS_POST_RESET_PAUSE_MSECS);
4704
4705
/* Wait for board to become not ready, then ready. */
4706
dev_info(&pdev->dev, "Waiting for board to reset.\n");
4707
rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4708
if (rc) {
4709
dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4710
" Will try soft reset.\n");
4711
rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4712
goto unmap_cfgtable;
4713
}
4714
rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4715
if (rc) {
4716
dev_warn(&pdev->dev,
4717
"failed waiting for board to become ready "
4718
"after hard reset\n");
4719
goto unmap_cfgtable;
4720
}
4721
4722
rc = controller_reset_failed(vaddr);
4723
if (rc < 0)
4724
goto unmap_cfgtable;
4725
if (rc) {
4726
dev_warn(&pdev->dev, "Unable to successfully hard reset "
4727
"controller. Will try soft reset.\n");
4728
rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4729
} else {
4730
dev_info(&pdev->dev, "Board ready after hard reset.\n");
4731
}
4732
4733
unmap_cfgtable:
4734
iounmap(cfgtable);
4735
4736
unmap_vaddr:
4737
iounmap(vaddr);
4738
return rc;
4739
}
4740
4741
static __devinit int cciss_init_reset_devices(struct pci_dev *pdev)
4742
{
4743
int rc, i;
4744
4745
if (!reset_devices)
4746
return 0;
4747
4748
/* Reset the controller with a PCI power-cycle or via doorbell */
4749
rc = cciss_kdump_hard_reset_controller(pdev);
4750
4751
/* -ENOTSUPP here means we cannot reset the controller
4752
* but it's already (and still) up and running in
4753
* "performant mode". Or, it might be 640x, which can't reset
4754
* due to concerns about shared bbwc between 6402/6404 pair.
4755
*/
4756
if (rc == -ENOTSUPP)
4757
return rc; /* just try to do the kdump anyhow. */
4758
if (rc)
4759
return -ENODEV;
4760
4761
/* Now try to get the controller to respond to a no-op */
4762
dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4763
for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4764
if (cciss_noop(pdev) == 0)
4765
break;
4766
else
4767
dev_warn(&pdev->dev, "no-op failed%s\n",
4768
(i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4769
"; re-trying" : ""));
4770
msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4771
}
4772
return 0;
4773
}
4774
4775
static __devinit int cciss_allocate_cmd_pool(ctlr_info_t *h)
4776
{
4777
h->cmd_pool_bits = kmalloc(
4778
DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4779
sizeof(unsigned long), GFP_KERNEL);
4780
h->cmd_pool = pci_alloc_consistent(h->pdev,
4781
h->nr_cmds * sizeof(CommandList_struct),
4782
&(h->cmd_pool_dhandle));
4783
h->errinfo_pool = pci_alloc_consistent(h->pdev,
4784
h->nr_cmds * sizeof(ErrorInfo_struct),
4785
&(h->errinfo_pool_dhandle));
4786
if ((h->cmd_pool_bits == NULL)
4787
|| (h->cmd_pool == NULL)
4788
|| (h->errinfo_pool == NULL)) {
4789
dev_err(&h->pdev->dev, "out of memory");
4790
return -ENOMEM;
4791
}
4792
return 0;
4793
}
4794
4795
static __devinit int cciss_allocate_scatterlists(ctlr_info_t *h)
4796
{
4797
int i;
4798
4799
/* zero it, so that on free we need not know how many were alloc'ed */
4800
h->scatter_list = kzalloc(h->max_commands *
4801
sizeof(struct scatterlist *), GFP_KERNEL);
4802
if (!h->scatter_list)
4803
return -ENOMEM;
4804
4805
for (i = 0; i < h->nr_cmds; i++) {
4806
h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4807
h->maxsgentries, GFP_KERNEL);
4808
if (h->scatter_list[i] == NULL) {
4809
dev_err(&h->pdev->dev, "could not allocate "
4810
"s/g lists\n");
4811
return -ENOMEM;
4812
}
4813
}
4814
return 0;
4815
}
4816
4817
static void cciss_free_scatterlists(ctlr_info_t *h)
4818
{
4819
int i;
4820
4821
if (h->scatter_list) {
4822
for (i = 0; i < h->nr_cmds; i++)
4823
kfree(h->scatter_list[i]);
4824
kfree(h->scatter_list);
4825
}
4826
}
4827
4828
static void cciss_free_cmd_pool(ctlr_info_t *h)
4829
{
4830
kfree(h->cmd_pool_bits);
4831
if (h->cmd_pool)
4832
pci_free_consistent(h->pdev,
4833
h->nr_cmds * sizeof(CommandList_struct),
4834
h->cmd_pool, h->cmd_pool_dhandle);
4835
if (h->errinfo_pool)
4836
pci_free_consistent(h->pdev,
4837
h->nr_cmds * sizeof(ErrorInfo_struct),
4838
h->errinfo_pool, h->errinfo_pool_dhandle);
4839
}
4840
4841
static int cciss_request_irq(ctlr_info_t *h,
4842
irqreturn_t (*msixhandler)(int, void *),
4843
irqreturn_t (*intxhandler)(int, void *))
4844
{
4845
if (h->msix_vector || h->msi_vector) {
4846
if (!request_irq(h->intr[PERF_MODE_INT], msixhandler,
4847
IRQF_DISABLED, h->devname, h))
4848
return 0;
4849
dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4850
" for %s\n", h->intr[PERF_MODE_INT],
4851
h->devname);
4852
return -1;
4853
}
4854
4855
if (!request_irq(h->intr[PERF_MODE_INT], intxhandler,
4856
IRQF_DISABLED, h->devname, h))
4857
return 0;
4858
dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4859
h->intr[PERF_MODE_INT], h->devname);
4860
return -1;
4861
}
4862
4863
static int __devinit cciss_kdump_soft_reset(ctlr_info_t *h)
4864
{
4865
if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4866
dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4867
return -EIO;
4868
}
4869
4870
dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4871
if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4872
dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4873
return -1;
4874
}
4875
4876
dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4877
if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4878
dev_warn(&h->pdev->dev, "Board failed to become ready "
4879
"after soft reset.\n");
4880
return -1;
4881
}
4882
4883
return 0;
4884
}
4885
4886
static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4887
{
4888
int ctlr = h->ctlr;
4889
4890
free_irq(h->intr[PERF_MODE_INT], h);
4891
#ifdef CONFIG_PCI_MSI
4892
if (h->msix_vector)
4893
pci_disable_msix(h->pdev);
4894
else if (h->msi_vector)
4895
pci_disable_msi(h->pdev);
4896
#endif /* CONFIG_PCI_MSI */
4897
cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4898
cciss_free_scatterlists(h);
4899
cciss_free_cmd_pool(h);
4900
kfree(h->blockFetchTable);
4901
if (h->reply_pool)
4902
pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4903
h->reply_pool, h->reply_pool_dhandle);
4904
if (h->transtable)
4905
iounmap(h->transtable);
4906
if (h->cfgtable)
4907
iounmap(h->cfgtable);
4908
if (h->vaddr)
4909
iounmap(h->vaddr);
4910
unregister_blkdev(h->major, h->devname);
4911
cciss_destroy_hba_sysfs_entry(h);
4912
pci_release_regions(h->pdev);
4913
kfree(h);
4914
hba[ctlr] = NULL;
4915
}
4916
4917
/*
4918
* This is it. Find all the controllers and register them. I really hate
4919
* stealing all these major device numbers.
4920
* returns the number of block devices registered.
4921
*/
4922
static int __devinit cciss_init_one(struct pci_dev *pdev,
4923
const struct pci_device_id *ent)
4924
{
4925
int i;
4926
int j = 0;
4927
int rc;
4928
int try_soft_reset = 0;
4929
int dac, return_code;
4930
InquiryData_struct *inq_buff;
4931
ctlr_info_t *h;
4932
unsigned long flags;
4933
4934
rc = cciss_init_reset_devices(pdev);
4935
if (rc) {
4936
if (rc != -ENOTSUPP)
4937
return rc;
4938
/* If the reset fails in a particular way (it has no way to do
4939
* a proper hard reset, so returns -ENOTSUPP) we can try to do
4940
* a soft reset once we get the controller configured up to the
4941
* point that it can accept a command.
4942
*/
4943
try_soft_reset = 1;
4944
rc = 0;
4945
}
4946
4947
reinit_after_soft_reset:
4948
4949
i = alloc_cciss_hba(pdev);
4950
if (i < 0)
4951
return -1;
4952
4953
h = hba[i];
4954
h->pdev = pdev;
4955
h->busy_initializing = 1;
4956
INIT_LIST_HEAD(&h->cmpQ);
4957
INIT_LIST_HEAD(&h->reqQ);
4958
mutex_init(&h->busy_shutting_down);
4959
4960
if (cciss_pci_init(h) != 0)
4961
goto clean_no_release_regions;
4962
4963
sprintf(h->devname, "cciss%d", i);
4964
h->ctlr = i;
4965
4966
if (cciss_tape_cmds < 2)
4967
cciss_tape_cmds = 2;
4968
if (cciss_tape_cmds > 16)
4969
cciss_tape_cmds = 16;
4970
4971
init_completion(&h->scan_wait);
4972
4973
if (cciss_create_hba_sysfs_entry(h))
4974
goto clean0;
4975
4976
/* configure PCI DMA stuff */
4977
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4978
dac = 1;
4979
else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4980
dac = 0;
4981
else {
4982
dev_err(&h->pdev->dev, "no suitable DMA available\n");
4983
goto clean1;
4984
}
4985
4986
/*
4987
* register with the major number, or get a dynamic major number
4988
* by passing 0 as argument. This is done for greater than
4989
* 8 controller support.
4990
*/
4991
if (i < MAX_CTLR_ORIG)
4992
h->major = COMPAQ_CISS_MAJOR + i;
4993
rc = register_blkdev(h->major, h->devname);
4994
if (rc == -EBUSY || rc == -EINVAL) {
4995
dev_err(&h->pdev->dev,
4996
"Unable to get major number %d for %s "
4997
"on hba %d\n", h->major, h->devname, i);
4998
goto clean1;
4999
} else {
5000
if (i >= MAX_CTLR_ORIG)
5001
h->major = rc;
5002
}
5003
5004
/* make sure the board interrupts are off */
5005
h->access.set_intr_mask(h, CCISS_INTR_OFF);
5006
rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5007
if (rc)
5008
goto clean2;
5009
5010
dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5011
h->devname, pdev->device, pci_name(pdev),
5012
h->intr[PERF_MODE_INT], dac ? "" : " not");
5013
5014
if (cciss_allocate_cmd_pool(h))
5015
goto clean4;
5016
5017
if (cciss_allocate_scatterlists(h))
5018
goto clean4;
5019
5020
h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5021
h->chainsize, h->nr_cmds);
5022
if (!h->cmd_sg_list && h->chainsize > 0)
5023
goto clean4;
5024
5025
spin_lock_init(&h->lock);
5026
5027
/* Initialize the pdev driver private data.
5028
have it point to h. */
5029
pci_set_drvdata(pdev, h);
5030
/* command and error info recs zeroed out before
5031
they are used */
5032
memset(h->cmd_pool_bits, 0,
5033
DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
5034
* sizeof(unsigned long));
5035
5036
h->num_luns = 0;
5037
h->highest_lun = -1;
5038
for (j = 0; j < CISS_MAX_LUN; j++) {
5039
h->drv[j] = NULL;
5040
h->gendisk[j] = NULL;
5041
}
5042
5043
/* At this point, the controller is ready to take commands.
5044
* Now, if reset_devices and the hard reset didn't work, try
5045
* the soft reset and see if that works.
5046
*/
5047
if (try_soft_reset) {
5048
5049
/* This is kind of gross. We may or may not get a completion
5050
* from the soft reset command, and if we do, then the value
5051
* from the fifo may or may not be valid. So, we wait 10 secs
5052
* after the reset throwing away any completions we get during
5053
* that time. Unregister the interrupt handler and register
5054
* fake ones to scoop up any residual completions.
5055
*/
5056
spin_lock_irqsave(&h->lock, flags);
5057
h->access.set_intr_mask(h, CCISS_INTR_OFF);
5058
spin_unlock_irqrestore(&h->lock, flags);
5059
free_irq(h->intr[PERF_MODE_INT], h);
5060
rc = cciss_request_irq(h, cciss_msix_discard_completions,
5061
cciss_intx_discard_completions);
5062
if (rc) {
5063
dev_warn(&h->pdev->dev, "Failed to request_irq after "
5064
"soft reset.\n");
5065
goto clean4;
5066
}
5067
5068
rc = cciss_kdump_soft_reset(h);
5069
if (rc) {
5070
dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5071
goto clean4;
5072
}
5073
5074
dev_info(&h->pdev->dev, "Board READY.\n");
5075
dev_info(&h->pdev->dev,
5076
"Waiting for stale completions to drain.\n");
5077
h->access.set_intr_mask(h, CCISS_INTR_ON);
5078
msleep(10000);
5079
h->access.set_intr_mask(h, CCISS_INTR_OFF);
5080
5081
rc = controller_reset_failed(h->cfgtable);
5082
if (rc)
5083
dev_info(&h->pdev->dev,
5084
"Soft reset appears to have failed.\n");
5085
5086
/* since the controller's reset, we have to go back and re-init
5087
* everything. Easiest to just forget what we've done and do it
5088
* all over again.
5089
*/
5090
cciss_undo_allocations_after_kdump_soft_reset(h);
5091
try_soft_reset = 0;
5092
if (rc)
5093
/* don't go to clean4, we already unallocated */
5094
return -ENODEV;
5095
5096
goto reinit_after_soft_reset;
5097
}
5098
5099
cciss_scsi_setup(h);
5100
5101
/* Turn the interrupts on so we can service requests */
5102
h->access.set_intr_mask(h, CCISS_INTR_ON);
5103
5104
/* Get the firmware version */
5105
inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5106
if (inq_buff == NULL) {
5107
dev_err(&h->pdev->dev, "out of memory\n");
5108
goto clean4;
5109
}
5110
5111
return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5112
sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5113
if (return_code == IO_OK) {
5114
h->firm_ver[0] = inq_buff->data_byte[32];
5115
h->firm_ver[1] = inq_buff->data_byte[33];
5116
h->firm_ver[2] = inq_buff->data_byte[34];
5117
h->firm_ver[3] = inq_buff->data_byte[35];
5118
} else { /* send command failed */
5119
dev_warn(&h->pdev->dev, "unable to determine firmware"
5120
" version of controller\n");
5121
}
5122
kfree(inq_buff);
5123
5124
cciss_procinit(h);
5125
5126
h->cciss_max_sectors = 8192;
5127
5128
rebuild_lun_table(h, 1, 0);
5129
h->busy_initializing = 0;
5130
return 1;
5131
5132
clean4:
5133
cciss_free_cmd_pool(h);
5134
cciss_free_scatterlists(h);
5135
cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5136
free_irq(h->intr[PERF_MODE_INT], h);
5137
clean2:
5138
unregister_blkdev(h->major, h->devname);
5139
clean1:
5140
cciss_destroy_hba_sysfs_entry(h);
5141
clean0:
5142
pci_release_regions(pdev);
5143
clean_no_release_regions:
5144
h->busy_initializing = 0;
5145
5146
/*
5147
* Deliberately omit pci_disable_device(): it does something nasty to
5148
* Smart Array controllers that pci_enable_device does not undo
5149
*/
5150
pci_set_drvdata(pdev, NULL);
5151
free_hba(h);
5152
return -1;
5153
}
5154
5155
static void cciss_shutdown(struct pci_dev *pdev)
5156
{
5157
ctlr_info_t *h;
5158
char *flush_buf;
5159
int return_code;
5160
5161
h = pci_get_drvdata(pdev);
5162
flush_buf = kzalloc(4, GFP_KERNEL);
5163
if (!flush_buf) {
5164
dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5165
return;
5166
}
5167
/* write all data in the battery backed cache to disk */
5168
memset(flush_buf, 0, 4);
5169
return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5170
4, 0, CTLR_LUNID, TYPE_CMD);
5171
kfree(flush_buf);
5172
if (return_code != IO_OK)
5173
dev_warn(&h->pdev->dev, "Error flushing cache\n");
5174
h->access.set_intr_mask(h, CCISS_INTR_OFF);
5175
free_irq(h->intr[PERF_MODE_INT], h);
5176
}
5177
5178
static void __devexit cciss_remove_one(struct pci_dev *pdev)
5179
{
5180
ctlr_info_t *h;
5181
int i, j;
5182
5183
if (pci_get_drvdata(pdev) == NULL) {
5184
dev_err(&pdev->dev, "Unable to remove device\n");
5185
return;
5186
}
5187
5188
h = pci_get_drvdata(pdev);
5189
i = h->ctlr;
5190
if (hba[i] == NULL) {
5191
dev_err(&pdev->dev, "device appears to already be removed\n");
5192
return;
5193
}
5194
5195
mutex_lock(&h->busy_shutting_down);
5196
5197
remove_from_scan_list(h);
5198
remove_proc_entry(h->devname, proc_cciss);
5199
unregister_blkdev(h->major, h->devname);
5200
5201
/* remove it from the disk list */
5202
for (j = 0; j < CISS_MAX_LUN; j++) {
5203
struct gendisk *disk = h->gendisk[j];
5204
if (disk) {
5205
struct request_queue *q = disk->queue;
5206
5207
if (disk->flags & GENHD_FL_UP) {
5208
cciss_destroy_ld_sysfs_entry(h, j, 1);
5209
del_gendisk(disk);
5210
}
5211
if (q)
5212
blk_cleanup_queue(q);
5213
}
5214
}
5215
5216
#ifdef CONFIG_CISS_SCSI_TAPE
5217
cciss_unregister_scsi(h); /* unhook from SCSI subsystem */
5218
#endif
5219
5220
cciss_shutdown(pdev);
5221
5222
#ifdef CONFIG_PCI_MSI
5223
if (h->msix_vector)
5224
pci_disable_msix(h->pdev);
5225
else if (h->msi_vector)
5226
pci_disable_msi(h->pdev);
5227
#endif /* CONFIG_PCI_MSI */
5228
5229
iounmap(h->transtable);
5230
iounmap(h->cfgtable);
5231
iounmap(h->vaddr);
5232
5233
cciss_free_cmd_pool(h);
5234
/* Free up sg elements */
5235
for (j = 0; j < h->nr_cmds; j++)
5236
kfree(h->scatter_list[j]);
5237
kfree(h->scatter_list);
5238
cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5239
kfree(h->blockFetchTable);
5240
if (h->reply_pool)
5241
pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5242
h->reply_pool, h->reply_pool_dhandle);
5243
/*
5244
* Deliberately omit pci_disable_device(): it does something nasty to
5245
* Smart Array controllers that pci_enable_device does not undo
5246
*/
5247
pci_release_regions(pdev);
5248
pci_set_drvdata(pdev, NULL);
5249
cciss_destroy_hba_sysfs_entry(h);
5250
mutex_unlock(&h->busy_shutting_down);
5251
free_hba(h);
5252
}
5253
5254
static struct pci_driver cciss_pci_driver = {
5255
.name = "cciss",
5256
.probe = cciss_init_one,
5257
.remove = __devexit_p(cciss_remove_one),
5258
.id_table = cciss_pci_device_id, /* id_table */
5259
.shutdown = cciss_shutdown,
5260
};
5261
5262
/*
5263
* This is it. Register the PCI driver information for the cards we control
5264
* the OS will call our registered routines when it finds one of our cards.
5265
*/
5266
static int __init cciss_init(void)
5267
{
5268
int err;
5269
5270
/*
5271
* The hardware requires that commands are aligned on a 64-bit
5272
* boundary. Given that we use pci_alloc_consistent() to allocate an
5273
* array of them, the size must be a multiple of 8 bytes.
5274
*/
5275
BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5276
printk(KERN_INFO DRIVER_NAME "\n");
5277
5278
err = bus_register(&cciss_bus_type);
5279
if (err)
5280
return err;
5281
5282
/* Start the scan thread */
5283
cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5284
if (IS_ERR(cciss_scan_thread)) {
5285
err = PTR_ERR(cciss_scan_thread);
5286
goto err_bus_unregister;
5287
}
5288
5289
/* Register for our PCI devices */
5290
err = pci_register_driver(&cciss_pci_driver);
5291
if (err)
5292
goto err_thread_stop;
5293
5294
return err;
5295
5296
err_thread_stop:
5297
kthread_stop(cciss_scan_thread);
5298
err_bus_unregister:
5299
bus_unregister(&cciss_bus_type);
5300
5301
return err;
5302
}
5303
5304
static void __exit cciss_cleanup(void)
5305
{
5306
int i;
5307
5308
pci_unregister_driver(&cciss_pci_driver);
5309
/* double check that all controller entrys have been removed */
5310
for (i = 0; i < MAX_CTLR; i++) {
5311
if (hba[i] != NULL) {
5312
dev_warn(&hba[i]->pdev->dev,
5313
"had to remove controller\n");
5314
cciss_remove_one(hba[i]->pdev);
5315
}
5316
}
5317
kthread_stop(cciss_scan_thread);
5318
if (proc_cciss)
5319
remove_proc_entry("driver/cciss", NULL);
5320
bus_unregister(&cciss_bus_type);
5321
}
5322
5323
module_init(cciss_init);
5324
module_exit(cciss_cleanup);
5325
5326