Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/block/ub.c
15111 views
1
/*
2
* The low performance USB storage driver (ub).
3
*
4
* Copyright (c) 1999, 2000 Matthew Dharm ([email protected])
5
* Copyright (C) 2004 Pete Zaitcev ([email protected])
6
*
7
* This work is a part of Linux kernel, is derived from it,
8
* and is not licensed separately. See file COPYING for details.
9
*
10
* TODO (sorted by decreasing priority)
11
* -- Return sense now that rq allows it (we always auto-sense anyway).
12
* -- set readonly flag for CDs, set removable flag for CF readers
13
* -- do inquiry and verify we got a disk and not a tape (for LUN mismatch)
14
* -- verify the 13 conditions and do bulk resets
15
* -- highmem
16
* -- move top_sense and work_bcs into separate allocations (if they survive)
17
* for cache purists and esoteric architectures.
18
* -- Allocate structure for LUN 0 before the first ub_sync_tur, avoid NULL. ?
19
* -- prune comments, they are too volumnous
20
* -- Resove XXX's
21
* -- CLEAR, CLR2STS, CLRRS seem to be ripe for refactoring.
22
*/
23
#include <linux/kernel.h>
24
#include <linux/module.h>
25
#include <linux/usb.h>
26
#include <linux/usb_usual.h>
27
#include <linux/blkdev.h>
28
#include <linux/timer.h>
29
#include <linux/scatterlist.h>
30
#include <linux/slab.h>
31
#include <linux/mutex.h>
32
#include <scsi/scsi.h>
33
34
#define DRV_NAME "ub"
35
36
#define UB_MAJOR 180
37
38
/*
39
* The command state machine is the key model for understanding of this driver.
40
*
41
* The general rule is that all transitions are done towards the bottom
42
* of the diagram, thus preventing any loops.
43
*
44
* An exception to that is how the STAT state is handled. A counter allows it
45
* to be re-entered along the path marked with [C].
46
*
47
* +--------+
48
* ! INIT !
49
* +--------+
50
* !
51
* ub_scsi_cmd_start fails ->--------------------------------------\
52
* ! !
53
* V !
54
* +--------+ !
55
* ! CMD ! !
56
* +--------+ !
57
* ! +--------+ !
58
* was -EPIPE -->-------------------------------->! CLEAR ! !
59
* ! +--------+ !
60
* ! ! !
61
* was error -->------------------------------------- ! --------->\
62
* ! ! !
63
* /--<-- cmd->dir == NONE ? ! !
64
* ! ! ! !
65
* ! V ! !
66
* ! +--------+ ! !
67
* ! ! DATA ! ! !
68
* ! +--------+ ! !
69
* ! ! +---------+ ! !
70
* ! was -EPIPE -->--------------->! CLR2STS ! ! !
71
* ! ! +---------+ ! !
72
* ! ! ! ! !
73
* ! ! was error -->---- ! --------->\
74
* ! was error -->--------------------- ! ------------- ! --------->\
75
* ! ! ! ! !
76
* ! V ! ! !
77
* \--->+--------+ ! ! !
78
* ! STAT !<--------------------------/ ! !
79
* /--->+--------+ ! !
80
* ! ! ! !
81
* [C] was -EPIPE -->-----------\ ! !
82
* ! ! ! ! !
83
* +<---- len == 0 ! ! !
84
* ! ! ! ! !
85
* ! was error -->--------------------------------------!---------->\
86
* ! ! ! ! !
87
* +<---- bad CSW ! ! !
88
* +<---- bad tag ! ! !
89
* ! ! V ! !
90
* ! ! +--------+ ! !
91
* ! ! ! CLRRS ! ! !
92
* ! ! +--------+ ! !
93
* ! ! ! ! !
94
* \------- ! --------------------[C]--------\ ! !
95
* ! ! ! !
96
* cmd->error---\ +--------+ ! !
97
* ! +--------------->! SENSE !<----------/ !
98
* STAT_FAIL----/ +--------+ !
99
* ! ! V
100
* ! V +--------+
101
* \--------------------------------\--------------------->! DONE !
102
* +--------+
103
*/
104
105
/*
106
* This many LUNs per USB device.
107
* Every one of them takes a host, see UB_MAX_HOSTS.
108
*/
109
#define UB_MAX_LUNS 9
110
111
/*
112
*/
113
114
#define UB_PARTS_PER_LUN 8
115
116
#define UB_MAX_CDB_SIZE 16 /* Corresponds to Bulk */
117
118
#define UB_SENSE_SIZE 18
119
120
/*
121
*/
122
123
/* command block wrapper */
124
struct bulk_cb_wrap {
125
__le32 Signature; /* contains 'USBC' */
126
u32 Tag; /* unique per command id */
127
__le32 DataTransferLength; /* size of data */
128
u8 Flags; /* direction in bit 0 */
129
u8 Lun; /* LUN */
130
u8 Length; /* of of the CDB */
131
u8 CDB[UB_MAX_CDB_SIZE]; /* max command */
132
};
133
134
#define US_BULK_CB_WRAP_LEN 31
135
#define US_BULK_CB_SIGN 0x43425355 /*spells out USBC */
136
#define US_BULK_FLAG_IN 1
137
#define US_BULK_FLAG_OUT 0
138
139
/* command status wrapper */
140
struct bulk_cs_wrap {
141
__le32 Signature; /* should = 'USBS' */
142
u32 Tag; /* same as original command */
143
__le32 Residue; /* amount not transferred */
144
u8 Status; /* see below */
145
};
146
147
#define US_BULK_CS_WRAP_LEN 13
148
#define US_BULK_CS_SIGN 0x53425355 /* spells out 'USBS' */
149
#define US_BULK_STAT_OK 0
150
#define US_BULK_STAT_FAIL 1
151
#define US_BULK_STAT_PHASE 2
152
153
/* bulk-only class specific requests */
154
#define US_BULK_RESET_REQUEST 0xff
155
#define US_BULK_GET_MAX_LUN 0xfe
156
157
/*
158
*/
159
struct ub_dev;
160
161
#define UB_MAX_REQ_SG 9 /* cdrecord requires 32KB and maybe a header */
162
#define UB_MAX_SECTORS 64
163
164
/*
165
* A second is more than enough for a 32K transfer (UB_MAX_SECTORS)
166
* even if a webcam hogs the bus, but some devices need time to spin up.
167
*/
168
#define UB_URB_TIMEOUT (HZ*2)
169
#define UB_DATA_TIMEOUT (HZ*5) /* ZIP does spin-ups in the data phase */
170
#define UB_STAT_TIMEOUT (HZ*5) /* Same spinups and eject for a dataless cmd. */
171
#define UB_CTRL_TIMEOUT (HZ/2) /* 500ms ought to be enough to clear a stall */
172
173
/*
174
* An instance of a SCSI command in transit.
175
*/
176
#define UB_DIR_NONE 0
177
#define UB_DIR_READ 1
178
#define UB_DIR_ILLEGAL2 2
179
#define UB_DIR_WRITE 3
180
181
#define UB_DIR_CHAR(c) (((c)==UB_DIR_WRITE)? 'w': \
182
(((c)==UB_DIR_READ)? 'r': 'n'))
183
184
enum ub_scsi_cmd_state {
185
UB_CMDST_INIT, /* Initial state */
186
UB_CMDST_CMD, /* Command submitted */
187
UB_CMDST_DATA, /* Data phase */
188
UB_CMDST_CLR2STS, /* Clearing before requesting status */
189
UB_CMDST_STAT, /* Status phase */
190
UB_CMDST_CLEAR, /* Clearing a stall (halt, actually) */
191
UB_CMDST_CLRRS, /* Clearing before retrying status */
192
UB_CMDST_SENSE, /* Sending Request Sense */
193
UB_CMDST_DONE /* Final state */
194
};
195
196
struct ub_scsi_cmd {
197
unsigned char cdb[UB_MAX_CDB_SIZE];
198
unsigned char cdb_len;
199
200
unsigned char dir; /* 0 - none, 1 - read, 3 - write. */
201
enum ub_scsi_cmd_state state;
202
unsigned int tag;
203
struct ub_scsi_cmd *next;
204
205
int error; /* Return code - valid upon done */
206
unsigned int act_len; /* Return size */
207
unsigned char key, asc, ascq; /* May be valid if error==-EIO */
208
209
int stat_count; /* Retries getting status. */
210
unsigned int timeo; /* jiffies until rq->timeout changes */
211
212
unsigned int len; /* Requested length */
213
unsigned int current_sg;
214
unsigned int nsg; /* sgv[nsg] */
215
struct scatterlist sgv[UB_MAX_REQ_SG];
216
217
struct ub_lun *lun;
218
void (*done)(struct ub_dev *, struct ub_scsi_cmd *);
219
void *back;
220
};
221
222
struct ub_request {
223
struct request *rq;
224
unsigned int current_try;
225
unsigned int nsg; /* sgv[nsg] */
226
struct scatterlist sgv[UB_MAX_REQ_SG];
227
};
228
229
/*
230
*/
231
struct ub_capacity {
232
unsigned long nsec; /* Linux size - 512 byte sectors */
233
unsigned int bsize; /* Linux hardsect_size */
234
unsigned int bshift; /* Shift between 512 and hard sects */
235
};
236
237
/*
238
* This is a direct take-off from linux/include/completion.h
239
* The difference is that I do not wait on this thing, just poll.
240
* When I want to wait (ub_probe), I just use the stock completion.
241
*
242
* Note that INIT_COMPLETION takes no lock. It is correct. But why
243
* in the bloody hell that thing takes struct instead of pointer to struct
244
* is quite beyond me. I just copied it from the stock completion.
245
*/
246
struct ub_completion {
247
unsigned int done;
248
spinlock_t lock;
249
};
250
251
static DEFINE_MUTEX(ub_mutex);
252
static inline void ub_init_completion(struct ub_completion *x)
253
{
254
x->done = 0;
255
spin_lock_init(&x->lock);
256
}
257
258
#define UB_INIT_COMPLETION(x) ((x).done = 0)
259
260
static void ub_complete(struct ub_completion *x)
261
{
262
unsigned long flags;
263
264
spin_lock_irqsave(&x->lock, flags);
265
x->done++;
266
spin_unlock_irqrestore(&x->lock, flags);
267
}
268
269
static int ub_is_completed(struct ub_completion *x)
270
{
271
unsigned long flags;
272
int ret;
273
274
spin_lock_irqsave(&x->lock, flags);
275
ret = x->done;
276
spin_unlock_irqrestore(&x->lock, flags);
277
return ret;
278
}
279
280
/*
281
*/
282
struct ub_scsi_cmd_queue {
283
int qlen, qmax;
284
struct ub_scsi_cmd *head, *tail;
285
};
286
287
/*
288
* The block device instance (one per LUN).
289
*/
290
struct ub_lun {
291
struct ub_dev *udev;
292
struct list_head link;
293
struct gendisk *disk;
294
int id; /* Host index */
295
int num; /* LUN number */
296
char name[16];
297
298
int changed; /* Media was changed */
299
int removable;
300
int readonly;
301
302
struct ub_request urq;
303
304
/* Use Ingo's mempool if or when we have more than one command. */
305
/*
306
* Currently we never need more than one command for the whole device.
307
* However, giving every LUN a command is a cheap and automatic way
308
* to enforce fairness between them.
309
*/
310
int cmda[1];
311
struct ub_scsi_cmd cmdv[1];
312
313
struct ub_capacity capacity;
314
};
315
316
/*
317
* The USB device instance.
318
*/
319
struct ub_dev {
320
spinlock_t *lock;
321
atomic_t poison; /* The USB device is disconnected */
322
int openc; /* protected by ub_lock! */
323
/* kref is too implicit for our taste */
324
int reset; /* Reset is running */
325
int bad_resid;
326
unsigned int tagcnt;
327
char name[12];
328
struct usb_device *dev;
329
struct usb_interface *intf;
330
331
struct list_head luns;
332
333
unsigned int send_bulk_pipe; /* cached pipe values */
334
unsigned int recv_bulk_pipe;
335
unsigned int send_ctrl_pipe;
336
unsigned int recv_ctrl_pipe;
337
338
struct tasklet_struct tasklet;
339
340
struct ub_scsi_cmd_queue cmd_queue;
341
struct ub_scsi_cmd top_rqs_cmd; /* REQUEST SENSE */
342
unsigned char top_sense[UB_SENSE_SIZE];
343
344
struct ub_completion work_done;
345
struct urb work_urb;
346
struct timer_list work_timer;
347
int last_pipe; /* What might need clearing */
348
__le32 signature; /* Learned signature */
349
struct bulk_cb_wrap work_bcb;
350
struct bulk_cs_wrap work_bcs;
351
struct usb_ctrlrequest work_cr;
352
353
struct work_struct reset_work;
354
wait_queue_head_t reset_wait;
355
};
356
357
/*
358
*/
359
static void ub_cleanup(struct ub_dev *sc);
360
static int ub_request_fn_1(struct ub_lun *lun, struct request *rq);
361
static void ub_cmd_build_block(struct ub_dev *sc, struct ub_lun *lun,
362
struct ub_scsi_cmd *cmd, struct ub_request *urq);
363
static void ub_cmd_build_packet(struct ub_dev *sc, struct ub_lun *lun,
364
struct ub_scsi_cmd *cmd, struct ub_request *urq);
365
static void ub_rw_cmd_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
366
static void ub_end_rq(struct request *rq, unsigned int status);
367
static int ub_rw_cmd_retry(struct ub_dev *sc, struct ub_lun *lun,
368
struct ub_request *urq, struct ub_scsi_cmd *cmd);
369
static int ub_submit_scsi(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
370
static void ub_urb_complete(struct urb *urb);
371
static void ub_scsi_action(unsigned long _dev);
372
static void ub_scsi_dispatch(struct ub_dev *sc);
373
static void ub_scsi_urb_compl(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
374
static void ub_data_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
375
static void ub_state_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd, int rc);
376
static int __ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
377
static void ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
378
static void ub_state_stat_counted(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
379
static void ub_state_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
380
static int ub_submit_clear_stall(struct ub_dev *sc, struct ub_scsi_cmd *cmd,
381
int stalled_pipe);
382
static void ub_top_sense_done(struct ub_dev *sc, struct ub_scsi_cmd *scmd);
383
static void ub_reset_enter(struct ub_dev *sc, int try);
384
static void ub_reset_task(struct work_struct *work);
385
static int ub_sync_tur(struct ub_dev *sc, struct ub_lun *lun);
386
static int ub_sync_read_cap(struct ub_dev *sc, struct ub_lun *lun,
387
struct ub_capacity *ret);
388
static int ub_sync_reset(struct ub_dev *sc);
389
static int ub_probe_clear_stall(struct ub_dev *sc, int stalled_pipe);
390
static int ub_probe_lun(struct ub_dev *sc, int lnum);
391
392
/*
393
*/
394
#ifdef CONFIG_USB_LIBUSUAL
395
396
#define ub_usb_ids usb_storage_usb_ids
397
#else
398
399
static const struct usb_device_id ub_usb_ids[] = {
400
{ USB_INTERFACE_INFO(USB_CLASS_MASS_STORAGE, USB_SC_SCSI, USB_PR_BULK) },
401
{ }
402
};
403
404
MODULE_DEVICE_TABLE(usb, ub_usb_ids);
405
#endif /* CONFIG_USB_LIBUSUAL */
406
407
/*
408
* Find me a way to identify "next free minor" for add_disk(),
409
* and the array disappears the next day. However, the number of
410
* hosts has something to do with the naming and /proc/partitions.
411
* This has to be thought out in detail before changing.
412
* If UB_MAX_HOST was 1000, we'd use a bitmap. Or a better data structure.
413
*/
414
#define UB_MAX_HOSTS 26
415
static char ub_hostv[UB_MAX_HOSTS];
416
417
#define UB_QLOCK_NUM 5
418
static spinlock_t ub_qlockv[UB_QLOCK_NUM];
419
static int ub_qlock_next = 0;
420
421
static DEFINE_SPINLOCK(ub_lock); /* Locks globals and ->openc */
422
423
/*
424
* The id allocator.
425
*
426
* This also stores the host for indexing by minor, which is somewhat dirty.
427
*/
428
static int ub_id_get(void)
429
{
430
unsigned long flags;
431
int i;
432
433
spin_lock_irqsave(&ub_lock, flags);
434
for (i = 0; i < UB_MAX_HOSTS; i++) {
435
if (ub_hostv[i] == 0) {
436
ub_hostv[i] = 1;
437
spin_unlock_irqrestore(&ub_lock, flags);
438
return i;
439
}
440
}
441
spin_unlock_irqrestore(&ub_lock, flags);
442
return -1;
443
}
444
445
static void ub_id_put(int id)
446
{
447
unsigned long flags;
448
449
if (id < 0 || id >= UB_MAX_HOSTS) {
450
printk(KERN_ERR DRV_NAME ": bad host ID %d\n", id);
451
return;
452
}
453
454
spin_lock_irqsave(&ub_lock, flags);
455
if (ub_hostv[id] == 0) {
456
spin_unlock_irqrestore(&ub_lock, flags);
457
printk(KERN_ERR DRV_NAME ": freeing free host ID %d\n", id);
458
return;
459
}
460
ub_hostv[id] = 0;
461
spin_unlock_irqrestore(&ub_lock, flags);
462
}
463
464
/*
465
* This is necessitated by the fact that blk_cleanup_queue does not
466
* necesserily destroy the queue. Instead, it may merely decrease q->refcnt.
467
* Since our blk_init_queue() passes a spinlock common with ub_dev,
468
* we have life time issues when ub_cleanup frees ub_dev.
469
*/
470
static spinlock_t *ub_next_lock(void)
471
{
472
unsigned long flags;
473
spinlock_t *ret;
474
475
spin_lock_irqsave(&ub_lock, flags);
476
ret = &ub_qlockv[ub_qlock_next];
477
ub_qlock_next = (ub_qlock_next + 1) % UB_QLOCK_NUM;
478
spin_unlock_irqrestore(&ub_lock, flags);
479
return ret;
480
}
481
482
/*
483
* Downcount for deallocation. This rides on two assumptions:
484
* - once something is poisoned, its refcount cannot grow
485
* - opens cannot happen at this time (del_gendisk was done)
486
* If the above is true, we can drop the lock, which we need for
487
* blk_cleanup_queue(): the silly thing may attempt to sleep.
488
* [Actually, it never needs to sleep for us, but it calls might_sleep()]
489
*/
490
static void ub_put(struct ub_dev *sc)
491
{
492
unsigned long flags;
493
494
spin_lock_irqsave(&ub_lock, flags);
495
--sc->openc;
496
if (sc->openc == 0 && atomic_read(&sc->poison)) {
497
spin_unlock_irqrestore(&ub_lock, flags);
498
ub_cleanup(sc);
499
} else {
500
spin_unlock_irqrestore(&ub_lock, flags);
501
}
502
}
503
504
/*
505
* Final cleanup and deallocation.
506
*/
507
static void ub_cleanup(struct ub_dev *sc)
508
{
509
struct list_head *p;
510
struct ub_lun *lun;
511
struct request_queue *q;
512
513
while (!list_empty(&sc->luns)) {
514
p = sc->luns.next;
515
lun = list_entry(p, struct ub_lun, link);
516
list_del(p);
517
518
/* I don't think queue can be NULL. But... Stolen from sx8.c */
519
if ((q = lun->disk->queue) != NULL)
520
blk_cleanup_queue(q);
521
/*
522
* If we zero disk->private_data BEFORE put_disk, we have
523
* to check for NULL all over the place in open, release,
524
* check_media and revalidate, because the block level
525
* semaphore is well inside the put_disk.
526
* But we cannot zero after the call, because *disk is gone.
527
* The sd.c is blatantly racy in this area.
528
*/
529
/* disk->private_data = NULL; */
530
put_disk(lun->disk);
531
lun->disk = NULL;
532
533
ub_id_put(lun->id);
534
kfree(lun);
535
}
536
537
usb_set_intfdata(sc->intf, NULL);
538
usb_put_intf(sc->intf);
539
usb_put_dev(sc->dev);
540
kfree(sc);
541
}
542
543
/*
544
* The "command allocator".
545
*/
546
static struct ub_scsi_cmd *ub_get_cmd(struct ub_lun *lun)
547
{
548
struct ub_scsi_cmd *ret;
549
550
if (lun->cmda[0])
551
return NULL;
552
ret = &lun->cmdv[0];
553
lun->cmda[0] = 1;
554
return ret;
555
}
556
557
static void ub_put_cmd(struct ub_lun *lun, struct ub_scsi_cmd *cmd)
558
{
559
if (cmd != &lun->cmdv[0]) {
560
printk(KERN_WARNING "%s: releasing a foreign cmd %p\n",
561
lun->name, cmd);
562
return;
563
}
564
if (!lun->cmda[0]) {
565
printk(KERN_WARNING "%s: releasing a free cmd\n", lun->name);
566
return;
567
}
568
lun->cmda[0] = 0;
569
}
570
571
/*
572
* The command queue.
573
*/
574
static void ub_cmdq_add(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
575
{
576
struct ub_scsi_cmd_queue *t = &sc->cmd_queue;
577
578
if (t->qlen++ == 0) {
579
t->head = cmd;
580
t->tail = cmd;
581
} else {
582
t->tail->next = cmd;
583
t->tail = cmd;
584
}
585
586
if (t->qlen > t->qmax)
587
t->qmax = t->qlen;
588
}
589
590
static void ub_cmdq_insert(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
591
{
592
struct ub_scsi_cmd_queue *t = &sc->cmd_queue;
593
594
if (t->qlen++ == 0) {
595
t->head = cmd;
596
t->tail = cmd;
597
} else {
598
cmd->next = t->head;
599
t->head = cmd;
600
}
601
602
if (t->qlen > t->qmax)
603
t->qmax = t->qlen;
604
}
605
606
static struct ub_scsi_cmd *ub_cmdq_pop(struct ub_dev *sc)
607
{
608
struct ub_scsi_cmd_queue *t = &sc->cmd_queue;
609
struct ub_scsi_cmd *cmd;
610
611
if (t->qlen == 0)
612
return NULL;
613
if (--t->qlen == 0)
614
t->tail = NULL;
615
cmd = t->head;
616
t->head = cmd->next;
617
cmd->next = NULL;
618
return cmd;
619
}
620
621
#define ub_cmdq_peek(sc) ((sc)->cmd_queue.head)
622
623
/*
624
* The request function is our main entry point
625
*/
626
627
static void ub_request_fn(struct request_queue *q)
628
{
629
struct ub_lun *lun = q->queuedata;
630
struct request *rq;
631
632
while ((rq = blk_peek_request(q)) != NULL) {
633
if (ub_request_fn_1(lun, rq) != 0) {
634
blk_stop_queue(q);
635
break;
636
}
637
}
638
}
639
640
static int ub_request_fn_1(struct ub_lun *lun, struct request *rq)
641
{
642
struct ub_dev *sc = lun->udev;
643
struct ub_scsi_cmd *cmd;
644
struct ub_request *urq;
645
int n_elem;
646
647
if (atomic_read(&sc->poison)) {
648
blk_start_request(rq);
649
ub_end_rq(rq, DID_NO_CONNECT << 16);
650
return 0;
651
}
652
653
if (lun->changed && rq->cmd_type != REQ_TYPE_BLOCK_PC) {
654
blk_start_request(rq);
655
ub_end_rq(rq, SAM_STAT_CHECK_CONDITION);
656
return 0;
657
}
658
659
if (lun->urq.rq != NULL)
660
return -1;
661
if ((cmd = ub_get_cmd(lun)) == NULL)
662
return -1;
663
memset(cmd, 0, sizeof(struct ub_scsi_cmd));
664
665
blk_start_request(rq);
666
667
urq = &lun->urq;
668
memset(urq, 0, sizeof(struct ub_request));
669
urq->rq = rq;
670
671
/*
672
* get scatterlist from block layer
673
*/
674
sg_init_table(&urq->sgv[0], UB_MAX_REQ_SG);
675
n_elem = blk_rq_map_sg(lun->disk->queue, rq, &urq->sgv[0]);
676
if (n_elem < 0) {
677
/* Impossible, because blk_rq_map_sg should not hit ENOMEM. */
678
printk(KERN_INFO "%s: failed request map (%d)\n",
679
lun->name, n_elem);
680
goto drop;
681
}
682
if (n_elem > UB_MAX_REQ_SG) { /* Paranoia */
683
printk(KERN_WARNING "%s: request with %d segments\n",
684
lun->name, n_elem);
685
goto drop;
686
}
687
urq->nsg = n_elem;
688
689
if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
690
ub_cmd_build_packet(sc, lun, cmd, urq);
691
} else {
692
ub_cmd_build_block(sc, lun, cmd, urq);
693
}
694
cmd->state = UB_CMDST_INIT;
695
cmd->lun = lun;
696
cmd->done = ub_rw_cmd_done;
697
cmd->back = urq;
698
699
cmd->tag = sc->tagcnt++;
700
if (ub_submit_scsi(sc, cmd) != 0)
701
goto drop;
702
703
return 0;
704
705
drop:
706
ub_put_cmd(lun, cmd);
707
ub_end_rq(rq, DID_ERROR << 16);
708
return 0;
709
}
710
711
static void ub_cmd_build_block(struct ub_dev *sc, struct ub_lun *lun,
712
struct ub_scsi_cmd *cmd, struct ub_request *urq)
713
{
714
struct request *rq = urq->rq;
715
unsigned int block, nblks;
716
717
if (rq_data_dir(rq) == WRITE)
718
cmd->dir = UB_DIR_WRITE;
719
else
720
cmd->dir = UB_DIR_READ;
721
722
cmd->nsg = urq->nsg;
723
memcpy(cmd->sgv, urq->sgv, sizeof(struct scatterlist) * cmd->nsg);
724
725
/*
726
* build the command
727
*
728
* The call to blk_queue_logical_block_size() guarantees that request
729
* is aligned, but it is given in terms of 512 byte units, always.
730
*/
731
block = blk_rq_pos(rq) >> lun->capacity.bshift;
732
nblks = blk_rq_sectors(rq) >> lun->capacity.bshift;
733
734
cmd->cdb[0] = (cmd->dir == UB_DIR_READ)? READ_10: WRITE_10;
735
/* 10-byte uses 4 bytes of LBA: 2147483648KB, 2097152MB, 2048GB */
736
cmd->cdb[2] = block >> 24;
737
cmd->cdb[3] = block >> 16;
738
cmd->cdb[4] = block >> 8;
739
cmd->cdb[5] = block;
740
cmd->cdb[7] = nblks >> 8;
741
cmd->cdb[8] = nblks;
742
cmd->cdb_len = 10;
743
744
cmd->len = blk_rq_bytes(rq);
745
}
746
747
static void ub_cmd_build_packet(struct ub_dev *sc, struct ub_lun *lun,
748
struct ub_scsi_cmd *cmd, struct ub_request *urq)
749
{
750
struct request *rq = urq->rq;
751
752
if (blk_rq_bytes(rq) == 0) {
753
cmd->dir = UB_DIR_NONE;
754
} else {
755
if (rq_data_dir(rq) == WRITE)
756
cmd->dir = UB_DIR_WRITE;
757
else
758
cmd->dir = UB_DIR_READ;
759
}
760
761
cmd->nsg = urq->nsg;
762
memcpy(cmd->sgv, urq->sgv, sizeof(struct scatterlist) * cmd->nsg);
763
764
memcpy(&cmd->cdb, rq->cmd, rq->cmd_len);
765
cmd->cdb_len = rq->cmd_len;
766
767
cmd->len = blk_rq_bytes(rq);
768
769
/*
770
* To reapply this to every URB is not as incorrect as it looks.
771
* In return, we avoid any complicated tracking calculations.
772
*/
773
cmd->timeo = rq->timeout;
774
}
775
776
static void ub_rw_cmd_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
777
{
778
struct ub_lun *lun = cmd->lun;
779
struct ub_request *urq = cmd->back;
780
struct request *rq;
781
unsigned int scsi_status;
782
783
rq = urq->rq;
784
785
if (cmd->error == 0) {
786
if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
787
if (cmd->act_len >= rq->resid_len)
788
rq->resid_len = 0;
789
else
790
rq->resid_len -= cmd->act_len;
791
scsi_status = 0;
792
} else {
793
if (cmd->act_len != cmd->len) {
794
scsi_status = SAM_STAT_CHECK_CONDITION;
795
} else {
796
scsi_status = 0;
797
}
798
}
799
} else {
800
if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
801
/* UB_SENSE_SIZE is smaller than SCSI_SENSE_BUFFERSIZE */
802
memcpy(rq->sense, sc->top_sense, UB_SENSE_SIZE);
803
rq->sense_len = UB_SENSE_SIZE;
804
if (sc->top_sense[0] != 0)
805
scsi_status = SAM_STAT_CHECK_CONDITION;
806
else
807
scsi_status = DID_ERROR << 16;
808
} else {
809
if (cmd->error == -EIO &&
810
(cmd->key == 0 ||
811
cmd->key == MEDIUM_ERROR ||
812
cmd->key == UNIT_ATTENTION)) {
813
if (ub_rw_cmd_retry(sc, lun, urq, cmd) == 0)
814
return;
815
}
816
scsi_status = SAM_STAT_CHECK_CONDITION;
817
}
818
}
819
820
urq->rq = NULL;
821
822
ub_put_cmd(lun, cmd);
823
ub_end_rq(rq, scsi_status);
824
blk_start_queue(lun->disk->queue);
825
}
826
827
static void ub_end_rq(struct request *rq, unsigned int scsi_status)
828
{
829
int error;
830
831
if (scsi_status == 0) {
832
error = 0;
833
} else {
834
error = -EIO;
835
rq->errors = scsi_status;
836
}
837
__blk_end_request_all(rq, error);
838
}
839
840
static int ub_rw_cmd_retry(struct ub_dev *sc, struct ub_lun *lun,
841
struct ub_request *urq, struct ub_scsi_cmd *cmd)
842
{
843
844
if (atomic_read(&sc->poison))
845
return -ENXIO;
846
847
ub_reset_enter(sc, urq->current_try);
848
849
if (urq->current_try >= 3)
850
return -EIO;
851
urq->current_try++;
852
853
/* Remove this if anyone complains of flooding. */
854
printk(KERN_DEBUG "%s: dir %c len/act %d/%d "
855
"[sense %x %02x %02x] retry %d\n",
856
sc->name, UB_DIR_CHAR(cmd->dir), cmd->len, cmd->act_len,
857
cmd->key, cmd->asc, cmd->ascq, urq->current_try);
858
859
memset(cmd, 0, sizeof(struct ub_scsi_cmd));
860
ub_cmd_build_block(sc, lun, cmd, urq);
861
862
cmd->state = UB_CMDST_INIT;
863
cmd->lun = lun;
864
cmd->done = ub_rw_cmd_done;
865
cmd->back = urq;
866
867
cmd->tag = sc->tagcnt++;
868
869
#if 0 /* Wasteful */
870
return ub_submit_scsi(sc, cmd);
871
#else
872
ub_cmdq_add(sc, cmd);
873
return 0;
874
#endif
875
}
876
877
/*
878
* Submit a regular SCSI operation (not an auto-sense).
879
*
880
* The Iron Law of Good Submit Routine is:
881
* Zero return - callback is done, Nonzero return - callback is not done.
882
* No exceptions.
883
*
884
* Host is assumed locked.
885
*/
886
static int ub_submit_scsi(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
887
{
888
889
if (cmd->state != UB_CMDST_INIT ||
890
(cmd->dir != UB_DIR_NONE && cmd->len == 0)) {
891
return -EINVAL;
892
}
893
894
ub_cmdq_add(sc, cmd);
895
/*
896
* We can call ub_scsi_dispatch(sc) right away here, but it's a little
897
* safer to jump to a tasklet, in case upper layers do something silly.
898
*/
899
tasklet_schedule(&sc->tasklet);
900
return 0;
901
}
902
903
/*
904
* Submit the first URB for the queued command.
905
* This function does not deal with queueing in any way.
906
*/
907
static int ub_scsi_cmd_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
908
{
909
struct bulk_cb_wrap *bcb;
910
int rc;
911
912
bcb = &sc->work_bcb;
913
914
/*
915
* ``If the allocation length is eighteen or greater, and a device
916
* server returns less than eithteen bytes of data, the application
917
* client should assume that the bytes not transferred would have been
918
* zeroes had the device server returned those bytes.''
919
*
920
* We zero sense for all commands so that when a packet request
921
* fails it does not return a stale sense.
922
*/
923
memset(&sc->top_sense, 0, UB_SENSE_SIZE);
924
925
/* set up the command wrapper */
926
bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN);
927
bcb->Tag = cmd->tag; /* Endianness is not important */
928
bcb->DataTransferLength = cpu_to_le32(cmd->len);
929
bcb->Flags = (cmd->dir == UB_DIR_READ) ? 0x80 : 0;
930
bcb->Lun = (cmd->lun != NULL) ? cmd->lun->num : 0;
931
bcb->Length = cmd->cdb_len;
932
933
/* copy the command payload */
934
memcpy(bcb->CDB, cmd->cdb, UB_MAX_CDB_SIZE);
935
936
UB_INIT_COMPLETION(sc->work_done);
937
938
sc->last_pipe = sc->send_bulk_pipe;
939
usb_fill_bulk_urb(&sc->work_urb, sc->dev, sc->send_bulk_pipe,
940
bcb, US_BULK_CB_WRAP_LEN, ub_urb_complete, sc);
941
942
if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) {
943
/* XXX Clear stalls */
944
ub_complete(&sc->work_done);
945
return rc;
946
}
947
948
sc->work_timer.expires = jiffies + UB_URB_TIMEOUT;
949
add_timer(&sc->work_timer);
950
951
cmd->state = UB_CMDST_CMD;
952
return 0;
953
}
954
955
/*
956
* Timeout handler.
957
*/
958
static void ub_urb_timeout(unsigned long arg)
959
{
960
struct ub_dev *sc = (struct ub_dev *) arg;
961
unsigned long flags;
962
963
spin_lock_irqsave(sc->lock, flags);
964
if (!ub_is_completed(&sc->work_done))
965
usb_unlink_urb(&sc->work_urb);
966
spin_unlock_irqrestore(sc->lock, flags);
967
}
968
969
/*
970
* Completion routine for the work URB.
971
*
972
* This can be called directly from usb_submit_urb (while we have
973
* the sc->lock taken) and from an interrupt (while we do NOT have
974
* the sc->lock taken). Therefore, bounce this off to a tasklet.
975
*/
976
static void ub_urb_complete(struct urb *urb)
977
{
978
struct ub_dev *sc = urb->context;
979
980
ub_complete(&sc->work_done);
981
tasklet_schedule(&sc->tasklet);
982
}
983
984
static void ub_scsi_action(unsigned long _dev)
985
{
986
struct ub_dev *sc = (struct ub_dev *) _dev;
987
unsigned long flags;
988
989
spin_lock_irqsave(sc->lock, flags);
990
ub_scsi_dispatch(sc);
991
spin_unlock_irqrestore(sc->lock, flags);
992
}
993
994
static void ub_scsi_dispatch(struct ub_dev *sc)
995
{
996
struct ub_scsi_cmd *cmd;
997
int rc;
998
999
while (!sc->reset && (cmd = ub_cmdq_peek(sc)) != NULL) {
1000
if (cmd->state == UB_CMDST_DONE) {
1001
ub_cmdq_pop(sc);
1002
(*cmd->done)(sc, cmd);
1003
} else if (cmd->state == UB_CMDST_INIT) {
1004
if ((rc = ub_scsi_cmd_start(sc, cmd)) == 0)
1005
break;
1006
cmd->error = rc;
1007
cmd->state = UB_CMDST_DONE;
1008
} else {
1009
if (!ub_is_completed(&sc->work_done))
1010
break;
1011
del_timer(&sc->work_timer);
1012
ub_scsi_urb_compl(sc, cmd);
1013
}
1014
}
1015
}
1016
1017
static void ub_scsi_urb_compl(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1018
{
1019
struct urb *urb = &sc->work_urb;
1020
struct bulk_cs_wrap *bcs;
1021
int endp;
1022
int len;
1023
int rc;
1024
1025
if (atomic_read(&sc->poison)) {
1026
ub_state_done(sc, cmd, -ENODEV);
1027
return;
1028
}
1029
1030
endp = usb_pipeendpoint(sc->last_pipe);
1031
if (usb_pipein(sc->last_pipe))
1032
endp |= USB_DIR_IN;
1033
1034
if (cmd->state == UB_CMDST_CLEAR) {
1035
if (urb->status == -EPIPE) {
1036
/*
1037
* STALL while clearning STALL.
1038
* The control pipe clears itself - nothing to do.
1039
*/
1040
printk(KERN_NOTICE "%s: stall on control pipe\n",
1041
sc->name);
1042
goto Bad_End;
1043
}
1044
1045
/*
1046
* We ignore the result for the halt clear.
1047
*/
1048
1049
usb_reset_endpoint(sc->dev, endp);
1050
1051
ub_state_sense(sc, cmd);
1052
1053
} else if (cmd->state == UB_CMDST_CLR2STS) {
1054
if (urb->status == -EPIPE) {
1055
printk(KERN_NOTICE "%s: stall on control pipe\n",
1056
sc->name);
1057
goto Bad_End;
1058
}
1059
1060
/*
1061
* We ignore the result for the halt clear.
1062
*/
1063
1064
usb_reset_endpoint(sc->dev, endp);
1065
1066
ub_state_stat(sc, cmd);
1067
1068
} else if (cmd->state == UB_CMDST_CLRRS) {
1069
if (urb->status == -EPIPE) {
1070
printk(KERN_NOTICE "%s: stall on control pipe\n",
1071
sc->name);
1072
goto Bad_End;
1073
}
1074
1075
/*
1076
* We ignore the result for the halt clear.
1077
*/
1078
1079
usb_reset_endpoint(sc->dev, endp);
1080
1081
ub_state_stat_counted(sc, cmd);
1082
1083
} else if (cmd->state == UB_CMDST_CMD) {
1084
switch (urb->status) {
1085
case 0:
1086
break;
1087
case -EOVERFLOW:
1088
goto Bad_End;
1089
case -EPIPE:
1090
rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe);
1091
if (rc != 0) {
1092
printk(KERN_NOTICE "%s: "
1093
"unable to submit clear (%d)\n",
1094
sc->name, rc);
1095
/*
1096
* This is typically ENOMEM or some other such shit.
1097
* Retrying is pointless. Just do Bad End on it...
1098
*/
1099
ub_state_done(sc, cmd, rc);
1100
return;
1101
}
1102
cmd->state = UB_CMDST_CLEAR;
1103
return;
1104
case -ESHUTDOWN: /* unplug */
1105
case -EILSEQ: /* unplug timeout on uhci */
1106
ub_state_done(sc, cmd, -ENODEV);
1107
return;
1108
default:
1109
goto Bad_End;
1110
}
1111
if (urb->actual_length != US_BULK_CB_WRAP_LEN) {
1112
goto Bad_End;
1113
}
1114
1115
if (cmd->dir == UB_DIR_NONE || cmd->nsg < 1) {
1116
ub_state_stat(sc, cmd);
1117
return;
1118
}
1119
1120
// udelay(125); // usb-storage has this
1121
ub_data_start(sc, cmd);
1122
1123
} else if (cmd->state == UB_CMDST_DATA) {
1124
if (urb->status == -EPIPE) {
1125
rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe);
1126
if (rc != 0) {
1127
printk(KERN_NOTICE "%s: "
1128
"unable to submit clear (%d)\n",
1129
sc->name, rc);
1130
ub_state_done(sc, cmd, rc);
1131
return;
1132
}
1133
cmd->state = UB_CMDST_CLR2STS;
1134
return;
1135
}
1136
if (urb->status == -EOVERFLOW) {
1137
/*
1138
* A babble? Failure, but we must transfer CSW now.
1139
*/
1140
cmd->error = -EOVERFLOW; /* A cheap trick... */
1141
ub_state_stat(sc, cmd);
1142
return;
1143
}
1144
1145
if (cmd->dir == UB_DIR_WRITE) {
1146
/*
1147
* Do not continue writes in case of a failure.
1148
* Doing so would cause sectors to be mixed up,
1149
* which is worse than sectors lost.
1150
*
1151
* We must try to read the CSW, or many devices
1152
* get confused.
1153
*/
1154
len = urb->actual_length;
1155
if (urb->status != 0 ||
1156
len != cmd->sgv[cmd->current_sg].length) {
1157
cmd->act_len += len;
1158
1159
cmd->error = -EIO;
1160
ub_state_stat(sc, cmd);
1161
return;
1162
}
1163
1164
} else {
1165
/*
1166
* If an error occurs on read, we record it, and
1167
* continue to fetch data in order to avoid bubble.
1168
*
1169
* As a small shortcut, we stop if we detect that
1170
* a CSW mixed into data.
1171
*/
1172
if (urb->status != 0)
1173
cmd->error = -EIO;
1174
1175
len = urb->actual_length;
1176
if (urb->status != 0 ||
1177
len != cmd->sgv[cmd->current_sg].length) {
1178
if ((len & 0x1FF) == US_BULK_CS_WRAP_LEN)
1179
goto Bad_End;
1180
}
1181
}
1182
1183
cmd->act_len += urb->actual_length;
1184
1185
if (++cmd->current_sg < cmd->nsg) {
1186
ub_data_start(sc, cmd);
1187
return;
1188
}
1189
ub_state_stat(sc, cmd);
1190
1191
} else if (cmd->state == UB_CMDST_STAT) {
1192
if (urb->status == -EPIPE) {
1193
rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe);
1194
if (rc != 0) {
1195
printk(KERN_NOTICE "%s: "
1196
"unable to submit clear (%d)\n",
1197
sc->name, rc);
1198
ub_state_done(sc, cmd, rc);
1199
return;
1200
}
1201
1202
/*
1203
* Having a stall when getting CSW is an error, so
1204
* make sure uppper levels are not oblivious to it.
1205
*/
1206
cmd->error = -EIO; /* A cheap trick... */
1207
1208
cmd->state = UB_CMDST_CLRRS;
1209
return;
1210
}
1211
1212
/* Catch everything, including -EOVERFLOW and other nasties. */
1213
if (urb->status != 0)
1214
goto Bad_End;
1215
1216
if (urb->actual_length == 0) {
1217
ub_state_stat_counted(sc, cmd);
1218
return;
1219
}
1220
1221
/*
1222
* Check the returned Bulk protocol status.
1223
* The status block has to be validated first.
1224
*/
1225
1226
bcs = &sc->work_bcs;
1227
1228
if (sc->signature == cpu_to_le32(0)) {
1229
/*
1230
* This is the first reply, so do not perform the check.
1231
* Instead, remember the signature the device uses
1232
* for future checks. But do not allow a nul.
1233
*/
1234
sc->signature = bcs->Signature;
1235
if (sc->signature == cpu_to_le32(0)) {
1236
ub_state_stat_counted(sc, cmd);
1237
return;
1238
}
1239
} else {
1240
if (bcs->Signature != sc->signature) {
1241
ub_state_stat_counted(sc, cmd);
1242
return;
1243
}
1244
}
1245
1246
if (bcs->Tag != cmd->tag) {
1247
/*
1248
* This usually happens when we disagree with the
1249
* device's microcode about something. For instance,
1250
* a few of them throw this after timeouts. They buffer
1251
* commands and reply at commands we timed out before.
1252
* Without flushing these replies we loop forever.
1253
*/
1254
ub_state_stat_counted(sc, cmd);
1255
return;
1256
}
1257
1258
if (!sc->bad_resid) {
1259
len = le32_to_cpu(bcs->Residue);
1260
if (len != cmd->len - cmd->act_len) {
1261
/*
1262
* Only start ignoring if this cmd ended well.
1263
*/
1264
if (cmd->len == cmd->act_len) {
1265
printk(KERN_NOTICE "%s: "
1266
"bad residual %d of %d, ignoring\n",
1267
sc->name, len, cmd->len);
1268
sc->bad_resid = 1;
1269
}
1270
}
1271
}
1272
1273
switch (bcs->Status) {
1274
case US_BULK_STAT_OK:
1275
break;
1276
case US_BULK_STAT_FAIL:
1277
ub_state_sense(sc, cmd);
1278
return;
1279
case US_BULK_STAT_PHASE:
1280
goto Bad_End;
1281
default:
1282
printk(KERN_INFO "%s: unknown CSW status 0x%x\n",
1283
sc->name, bcs->Status);
1284
ub_state_done(sc, cmd, -EINVAL);
1285
return;
1286
}
1287
1288
/* Not zeroing error to preserve a babble indicator */
1289
if (cmd->error != 0) {
1290
ub_state_sense(sc, cmd);
1291
return;
1292
}
1293
cmd->state = UB_CMDST_DONE;
1294
ub_cmdq_pop(sc);
1295
(*cmd->done)(sc, cmd);
1296
1297
} else if (cmd->state == UB_CMDST_SENSE) {
1298
ub_state_done(sc, cmd, -EIO);
1299
1300
} else {
1301
printk(KERN_WARNING "%s: wrong command state %d\n",
1302
sc->name, cmd->state);
1303
ub_state_done(sc, cmd, -EINVAL);
1304
return;
1305
}
1306
return;
1307
1308
Bad_End: /* Little Excel is dead */
1309
ub_state_done(sc, cmd, -EIO);
1310
}
1311
1312
/*
1313
* Factorization helper for the command state machine:
1314
* Initiate a data segment transfer.
1315
*/
1316
static void ub_data_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1317
{
1318
struct scatterlist *sg = &cmd->sgv[cmd->current_sg];
1319
int pipe;
1320
int rc;
1321
1322
UB_INIT_COMPLETION(sc->work_done);
1323
1324
if (cmd->dir == UB_DIR_READ)
1325
pipe = sc->recv_bulk_pipe;
1326
else
1327
pipe = sc->send_bulk_pipe;
1328
sc->last_pipe = pipe;
1329
usb_fill_bulk_urb(&sc->work_urb, sc->dev, pipe, sg_virt(sg),
1330
sg->length, ub_urb_complete, sc);
1331
1332
if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) {
1333
/* XXX Clear stalls */
1334
ub_complete(&sc->work_done);
1335
ub_state_done(sc, cmd, rc);
1336
return;
1337
}
1338
1339
if (cmd->timeo)
1340
sc->work_timer.expires = jiffies + cmd->timeo;
1341
else
1342
sc->work_timer.expires = jiffies + UB_DATA_TIMEOUT;
1343
add_timer(&sc->work_timer);
1344
1345
cmd->state = UB_CMDST_DATA;
1346
}
1347
1348
/*
1349
* Factorization helper for the command state machine:
1350
* Finish the command.
1351
*/
1352
static void ub_state_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd, int rc)
1353
{
1354
1355
cmd->error = rc;
1356
cmd->state = UB_CMDST_DONE;
1357
ub_cmdq_pop(sc);
1358
(*cmd->done)(sc, cmd);
1359
}
1360
1361
/*
1362
* Factorization helper for the command state machine:
1363
* Submit a CSW read.
1364
*/
1365
static int __ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1366
{
1367
int rc;
1368
1369
UB_INIT_COMPLETION(sc->work_done);
1370
1371
sc->last_pipe = sc->recv_bulk_pipe;
1372
usb_fill_bulk_urb(&sc->work_urb, sc->dev, sc->recv_bulk_pipe,
1373
&sc->work_bcs, US_BULK_CS_WRAP_LEN, ub_urb_complete, sc);
1374
1375
if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) {
1376
/* XXX Clear stalls */
1377
ub_complete(&sc->work_done);
1378
ub_state_done(sc, cmd, rc);
1379
return -1;
1380
}
1381
1382
if (cmd->timeo)
1383
sc->work_timer.expires = jiffies + cmd->timeo;
1384
else
1385
sc->work_timer.expires = jiffies + UB_STAT_TIMEOUT;
1386
add_timer(&sc->work_timer);
1387
return 0;
1388
}
1389
1390
/*
1391
* Factorization helper for the command state machine:
1392
* Submit a CSW read and go to STAT state.
1393
*/
1394
static void ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1395
{
1396
1397
if (__ub_state_stat(sc, cmd) != 0)
1398
return;
1399
1400
cmd->stat_count = 0;
1401
cmd->state = UB_CMDST_STAT;
1402
}
1403
1404
/*
1405
* Factorization helper for the command state machine:
1406
* Submit a CSW read and go to STAT state with counter (along [C] path).
1407
*/
1408
static void ub_state_stat_counted(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1409
{
1410
1411
if (++cmd->stat_count >= 4) {
1412
ub_state_sense(sc, cmd);
1413
return;
1414
}
1415
1416
if (__ub_state_stat(sc, cmd) != 0)
1417
return;
1418
1419
cmd->state = UB_CMDST_STAT;
1420
}
1421
1422
/*
1423
* Factorization helper for the command state machine:
1424
* Submit a REQUEST SENSE and go to SENSE state.
1425
*/
1426
static void ub_state_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1427
{
1428
struct ub_scsi_cmd *scmd;
1429
struct scatterlist *sg;
1430
int rc;
1431
1432
if (cmd->cdb[0] == REQUEST_SENSE) {
1433
rc = -EPIPE;
1434
goto error;
1435
}
1436
1437
scmd = &sc->top_rqs_cmd;
1438
memset(scmd, 0, sizeof(struct ub_scsi_cmd));
1439
scmd->cdb[0] = REQUEST_SENSE;
1440
scmd->cdb[4] = UB_SENSE_SIZE;
1441
scmd->cdb_len = 6;
1442
scmd->dir = UB_DIR_READ;
1443
scmd->state = UB_CMDST_INIT;
1444
scmd->nsg = 1;
1445
sg = &scmd->sgv[0];
1446
sg_init_table(sg, UB_MAX_REQ_SG);
1447
sg_set_page(sg, virt_to_page(sc->top_sense), UB_SENSE_SIZE,
1448
(unsigned long)sc->top_sense & (PAGE_SIZE-1));
1449
scmd->len = UB_SENSE_SIZE;
1450
scmd->lun = cmd->lun;
1451
scmd->done = ub_top_sense_done;
1452
scmd->back = cmd;
1453
1454
scmd->tag = sc->tagcnt++;
1455
1456
cmd->state = UB_CMDST_SENSE;
1457
1458
ub_cmdq_insert(sc, scmd);
1459
return;
1460
1461
error:
1462
ub_state_done(sc, cmd, rc);
1463
}
1464
1465
/*
1466
* A helper for the command's state machine:
1467
* Submit a stall clear.
1468
*/
1469
static int ub_submit_clear_stall(struct ub_dev *sc, struct ub_scsi_cmd *cmd,
1470
int stalled_pipe)
1471
{
1472
int endp;
1473
struct usb_ctrlrequest *cr;
1474
int rc;
1475
1476
endp = usb_pipeendpoint(stalled_pipe);
1477
if (usb_pipein (stalled_pipe))
1478
endp |= USB_DIR_IN;
1479
1480
cr = &sc->work_cr;
1481
cr->bRequestType = USB_RECIP_ENDPOINT;
1482
cr->bRequest = USB_REQ_CLEAR_FEATURE;
1483
cr->wValue = cpu_to_le16(USB_ENDPOINT_HALT);
1484
cr->wIndex = cpu_to_le16(endp);
1485
cr->wLength = cpu_to_le16(0);
1486
1487
UB_INIT_COMPLETION(sc->work_done);
1488
1489
usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe,
1490
(unsigned char*) cr, NULL, 0, ub_urb_complete, sc);
1491
1492
if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) {
1493
ub_complete(&sc->work_done);
1494
return rc;
1495
}
1496
1497
sc->work_timer.expires = jiffies + UB_CTRL_TIMEOUT;
1498
add_timer(&sc->work_timer);
1499
return 0;
1500
}
1501
1502
/*
1503
*/
1504
static void ub_top_sense_done(struct ub_dev *sc, struct ub_scsi_cmd *scmd)
1505
{
1506
unsigned char *sense = sc->top_sense;
1507
struct ub_scsi_cmd *cmd;
1508
1509
/*
1510
* Find the command which triggered the unit attention or a check,
1511
* save the sense into it, and advance its state machine.
1512
*/
1513
if ((cmd = ub_cmdq_peek(sc)) == NULL) {
1514
printk(KERN_WARNING "%s: sense done while idle\n", sc->name);
1515
return;
1516
}
1517
if (cmd != scmd->back) {
1518
printk(KERN_WARNING "%s: "
1519
"sense done for wrong command 0x%x\n",
1520
sc->name, cmd->tag);
1521
return;
1522
}
1523
if (cmd->state != UB_CMDST_SENSE) {
1524
printk(KERN_WARNING "%s: sense done with bad cmd state %d\n",
1525
sc->name, cmd->state);
1526
return;
1527
}
1528
1529
/*
1530
* Ignoring scmd->act_len, because the buffer was pre-zeroed.
1531
*/
1532
cmd->key = sense[2] & 0x0F;
1533
cmd->asc = sense[12];
1534
cmd->ascq = sense[13];
1535
1536
ub_scsi_urb_compl(sc, cmd);
1537
}
1538
1539
/*
1540
* Reset management
1541
*/
1542
1543
static void ub_reset_enter(struct ub_dev *sc, int try)
1544
{
1545
1546
if (sc->reset) {
1547
/* This happens often on multi-LUN devices. */
1548
return;
1549
}
1550
sc->reset = try + 1;
1551
1552
#if 0 /* Not needed because the disconnect waits for us. */
1553
unsigned long flags;
1554
spin_lock_irqsave(&ub_lock, flags);
1555
sc->openc++;
1556
spin_unlock_irqrestore(&ub_lock, flags);
1557
#endif
1558
1559
#if 0 /* We let them stop themselves. */
1560
struct ub_lun *lun;
1561
list_for_each_entry(lun, &sc->luns, link) {
1562
blk_stop_queue(lun->disk->queue);
1563
}
1564
#endif
1565
1566
schedule_work(&sc->reset_work);
1567
}
1568
1569
static void ub_reset_task(struct work_struct *work)
1570
{
1571
struct ub_dev *sc = container_of(work, struct ub_dev, reset_work);
1572
unsigned long flags;
1573
struct ub_lun *lun;
1574
int rc;
1575
1576
if (!sc->reset) {
1577
printk(KERN_WARNING "%s: Running reset unrequested\n",
1578
sc->name);
1579
return;
1580
}
1581
1582
if (atomic_read(&sc->poison)) {
1583
;
1584
} else if ((sc->reset & 1) == 0) {
1585
ub_sync_reset(sc);
1586
msleep(700); /* usb-storage sleeps 6s (!) */
1587
ub_probe_clear_stall(sc, sc->recv_bulk_pipe);
1588
ub_probe_clear_stall(sc, sc->send_bulk_pipe);
1589
} else if (sc->dev->actconfig->desc.bNumInterfaces != 1) {
1590
;
1591
} else {
1592
rc = usb_lock_device_for_reset(sc->dev, sc->intf);
1593
if (rc < 0) {
1594
printk(KERN_NOTICE
1595
"%s: usb_lock_device_for_reset failed (%d)\n",
1596
sc->name, rc);
1597
} else {
1598
rc = usb_reset_device(sc->dev);
1599
if (rc < 0) {
1600
printk(KERN_NOTICE "%s: "
1601
"usb_lock_device_for_reset failed (%d)\n",
1602
sc->name, rc);
1603
}
1604
usb_unlock_device(sc->dev);
1605
}
1606
}
1607
1608
/*
1609
* In theory, no commands can be running while reset is active,
1610
* so nobody can ask for another reset, and so we do not need any
1611
* queues of resets or anything. We do need a spinlock though,
1612
* to interact with block layer.
1613
*/
1614
spin_lock_irqsave(sc->lock, flags);
1615
sc->reset = 0;
1616
tasklet_schedule(&sc->tasklet);
1617
list_for_each_entry(lun, &sc->luns, link) {
1618
blk_start_queue(lun->disk->queue);
1619
}
1620
wake_up(&sc->reset_wait);
1621
spin_unlock_irqrestore(sc->lock, flags);
1622
}
1623
1624
/*
1625
* XXX Reset brackets are too much hassle to implement, so just stub them
1626
* in order to prevent forced unbinding (which deadlocks solid when our
1627
* ->disconnect method waits for the reset to complete and this kills keventd).
1628
*
1629
* XXX Tell Alan to move usb_unlock_device inside of usb_reset_device,
1630
* or else the post_reset is invoked, and restats I/O on a locked device.
1631
*/
1632
static int ub_pre_reset(struct usb_interface *iface) {
1633
return 0;
1634
}
1635
1636
static int ub_post_reset(struct usb_interface *iface) {
1637
return 0;
1638
}
1639
1640
/*
1641
* This is called from a process context.
1642
*/
1643
static void ub_revalidate(struct ub_dev *sc, struct ub_lun *lun)
1644
{
1645
1646
lun->readonly = 0; /* XXX Query this from the device */
1647
1648
lun->capacity.nsec = 0;
1649
lun->capacity.bsize = 512;
1650
lun->capacity.bshift = 0;
1651
1652
if (ub_sync_tur(sc, lun) != 0)
1653
return; /* Not ready */
1654
lun->changed = 0;
1655
1656
if (ub_sync_read_cap(sc, lun, &lun->capacity) != 0) {
1657
/*
1658
* The retry here means something is wrong, either with the
1659
* device, with the transport, or with our code.
1660
* We keep this because sd.c has retries for capacity.
1661
*/
1662
if (ub_sync_read_cap(sc, lun, &lun->capacity) != 0) {
1663
lun->capacity.nsec = 0;
1664
lun->capacity.bsize = 512;
1665
lun->capacity.bshift = 0;
1666
}
1667
}
1668
}
1669
1670
/*
1671
* The open funcion.
1672
* This is mostly needed to keep refcounting, but also to support
1673
* media checks on removable media drives.
1674
*/
1675
static int ub_bd_open(struct block_device *bdev, fmode_t mode)
1676
{
1677
struct ub_lun *lun = bdev->bd_disk->private_data;
1678
struct ub_dev *sc = lun->udev;
1679
unsigned long flags;
1680
int rc;
1681
1682
spin_lock_irqsave(&ub_lock, flags);
1683
if (atomic_read(&sc->poison)) {
1684
spin_unlock_irqrestore(&ub_lock, flags);
1685
return -ENXIO;
1686
}
1687
sc->openc++;
1688
spin_unlock_irqrestore(&ub_lock, flags);
1689
1690
if (lun->removable || lun->readonly)
1691
check_disk_change(bdev);
1692
1693
/*
1694
* The sd.c considers ->media_present and ->changed not equivalent,
1695
* under some pretty murky conditions (a failure of READ CAPACITY).
1696
* We may need it one day.
1697
*/
1698
if (lun->removable && lun->changed && !(mode & FMODE_NDELAY)) {
1699
rc = -ENOMEDIUM;
1700
goto err_open;
1701
}
1702
1703
if (lun->readonly && (mode & FMODE_WRITE)) {
1704
rc = -EROFS;
1705
goto err_open;
1706
}
1707
1708
return 0;
1709
1710
err_open:
1711
ub_put(sc);
1712
return rc;
1713
}
1714
1715
static int ub_bd_unlocked_open(struct block_device *bdev, fmode_t mode)
1716
{
1717
int ret;
1718
1719
mutex_lock(&ub_mutex);
1720
ret = ub_bd_open(bdev, mode);
1721
mutex_unlock(&ub_mutex);
1722
1723
return ret;
1724
}
1725
1726
1727
/*
1728
*/
1729
static int ub_bd_release(struct gendisk *disk, fmode_t mode)
1730
{
1731
struct ub_lun *lun = disk->private_data;
1732
struct ub_dev *sc = lun->udev;
1733
1734
mutex_lock(&ub_mutex);
1735
ub_put(sc);
1736
mutex_unlock(&ub_mutex);
1737
1738
return 0;
1739
}
1740
1741
/*
1742
* The ioctl interface.
1743
*/
1744
static int ub_bd_ioctl(struct block_device *bdev, fmode_t mode,
1745
unsigned int cmd, unsigned long arg)
1746
{
1747
struct gendisk *disk = bdev->bd_disk;
1748
void __user *usermem = (void __user *) arg;
1749
int ret;
1750
1751
mutex_lock(&ub_mutex);
1752
ret = scsi_cmd_ioctl(disk->queue, disk, mode, cmd, usermem);
1753
mutex_unlock(&ub_mutex);
1754
1755
return ret;
1756
}
1757
1758
/*
1759
* This is called by check_disk_change if we reported a media change.
1760
* The main onjective here is to discover the features of the media such as
1761
* the capacity, read-only status, etc. USB storage generally does not
1762
* need to be spun up, but if we needed it, this would be the place.
1763
*
1764
* This call can sleep.
1765
*
1766
* The return code is not used.
1767
*/
1768
static int ub_bd_revalidate(struct gendisk *disk)
1769
{
1770
struct ub_lun *lun = disk->private_data;
1771
1772
ub_revalidate(lun->udev, lun);
1773
1774
/* XXX Support sector size switching like in sr.c */
1775
blk_queue_logical_block_size(disk->queue, lun->capacity.bsize);
1776
set_capacity(disk, lun->capacity.nsec);
1777
// set_disk_ro(sdkp->disk, lun->readonly);
1778
1779
return 0;
1780
}
1781
1782
/*
1783
* The check is called by the block layer to verify if the media
1784
* is still available. It is supposed to be harmless, lightweight and
1785
* non-intrusive in case the media was not changed.
1786
*
1787
* This call can sleep.
1788
*
1789
* The return code is bool!
1790
*/
1791
static unsigned int ub_bd_check_events(struct gendisk *disk,
1792
unsigned int clearing)
1793
{
1794
struct ub_lun *lun = disk->private_data;
1795
1796
if (!lun->removable)
1797
return 0;
1798
1799
/*
1800
* We clean checks always after every command, so this is not
1801
* as dangerous as it looks. If the TEST_UNIT_READY fails here,
1802
* the device is actually not ready with operator or software
1803
* intervention required. One dangerous item might be a drive which
1804
* spins itself down, and come the time to write dirty pages, this
1805
* will fail, then block layer discards the data. Since we never
1806
* spin drives up, such devices simply cannot be used with ub anyway.
1807
*/
1808
if (ub_sync_tur(lun->udev, lun) != 0) {
1809
lun->changed = 1;
1810
return DISK_EVENT_MEDIA_CHANGE;
1811
}
1812
1813
return lun->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1814
}
1815
1816
static const struct block_device_operations ub_bd_fops = {
1817
.owner = THIS_MODULE,
1818
.open = ub_bd_unlocked_open,
1819
.release = ub_bd_release,
1820
.ioctl = ub_bd_ioctl,
1821
.check_events = ub_bd_check_events,
1822
.revalidate_disk = ub_bd_revalidate,
1823
};
1824
1825
/*
1826
* Common ->done routine for commands executed synchronously.
1827
*/
1828
static void ub_probe_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1829
{
1830
struct completion *cop = cmd->back;
1831
complete(cop);
1832
}
1833
1834
/*
1835
* Test if the device has a check condition on it, synchronously.
1836
*/
1837
static int ub_sync_tur(struct ub_dev *sc, struct ub_lun *lun)
1838
{
1839
struct ub_scsi_cmd *cmd;
1840
enum { ALLOC_SIZE = sizeof(struct ub_scsi_cmd) };
1841
unsigned long flags;
1842
struct completion compl;
1843
int rc;
1844
1845
init_completion(&compl);
1846
1847
rc = -ENOMEM;
1848
if ((cmd = kzalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL)
1849
goto err_alloc;
1850
1851
cmd->cdb[0] = TEST_UNIT_READY;
1852
cmd->cdb_len = 6;
1853
cmd->dir = UB_DIR_NONE;
1854
cmd->state = UB_CMDST_INIT;
1855
cmd->lun = lun; /* This may be NULL, but that's ok */
1856
cmd->done = ub_probe_done;
1857
cmd->back = &compl;
1858
1859
spin_lock_irqsave(sc->lock, flags);
1860
cmd->tag = sc->tagcnt++;
1861
1862
rc = ub_submit_scsi(sc, cmd);
1863
spin_unlock_irqrestore(sc->lock, flags);
1864
1865
if (rc != 0)
1866
goto err_submit;
1867
1868
wait_for_completion(&compl);
1869
1870
rc = cmd->error;
1871
1872
if (rc == -EIO && cmd->key != 0) /* Retries for benh's key */
1873
rc = cmd->key;
1874
1875
err_submit:
1876
kfree(cmd);
1877
err_alloc:
1878
return rc;
1879
}
1880
1881
/*
1882
* Read the SCSI capacity synchronously (for probing).
1883
*/
1884
static int ub_sync_read_cap(struct ub_dev *sc, struct ub_lun *lun,
1885
struct ub_capacity *ret)
1886
{
1887
struct ub_scsi_cmd *cmd;
1888
struct scatterlist *sg;
1889
char *p;
1890
enum { ALLOC_SIZE = sizeof(struct ub_scsi_cmd) + 8 };
1891
unsigned long flags;
1892
unsigned int bsize, shift;
1893
unsigned long nsec;
1894
struct completion compl;
1895
int rc;
1896
1897
init_completion(&compl);
1898
1899
rc = -ENOMEM;
1900
if ((cmd = kzalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL)
1901
goto err_alloc;
1902
p = (char *)cmd + sizeof(struct ub_scsi_cmd);
1903
1904
cmd->cdb[0] = 0x25;
1905
cmd->cdb_len = 10;
1906
cmd->dir = UB_DIR_READ;
1907
cmd->state = UB_CMDST_INIT;
1908
cmd->nsg = 1;
1909
sg = &cmd->sgv[0];
1910
sg_init_table(sg, UB_MAX_REQ_SG);
1911
sg_set_page(sg, virt_to_page(p), 8, (unsigned long)p & (PAGE_SIZE-1));
1912
cmd->len = 8;
1913
cmd->lun = lun;
1914
cmd->done = ub_probe_done;
1915
cmd->back = &compl;
1916
1917
spin_lock_irqsave(sc->lock, flags);
1918
cmd->tag = sc->tagcnt++;
1919
1920
rc = ub_submit_scsi(sc, cmd);
1921
spin_unlock_irqrestore(sc->lock, flags);
1922
1923
if (rc != 0)
1924
goto err_submit;
1925
1926
wait_for_completion(&compl);
1927
1928
if (cmd->error != 0) {
1929
rc = -EIO;
1930
goto err_read;
1931
}
1932
if (cmd->act_len != 8) {
1933
rc = -EIO;
1934
goto err_read;
1935
}
1936
1937
/* sd.c special-cases sector size of 0 to mean 512. Needed? Safe? */
1938
nsec = be32_to_cpu(*(__be32 *)p) + 1;
1939
bsize = be32_to_cpu(*(__be32 *)(p + 4));
1940
switch (bsize) {
1941
case 512: shift = 0; break;
1942
case 1024: shift = 1; break;
1943
case 2048: shift = 2; break;
1944
case 4096: shift = 3; break;
1945
default:
1946
rc = -EDOM;
1947
goto err_inv_bsize;
1948
}
1949
1950
ret->bsize = bsize;
1951
ret->bshift = shift;
1952
ret->nsec = nsec << shift;
1953
rc = 0;
1954
1955
err_inv_bsize:
1956
err_read:
1957
err_submit:
1958
kfree(cmd);
1959
err_alloc:
1960
return rc;
1961
}
1962
1963
/*
1964
*/
1965
static void ub_probe_urb_complete(struct urb *urb)
1966
{
1967
struct completion *cop = urb->context;
1968
complete(cop);
1969
}
1970
1971
static void ub_probe_timeout(unsigned long arg)
1972
{
1973
struct completion *cop = (struct completion *) arg;
1974
complete(cop);
1975
}
1976
1977
/*
1978
* Reset with a Bulk reset.
1979
*/
1980
static int ub_sync_reset(struct ub_dev *sc)
1981
{
1982
int ifnum = sc->intf->cur_altsetting->desc.bInterfaceNumber;
1983
struct usb_ctrlrequest *cr;
1984
struct completion compl;
1985
struct timer_list timer;
1986
int rc;
1987
1988
init_completion(&compl);
1989
1990
cr = &sc->work_cr;
1991
cr->bRequestType = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
1992
cr->bRequest = US_BULK_RESET_REQUEST;
1993
cr->wValue = cpu_to_le16(0);
1994
cr->wIndex = cpu_to_le16(ifnum);
1995
cr->wLength = cpu_to_le16(0);
1996
1997
usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe,
1998
(unsigned char*) cr, NULL, 0, ub_probe_urb_complete, &compl);
1999
2000
if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) {
2001
printk(KERN_WARNING
2002
"%s: Unable to submit a bulk reset (%d)\n", sc->name, rc);
2003
return rc;
2004
}
2005
2006
init_timer(&timer);
2007
timer.function = ub_probe_timeout;
2008
timer.data = (unsigned long) &compl;
2009
timer.expires = jiffies + UB_CTRL_TIMEOUT;
2010
add_timer(&timer);
2011
2012
wait_for_completion(&compl);
2013
2014
del_timer_sync(&timer);
2015
usb_kill_urb(&sc->work_urb);
2016
2017
return sc->work_urb.status;
2018
}
2019
2020
/*
2021
* Get number of LUNs by the way of Bulk GetMaxLUN command.
2022
*/
2023
static int ub_sync_getmaxlun(struct ub_dev *sc)
2024
{
2025
int ifnum = sc->intf->cur_altsetting->desc.bInterfaceNumber;
2026
unsigned char *p;
2027
enum { ALLOC_SIZE = 1 };
2028
struct usb_ctrlrequest *cr;
2029
struct completion compl;
2030
struct timer_list timer;
2031
int nluns;
2032
int rc;
2033
2034
init_completion(&compl);
2035
2036
rc = -ENOMEM;
2037
if ((p = kmalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL)
2038
goto err_alloc;
2039
*p = 55;
2040
2041
cr = &sc->work_cr;
2042
cr->bRequestType = USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE;
2043
cr->bRequest = US_BULK_GET_MAX_LUN;
2044
cr->wValue = cpu_to_le16(0);
2045
cr->wIndex = cpu_to_le16(ifnum);
2046
cr->wLength = cpu_to_le16(1);
2047
2048
usb_fill_control_urb(&sc->work_urb, sc->dev, sc->recv_ctrl_pipe,
2049
(unsigned char*) cr, p, 1, ub_probe_urb_complete, &compl);
2050
2051
if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0)
2052
goto err_submit;
2053
2054
init_timer(&timer);
2055
timer.function = ub_probe_timeout;
2056
timer.data = (unsigned long) &compl;
2057
timer.expires = jiffies + UB_CTRL_TIMEOUT;
2058
add_timer(&timer);
2059
2060
wait_for_completion(&compl);
2061
2062
del_timer_sync(&timer);
2063
usb_kill_urb(&sc->work_urb);
2064
2065
if ((rc = sc->work_urb.status) < 0)
2066
goto err_io;
2067
2068
if (sc->work_urb.actual_length != 1) {
2069
nluns = 0;
2070
} else {
2071
if ((nluns = *p) == 55) {
2072
nluns = 0;
2073
} else {
2074
/* GetMaxLUN returns the maximum LUN number */
2075
nluns += 1;
2076
if (nluns > UB_MAX_LUNS)
2077
nluns = UB_MAX_LUNS;
2078
}
2079
}
2080
2081
kfree(p);
2082
return nluns;
2083
2084
err_io:
2085
err_submit:
2086
kfree(p);
2087
err_alloc:
2088
return rc;
2089
}
2090
2091
/*
2092
* Clear initial stalls.
2093
*/
2094
static int ub_probe_clear_stall(struct ub_dev *sc, int stalled_pipe)
2095
{
2096
int endp;
2097
struct usb_ctrlrequest *cr;
2098
struct completion compl;
2099
struct timer_list timer;
2100
int rc;
2101
2102
init_completion(&compl);
2103
2104
endp = usb_pipeendpoint(stalled_pipe);
2105
if (usb_pipein (stalled_pipe))
2106
endp |= USB_DIR_IN;
2107
2108
cr = &sc->work_cr;
2109
cr->bRequestType = USB_RECIP_ENDPOINT;
2110
cr->bRequest = USB_REQ_CLEAR_FEATURE;
2111
cr->wValue = cpu_to_le16(USB_ENDPOINT_HALT);
2112
cr->wIndex = cpu_to_le16(endp);
2113
cr->wLength = cpu_to_le16(0);
2114
2115
usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe,
2116
(unsigned char*) cr, NULL, 0, ub_probe_urb_complete, &compl);
2117
2118
if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) {
2119
printk(KERN_WARNING
2120
"%s: Unable to submit a probe clear (%d)\n", sc->name, rc);
2121
return rc;
2122
}
2123
2124
init_timer(&timer);
2125
timer.function = ub_probe_timeout;
2126
timer.data = (unsigned long) &compl;
2127
timer.expires = jiffies + UB_CTRL_TIMEOUT;
2128
add_timer(&timer);
2129
2130
wait_for_completion(&compl);
2131
2132
del_timer_sync(&timer);
2133
usb_kill_urb(&sc->work_urb);
2134
2135
usb_reset_endpoint(sc->dev, endp);
2136
2137
return 0;
2138
}
2139
2140
/*
2141
* Get the pipe settings.
2142
*/
2143
static int ub_get_pipes(struct ub_dev *sc, struct usb_device *dev,
2144
struct usb_interface *intf)
2145
{
2146
struct usb_host_interface *altsetting = intf->cur_altsetting;
2147
struct usb_endpoint_descriptor *ep_in = NULL;
2148
struct usb_endpoint_descriptor *ep_out = NULL;
2149
struct usb_endpoint_descriptor *ep;
2150
int i;
2151
2152
/*
2153
* Find the endpoints we need.
2154
* We are expecting a minimum of 2 endpoints - in and out (bulk).
2155
* We will ignore any others.
2156
*/
2157
for (i = 0; i < altsetting->desc.bNumEndpoints; i++) {
2158
ep = &altsetting->endpoint[i].desc;
2159
2160
/* Is it a BULK endpoint? */
2161
if (usb_endpoint_xfer_bulk(ep)) {
2162
/* BULK in or out? */
2163
if (usb_endpoint_dir_in(ep)) {
2164
if (ep_in == NULL)
2165
ep_in = ep;
2166
} else {
2167
if (ep_out == NULL)
2168
ep_out = ep;
2169
}
2170
}
2171
}
2172
2173
if (ep_in == NULL || ep_out == NULL) {
2174
printk(KERN_NOTICE "%s: failed endpoint check\n", sc->name);
2175
return -ENODEV;
2176
}
2177
2178
/* Calculate and store the pipe values */
2179
sc->send_ctrl_pipe = usb_sndctrlpipe(dev, 0);
2180
sc->recv_ctrl_pipe = usb_rcvctrlpipe(dev, 0);
2181
sc->send_bulk_pipe = usb_sndbulkpipe(dev,
2182
usb_endpoint_num(ep_out));
2183
sc->recv_bulk_pipe = usb_rcvbulkpipe(dev,
2184
usb_endpoint_num(ep_in));
2185
2186
return 0;
2187
}
2188
2189
/*
2190
* Probing is done in the process context, which allows us to cheat
2191
* and not to build a state machine for the discovery.
2192
*/
2193
static int ub_probe(struct usb_interface *intf,
2194
const struct usb_device_id *dev_id)
2195
{
2196
struct ub_dev *sc;
2197
int nluns;
2198
int rc;
2199
int i;
2200
2201
if (usb_usual_check_type(dev_id, USB_US_TYPE_UB))
2202
return -ENXIO;
2203
2204
rc = -ENOMEM;
2205
if ((sc = kzalloc(sizeof(struct ub_dev), GFP_KERNEL)) == NULL)
2206
goto err_core;
2207
sc->lock = ub_next_lock();
2208
INIT_LIST_HEAD(&sc->luns);
2209
usb_init_urb(&sc->work_urb);
2210
tasklet_init(&sc->tasklet, ub_scsi_action, (unsigned long)sc);
2211
atomic_set(&sc->poison, 0);
2212
INIT_WORK(&sc->reset_work, ub_reset_task);
2213
init_waitqueue_head(&sc->reset_wait);
2214
2215
init_timer(&sc->work_timer);
2216
sc->work_timer.data = (unsigned long) sc;
2217
sc->work_timer.function = ub_urb_timeout;
2218
2219
ub_init_completion(&sc->work_done);
2220
sc->work_done.done = 1; /* A little yuk, but oh well... */
2221
2222
sc->dev = interface_to_usbdev(intf);
2223
sc->intf = intf;
2224
// sc->ifnum = intf->cur_altsetting->desc.bInterfaceNumber;
2225
usb_set_intfdata(intf, sc);
2226
usb_get_dev(sc->dev);
2227
/*
2228
* Since we give the interface struct to the block level through
2229
* disk->driverfs_dev, we have to pin it. Otherwise, block_uevent
2230
* oopses on close after a disconnect (kernels 2.6.16 and up).
2231
*/
2232
usb_get_intf(sc->intf);
2233
2234
snprintf(sc->name, 12, DRV_NAME "(%d.%d)",
2235
sc->dev->bus->busnum, sc->dev->devnum);
2236
2237
/* XXX Verify that we can handle the device (from descriptors) */
2238
2239
if (ub_get_pipes(sc, sc->dev, intf) != 0)
2240
goto err_dev_desc;
2241
2242
/*
2243
* At this point, all USB initialization is done, do upper layer.
2244
* We really hate halfway initialized structures, so from the
2245
* invariants perspective, this ub_dev is fully constructed at
2246
* this point.
2247
*/
2248
2249
/*
2250
* This is needed to clear toggles. It is a problem only if we do
2251
* `rmmod ub && modprobe ub` without disconnects, but we like that.
2252
*/
2253
#if 0 /* iPod Mini fails if we do this (big white iPod works) */
2254
ub_probe_clear_stall(sc, sc->recv_bulk_pipe);
2255
ub_probe_clear_stall(sc, sc->send_bulk_pipe);
2256
#endif
2257
2258
/*
2259
* The way this is used by the startup code is a little specific.
2260
* A SCSI check causes a USB stall. Our common case code sees it
2261
* and clears the check, after which the device is ready for use.
2262
* But if a check was not present, any command other than
2263
* TEST_UNIT_READY ends with a lockup (including REQUEST_SENSE).
2264
*
2265
* If we neglect to clear the SCSI check, the first real command fails
2266
* (which is the capacity readout). We clear that and retry, but why
2267
* causing spurious retries for no reason.
2268
*
2269
* Revalidation may start with its own TEST_UNIT_READY, but that one
2270
* has to succeed, so we clear checks with an additional one here.
2271
* In any case it's not our business how revaliadation is implemented.
2272
*/
2273
for (i = 0; i < 3; i++) { /* Retries for the schwag key from KS'04 */
2274
if ((rc = ub_sync_tur(sc, NULL)) <= 0) break;
2275
if (rc != 0x6) break;
2276
msleep(10);
2277
}
2278
2279
nluns = 1;
2280
for (i = 0; i < 3; i++) {
2281
if ((rc = ub_sync_getmaxlun(sc)) < 0)
2282
break;
2283
if (rc != 0) {
2284
nluns = rc;
2285
break;
2286
}
2287
msleep(100);
2288
}
2289
2290
for (i = 0; i < nluns; i++) {
2291
ub_probe_lun(sc, i);
2292
}
2293
return 0;
2294
2295
err_dev_desc:
2296
usb_set_intfdata(intf, NULL);
2297
usb_put_intf(sc->intf);
2298
usb_put_dev(sc->dev);
2299
kfree(sc);
2300
err_core:
2301
return rc;
2302
}
2303
2304
static int ub_probe_lun(struct ub_dev *sc, int lnum)
2305
{
2306
struct ub_lun *lun;
2307
struct request_queue *q;
2308
struct gendisk *disk;
2309
int rc;
2310
2311
rc = -ENOMEM;
2312
if ((lun = kzalloc(sizeof(struct ub_lun), GFP_KERNEL)) == NULL)
2313
goto err_alloc;
2314
lun->num = lnum;
2315
2316
rc = -ENOSR;
2317
if ((lun->id = ub_id_get()) == -1)
2318
goto err_id;
2319
2320
lun->udev = sc;
2321
2322
snprintf(lun->name, 16, DRV_NAME "%c(%d.%d.%d)",
2323
lun->id + 'a', sc->dev->bus->busnum, sc->dev->devnum, lun->num);
2324
2325
lun->removable = 1; /* XXX Query this from the device */
2326
lun->changed = 1; /* ub_revalidate clears only */
2327
ub_revalidate(sc, lun);
2328
2329
rc = -ENOMEM;
2330
if ((disk = alloc_disk(UB_PARTS_PER_LUN)) == NULL)
2331
goto err_diskalloc;
2332
2333
sprintf(disk->disk_name, DRV_NAME "%c", lun->id + 'a');
2334
disk->major = UB_MAJOR;
2335
disk->first_minor = lun->id * UB_PARTS_PER_LUN;
2336
disk->fops = &ub_bd_fops;
2337
disk->private_data = lun;
2338
disk->driverfs_dev = &sc->intf->dev;
2339
2340
rc = -ENOMEM;
2341
if ((q = blk_init_queue(ub_request_fn, sc->lock)) == NULL)
2342
goto err_blkqinit;
2343
2344
disk->queue = q;
2345
2346
blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
2347
blk_queue_max_segments(q, UB_MAX_REQ_SG);
2348
blk_queue_segment_boundary(q, 0xffffffff); /* Dubious. */
2349
blk_queue_max_hw_sectors(q, UB_MAX_SECTORS);
2350
blk_queue_logical_block_size(q, lun->capacity.bsize);
2351
2352
lun->disk = disk;
2353
q->queuedata = lun;
2354
list_add(&lun->link, &sc->luns);
2355
2356
set_capacity(disk, lun->capacity.nsec);
2357
if (lun->removable)
2358
disk->flags |= GENHD_FL_REMOVABLE;
2359
2360
add_disk(disk);
2361
2362
return 0;
2363
2364
err_blkqinit:
2365
put_disk(disk);
2366
err_diskalloc:
2367
ub_id_put(lun->id);
2368
err_id:
2369
kfree(lun);
2370
err_alloc:
2371
return rc;
2372
}
2373
2374
static void ub_disconnect(struct usb_interface *intf)
2375
{
2376
struct ub_dev *sc = usb_get_intfdata(intf);
2377
struct ub_lun *lun;
2378
unsigned long flags;
2379
2380
/*
2381
* Prevent ub_bd_release from pulling the rug from under us.
2382
* XXX This is starting to look like a kref.
2383
* XXX Why not to take this ref at probe time?
2384
*/
2385
spin_lock_irqsave(&ub_lock, flags);
2386
sc->openc++;
2387
spin_unlock_irqrestore(&ub_lock, flags);
2388
2389
/*
2390
* Fence stall clearings, operations triggered by unlinkings and so on.
2391
* We do not attempt to unlink any URBs, because we do not trust the
2392
* unlink paths in HC drivers. Also, we get -84 upon disconnect anyway.
2393
*/
2394
atomic_set(&sc->poison, 1);
2395
2396
/*
2397
* Wait for reset to end, if any.
2398
*/
2399
wait_event(sc->reset_wait, !sc->reset);
2400
2401
/*
2402
* Blow away queued commands.
2403
*
2404
* Actually, this never works, because before we get here
2405
* the HCD terminates outstanding URB(s). It causes our
2406
* SCSI command queue to advance, commands fail to submit,
2407
* and the whole queue drains. So, we just use this code to
2408
* print warnings.
2409
*/
2410
spin_lock_irqsave(sc->lock, flags);
2411
{
2412
struct ub_scsi_cmd *cmd;
2413
int cnt = 0;
2414
while ((cmd = ub_cmdq_peek(sc)) != NULL) {
2415
cmd->error = -ENOTCONN;
2416
cmd->state = UB_CMDST_DONE;
2417
ub_cmdq_pop(sc);
2418
(*cmd->done)(sc, cmd);
2419
cnt++;
2420
}
2421
if (cnt != 0) {
2422
printk(KERN_WARNING "%s: "
2423
"%d was queued after shutdown\n", sc->name, cnt);
2424
}
2425
}
2426
spin_unlock_irqrestore(sc->lock, flags);
2427
2428
/*
2429
* Unregister the upper layer.
2430
*/
2431
list_for_each_entry(lun, &sc->luns, link) {
2432
del_gendisk(lun->disk);
2433
/*
2434
* I wish I could do:
2435
* queue_flag_set(QUEUE_FLAG_DEAD, q);
2436
* As it is, we rely on our internal poisoning and let
2437
* the upper levels to spin furiously failing all the I/O.
2438
*/
2439
}
2440
2441
/*
2442
* Testing for -EINPROGRESS is always a bug, so we are bending
2443
* the rules a little.
2444
*/
2445
spin_lock_irqsave(sc->lock, flags);
2446
if (sc->work_urb.status == -EINPROGRESS) { /* janitors: ignore */
2447
printk(KERN_WARNING "%s: "
2448
"URB is active after disconnect\n", sc->name);
2449
}
2450
spin_unlock_irqrestore(sc->lock, flags);
2451
2452
/*
2453
* There is virtually no chance that other CPU runs a timeout so long
2454
* after ub_urb_complete should have called del_timer, but only if HCD
2455
* didn't forget to deliver a callback on unlink.
2456
*/
2457
del_timer_sync(&sc->work_timer);
2458
2459
/*
2460
* At this point there must be no commands coming from anyone
2461
* and no URBs left in transit.
2462
*/
2463
2464
ub_put(sc);
2465
}
2466
2467
static struct usb_driver ub_driver = {
2468
.name = "ub",
2469
.probe = ub_probe,
2470
.disconnect = ub_disconnect,
2471
.id_table = ub_usb_ids,
2472
.pre_reset = ub_pre_reset,
2473
.post_reset = ub_post_reset,
2474
};
2475
2476
static int __init ub_init(void)
2477
{
2478
int rc;
2479
int i;
2480
2481
for (i = 0; i < UB_QLOCK_NUM; i++)
2482
spin_lock_init(&ub_qlockv[i]);
2483
2484
if ((rc = register_blkdev(UB_MAJOR, DRV_NAME)) != 0)
2485
goto err_regblkdev;
2486
2487
if ((rc = usb_register(&ub_driver)) != 0)
2488
goto err_register;
2489
2490
usb_usual_set_present(USB_US_TYPE_UB);
2491
return 0;
2492
2493
err_register:
2494
unregister_blkdev(UB_MAJOR, DRV_NAME);
2495
err_regblkdev:
2496
return rc;
2497
}
2498
2499
static void __exit ub_exit(void)
2500
{
2501
usb_deregister(&ub_driver);
2502
2503
unregister_blkdev(UB_MAJOR, DRV_NAME);
2504
usb_usual_clear_present(USB_US_TYPE_UB);
2505
}
2506
2507
module_init(ub_init);
2508
module_exit(ub_exit);
2509
2510
MODULE_LICENSE("GPL");
2511
2512