Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/block/pktcdvd.c
15112 views
1
/*
2
* Copyright (C) 2000 Jens Axboe <[email protected]>
3
* Copyright (C) 2001-2004 Peter Osterlund <[email protected]>
4
* Copyright (C) 2006 Thomas Maier <[email protected]>
5
*
6
* May be copied or modified under the terms of the GNU General Public
7
* License. See linux/COPYING for more information.
8
*
9
* Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10
* DVD-RAM devices.
11
*
12
* Theory of operation:
13
*
14
* At the lowest level, there is the standard driver for the CD/DVD device,
15
* typically ide-cd.c or sr.c. This driver can handle read and write requests,
16
* but it doesn't know anything about the special restrictions that apply to
17
* packet writing. One restriction is that write requests must be aligned to
18
* packet boundaries on the physical media, and the size of a write request
19
* must be equal to the packet size. Another restriction is that a
20
* GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21
* command, if the previous command was a write.
22
*
23
* The purpose of the packet writing driver is to hide these restrictions from
24
* higher layers, such as file systems, and present a block device that can be
25
* randomly read and written using 2kB-sized blocks.
26
*
27
* The lowest layer in the packet writing driver is the packet I/O scheduler.
28
* Its data is defined by the struct packet_iosched and includes two bio
29
* queues with pending read and write requests. These queues are processed
30
* by the pkt_iosched_process_queue() function. The write requests in this
31
* queue are already properly aligned and sized. This layer is responsible for
32
* issuing the flush cache commands and scheduling the I/O in a good order.
33
*
34
* The next layer transforms unaligned write requests to aligned writes. This
35
* transformation requires reading missing pieces of data from the underlying
36
* block device, assembling the pieces to full packets and queuing them to the
37
* packet I/O scheduler.
38
*
39
* At the top layer there is a custom make_request_fn function that forwards
40
* read requests directly to the iosched queue and puts write requests in the
41
* unaligned write queue. A kernel thread performs the necessary read
42
* gathering to convert the unaligned writes to aligned writes and then feeds
43
* them to the packet I/O scheduler.
44
*
45
*************************************************************************/
46
47
#include <linux/pktcdvd.h>
48
#include <linux/module.h>
49
#include <linux/types.h>
50
#include <linux/kernel.h>
51
#include <linux/compat.h>
52
#include <linux/kthread.h>
53
#include <linux/errno.h>
54
#include <linux/spinlock.h>
55
#include <linux/file.h>
56
#include <linux/proc_fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/miscdevice.h>
59
#include <linux/freezer.h>
60
#include <linux/mutex.h>
61
#include <linux/slab.h>
62
#include <scsi/scsi_cmnd.h>
63
#include <scsi/scsi_ioctl.h>
64
#include <scsi/scsi.h>
65
#include <linux/debugfs.h>
66
#include <linux/device.h>
67
68
#include <asm/uaccess.h>
69
70
#define DRIVER_NAME "pktcdvd"
71
72
#if PACKET_DEBUG
73
#define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74
#else
75
#define DPRINTK(fmt, args...)
76
#endif
77
78
#if PACKET_DEBUG > 1
79
#define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
80
#else
81
#define VPRINTK(fmt, args...)
82
#endif
83
84
#define MAX_SPEED 0xffff
85
86
#define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
87
88
static DEFINE_MUTEX(pktcdvd_mutex);
89
static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
90
static struct proc_dir_entry *pkt_proc;
91
static int pktdev_major;
92
static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
93
static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
94
static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
95
static mempool_t *psd_pool;
96
97
static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
98
static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
99
100
/* forward declaration */
101
static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
102
static int pkt_remove_dev(dev_t pkt_dev);
103
static int pkt_seq_show(struct seq_file *m, void *p);
104
105
106
107
/*
108
* create and register a pktcdvd kernel object.
109
*/
110
static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
111
const char* name,
112
struct kobject* parent,
113
struct kobj_type* ktype)
114
{
115
struct pktcdvd_kobj *p;
116
int error;
117
118
p = kzalloc(sizeof(*p), GFP_KERNEL);
119
if (!p)
120
return NULL;
121
p->pd = pd;
122
error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
123
if (error) {
124
kobject_put(&p->kobj);
125
return NULL;
126
}
127
kobject_uevent(&p->kobj, KOBJ_ADD);
128
return p;
129
}
130
/*
131
* remove a pktcdvd kernel object.
132
*/
133
static void pkt_kobj_remove(struct pktcdvd_kobj *p)
134
{
135
if (p)
136
kobject_put(&p->kobj);
137
}
138
/*
139
* default release function for pktcdvd kernel objects.
140
*/
141
static void pkt_kobj_release(struct kobject *kobj)
142
{
143
kfree(to_pktcdvdkobj(kobj));
144
}
145
146
147
/**********************************************************
148
*
149
* sysfs interface for pktcdvd
150
* by (C) 2006 Thomas Maier <[email protected]>
151
*
152
**********************************************************/
153
154
#define DEF_ATTR(_obj,_name,_mode) \
155
static struct attribute _obj = { .name = _name, .mode = _mode }
156
157
/**********************************************************
158
/sys/class/pktcdvd/pktcdvd[0-7]/
159
stat/reset
160
stat/packets_started
161
stat/packets_finished
162
stat/kb_written
163
stat/kb_read
164
stat/kb_read_gather
165
write_queue/size
166
write_queue/congestion_off
167
write_queue/congestion_on
168
**********************************************************/
169
170
DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
171
DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
172
DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
173
DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
174
DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
175
DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
176
177
static struct attribute *kobj_pkt_attrs_stat[] = {
178
&kobj_pkt_attr_st1,
179
&kobj_pkt_attr_st2,
180
&kobj_pkt_attr_st3,
181
&kobj_pkt_attr_st4,
182
&kobj_pkt_attr_st5,
183
&kobj_pkt_attr_st6,
184
NULL
185
};
186
187
DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
188
DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
189
DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
190
191
static struct attribute *kobj_pkt_attrs_wqueue[] = {
192
&kobj_pkt_attr_wq1,
193
&kobj_pkt_attr_wq2,
194
&kobj_pkt_attr_wq3,
195
NULL
196
};
197
198
static ssize_t kobj_pkt_show(struct kobject *kobj,
199
struct attribute *attr, char *data)
200
{
201
struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
202
int n = 0;
203
int v;
204
if (strcmp(attr->name, "packets_started") == 0) {
205
n = sprintf(data, "%lu\n", pd->stats.pkt_started);
206
207
} else if (strcmp(attr->name, "packets_finished") == 0) {
208
n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
209
210
} else if (strcmp(attr->name, "kb_written") == 0) {
211
n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
212
213
} else if (strcmp(attr->name, "kb_read") == 0) {
214
n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
215
216
} else if (strcmp(attr->name, "kb_read_gather") == 0) {
217
n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
218
219
} else if (strcmp(attr->name, "size") == 0) {
220
spin_lock(&pd->lock);
221
v = pd->bio_queue_size;
222
spin_unlock(&pd->lock);
223
n = sprintf(data, "%d\n", v);
224
225
} else if (strcmp(attr->name, "congestion_off") == 0) {
226
spin_lock(&pd->lock);
227
v = pd->write_congestion_off;
228
spin_unlock(&pd->lock);
229
n = sprintf(data, "%d\n", v);
230
231
} else if (strcmp(attr->name, "congestion_on") == 0) {
232
spin_lock(&pd->lock);
233
v = pd->write_congestion_on;
234
spin_unlock(&pd->lock);
235
n = sprintf(data, "%d\n", v);
236
}
237
return n;
238
}
239
240
static void init_write_congestion_marks(int* lo, int* hi)
241
{
242
if (*hi > 0) {
243
*hi = max(*hi, 500);
244
*hi = min(*hi, 1000000);
245
if (*lo <= 0)
246
*lo = *hi - 100;
247
else {
248
*lo = min(*lo, *hi - 100);
249
*lo = max(*lo, 100);
250
}
251
} else {
252
*hi = -1;
253
*lo = -1;
254
}
255
}
256
257
static ssize_t kobj_pkt_store(struct kobject *kobj,
258
struct attribute *attr,
259
const char *data, size_t len)
260
{
261
struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
262
int val;
263
264
if (strcmp(attr->name, "reset") == 0 && len > 0) {
265
pd->stats.pkt_started = 0;
266
pd->stats.pkt_ended = 0;
267
pd->stats.secs_w = 0;
268
pd->stats.secs_rg = 0;
269
pd->stats.secs_r = 0;
270
271
} else if (strcmp(attr->name, "congestion_off") == 0
272
&& sscanf(data, "%d", &val) == 1) {
273
spin_lock(&pd->lock);
274
pd->write_congestion_off = val;
275
init_write_congestion_marks(&pd->write_congestion_off,
276
&pd->write_congestion_on);
277
spin_unlock(&pd->lock);
278
279
} else if (strcmp(attr->name, "congestion_on") == 0
280
&& sscanf(data, "%d", &val) == 1) {
281
spin_lock(&pd->lock);
282
pd->write_congestion_on = val;
283
init_write_congestion_marks(&pd->write_congestion_off,
284
&pd->write_congestion_on);
285
spin_unlock(&pd->lock);
286
}
287
return len;
288
}
289
290
static const struct sysfs_ops kobj_pkt_ops = {
291
.show = kobj_pkt_show,
292
.store = kobj_pkt_store
293
};
294
static struct kobj_type kobj_pkt_type_stat = {
295
.release = pkt_kobj_release,
296
.sysfs_ops = &kobj_pkt_ops,
297
.default_attrs = kobj_pkt_attrs_stat
298
};
299
static struct kobj_type kobj_pkt_type_wqueue = {
300
.release = pkt_kobj_release,
301
.sysfs_ops = &kobj_pkt_ops,
302
.default_attrs = kobj_pkt_attrs_wqueue
303
};
304
305
static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
306
{
307
if (class_pktcdvd) {
308
pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
309
"%s", pd->name);
310
if (IS_ERR(pd->dev))
311
pd->dev = NULL;
312
}
313
if (pd->dev) {
314
pd->kobj_stat = pkt_kobj_create(pd, "stat",
315
&pd->dev->kobj,
316
&kobj_pkt_type_stat);
317
pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
318
&pd->dev->kobj,
319
&kobj_pkt_type_wqueue);
320
}
321
}
322
323
static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
324
{
325
pkt_kobj_remove(pd->kobj_stat);
326
pkt_kobj_remove(pd->kobj_wqueue);
327
if (class_pktcdvd)
328
device_unregister(pd->dev);
329
}
330
331
332
/********************************************************************
333
/sys/class/pktcdvd/
334
add map block device
335
remove unmap packet dev
336
device_map show mappings
337
*******************************************************************/
338
339
static void class_pktcdvd_release(struct class *cls)
340
{
341
kfree(cls);
342
}
343
static ssize_t class_pktcdvd_show_map(struct class *c,
344
struct class_attribute *attr,
345
char *data)
346
{
347
int n = 0;
348
int idx;
349
mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
350
for (idx = 0; idx < MAX_WRITERS; idx++) {
351
struct pktcdvd_device *pd = pkt_devs[idx];
352
if (!pd)
353
continue;
354
n += sprintf(data+n, "%s %u:%u %u:%u\n",
355
pd->name,
356
MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
357
MAJOR(pd->bdev->bd_dev),
358
MINOR(pd->bdev->bd_dev));
359
}
360
mutex_unlock(&ctl_mutex);
361
return n;
362
}
363
364
static ssize_t class_pktcdvd_store_add(struct class *c,
365
struct class_attribute *attr,
366
const char *buf,
367
size_t count)
368
{
369
unsigned int major, minor;
370
371
if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
372
/* pkt_setup_dev() expects caller to hold reference to self */
373
if (!try_module_get(THIS_MODULE))
374
return -ENODEV;
375
376
pkt_setup_dev(MKDEV(major, minor), NULL);
377
378
module_put(THIS_MODULE);
379
380
return count;
381
}
382
383
return -EINVAL;
384
}
385
386
static ssize_t class_pktcdvd_store_remove(struct class *c,
387
struct class_attribute *attr,
388
const char *buf,
389
size_t count)
390
{
391
unsigned int major, minor;
392
if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
393
pkt_remove_dev(MKDEV(major, minor));
394
return count;
395
}
396
return -EINVAL;
397
}
398
399
static struct class_attribute class_pktcdvd_attrs[] = {
400
__ATTR(add, 0200, NULL, class_pktcdvd_store_add),
401
__ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
402
__ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
403
__ATTR_NULL
404
};
405
406
407
static int pkt_sysfs_init(void)
408
{
409
int ret = 0;
410
411
/*
412
* create control files in sysfs
413
* /sys/class/pktcdvd/...
414
*/
415
class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
416
if (!class_pktcdvd)
417
return -ENOMEM;
418
class_pktcdvd->name = DRIVER_NAME;
419
class_pktcdvd->owner = THIS_MODULE;
420
class_pktcdvd->class_release = class_pktcdvd_release;
421
class_pktcdvd->class_attrs = class_pktcdvd_attrs;
422
ret = class_register(class_pktcdvd);
423
if (ret) {
424
kfree(class_pktcdvd);
425
class_pktcdvd = NULL;
426
printk(DRIVER_NAME": failed to create class pktcdvd\n");
427
return ret;
428
}
429
return 0;
430
}
431
432
static void pkt_sysfs_cleanup(void)
433
{
434
if (class_pktcdvd)
435
class_destroy(class_pktcdvd);
436
class_pktcdvd = NULL;
437
}
438
439
/********************************************************************
440
entries in debugfs
441
442
/sys/kernel/debug/pktcdvd[0-7]/
443
info
444
445
*******************************************************************/
446
447
static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
448
{
449
return pkt_seq_show(m, p);
450
}
451
452
static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
453
{
454
return single_open(file, pkt_debugfs_seq_show, inode->i_private);
455
}
456
457
static const struct file_operations debug_fops = {
458
.open = pkt_debugfs_fops_open,
459
.read = seq_read,
460
.llseek = seq_lseek,
461
.release = single_release,
462
.owner = THIS_MODULE,
463
};
464
465
static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
466
{
467
if (!pkt_debugfs_root)
468
return;
469
pd->dfs_f_info = NULL;
470
pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
471
if (IS_ERR(pd->dfs_d_root)) {
472
pd->dfs_d_root = NULL;
473
return;
474
}
475
pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
476
pd->dfs_d_root, pd, &debug_fops);
477
if (IS_ERR(pd->dfs_f_info)) {
478
pd->dfs_f_info = NULL;
479
return;
480
}
481
}
482
483
static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
484
{
485
if (!pkt_debugfs_root)
486
return;
487
if (pd->dfs_f_info)
488
debugfs_remove(pd->dfs_f_info);
489
pd->dfs_f_info = NULL;
490
if (pd->dfs_d_root)
491
debugfs_remove(pd->dfs_d_root);
492
pd->dfs_d_root = NULL;
493
}
494
495
static void pkt_debugfs_init(void)
496
{
497
pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498
if (IS_ERR(pkt_debugfs_root)) {
499
pkt_debugfs_root = NULL;
500
return;
501
}
502
}
503
504
static void pkt_debugfs_cleanup(void)
505
{
506
if (!pkt_debugfs_root)
507
return;
508
debugfs_remove(pkt_debugfs_root);
509
pkt_debugfs_root = NULL;
510
}
511
512
/* ----------------------------------------------------------*/
513
514
515
static void pkt_bio_finished(struct pktcdvd_device *pd)
516
{
517
BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
518
if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
519
VPRINTK(DRIVER_NAME": queue empty\n");
520
atomic_set(&pd->iosched.attention, 1);
521
wake_up(&pd->wqueue);
522
}
523
}
524
525
static void pkt_bio_destructor(struct bio *bio)
526
{
527
kfree(bio->bi_io_vec);
528
kfree(bio);
529
}
530
531
static struct bio *pkt_bio_alloc(int nr_iovecs)
532
{
533
struct bio_vec *bvl = NULL;
534
struct bio *bio;
535
536
bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
537
if (!bio)
538
goto no_bio;
539
bio_init(bio);
540
541
bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
542
if (!bvl)
543
goto no_bvl;
544
545
bio->bi_max_vecs = nr_iovecs;
546
bio->bi_io_vec = bvl;
547
bio->bi_destructor = pkt_bio_destructor;
548
549
return bio;
550
551
no_bvl:
552
kfree(bio);
553
no_bio:
554
return NULL;
555
}
556
557
/*
558
* Allocate a packet_data struct
559
*/
560
static struct packet_data *pkt_alloc_packet_data(int frames)
561
{
562
int i;
563
struct packet_data *pkt;
564
565
pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
566
if (!pkt)
567
goto no_pkt;
568
569
pkt->frames = frames;
570
pkt->w_bio = pkt_bio_alloc(frames);
571
if (!pkt->w_bio)
572
goto no_bio;
573
574
for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
575
pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
576
if (!pkt->pages[i])
577
goto no_page;
578
}
579
580
spin_lock_init(&pkt->lock);
581
bio_list_init(&pkt->orig_bios);
582
583
for (i = 0; i < frames; i++) {
584
struct bio *bio = pkt_bio_alloc(1);
585
if (!bio)
586
goto no_rd_bio;
587
pkt->r_bios[i] = bio;
588
}
589
590
return pkt;
591
592
no_rd_bio:
593
for (i = 0; i < frames; i++) {
594
struct bio *bio = pkt->r_bios[i];
595
if (bio)
596
bio_put(bio);
597
}
598
599
no_page:
600
for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
601
if (pkt->pages[i])
602
__free_page(pkt->pages[i]);
603
bio_put(pkt->w_bio);
604
no_bio:
605
kfree(pkt);
606
no_pkt:
607
return NULL;
608
}
609
610
/*
611
* Free a packet_data struct
612
*/
613
static void pkt_free_packet_data(struct packet_data *pkt)
614
{
615
int i;
616
617
for (i = 0; i < pkt->frames; i++) {
618
struct bio *bio = pkt->r_bios[i];
619
if (bio)
620
bio_put(bio);
621
}
622
for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
623
__free_page(pkt->pages[i]);
624
bio_put(pkt->w_bio);
625
kfree(pkt);
626
}
627
628
static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
629
{
630
struct packet_data *pkt, *next;
631
632
BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
633
634
list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
635
pkt_free_packet_data(pkt);
636
}
637
INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
638
}
639
640
static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
641
{
642
struct packet_data *pkt;
643
644
BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
645
646
while (nr_packets > 0) {
647
pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
648
if (!pkt) {
649
pkt_shrink_pktlist(pd);
650
return 0;
651
}
652
pkt->id = nr_packets;
653
pkt->pd = pd;
654
list_add(&pkt->list, &pd->cdrw.pkt_free_list);
655
nr_packets--;
656
}
657
return 1;
658
}
659
660
static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
661
{
662
struct rb_node *n = rb_next(&node->rb_node);
663
if (!n)
664
return NULL;
665
return rb_entry(n, struct pkt_rb_node, rb_node);
666
}
667
668
static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
669
{
670
rb_erase(&node->rb_node, &pd->bio_queue);
671
mempool_free(node, pd->rb_pool);
672
pd->bio_queue_size--;
673
BUG_ON(pd->bio_queue_size < 0);
674
}
675
676
/*
677
* Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
678
*/
679
static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
680
{
681
struct rb_node *n = pd->bio_queue.rb_node;
682
struct rb_node *next;
683
struct pkt_rb_node *tmp;
684
685
if (!n) {
686
BUG_ON(pd->bio_queue_size > 0);
687
return NULL;
688
}
689
690
for (;;) {
691
tmp = rb_entry(n, struct pkt_rb_node, rb_node);
692
if (s <= tmp->bio->bi_sector)
693
next = n->rb_left;
694
else
695
next = n->rb_right;
696
if (!next)
697
break;
698
n = next;
699
}
700
701
if (s > tmp->bio->bi_sector) {
702
tmp = pkt_rbtree_next(tmp);
703
if (!tmp)
704
return NULL;
705
}
706
BUG_ON(s > tmp->bio->bi_sector);
707
return tmp;
708
}
709
710
/*
711
* Insert a node into the pd->bio_queue rb tree.
712
*/
713
static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
714
{
715
struct rb_node **p = &pd->bio_queue.rb_node;
716
struct rb_node *parent = NULL;
717
sector_t s = node->bio->bi_sector;
718
struct pkt_rb_node *tmp;
719
720
while (*p) {
721
parent = *p;
722
tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
723
if (s < tmp->bio->bi_sector)
724
p = &(*p)->rb_left;
725
else
726
p = &(*p)->rb_right;
727
}
728
rb_link_node(&node->rb_node, parent, p);
729
rb_insert_color(&node->rb_node, &pd->bio_queue);
730
pd->bio_queue_size++;
731
}
732
733
/*
734
* Send a packet_command to the underlying block device and
735
* wait for completion.
736
*/
737
static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
738
{
739
struct request_queue *q = bdev_get_queue(pd->bdev);
740
struct request *rq;
741
int ret = 0;
742
743
rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
744
WRITE : READ, __GFP_WAIT);
745
746
if (cgc->buflen) {
747
if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
748
goto out;
749
}
750
751
rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
752
memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
753
754
rq->timeout = 60*HZ;
755
rq->cmd_type = REQ_TYPE_BLOCK_PC;
756
if (cgc->quiet)
757
rq->cmd_flags |= REQ_QUIET;
758
759
blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
760
if (rq->errors)
761
ret = -EIO;
762
out:
763
blk_put_request(rq);
764
return ret;
765
}
766
767
/*
768
* A generic sense dump / resolve mechanism should be implemented across
769
* all ATAPI + SCSI devices.
770
*/
771
static void pkt_dump_sense(struct packet_command *cgc)
772
{
773
static char *info[9] = { "No sense", "Recovered error", "Not ready",
774
"Medium error", "Hardware error", "Illegal request",
775
"Unit attention", "Data protect", "Blank check" };
776
int i;
777
struct request_sense *sense = cgc->sense;
778
779
printk(DRIVER_NAME":");
780
for (i = 0; i < CDROM_PACKET_SIZE; i++)
781
printk(" %02x", cgc->cmd[i]);
782
printk(" - ");
783
784
if (sense == NULL) {
785
printk("no sense\n");
786
return;
787
}
788
789
printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
790
791
if (sense->sense_key > 8) {
792
printk(" (INVALID)\n");
793
return;
794
}
795
796
printk(" (%s)\n", info[sense->sense_key]);
797
}
798
799
/*
800
* flush the drive cache to media
801
*/
802
static int pkt_flush_cache(struct pktcdvd_device *pd)
803
{
804
struct packet_command cgc;
805
806
init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
807
cgc.cmd[0] = GPCMD_FLUSH_CACHE;
808
cgc.quiet = 1;
809
810
/*
811
* the IMMED bit -- we default to not setting it, although that
812
* would allow a much faster close, this is safer
813
*/
814
#if 0
815
cgc.cmd[1] = 1 << 1;
816
#endif
817
return pkt_generic_packet(pd, &cgc);
818
}
819
820
/*
821
* speed is given as the normal factor, e.g. 4 for 4x
822
*/
823
static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
824
unsigned write_speed, unsigned read_speed)
825
{
826
struct packet_command cgc;
827
struct request_sense sense;
828
int ret;
829
830
init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
831
cgc.sense = &sense;
832
cgc.cmd[0] = GPCMD_SET_SPEED;
833
cgc.cmd[2] = (read_speed >> 8) & 0xff;
834
cgc.cmd[3] = read_speed & 0xff;
835
cgc.cmd[4] = (write_speed >> 8) & 0xff;
836
cgc.cmd[5] = write_speed & 0xff;
837
838
if ((ret = pkt_generic_packet(pd, &cgc)))
839
pkt_dump_sense(&cgc);
840
841
return ret;
842
}
843
844
/*
845
* Queue a bio for processing by the low-level CD device. Must be called
846
* from process context.
847
*/
848
static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
849
{
850
spin_lock(&pd->iosched.lock);
851
if (bio_data_dir(bio) == READ)
852
bio_list_add(&pd->iosched.read_queue, bio);
853
else
854
bio_list_add(&pd->iosched.write_queue, bio);
855
spin_unlock(&pd->iosched.lock);
856
857
atomic_set(&pd->iosched.attention, 1);
858
wake_up(&pd->wqueue);
859
}
860
861
/*
862
* Process the queued read/write requests. This function handles special
863
* requirements for CDRW drives:
864
* - A cache flush command must be inserted before a read request if the
865
* previous request was a write.
866
* - Switching between reading and writing is slow, so don't do it more often
867
* than necessary.
868
* - Optimize for throughput at the expense of latency. This means that streaming
869
* writes will never be interrupted by a read, but if the drive has to seek
870
* before the next write, switch to reading instead if there are any pending
871
* read requests.
872
* - Set the read speed according to current usage pattern. When only reading
873
* from the device, it's best to use the highest possible read speed, but
874
* when switching often between reading and writing, it's better to have the
875
* same read and write speeds.
876
*/
877
static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
878
{
879
880
if (atomic_read(&pd->iosched.attention) == 0)
881
return;
882
atomic_set(&pd->iosched.attention, 0);
883
884
for (;;) {
885
struct bio *bio;
886
int reads_queued, writes_queued;
887
888
spin_lock(&pd->iosched.lock);
889
reads_queued = !bio_list_empty(&pd->iosched.read_queue);
890
writes_queued = !bio_list_empty(&pd->iosched.write_queue);
891
spin_unlock(&pd->iosched.lock);
892
893
if (!reads_queued && !writes_queued)
894
break;
895
896
if (pd->iosched.writing) {
897
int need_write_seek = 1;
898
spin_lock(&pd->iosched.lock);
899
bio = bio_list_peek(&pd->iosched.write_queue);
900
spin_unlock(&pd->iosched.lock);
901
if (bio && (bio->bi_sector == pd->iosched.last_write))
902
need_write_seek = 0;
903
if (need_write_seek && reads_queued) {
904
if (atomic_read(&pd->cdrw.pending_bios) > 0) {
905
VPRINTK(DRIVER_NAME": write, waiting\n");
906
break;
907
}
908
pkt_flush_cache(pd);
909
pd->iosched.writing = 0;
910
}
911
} else {
912
if (!reads_queued && writes_queued) {
913
if (atomic_read(&pd->cdrw.pending_bios) > 0) {
914
VPRINTK(DRIVER_NAME": read, waiting\n");
915
break;
916
}
917
pd->iosched.writing = 1;
918
}
919
}
920
921
spin_lock(&pd->iosched.lock);
922
if (pd->iosched.writing)
923
bio = bio_list_pop(&pd->iosched.write_queue);
924
else
925
bio = bio_list_pop(&pd->iosched.read_queue);
926
spin_unlock(&pd->iosched.lock);
927
928
if (!bio)
929
continue;
930
931
if (bio_data_dir(bio) == READ)
932
pd->iosched.successive_reads += bio->bi_size >> 10;
933
else {
934
pd->iosched.successive_reads = 0;
935
pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
936
}
937
if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
938
if (pd->read_speed == pd->write_speed) {
939
pd->read_speed = MAX_SPEED;
940
pkt_set_speed(pd, pd->write_speed, pd->read_speed);
941
}
942
} else {
943
if (pd->read_speed != pd->write_speed) {
944
pd->read_speed = pd->write_speed;
945
pkt_set_speed(pd, pd->write_speed, pd->read_speed);
946
}
947
}
948
949
atomic_inc(&pd->cdrw.pending_bios);
950
generic_make_request(bio);
951
}
952
}
953
954
/*
955
* Special care is needed if the underlying block device has a small
956
* max_phys_segments value.
957
*/
958
static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
959
{
960
if ((pd->settings.size << 9) / CD_FRAMESIZE
961
<= queue_max_segments(q)) {
962
/*
963
* The cdrom device can handle one segment/frame
964
*/
965
clear_bit(PACKET_MERGE_SEGS, &pd->flags);
966
return 0;
967
} else if ((pd->settings.size << 9) / PAGE_SIZE
968
<= queue_max_segments(q)) {
969
/*
970
* We can handle this case at the expense of some extra memory
971
* copies during write operations
972
*/
973
set_bit(PACKET_MERGE_SEGS, &pd->flags);
974
return 0;
975
} else {
976
printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
977
return -EIO;
978
}
979
}
980
981
/*
982
* Copy CD_FRAMESIZE bytes from src_bio into a destination page
983
*/
984
static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
985
{
986
unsigned int copy_size = CD_FRAMESIZE;
987
988
while (copy_size > 0) {
989
struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
990
void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
991
src_bvl->bv_offset + offs;
992
void *vto = page_address(dst_page) + dst_offs;
993
int len = min_t(int, copy_size, src_bvl->bv_len - offs);
994
995
BUG_ON(len < 0);
996
memcpy(vto, vfrom, len);
997
kunmap_atomic(vfrom, KM_USER0);
998
999
seg++;
1000
offs = 0;
1001
dst_offs += len;
1002
copy_size -= len;
1003
}
1004
}
1005
1006
/*
1007
* Copy all data for this packet to pkt->pages[], so that
1008
* a) The number of required segments for the write bio is minimized, which
1009
* is necessary for some scsi controllers.
1010
* b) The data can be used as cache to avoid read requests if we receive a
1011
* new write request for the same zone.
1012
*/
1013
static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1014
{
1015
int f, p, offs;
1016
1017
/* Copy all data to pkt->pages[] */
1018
p = 0;
1019
offs = 0;
1020
for (f = 0; f < pkt->frames; f++) {
1021
if (bvec[f].bv_page != pkt->pages[p]) {
1022
void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1023
void *vto = page_address(pkt->pages[p]) + offs;
1024
memcpy(vto, vfrom, CD_FRAMESIZE);
1025
kunmap_atomic(vfrom, KM_USER0);
1026
bvec[f].bv_page = pkt->pages[p];
1027
bvec[f].bv_offset = offs;
1028
} else {
1029
BUG_ON(bvec[f].bv_offset != offs);
1030
}
1031
offs += CD_FRAMESIZE;
1032
if (offs >= PAGE_SIZE) {
1033
offs = 0;
1034
p++;
1035
}
1036
}
1037
}
1038
1039
static void pkt_end_io_read(struct bio *bio, int err)
1040
{
1041
struct packet_data *pkt = bio->bi_private;
1042
struct pktcdvd_device *pd = pkt->pd;
1043
BUG_ON(!pd);
1044
1045
VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1046
(unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1047
1048
if (err)
1049
atomic_inc(&pkt->io_errors);
1050
if (atomic_dec_and_test(&pkt->io_wait)) {
1051
atomic_inc(&pkt->run_sm);
1052
wake_up(&pd->wqueue);
1053
}
1054
pkt_bio_finished(pd);
1055
}
1056
1057
static void pkt_end_io_packet_write(struct bio *bio, int err)
1058
{
1059
struct packet_data *pkt = bio->bi_private;
1060
struct pktcdvd_device *pd = pkt->pd;
1061
BUG_ON(!pd);
1062
1063
VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1064
1065
pd->stats.pkt_ended++;
1066
1067
pkt_bio_finished(pd);
1068
atomic_dec(&pkt->io_wait);
1069
atomic_inc(&pkt->run_sm);
1070
wake_up(&pd->wqueue);
1071
}
1072
1073
/*
1074
* Schedule reads for the holes in a packet
1075
*/
1076
static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1077
{
1078
int frames_read = 0;
1079
struct bio *bio;
1080
int f;
1081
char written[PACKET_MAX_SIZE];
1082
1083
BUG_ON(bio_list_empty(&pkt->orig_bios));
1084
1085
atomic_set(&pkt->io_wait, 0);
1086
atomic_set(&pkt->io_errors, 0);
1087
1088
/*
1089
* Figure out which frames we need to read before we can write.
1090
*/
1091
memset(written, 0, sizeof(written));
1092
spin_lock(&pkt->lock);
1093
bio_list_for_each(bio, &pkt->orig_bios) {
1094
int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1095
int num_frames = bio->bi_size / CD_FRAMESIZE;
1096
pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1097
BUG_ON(first_frame < 0);
1098
BUG_ON(first_frame + num_frames > pkt->frames);
1099
for (f = first_frame; f < first_frame + num_frames; f++)
1100
written[f] = 1;
1101
}
1102
spin_unlock(&pkt->lock);
1103
1104
if (pkt->cache_valid) {
1105
VPRINTK("pkt_gather_data: zone %llx cached\n",
1106
(unsigned long long)pkt->sector);
1107
goto out_account;
1108
}
1109
1110
/*
1111
* Schedule reads for missing parts of the packet.
1112
*/
1113
for (f = 0; f < pkt->frames; f++) {
1114
struct bio_vec *vec;
1115
1116
int p, offset;
1117
if (written[f])
1118
continue;
1119
bio = pkt->r_bios[f];
1120
vec = bio->bi_io_vec;
1121
bio_init(bio);
1122
bio->bi_max_vecs = 1;
1123
bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1124
bio->bi_bdev = pd->bdev;
1125
bio->bi_end_io = pkt_end_io_read;
1126
bio->bi_private = pkt;
1127
bio->bi_io_vec = vec;
1128
bio->bi_destructor = pkt_bio_destructor;
1129
1130
p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1131
offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1132
VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1133
f, pkt->pages[p], offset);
1134
if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1135
BUG();
1136
1137
atomic_inc(&pkt->io_wait);
1138
bio->bi_rw = READ;
1139
pkt_queue_bio(pd, bio);
1140
frames_read++;
1141
}
1142
1143
out_account:
1144
VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1145
frames_read, (unsigned long long)pkt->sector);
1146
pd->stats.pkt_started++;
1147
pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1148
}
1149
1150
/*
1151
* Find a packet matching zone, or the least recently used packet if
1152
* there is no match.
1153
*/
1154
static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1155
{
1156
struct packet_data *pkt;
1157
1158
list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1159
if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1160
list_del_init(&pkt->list);
1161
if (pkt->sector != zone)
1162
pkt->cache_valid = 0;
1163
return pkt;
1164
}
1165
}
1166
BUG();
1167
return NULL;
1168
}
1169
1170
static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1171
{
1172
if (pkt->cache_valid) {
1173
list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1174
} else {
1175
list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1176
}
1177
}
1178
1179
/*
1180
* recover a failed write, query for relocation if possible
1181
*
1182
* returns 1 if recovery is possible, or 0 if not
1183
*
1184
*/
1185
static int pkt_start_recovery(struct packet_data *pkt)
1186
{
1187
/*
1188
* FIXME. We need help from the file system to implement
1189
* recovery handling.
1190
*/
1191
return 0;
1192
#if 0
1193
struct request *rq = pkt->rq;
1194
struct pktcdvd_device *pd = rq->rq_disk->private_data;
1195
struct block_device *pkt_bdev;
1196
struct super_block *sb = NULL;
1197
unsigned long old_block, new_block;
1198
sector_t new_sector;
1199
1200
pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1201
if (pkt_bdev) {
1202
sb = get_super(pkt_bdev);
1203
bdput(pkt_bdev);
1204
}
1205
1206
if (!sb)
1207
return 0;
1208
1209
if (!sb->s_op || !sb->s_op->relocate_blocks)
1210
goto out;
1211
1212
old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1213
if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1214
goto out;
1215
1216
new_sector = new_block * (CD_FRAMESIZE >> 9);
1217
pkt->sector = new_sector;
1218
1219
pkt->bio->bi_sector = new_sector;
1220
pkt->bio->bi_next = NULL;
1221
pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1222
pkt->bio->bi_idx = 0;
1223
1224
BUG_ON(pkt->bio->bi_rw != REQ_WRITE);
1225
BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1226
BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1227
BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1228
BUG_ON(pkt->bio->bi_private != pkt);
1229
1230
drop_super(sb);
1231
return 1;
1232
1233
out:
1234
drop_super(sb);
1235
return 0;
1236
#endif
1237
}
1238
1239
static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1240
{
1241
#if PACKET_DEBUG > 1
1242
static const char *state_name[] = {
1243
"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1244
};
1245
enum packet_data_state old_state = pkt->state;
1246
VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1247
state_name[old_state], state_name[state]);
1248
#endif
1249
pkt->state = state;
1250
}
1251
1252
/*
1253
* Scan the work queue to see if we can start a new packet.
1254
* returns non-zero if any work was done.
1255
*/
1256
static int pkt_handle_queue(struct pktcdvd_device *pd)
1257
{
1258
struct packet_data *pkt, *p;
1259
struct bio *bio = NULL;
1260
sector_t zone = 0; /* Suppress gcc warning */
1261
struct pkt_rb_node *node, *first_node;
1262
struct rb_node *n;
1263
int wakeup;
1264
1265
VPRINTK("handle_queue\n");
1266
1267
atomic_set(&pd->scan_queue, 0);
1268
1269
if (list_empty(&pd->cdrw.pkt_free_list)) {
1270
VPRINTK("handle_queue: no pkt\n");
1271
return 0;
1272
}
1273
1274
/*
1275
* Try to find a zone we are not already working on.
1276
*/
1277
spin_lock(&pd->lock);
1278
first_node = pkt_rbtree_find(pd, pd->current_sector);
1279
if (!first_node) {
1280
n = rb_first(&pd->bio_queue);
1281
if (n)
1282
first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1283
}
1284
node = first_node;
1285
while (node) {
1286
bio = node->bio;
1287
zone = ZONE(bio->bi_sector, pd);
1288
list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1289
if (p->sector == zone) {
1290
bio = NULL;
1291
goto try_next_bio;
1292
}
1293
}
1294
break;
1295
try_next_bio:
1296
node = pkt_rbtree_next(node);
1297
if (!node) {
1298
n = rb_first(&pd->bio_queue);
1299
if (n)
1300
node = rb_entry(n, struct pkt_rb_node, rb_node);
1301
}
1302
if (node == first_node)
1303
node = NULL;
1304
}
1305
spin_unlock(&pd->lock);
1306
if (!bio) {
1307
VPRINTK("handle_queue: no bio\n");
1308
return 0;
1309
}
1310
1311
pkt = pkt_get_packet_data(pd, zone);
1312
1313
pd->current_sector = zone + pd->settings.size;
1314
pkt->sector = zone;
1315
BUG_ON(pkt->frames != pd->settings.size >> 2);
1316
pkt->write_size = 0;
1317
1318
/*
1319
* Scan work queue for bios in the same zone and link them
1320
* to this packet.
1321
*/
1322
spin_lock(&pd->lock);
1323
VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1324
while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1325
bio = node->bio;
1326
VPRINTK("pkt_handle_queue: found zone=%llx\n",
1327
(unsigned long long)ZONE(bio->bi_sector, pd));
1328
if (ZONE(bio->bi_sector, pd) != zone)
1329
break;
1330
pkt_rbtree_erase(pd, node);
1331
spin_lock(&pkt->lock);
1332
bio_list_add(&pkt->orig_bios, bio);
1333
pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1334
spin_unlock(&pkt->lock);
1335
}
1336
/* check write congestion marks, and if bio_queue_size is
1337
below, wake up any waiters */
1338
wakeup = (pd->write_congestion_on > 0
1339
&& pd->bio_queue_size <= pd->write_congestion_off);
1340
spin_unlock(&pd->lock);
1341
if (wakeup) {
1342
clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1343
BLK_RW_ASYNC);
1344
}
1345
1346
pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1347
pkt_set_state(pkt, PACKET_WAITING_STATE);
1348
atomic_set(&pkt->run_sm, 1);
1349
1350
spin_lock(&pd->cdrw.active_list_lock);
1351
list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1352
spin_unlock(&pd->cdrw.active_list_lock);
1353
1354
return 1;
1355
}
1356
1357
/*
1358
* Assemble a bio to write one packet and queue the bio for processing
1359
* by the underlying block device.
1360
*/
1361
static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1362
{
1363
struct bio *bio;
1364
int f;
1365
int frames_write;
1366
struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1367
1368
for (f = 0; f < pkt->frames; f++) {
1369
bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1370
bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1371
}
1372
1373
/*
1374
* Fill-in bvec with data from orig_bios.
1375
*/
1376
frames_write = 0;
1377
spin_lock(&pkt->lock);
1378
bio_list_for_each(bio, &pkt->orig_bios) {
1379
int segment = bio->bi_idx;
1380
int src_offs = 0;
1381
int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1382
int num_frames = bio->bi_size / CD_FRAMESIZE;
1383
BUG_ON(first_frame < 0);
1384
BUG_ON(first_frame + num_frames > pkt->frames);
1385
for (f = first_frame; f < first_frame + num_frames; f++) {
1386
struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1387
1388
while (src_offs >= src_bvl->bv_len) {
1389
src_offs -= src_bvl->bv_len;
1390
segment++;
1391
BUG_ON(segment >= bio->bi_vcnt);
1392
src_bvl = bio_iovec_idx(bio, segment);
1393
}
1394
1395
if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1396
bvec[f].bv_page = src_bvl->bv_page;
1397
bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1398
} else {
1399
pkt_copy_bio_data(bio, segment, src_offs,
1400
bvec[f].bv_page, bvec[f].bv_offset);
1401
}
1402
src_offs += CD_FRAMESIZE;
1403
frames_write++;
1404
}
1405
}
1406
pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1407
spin_unlock(&pkt->lock);
1408
1409
VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1410
frames_write, (unsigned long long)pkt->sector);
1411
BUG_ON(frames_write != pkt->write_size);
1412
1413
if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1414
pkt_make_local_copy(pkt, bvec);
1415
pkt->cache_valid = 1;
1416
} else {
1417
pkt->cache_valid = 0;
1418
}
1419
1420
/* Start the write request */
1421
bio_init(pkt->w_bio);
1422
pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1423
pkt->w_bio->bi_sector = pkt->sector;
1424
pkt->w_bio->bi_bdev = pd->bdev;
1425
pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1426
pkt->w_bio->bi_private = pkt;
1427
pkt->w_bio->bi_io_vec = bvec;
1428
pkt->w_bio->bi_destructor = pkt_bio_destructor;
1429
for (f = 0; f < pkt->frames; f++)
1430
if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1431
BUG();
1432
VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1433
1434
atomic_set(&pkt->io_wait, 1);
1435
pkt->w_bio->bi_rw = WRITE;
1436
pkt_queue_bio(pd, pkt->w_bio);
1437
}
1438
1439
static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1440
{
1441
struct bio *bio;
1442
1443
if (!uptodate)
1444
pkt->cache_valid = 0;
1445
1446
/* Finish all bios corresponding to this packet */
1447
while ((bio = bio_list_pop(&pkt->orig_bios)))
1448
bio_endio(bio, uptodate ? 0 : -EIO);
1449
}
1450
1451
static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1452
{
1453
int uptodate;
1454
1455
VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1456
1457
for (;;) {
1458
switch (pkt->state) {
1459
case PACKET_WAITING_STATE:
1460
if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1461
return;
1462
1463
pkt->sleep_time = 0;
1464
pkt_gather_data(pd, pkt);
1465
pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1466
break;
1467
1468
case PACKET_READ_WAIT_STATE:
1469
if (atomic_read(&pkt->io_wait) > 0)
1470
return;
1471
1472
if (atomic_read(&pkt->io_errors) > 0) {
1473
pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1474
} else {
1475
pkt_start_write(pd, pkt);
1476
}
1477
break;
1478
1479
case PACKET_WRITE_WAIT_STATE:
1480
if (atomic_read(&pkt->io_wait) > 0)
1481
return;
1482
1483
if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1484
pkt_set_state(pkt, PACKET_FINISHED_STATE);
1485
} else {
1486
pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1487
}
1488
break;
1489
1490
case PACKET_RECOVERY_STATE:
1491
if (pkt_start_recovery(pkt)) {
1492
pkt_start_write(pd, pkt);
1493
} else {
1494
VPRINTK("No recovery possible\n");
1495
pkt_set_state(pkt, PACKET_FINISHED_STATE);
1496
}
1497
break;
1498
1499
case PACKET_FINISHED_STATE:
1500
uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1501
pkt_finish_packet(pkt, uptodate);
1502
return;
1503
1504
default:
1505
BUG();
1506
break;
1507
}
1508
}
1509
}
1510
1511
static void pkt_handle_packets(struct pktcdvd_device *pd)
1512
{
1513
struct packet_data *pkt, *next;
1514
1515
VPRINTK("pkt_handle_packets\n");
1516
1517
/*
1518
* Run state machine for active packets
1519
*/
1520
list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1521
if (atomic_read(&pkt->run_sm) > 0) {
1522
atomic_set(&pkt->run_sm, 0);
1523
pkt_run_state_machine(pd, pkt);
1524
}
1525
}
1526
1527
/*
1528
* Move no longer active packets to the free list
1529
*/
1530
spin_lock(&pd->cdrw.active_list_lock);
1531
list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1532
if (pkt->state == PACKET_FINISHED_STATE) {
1533
list_del(&pkt->list);
1534
pkt_put_packet_data(pd, pkt);
1535
pkt_set_state(pkt, PACKET_IDLE_STATE);
1536
atomic_set(&pd->scan_queue, 1);
1537
}
1538
}
1539
spin_unlock(&pd->cdrw.active_list_lock);
1540
}
1541
1542
static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1543
{
1544
struct packet_data *pkt;
1545
int i;
1546
1547
for (i = 0; i < PACKET_NUM_STATES; i++)
1548
states[i] = 0;
1549
1550
spin_lock(&pd->cdrw.active_list_lock);
1551
list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1552
states[pkt->state]++;
1553
}
1554
spin_unlock(&pd->cdrw.active_list_lock);
1555
}
1556
1557
/*
1558
* kcdrwd is woken up when writes have been queued for one of our
1559
* registered devices
1560
*/
1561
static int kcdrwd(void *foobar)
1562
{
1563
struct pktcdvd_device *pd = foobar;
1564
struct packet_data *pkt;
1565
long min_sleep_time, residue;
1566
1567
set_user_nice(current, -20);
1568
set_freezable();
1569
1570
for (;;) {
1571
DECLARE_WAITQUEUE(wait, current);
1572
1573
/*
1574
* Wait until there is something to do
1575
*/
1576
add_wait_queue(&pd->wqueue, &wait);
1577
for (;;) {
1578
set_current_state(TASK_INTERRUPTIBLE);
1579
1580
/* Check if we need to run pkt_handle_queue */
1581
if (atomic_read(&pd->scan_queue) > 0)
1582
goto work_to_do;
1583
1584
/* Check if we need to run the state machine for some packet */
1585
list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1586
if (atomic_read(&pkt->run_sm) > 0)
1587
goto work_to_do;
1588
}
1589
1590
/* Check if we need to process the iosched queues */
1591
if (atomic_read(&pd->iosched.attention) != 0)
1592
goto work_to_do;
1593
1594
/* Otherwise, go to sleep */
1595
if (PACKET_DEBUG > 1) {
1596
int states[PACKET_NUM_STATES];
1597
pkt_count_states(pd, states);
1598
VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1599
states[0], states[1], states[2], states[3],
1600
states[4], states[5]);
1601
}
1602
1603
min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1604
list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1605
if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1606
min_sleep_time = pkt->sleep_time;
1607
}
1608
1609
VPRINTK("kcdrwd: sleeping\n");
1610
residue = schedule_timeout(min_sleep_time);
1611
VPRINTK("kcdrwd: wake up\n");
1612
1613
/* make swsusp happy with our thread */
1614
try_to_freeze();
1615
1616
list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1617
if (!pkt->sleep_time)
1618
continue;
1619
pkt->sleep_time -= min_sleep_time - residue;
1620
if (pkt->sleep_time <= 0) {
1621
pkt->sleep_time = 0;
1622
atomic_inc(&pkt->run_sm);
1623
}
1624
}
1625
1626
if (kthread_should_stop())
1627
break;
1628
}
1629
work_to_do:
1630
set_current_state(TASK_RUNNING);
1631
remove_wait_queue(&pd->wqueue, &wait);
1632
1633
if (kthread_should_stop())
1634
break;
1635
1636
/*
1637
* if pkt_handle_queue returns true, we can queue
1638
* another request.
1639
*/
1640
while (pkt_handle_queue(pd))
1641
;
1642
1643
/*
1644
* Handle packet state machine
1645
*/
1646
pkt_handle_packets(pd);
1647
1648
/*
1649
* Handle iosched queues
1650
*/
1651
pkt_iosched_process_queue(pd);
1652
}
1653
1654
return 0;
1655
}
1656
1657
static void pkt_print_settings(struct pktcdvd_device *pd)
1658
{
1659
printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1660
printk("%u blocks, ", pd->settings.size >> 2);
1661
printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1662
}
1663
1664
static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1665
{
1666
memset(cgc->cmd, 0, sizeof(cgc->cmd));
1667
1668
cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1669
cgc->cmd[2] = page_code | (page_control << 6);
1670
cgc->cmd[7] = cgc->buflen >> 8;
1671
cgc->cmd[8] = cgc->buflen & 0xff;
1672
cgc->data_direction = CGC_DATA_READ;
1673
return pkt_generic_packet(pd, cgc);
1674
}
1675
1676
static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1677
{
1678
memset(cgc->cmd, 0, sizeof(cgc->cmd));
1679
memset(cgc->buffer, 0, 2);
1680
cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1681
cgc->cmd[1] = 0x10; /* PF */
1682
cgc->cmd[7] = cgc->buflen >> 8;
1683
cgc->cmd[8] = cgc->buflen & 0xff;
1684
cgc->data_direction = CGC_DATA_WRITE;
1685
return pkt_generic_packet(pd, cgc);
1686
}
1687
1688
static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1689
{
1690
struct packet_command cgc;
1691
int ret;
1692
1693
/* set up command and get the disc info */
1694
init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1695
cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1696
cgc.cmd[8] = cgc.buflen = 2;
1697
cgc.quiet = 1;
1698
1699
if ((ret = pkt_generic_packet(pd, &cgc)))
1700
return ret;
1701
1702
/* not all drives have the same disc_info length, so requeue
1703
* packet with the length the drive tells us it can supply
1704
*/
1705
cgc.buflen = be16_to_cpu(di->disc_information_length) +
1706
sizeof(di->disc_information_length);
1707
1708
if (cgc.buflen > sizeof(disc_information))
1709
cgc.buflen = sizeof(disc_information);
1710
1711
cgc.cmd[8] = cgc.buflen;
1712
return pkt_generic_packet(pd, &cgc);
1713
}
1714
1715
static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1716
{
1717
struct packet_command cgc;
1718
int ret;
1719
1720
init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1721
cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1722
cgc.cmd[1] = type & 3;
1723
cgc.cmd[4] = (track & 0xff00) >> 8;
1724
cgc.cmd[5] = track & 0xff;
1725
cgc.cmd[8] = 8;
1726
cgc.quiet = 1;
1727
1728
if ((ret = pkt_generic_packet(pd, &cgc)))
1729
return ret;
1730
1731
cgc.buflen = be16_to_cpu(ti->track_information_length) +
1732
sizeof(ti->track_information_length);
1733
1734
if (cgc.buflen > sizeof(track_information))
1735
cgc.buflen = sizeof(track_information);
1736
1737
cgc.cmd[8] = cgc.buflen;
1738
return pkt_generic_packet(pd, &cgc);
1739
}
1740
1741
static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1742
long *last_written)
1743
{
1744
disc_information di;
1745
track_information ti;
1746
__u32 last_track;
1747
int ret = -1;
1748
1749
if ((ret = pkt_get_disc_info(pd, &di)))
1750
return ret;
1751
1752
last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1753
if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1754
return ret;
1755
1756
/* if this track is blank, try the previous. */
1757
if (ti.blank) {
1758
last_track--;
1759
if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1760
return ret;
1761
}
1762
1763
/* if last recorded field is valid, return it. */
1764
if (ti.lra_v) {
1765
*last_written = be32_to_cpu(ti.last_rec_address);
1766
} else {
1767
/* make it up instead */
1768
*last_written = be32_to_cpu(ti.track_start) +
1769
be32_to_cpu(ti.track_size);
1770
if (ti.free_blocks)
1771
*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1772
}
1773
return 0;
1774
}
1775
1776
/*
1777
* write mode select package based on pd->settings
1778
*/
1779
static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1780
{
1781
struct packet_command cgc;
1782
struct request_sense sense;
1783
write_param_page *wp;
1784
char buffer[128];
1785
int ret, size;
1786
1787
/* doesn't apply to DVD+RW or DVD-RAM */
1788
if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1789
return 0;
1790
1791
memset(buffer, 0, sizeof(buffer));
1792
init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1793
cgc.sense = &sense;
1794
if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1795
pkt_dump_sense(&cgc);
1796
return ret;
1797
}
1798
1799
size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1800
pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1801
if (size > sizeof(buffer))
1802
size = sizeof(buffer);
1803
1804
/*
1805
* now get it all
1806
*/
1807
init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1808
cgc.sense = &sense;
1809
if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1810
pkt_dump_sense(&cgc);
1811
return ret;
1812
}
1813
1814
/*
1815
* write page is offset header + block descriptor length
1816
*/
1817
wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1818
1819
wp->fp = pd->settings.fp;
1820
wp->track_mode = pd->settings.track_mode;
1821
wp->write_type = pd->settings.write_type;
1822
wp->data_block_type = pd->settings.block_mode;
1823
1824
wp->multi_session = 0;
1825
1826
#ifdef PACKET_USE_LS
1827
wp->link_size = 7;
1828
wp->ls_v = 1;
1829
#endif
1830
1831
if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1832
wp->session_format = 0;
1833
wp->subhdr2 = 0x20;
1834
} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1835
wp->session_format = 0x20;
1836
wp->subhdr2 = 8;
1837
#if 0
1838
wp->mcn[0] = 0x80;
1839
memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1840
#endif
1841
} else {
1842
/*
1843
* paranoia
1844
*/
1845
printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1846
return 1;
1847
}
1848
wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1849
1850
cgc.buflen = cgc.cmd[8] = size;
1851
if ((ret = pkt_mode_select(pd, &cgc))) {
1852
pkt_dump_sense(&cgc);
1853
return ret;
1854
}
1855
1856
pkt_print_settings(pd);
1857
return 0;
1858
}
1859
1860
/*
1861
* 1 -- we can write to this track, 0 -- we can't
1862
*/
1863
static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1864
{
1865
switch (pd->mmc3_profile) {
1866
case 0x1a: /* DVD+RW */
1867
case 0x12: /* DVD-RAM */
1868
/* The track is always writable on DVD+RW/DVD-RAM */
1869
return 1;
1870
default:
1871
break;
1872
}
1873
1874
if (!ti->packet || !ti->fp)
1875
return 0;
1876
1877
/*
1878
* "good" settings as per Mt Fuji.
1879
*/
1880
if (ti->rt == 0 && ti->blank == 0)
1881
return 1;
1882
1883
if (ti->rt == 0 && ti->blank == 1)
1884
return 1;
1885
1886
if (ti->rt == 1 && ti->blank == 0)
1887
return 1;
1888
1889
printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1890
return 0;
1891
}
1892
1893
/*
1894
* 1 -- we can write to this disc, 0 -- we can't
1895
*/
1896
static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1897
{
1898
switch (pd->mmc3_profile) {
1899
case 0x0a: /* CD-RW */
1900
case 0xffff: /* MMC3 not supported */
1901
break;
1902
case 0x1a: /* DVD+RW */
1903
case 0x13: /* DVD-RW */
1904
case 0x12: /* DVD-RAM */
1905
return 1;
1906
default:
1907
VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1908
return 0;
1909
}
1910
1911
/*
1912
* for disc type 0xff we should probably reserve a new track.
1913
* but i'm not sure, should we leave this to user apps? probably.
1914
*/
1915
if (di->disc_type == 0xff) {
1916
printk(DRIVER_NAME": Unknown disc. No track?\n");
1917
return 0;
1918
}
1919
1920
if (di->disc_type != 0x20 && di->disc_type != 0) {
1921
printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1922
return 0;
1923
}
1924
1925
if (di->erasable == 0) {
1926
printk(DRIVER_NAME": Disc not erasable\n");
1927
return 0;
1928
}
1929
1930
if (di->border_status == PACKET_SESSION_RESERVED) {
1931
printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1932
return 0;
1933
}
1934
1935
return 1;
1936
}
1937
1938
static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1939
{
1940
struct packet_command cgc;
1941
unsigned char buf[12];
1942
disc_information di;
1943
track_information ti;
1944
int ret, track;
1945
1946
init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1947
cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1948
cgc.cmd[8] = 8;
1949
ret = pkt_generic_packet(pd, &cgc);
1950
pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1951
1952
memset(&di, 0, sizeof(disc_information));
1953
memset(&ti, 0, sizeof(track_information));
1954
1955
if ((ret = pkt_get_disc_info(pd, &di))) {
1956
printk("failed get_disc\n");
1957
return ret;
1958
}
1959
1960
if (!pkt_writable_disc(pd, &di))
1961
return -EROFS;
1962
1963
pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1964
1965
track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1966
if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1967
printk(DRIVER_NAME": failed get_track\n");
1968
return ret;
1969
}
1970
1971
if (!pkt_writable_track(pd, &ti)) {
1972
printk(DRIVER_NAME": can't write to this track\n");
1973
return -EROFS;
1974
}
1975
1976
/*
1977
* we keep packet size in 512 byte units, makes it easier to
1978
* deal with request calculations.
1979
*/
1980
pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1981
if (pd->settings.size == 0) {
1982
printk(DRIVER_NAME": detected zero packet size!\n");
1983
return -ENXIO;
1984
}
1985
if (pd->settings.size > PACKET_MAX_SECTORS) {
1986
printk(DRIVER_NAME": packet size is too big\n");
1987
return -EROFS;
1988
}
1989
pd->settings.fp = ti.fp;
1990
pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1991
1992
if (ti.nwa_v) {
1993
pd->nwa = be32_to_cpu(ti.next_writable);
1994
set_bit(PACKET_NWA_VALID, &pd->flags);
1995
}
1996
1997
/*
1998
* in theory we could use lra on -RW media as well and just zero
1999
* blocks that haven't been written yet, but in practice that
2000
* is just a no-go. we'll use that for -R, naturally.
2001
*/
2002
if (ti.lra_v) {
2003
pd->lra = be32_to_cpu(ti.last_rec_address);
2004
set_bit(PACKET_LRA_VALID, &pd->flags);
2005
} else {
2006
pd->lra = 0xffffffff;
2007
set_bit(PACKET_LRA_VALID, &pd->flags);
2008
}
2009
2010
/*
2011
* fine for now
2012
*/
2013
pd->settings.link_loss = 7;
2014
pd->settings.write_type = 0; /* packet */
2015
pd->settings.track_mode = ti.track_mode;
2016
2017
/*
2018
* mode1 or mode2 disc
2019
*/
2020
switch (ti.data_mode) {
2021
case PACKET_MODE1:
2022
pd->settings.block_mode = PACKET_BLOCK_MODE1;
2023
break;
2024
case PACKET_MODE2:
2025
pd->settings.block_mode = PACKET_BLOCK_MODE2;
2026
break;
2027
default:
2028
printk(DRIVER_NAME": unknown data mode\n");
2029
return -EROFS;
2030
}
2031
return 0;
2032
}
2033
2034
/*
2035
* enable/disable write caching on drive
2036
*/
2037
static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2038
int set)
2039
{
2040
struct packet_command cgc;
2041
struct request_sense sense;
2042
unsigned char buf[64];
2043
int ret;
2044
2045
init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2046
cgc.sense = &sense;
2047
cgc.buflen = pd->mode_offset + 12;
2048
2049
/*
2050
* caching mode page might not be there, so quiet this command
2051
*/
2052
cgc.quiet = 1;
2053
2054
if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2055
return ret;
2056
2057
buf[pd->mode_offset + 10] |= (!!set << 2);
2058
2059
cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2060
ret = pkt_mode_select(pd, &cgc);
2061
if (ret) {
2062
printk(DRIVER_NAME": write caching control failed\n");
2063
pkt_dump_sense(&cgc);
2064
} else if (!ret && set)
2065
printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2066
return ret;
2067
}
2068
2069
static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2070
{
2071
struct packet_command cgc;
2072
2073
init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2074
cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2075
cgc.cmd[4] = lockflag ? 1 : 0;
2076
return pkt_generic_packet(pd, &cgc);
2077
}
2078
2079
/*
2080
* Returns drive maximum write speed
2081
*/
2082
static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2083
unsigned *write_speed)
2084
{
2085
struct packet_command cgc;
2086
struct request_sense sense;
2087
unsigned char buf[256+18];
2088
unsigned char *cap_buf;
2089
int ret, offset;
2090
2091
cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2092
init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2093
cgc.sense = &sense;
2094
2095
ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2096
if (ret) {
2097
cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2098
sizeof(struct mode_page_header);
2099
ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2100
if (ret) {
2101
pkt_dump_sense(&cgc);
2102
return ret;
2103
}
2104
}
2105
2106
offset = 20; /* Obsoleted field, used by older drives */
2107
if (cap_buf[1] >= 28)
2108
offset = 28; /* Current write speed selected */
2109
if (cap_buf[1] >= 30) {
2110
/* If the drive reports at least one "Logical Unit Write
2111
* Speed Performance Descriptor Block", use the information
2112
* in the first block. (contains the highest speed)
2113
*/
2114
int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2115
if (num_spdb > 0)
2116
offset = 34;
2117
}
2118
2119
*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2120
return 0;
2121
}
2122
2123
/* These tables from cdrecord - I don't have orange book */
2124
/* standard speed CD-RW (1-4x) */
2125
static char clv_to_speed[16] = {
2126
/* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2127
0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2128
};
2129
/* high speed CD-RW (-10x) */
2130
static char hs_clv_to_speed[16] = {
2131
/* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2132
0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2133
};
2134
/* ultra high speed CD-RW */
2135
static char us_clv_to_speed[16] = {
2136
/* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2137
0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2138
};
2139
2140
/*
2141
* reads the maximum media speed from ATIP
2142
*/
2143
static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2144
unsigned *speed)
2145
{
2146
struct packet_command cgc;
2147
struct request_sense sense;
2148
unsigned char buf[64];
2149
unsigned int size, st, sp;
2150
int ret;
2151
2152
init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2153
cgc.sense = &sense;
2154
cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2155
cgc.cmd[1] = 2;
2156
cgc.cmd[2] = 4; /* READ ATIP */
2157
cgc.cmd[8] = 2;
2158
ret = pkt_generic_packet(pd, &cgc);
2159
if (ret) {
2160
pkt_dump_sense(&cgc);
2161
return ret;
2162
}
2163
size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2164
if (size > sizeof(buf))
2165
size = sizeof(buf);
2166
2167
init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2168
cgc.sense = &sense;
2169
cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2170
cgc.cmd[1] = 2;
2171
cgc.cmd[2] = 4;
2172
cgc.cmd[8] = size;
2173
ret = pkt_generic_packet(pd, &cgc);
2174
if (ret) {
2175
pkt_dump_sense(&cgc);
2176
return ret;
2177
}
2178
2179
if (!(buf[6] & 0x40)) {
2180
printk(DRIVER_NAME": Disc type is not CD-RW\n");
2181
return 1;
2182
}
2183
if (!(buf[6] & 0x4)) {
2184
printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2185
return 1;
2186
}
2187
2188
st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2189
2190
sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2191
2192
/* Info from cdrecord */
2193
switch (st) {
2194
case 0: /* standard speed */
2195
*speed = clv_to_speed[sp];
2196
break;
2197
case 1: /* high speed */
2198
*speed = hs_clv_to_speed[sp];
2199
break;
2200
case 2: /* ultra high speed */
2201
*speed = us_clv_to_speed[sp];
2202
break;
2203
default:
2204
printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2205
return 1;
2206
}
2207
if (*speed) {
2208
printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2209
return 0;
2210
} else {
2211
printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2212
return 1;
2213
}
2214
}
2215
2216
static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2217
{
2218
struct packet_command cgc;
2219
struct request_sense sense;
2220
int ret;
2221
2222
VPRINTK(DRIVER_NAME": Performing OPC\n");
2223
2224
init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2225
cgc.sense = &sense;
2226
cgc.timeout = 60*HZ;
2227
cgc.cmd[0] = GPCMD_SEND_OPC;
2228
cgc.cmd[1] = 1;
2229
if ((ret = pkt_generic_packet(pd, &cgc)))
2230
pkt_dump_sense(&cgc);
2231
return ret;
2232
}
2233
2234
static int pkt_open_write(struct pktcdvd_device *pd)
2235
{
2236
int ret;
2237
unsigned int write_speed, media_write_speed, read_speed;
2238
2239
if ((ret = pkt_probe_settings(pd))) {
2240
VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2241
return ret;
2242
}
2243
2244
if ((ret = pkt_set_write_settings(pd))) {
2245
DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2246
return -EIO;
2247
}
2248
2249
pkt_write_caching(pd, USE_WCACHING);
2250
2251
if ((ret = pkt_get_max_speed(pd, &write_speed)))
2252
write_speed = 16 * 177;
2253
switch (pd->mmc3_profile) {
2254
case 0x13: /* DVD-RW */
2255
case 0x1a: /* DVD+RW */
2256
case 0x12: /* DVD-RAM */
2257
DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2258
break;
2259
default:
2260
if ((ret = pkt_media_speed(pd, &media_write_speed)))
2261
media_write_speed = 16;
2262
write_speed = min(write_speed, media_write_speed * 177);
2263
DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2264
break;
2265
}
2266
read_speed = write_speed;
2267
2268
if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2269
DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2270
return -EIO;
2271
}
2272
pd->write_speed = write_speed;
2273
pd->read_speed = read_speed;
2274
2275
if ((ret = pkt_perform_opc(pd))) {
2276
DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2277
}
2278
2279
return 0;
2280
}
2281
2282
/*
2283
* called at open time.
2284
*/
2285
static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2286
{
2287
int ret;
2288
long lba;
2289
struct request_queue *q;
2290
2291
/*
2292
* We need to re-open the cdrom device without O_NONBLOCK to be able
2293
* to read/write from/to it. It is already opened in O_NONBLOCK mode
2294
* so bdget() can't fail.
2295
*/
2296
bdget(pd->bdev->bd_dev);
2297
if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2298
goto out;
2299
2300
if ((ret = pkt_get_last_written(pd, &lba))) {
2301
printk(DRIVER_NAME": pkt_get_last_written failed\n");
2302
goto out_putdev;
2303
}
2304
2305
set_capacity(pd->disk, lba << 2);
2306
set_capacity(pd->bdev->bd_disk, lba << 2);
2307
bd_set_size(pd->bdev, (loff_t)lba << 11);
2308
2309
q = bdev_get_queue(pd->bdev);
2310
if (write) {
2311
if ((ret = pkt_open_write(pd)))
2312
goto out_putdev;
2313
/*
2314
* Some CDRW drives can not handle writes larger than one packet,
2315
* even if the size is a multiple of the packet size.
2316
*/
2317
spin_lock_irq(q->queue_lock);
2318
blk_queue_max_hw_sectors(q, pd->settings.size);
2319
spin_unlock_irq(q->queue_lock);
2320
set_bit(PACKET_WRITABLE, &pd->flags);
2321
} else {
2322
pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2323
clear_bit(PACKET_WRITABLE, &pd->flags);
2324
}
2325
2326
if ((ret = pkt_set_segment_merging(pd, q)))
2327
goto out_putdev;
2328
2329
if (write) {
2330
if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2331
printk(DRIVER_NAME": not enough memory for buffers\n");
2332
ret = -ENOMEM;
2333
goto out_putdev;
2334
}
2335
printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2336
}
2337
2338
return 0;
2339
2340
out_putdev:
2341
blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2342
out:
2343
return ret;
2344
}
2345
2346
/*
2347
* called when the device is closed. makes sure that the device flushes
2348
* the internal cache before we close.
2349
*/
2350
static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2351
{
2352
if (flush && pkt_flush_cache(pd))
2353
DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2354
2355
pkt_lock_door(pd, 0);
2356
2357
pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2358
blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2359
2360
pkt_shrink_pktlist(pd);
2361
}
2362
2363
static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2364
{
2365
if (dev_minor >= MAX_WRITERS)
2366
return NULL;
2367
return pkt_devs[dev_minor];
2368
}
2369
2370
static int pkt_open(struct block_device *bdev, fmode_t mode)
2371
{
2372
struct pktcdvd_device *pd = NULL;
2373
int ret;
2374
2375
VPRINTK(DRIVER_NAME": entering open\n");
2376
2377
mutex_lock(&pktcdvd_mutex);
2378
mutex_lock(&ctl_mutex);
2379
pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2380
if (!pd) {
2381
ret = -ENODEV;
2382
goto out;
2383
}
2384
BUG_ON(pd->refcnt < 0);
2385
2386
pd->refcnt++;
2387
if (pd->refcnt > 1) {
2388
if ((mode & FMODE_WRITE) &&
2389
!test_bit(PACKET_WRITABLE, &pd->flags)) {
2390
ret = -EBUSY;
2391
goto out_dec;
2392
}
2393
} else {
2394
ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2395
if (ret)
2396
goto out_dec;
2397
/*
2398
* needed here as well, since ext2 (among others) may change
2399
* the blocksize at mount time
2400
*/
2401
set_blocksize(bdev, CD_FRAMESIZE);
2402
}
2403
2404
mutex_unlock(&ctl_mutex);
2405
mutex_unlock(&pktcdvd_mutex);
2406
return 0;
2407
2408
out_dec:
2409
pd->refcnt--;
2410
out:
2411
VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2412
mutex_unlock(&ctl_mutex);
2413
mutex_unlock(&pktcdvd_mutex);
2414
return ret;
2415
}
2416
2417
static int pkt_close(struct gendisk *disk, fmode_t mode)
2418
{
2419
struct pktcdvd_device *pd = disk->private_data;
2420
int ret = 0;
2421
2422
mutex_lock(&pktcdvd_mutex);
2423
mutex_lock(&ctl_mutex);
2424
pd->refcnt--;
2425
BUG_ON(pd->refcnt < 0);
2426
if (pd->refcnt == 0) {
2427
int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2428
pkt_release_dev(pd, flush);
2429
}
2430
mutex_unlock(&ctl_mutex);
2431
mutex_unlock(&pktcdvd_mutex);
2432
return ret;
2433
}
2434
2435
2436
static void pkt_end_io_read_cloned(struct bio *bio, int err)
2437
{
2438
struct packet_stacked_data *psd = bio->bi_private;
2439
struct pktcdvd_device *pd = psd->pd;
2440
2441
bio_put(bio);
2442
bio_endio(psd->bio, err);
2443
mempool_free(psd, psd_pool);
2444
pkt_bio_finished(pd);
2445
}
2446
2447
static int pkt_make_request(struct request_queue *q, struct bio *bio)
2448
{
2449
struct pktcdvd_device *pd;
2450
char b[BDEVNAME_SIZE];
2451
sector_t zone;
2452
struct packet_data *pkt;
2453
int was_empty, blocked_bio;
2454
struct pkt_rb_node *node;
2455
2456
pd = q->queuedata;
2457
if (!pd) {
2458
printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2459
goto end_io;
2460
}
2461
2462
/*
2463
* Clone READ bios so we can have our own bi_end_io callback.
2464
*/
2465
if (bio_data_dir(bio) == READ) {
2466
struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2467
struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2468
2469
psd->pd = pd;
2470
psd->bio = bio;
2471
cloned_bio->bi_bdev = pd->bdev;
2472
cloned_bio->bi_private = psd;
2473
cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2474
pd->stats.secs_r += bio->bi_size >> 9;
2475
pkt_queue_bio(pd, cloned_bio);
2476
return 0;
2477
}
2478
2479
if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2480
printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2481
pd->name, (unsigned long long)bio->bi_sector);
2482
goto end_io;
2483
}
2484
2485
if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2486
printk(DRIVER_NAME": wrong bio size\n");
2487
goto end_io;
2488
}
2489
2490
blk_queue_bounce(q, &bio);
2491
2492
zone = ZONE(bio->bi_sector, pd);
2493
VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2494
(unsigned long long)bio->bi_sector,
2495
(unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2496
2497
/* Check if we have to split the bio */
2498
{
2499
struct bio_pair *bp;
2500
sector_t last_zone;
2501
int first_sectors;
2502
2503
last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2504
if (last_zone != zone) {
2505
BUG_ON(last_zone != zone + pd->settings.size);
2506
first_sectors = last_zone - bio->bi_sector;
2507
bp = bio_split(bio, first_sectors);
2508
BUG_ON(!bp);
2509
pkt_make_request(q, &bp->bio1);
2510
pkt_make_request(q, &bp->bio2);
2511
bio_pair_release(bp);
2512
return 0;
2513
}
2514
}
2515
2516
/*
2517
* If we find a matching packet in state WAITING or READ_WAIT, we can
2518
* just append this bio to that packet.
2519
*/
2520
spin_lock(&pd->cdrw.active_list_lock);
2521
blocked_bio = 0;
2522
list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2523
if (pkt->sector == zone) {
2524
spin_lock(&pkt->lock);
2525
if ((pkt->state == PACKET_WAITING_STATE) ||
2526
(pkt->state == PACKET_READ_WAIT_STATE)) {
2527
bio_list_add(&pkt->orig_bios, bio);
2528
pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2529
if ((pkt->write_size >= pkt->frames) &&
2530
(pkt->state == PACKET_WAITING_STATE)) {
2531
atomic_inc(&pkt->run_sm);
2532
wake_up(&pd->wqueue);
2533
}
2534
spin_unlock(&pkt->lock);
2535
spin_unlock(&pd->cdrw.active_list_lock);
2536
return 0;
2537
} else {
2538
blocked_bio = 1;
2539
}
2540
spin_unlock(&pkt->lock);
2541
}
2542
}
2543
spin_unlock(&pd->cdrw.active_list_lock);
2544
2545
/*
2546
* Test if there is enough room left in the bio work queue
2547
* (queue size >= congestion on mark).
2548
* If not, wait till the work queue size is below the congestion off mark.
2549
*/
2550
spin_lock(&pd->lock);
2551
if (pd->write_congestion_on > 0
2552
&& pd->bio_queue_size >= pd->write_congestion_on) {
2553
set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2554
do {
2555
spin_unlock(&pd->lock);
2556
congestion_wait(BLK_RW_ASYNC, HZ);
2557
spin_lock(&pd->lock);
2558
} while(pd->bio_queue_size > pd->write_congestion_off);
2559
}
2560
spin_unlock(&pd->lock);
2561
2562
/*
2563
* No matching packet found. Store the bio in the work queue.
2564
*/
2565
node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2566
node->bio = bio;
2567
spin_lock(&pd->lock);
2568
BUG_ON(pd->bio_queue_size < 0);
2569
was_empty = (pd->bio_queue_size == 0);
2570
pkt_rbtree_insert(pd, node);
2571
spin_unlock(&pd->lock);
2572
2573
/*
2574
* Wake up the worker thread.
2575
*/
2576
atomic_set(&pd->scan_queue, 1);
2577
if (was_empty) {
2578
/* This wake_up is required for correct operation */
2579
wake_up(&pd->wqueue);
2580
} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2581
/*
2582
* This wake up is not required for correct operation,
2583
* but improves performance in some cases.
2584
*/
2585
wake_up(&pd->wqueue);
2586
}
2587
return 0;
2588
end_io:
2589
bio_io_error(bio);
2590
return 0;
2591
}
2592
2593
2594
2595
static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2596
struct bio_vec *bvec)
2597
{
2598
struct pktcdvd_device *pd = q->queuedata;
2599
sector_t zone = ZONE(bmd->bi_sector, pd);
2600
int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2601
int remaining = (pd->settings.size << 9) - used;
2602
int remaining2;
2603
2604
/*
2605
* A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2606
* boundary, pkt_make_request() will split the bio.
2607
*/
2608
remaining2 = PAGE_SIZE - bmd->bi_size;
2609
remaining = max(remaining, remaining2);
2610
2611
BUG_ON(remaining < 0);
2612
return remaining;
2613
}
2614
2615
static void pkt_init_queue(struct pktcdvd_device *pd)
2616
{
2617
struct request_queue *q = pd->disk->queue;
2618
2619
blk_queue_make_request(q, pkt_make_request);
2620
blk_queue_logical_block_size(q, CD_FRAMESIZE);
2621
blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2622
blk_queue_merge_bvec(q, pkt_merge_bvec);
2623
q->queuedata = pd;
2624
}
2625
2626
static int pkt_seq_show(struct seq_file *m, void *p)
2627
{
2628
struct pktcdvd_device *pd = m->private;
2629
char *msg;
2630
char bdev_buf[BDEVNAME_SIZE];
2631
int states[PACKET_NUM_STATES];
2632
2633
seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2634
bdevname(pd->bdev, bdev_buf));
2635
2636
seq_printf(m, "\nSettings:\n");
2637
seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2638
2639
if (pd->settings.write_type == 0)
2640
msg = "Packet";
2641
else
2642
msg = "Unknown";
2643
seq_printf(m, "\twrite type:\t\t%s\n", msg);
2644
2645
seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2646
seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2647
2648
seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2649
2650
if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2651
msg = "Mode 1";
2652
else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2653
msg = "Mode 2";
2654
else
2655
msg = "Unknown";
2656
seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2657
2658
seq_printf(m, "\nStatistics:\n");
2659
seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2660
seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2661
seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2662
seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2663
seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2664
2665
seq_printf(m, "\nMisc:\n");
2666
seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2667
seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2668
seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2669
seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2670
seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2671
seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2672
2673
seq_printf(m, "\nQueue state:\n");
2674
seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2675
seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2676
seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2677
2678
pkt_count_states(pd, states);
2679
seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2680
states[0], states[1], states[2], states[3], states[4], states[5]);
2681
2682
seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2683
pd->write_congestion_off,
2684
pd->write_congestion_on);
2685
return 0;
2686
}
2687
2688
static int pkt_seq_open(struct inode *inode, struct file *file)
2689
{
2690
return single_open(file, pkt_seq_show, PDE(inode)->data);
2691
}
2692
2693
static const struct file_operations pkt_proc_fops = {
2694
.open = pkt_seq_open,
2695
.read = seq_read,
2696
.llseek = seq_lseek,
2697
.release = single_release
2698
};
2699
2700
static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2701
{
2702
int i;
2703
int ret = 0;
2704
char b[BDEVNAME_SIZE];
2705
struct block_device *bdev;
2706
2707
if (pd->pkt_dev == dev) {
2708
printk(DRIVER_NAME": Recursive setup not allowed\n");
2709
return -EBUSY;
2710
}
2711
for (i = 0; i < MAX_WRITERS; i++) {
2712
struct pktcdvd_device *pd2 = pkt_devs[i];
2713
if (!pd2)
2714
continue;
2715
if (pd2->bdev->bd_dev == dev) {
2716
printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2717
return -EBUSY;
2718
}
2719
if (pd2->pkt_dev == dev) {
2720
printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2721
return -EBUSY;
2722
}
2723
}
2724
2725
bdev = bdget(dev);
2726
if (!bdev)
2727
return -ENOMEM;
2728
ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2729
if (ret)
2730
return ret;
2731
2732
/* This is safe, since we have a reference from open(). */
2733
__module_get(THIS_MODULE);
2734
2735
pd->bdev = bdev;
2736
set_blocksize(bdev, CD_FRAMESIZE);
2737
2738
pkt_init_queue(pd);
2739
2740
atomic_set(&pd->cdrw.pending_bios, 0);
2741
pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2742
if (IS_ERR(pd->cdrw.thread)) {
2743
printk(DRIVER_NAME": can't start kernel thread\n");
2744
ret = -ENOMEM;
2745
goto out_mem;
2746
}
2747
2748
proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2749
DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2750
return 0;
2751
2752
out_mem:
2753
blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2754
/* This is safe: open() is still holding a reference. */
2755
module_put(THIS_MODULE);
2756
return ret;
2757
}
2758
2759
static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2760
{
2761
struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2762
int ret;
2763
2764
VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2765
MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2766
2767
mutex_lock(&pktcdvd_mutex);
2768
switch (cmd) {
2769
case CDROMEJECT:
2770
/*
2771
* The door gets locked when the device is opened, so we
2772
* have to unlock it or else the eject command fails.
2773
*/
2774
if (pd->refcnt == 1)
2775
pkt_lock_door(pd, 0);
2776
/* fallthru */
2777
/*
2778
* forward selected CDROM ioctls to CD-ROM, for UDF
2779
*/
2780
case CDROMMULTISESSION:
2781
case CDROMREADTOCENTRY:
2782
case CDROM_LAST_WRITTEN:
2783
case CDROM_SEND_PACKET:
2784
case SCSI_IOCTL_SEND_COMMAND:
2785
ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2786
break;
2787
2788
default:
2789
VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2790
ret = -ENOTTY;
2791
}
2792
mutex_unlock(&pktcdvd_mutex);
2793
2794
return ret;
2795
}
2796
2797
static unsigned int pkt_check_events(struct gendisk *disk,
2798
unsigned int clearing)
2799
{
2800
struct pktcdvd_device *pd = disk->private_data;
2801
struct gendisk *attached_disk;
2802
2803
if (!pd)
2804
return 0;
2805
if (!pd->bdev)
2806
return 0;
2807
attached_disk = pd->bdev->bd_disk;
2808
if (!attached_disk || !attached_disk->fops->check_events)
2809
return 0;
2810
return attached_disk->fops->check_events(attached_disk, clearing);
2811
}
2812
2813
static const struct block_device_operations pktcdvd_ops = {
2814
.owner = THIS_MODULE,
2815
.open = pkt_open,
2816
.release = pkt_close,
2817
.ioctl = pkt_ioctl,
2818
.check_events = pkt_check_events,
2819
};
2820
2821
static char *pktcdvd_devnode(struct gendisk *gd, mode_t *mode)
2822
{
2823
return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2824
}
2825
2826
/*
2827
* Set up mapping from pktcdvd device to CD-ROM device.
2828
*/
2829
static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2830
{
2831
int idx;
2832
int ret = -ENOMEM;
2833
struct pktcdvd_device *pd;
2834
struct gendisk *disk;
2835
2836
mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2837
2838
for (idx = 0; idx < MAX_WRITERS; idx++)
2839
if (!pkt_devs[idx])
2840
break;
2841
if (idx == MAX_WRITERS) {
2842
printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2843
ret = -EBUSY;
2844
goto out_mutex;
2845
}
2846
2847
pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2848
if (!pd)
2849
goto out_mutex;
2850
2851
pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2852
sizeof(struct pkt_rb_node));
2853
if (!pd->rb_pool)
2854
goto out_mem;
2855
2856
INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2857
INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2858
spin_lock_init(&pd->cdrw.active_list_lock);
2859
2860
spin_lock_init(&pd->lock);
2861
spin_lock_init(&pd->iosched.lock);
2862
bio_list_init(&pd->iosched.read_queue);
2863
bio_list_init(&pd->iosched.write_queue);
2864
sprintf(pd->name, DRIVER_NAME"%d", idx);
2865
init_waitqueue_head(&pd->wqueue);
2866
pd->bio_queue = RB_ROOT;
2867
2868
pd->write_congestion_on = write_congestion_on;
2869
pd->write_congestion_off = write_congestion_off;
2870
2871
disk = alloc_disk(1);
2872
if (!disk)
2873
goto out_mem;
2874
pd->disk = disk;
2875
disk->major = pktdev_major;
2876
disk->first_minor = idx;
2877
disk->fops = &pktcdvd_ops;
2878
disk->flags = GENHD_FL_REMOVABLE;
2879
strcpy(disk->disk_name, pd->name);
2880
disk->devnode = pktcdvd_devnode;
2881
disk->private_data = pd;
2882
disk->queue = blk_alloc_queue(GFP_KERNEL);
2883
if (!disk->queue)
2884
goto out_mem2;
2885
2886
pd->pkt_dev = MKDEV(pktdev_major, idx);
2887
ret = pkt_new_dev(pd, dev);
2888
if (ret)
2889
goto out_new_dev;
2890
2891
/* inherit events of the host device */
2892
disk->events = pd->bdev->bd_disk->events;
2893
disk->async_events = pd->bdev->bd_disk->async_events;
2894
2895
add_disk(disk);
2896
2897
pkt_sysfs_dev_new(pd);
2898
pkt_debugfs_dev_new(pd);
2899
2900
pkt_devs[idx] = pd;
2901
if (pkt_dev)
2902
*pkt_dev = pd->pkt_dev;
2903
2904
mutex_unlock(&ctl_mutex);
2905
return 0;
2906
2907
out_new_dev:
2908
blk_cleanup_queue(disk->queue);
2909
out_mem2:
2910
put_disk(disk);
2911
out_mem:
2912
if (pd->rb_pool)
2913
mempool_destroy(pd->rb_pool);
2914
kfree(pd);
2915
out_mutex:
2916
mutex_unlock(&ctl_mutex);
2917
printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2918
return ret;
2919
}
2920
2921
/*
2922
* Tear down mapping from pktcdvd device to CD-ROM device.
2923
*/
2924
static int pkt_remove_dev(dev_t pkt_dev)
2925
{
2926
struct pktcdvd_device *pd;
2927
int idx;
2928
int ret = 0;
2929
2930
mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2931
2932
for (idx = 0; idx < MAX_WRITERS; idx++) {
2933
pd = pkt_devs[idx];
2934
if (pd && (pd->pkt_dev == pkt_dev))
2935
break;
2936
}
2937
if (idx == MAX_WRITERS) {
2938
DPRINTK(DRIVER_NAME": dev not setup\n");
2939
ret = -ENXIO;
2940
goto out;
2941
}
2942
2943
if (pd->refcnt > 0) {
2944
ret = -EBUSY;
2945
goto out;
2946
}
2947
if (!IS_ERR(pd->cdrw.thread))
2948
kthread_stop(pd->cdrw.thread);
2949
2950
pkt_devs[idx] = NULL;
2951
2952
pkt_debugfs_dev_remove(pd);
2953
pkt_sysfs_dev_remove(pd);
2954
2955
blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2956
2957
remove_proc_entry(pd->name, pkt_proc);
2958
DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2959
2960
del_gendisk(pd->disk);
2961
blk_cleanup_queue(pd->disk->queue);
2962
put_disk(pd->disk);
2963
2964
mempool_destroy(pd->rb_pool);
2965
kfree(pd);
2966
2967
/* This is safe: open() is still holding a reference. */
2968
module_put(THIS_MODULE);
2969
2970
out:
2971
mutex_unlock(&ctl_mutex);
2972
return ret;
2973
}
2974
2975
static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2976
{
2977
struct pktcdvd_device *pd;
2978
2979
mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2980
2981
pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2982
if (pd) {
2983
ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2984
ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2985
} else {
2986
ctrl_cmd->dev = 0;
2987
ctrl_cmd->pkt_dev = 0;
2988
}
2989
ctrl_cmd->num_devices = MAX_WRITERS;
2990
2991
mutex_unlock(&ctl_mutex);
2992
}
2993
2994
static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2995
{
2996
void __user *argp = (void __user *)arg;
2997
struct pkt_ctrl_command ctrl_cmd;
2998
int ret = 0;
2999
dev_t pkt_dev = 0;
3000
3001
if (cmd != PACKET_CTRL_CMD)
3002
return -ENOTTY;
3003
3004
if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3005
return -EFAULT;
3006
3007
switch (ctrl_cmd.command) {
3008
case PKT_CTRL_CMD_SETUP:
3009
if (!capable(CAP_SYS_ADMIN))
3010
return -EPERM;
3011
ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3012
ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3013
break;
3014
case PKT_CTRL_CMD_TEARDOWN:
3015
if (!capable(CAP_SYS_ADMIN))
3016
return -EPERM;
3017
ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3018
break;
3019
case PKT_CTRL_CMD_STATUS:
3020
pkt_get_status(&ctrl_cmd);
3021
break;
3022
default:
3023
return -ENOTTY;
3024
}
3025
3026
if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3027
return -EFAULT;
3028
return ret;
3029
}
3030
3031
#ifdef CONFIG_COMPAT
3032
static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3033
{
3034
return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
3035
}
3036
#endif
3037
3038
static const struct file_operations pkt_ctl_fops = {
3039
.open = nonseekable_open,
3040
.unlocked_ioctl = pkt_ctl_ioctl,
3041
#ifdef CONFIG_COMPAT
3042
.compat_ioctl = pkt_ctl_compat_ioctl,
3043
#endif
3044
.owner = THIS_MODULE,
3045
.llseek = no_llseek,
3046
};
3047
3048
static struct miscdevice pkt_misc = {
3049
.minor = MISC_DYNAMIC_MINOR,
3050
.name = DRIVER_NAME,
3051
.nodename = "pktcdvd/control",
3052
.fops = &pkt_ctl_fops
3053
};
3054
3055
static int __init pkt_init(void)
3056
{
3057
int ret;
3058
3059
mutex_init(&ctl_mutex);
3060
3061
psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3062
sizeof(struct packet_stacked_data));
3063
if (!psd_pool)
3064
return -ENOMEM;
3065
3066
ret = register_blkdev(pktdev_major, DRIVER_NAME);
3067
if (ret < 0) {
3068
printk(DRIVER_NAME": Unable to register block device\n");
3069
goto out2;
3070
}
3071
if (!pktdev_major)
3072
pktdev_major = ret;
3073
3074
ret = pkt_sysfs_init();
3075
if (ret)
3076
goto out;
3077
3078
pkt_debugfs_init();
3079
3080
ret = misc_register(&pkt_misc);
3081
if (ret) {
3082
printk(DRIVER_NAME": Unable to register misc device\n");
3083
goto out_misc;
3084
}
3085
3086
pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3087
3088
return 0;
3089
3090
out_misc:
3091
pkt_debugfs_cleanup();
3092
pkt_sysfs_cleanup();
3093
out:
3094
unregister_blkdev(pktdev_major, DRIVER_NAME);
3095
out2:
3096
mempool_destroy(psd_pool);
3097
return ret;
3098
}
3099
3100
static void __exit pkt_exit(void)
3101
{
3102
remove_proc_entry("driver/"DRIVER_NAME, NULL);
3103
misc_deregister(&pkt_misc);
3104
3105
pkt_debugfs_cleanup();
3106
pkt_sysfs_cleanup();
3107
3108
unregister_blkdev(pktdev_major, DRIVER_NAME);
3109
mempool_destroy(psd_pool);
3110
}
3111
3112
MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3113
MODULE_AUTHOR("Jens Axboe <[email protected]>");
3114
MODULE_LICENSE("GPL");
3115
3116
module_init(pkt_init);
3117
module_exit(pkt_exit);
3118
3119