Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/char/agp/i460-agp.c
15109 views
1
/*
2
* For documentation on the i460 AGP interface, see Chapter 7 (AGP Subsystem) of
3
* the "Intel 460GTX Chipset Software Developer's Manual":
4
* http://www.intel.com/design/archives/itanium/downloads/248704.htm
5
*/
6
/*
7
* 460GX support by Chris Ahna <[email protected]>
8
* Clean up & simplification by David Mosberger-Tang <[email protected]>
9
*/
10
#include <linux/module.h>
11
#include <linux/pci.h>
12
#include <linux/init.h>
13
#include <linux/string.h>
14
#include <linux/slab.h>
15
#include <linux/agp_backend.h>
16
#include <linux/log2.h>
17
18
#include "agp.h"
19
20
#define INTEL_I460_BAPBASE 0x98
21
#define INTEL_I460_GXBCTL 0xa0
22
#define INTEL_I460_AGPSIZ 0xa2
23
#define INTEL_I460_ATTBASE 0xfe200000
24
#define INTEL_I460_GATT_VALID (1UL << 24)
25
#define INTEL_I460_GATT_COHERENT (1UL << 25)
26
27
/*
28
* The i460 can operate with large (4MB) pages, but there is no sane way to support this
29
* within the current kernel/DRM environment, so we disable the relevant code for now.
30
* See also comments in ia64_alloc_page()...
31
*/
32
#define I460_LARGE_IO_PAGES 0
33
34
#if I460_LARGE_IO_PAGES
35
# define I460_IO_PAGE_SHIFT i460.io_page_shift
36
#else
37
# define I460_IO_PAGE_SHIFT 12
38
#endif
39
40
#define I460_IOPAGES_PER_KPAGE (PAGE_SIZE >> I460_IO_PAGE_SHIFT)
41
#define I460_KPAGES_PER_IOPAGE (1 << (I460_IO_PAGE_SHIFT - PAGE_SHIFT))
42
#define I460_SRAM_IO_DISABLE (1 << 4)
43
#define I460_BAPBASE_ENABLE (1 << 3)
44
#define I460_AGPSIZ_MASK 0x7
45
#define I460_4M_PS (1 << 1)
46
47
/* Control bits for Out-Of-GART coherency and Burst Write Combining */
48
#define I460_GXBCTL_OOG (1UL << 0)
49
#define I460_GXBCTL_BWC (1UL << 2)
50
51
/*
52
* gatt_table entries are 32-bits wide on the i460; the generic code ought to declare the
53
* gatt_table and gatt_table_real pointers a "void *"...
54
*/
55
#define RD_GATT(index) readl((u32 *) i460.gatt + (index))
56
#define WR_GATT(index, val) writel((val), (u32 *) i460.gatt + (index))
57
/*
58
* The 460 spec says we have to read the last location written to make sure that all
59
* writes have taken effect
60
*/
61
#define WR_FLUSH_GATT(index) RD_GATT(index)
62
63
static unsigned long i460_mask_memory (struct agp_bridge_data *bridge,
64
dma_addr_t addr, int type);
65
66
static struct {
67
void *gatt; /* ioremap'd GATT area */
68
69
/* i460 supports multiple GART page sizes, so GART pageshift is dynamic: */
70
u8 io_page_shift;
71
72
/* BIOS configures chipset to one of 2 possible apbase values: */
73
u8 dynamic_apbase;
74
75
/* structure for tracking partial use of 4MB GART pages: */
76
struct lp_desc {
77
unsigned long *alloced_map; /* bitmap of kernel-pages in use */
78
int refcount; /* number of kernel pages using the large page */
79
u64 paddr; /* physical address of large page */
80
struct page *page; /* page pointer */
81
} *lp_desc;
82
} i460;
83
84
static const struct aper_size_info_8 i460_sizes[3] =
85
{
86
/*
87
* The 32GB aperture is only available with a 4M GART page size. Due to the
88
* dynamic GART page size, we can't figure out page_order or num_entries until
89
* runtime.
90
*/
91
{32768, 0, 0, 4},
92
{1024, 0, 0, 2},
93
{256, 0, 0, 1}
94
};
95
96
static struct gatt_mask i460_masks[] =
97
{
98
{
99
.mask = INTEL_I460_GATT_VALID | INTEL_I460_GATT_COHERENT,
100
.type = 0
101
}
102
};
103
104
static int i460_fetch_size (void)
105
{
106
int i;
107
u8 temp;
108
struct aper_size_info_8 *values;
109
110
/* Determine the GART page size */
111
pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &temp);
112
i460.io_page_shift = (temp & I460_4M_PS) ? 22 : 12;
113
pr_debug("i460_fetch_size: io_page_shift=%d\n", i460.io_page_shift);
114
115
if (i460.io_page_shift != I460_IO_PAGE_SHIFT) {
116
printk(KERN_ERR PFX
117
"I/O (GART) page-size %luKB doesn't match expected "
118
"size %luKB\n",
119
1UL << (i460.io_page_shift - 10),
120
1UL << (I460_IO_PAGE_SHIFT));
121
return 0;
122
}
123
124
values = A_SIZE_8(agp_bridge->driver->aperture_sizes);
125
126
pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp);
127
128
/* Exit now if the IO drivers for the GART SRAMS are turned off */
129
if (temp & I460_SRAM_IO_DISABLE) {
130
printk(KERN_ERR PFX "GART SRAMS disabled on 460GX chipset\n");
131
printk(KERN_ERR PFX "AGPGART operation not possible\n");
132
return 0;
133
}
134
135
/* Make sure we don't try to create an 2 ^ 23 entry GATT */
136
if ((i460.io_page_shift == 0) && ((temp & I460_AGPSIZ_MASK) == 4)) {
137
printk(KERN_ERR PFX "We can't have a 32GB aperture with 4KB GART pages\n");
138
return 0;
139
}
140
141
/* Determine the proper APBASE register */
142
if (temp & I460_BAPBASE_ENABLE)
143
i460.dynamic_apbase = INTEL_I460_BAPBASE;
144
else
145
i460.dynamic_apbase = AGP_APBASE;
146
147
for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) {
148
/*
149
* Dynamically calculate the proper num_entries and page_order values for
150
* the define aperture sizes. Take care not to shift off the end of
151
* values[i].size.
152
*/
153
values[i].num_entries = (values[i].size << 8) >> (I460_IO_PAGE_SHIFT - 12);
154
values[i].page_order = ilog2((sizeof(u32)*values[i].num_entries) >> PAGE_SHIFT);
155
}
156
157
for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) {
158
/* Neglect control bits when matching up size_value */
159
if ((temp & I460_AGPSIZ_MASK) == values[i].size_value) {
160
agp_bridge->previous_size = agp_bridge->current_size = (void *) (values + i);
161
agp_bridge->aperture_size_idx = i;
162
return values[i].size;
163
}
164
}
165
166
return 0;
167
}
168
169
/* There isn't anything to do here since 460 has no GART TLB. */
170
static void i460_tlb_flush (struct agp_memory *mem)
171
{
172
return;
173
}
174
175
/*
176
* This utility function is needed to prevent corruption of the control bits
177
* which are stored along with the aperture size in 460's AGPSIZ register
178
*/
179
static void i460_write_agpsiz (u8 size_value)
180
{
181
u8 temp;
182
183
pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp);
184
pci_write_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ,
185
((temp & ~I460_AGPSIZ_MASK) | size_value));
186
}
187
188
static void i460_cleanup (void)
189
{
190
struct aper_size_info_8 *previous_size;
191
192
previous_size = A_SIZE_8(agp_bridge->previous_size);
193
i460_write_agpsiz(previous_size->size_value);
194
195
if (I460_IO_PAGE_SHIFT > PAGE_SHIFT)
196
kfree(i460.lp_desc);
197
}
198
199
static int i460_configure (void)
200
{
201
union {
202
u32 small[2];
203
u64 large;
204
} temp;
205
size_t size;
206
u8 scratch;
207
struct aper_size_info_8 *current_size;
208
209
temp.large = 0;
210
211
current_size = A_SIZE_8(agp_bridge->current_size);
212
i460_write_agpsiz(current_size->size_value);
213
214
/*
215
* Do the necessary rigmarole to read all eight bytes of APBASE.
216
* This has to be done since the AGP aperture can be above 4GB on
217
* 460 based systems.
218
*/
219
pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase, &(temp.small[0]));
220
pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase + 4, &(temp.small[1]));
221
222
/* Clear BAR control bits */
223
agp_bridge->gart_bus_addr = temp.large & ~((1UL << 3) - 1);
224
225
pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &scratch);
226
pci_write_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL,
227
(scratch & 0x02) | I460_GXBCTL_OOG | I460_GXBCTL_BWC);
228
229
/*
230
* Initialize partial allocation trackers if a GART page is bigger than a kernel
231
* page.
232
*/
233
if (I460_IO_PAGE_SHIFT > PAGE_SHIFT) {
234
size = current_size->num_entries * sizeof(i460.lp_desc[0]);
235
i460.lp_desc = kzalloc(size, GFP_KERNEL);
236
if (!i460.lp_desc)
237
return -ENOMEM;
238
}
239
return 0;
240
}
241
242
static int i460_create_gatt_table (struct agp_bridge_data *bridge)
243
{
244
int page_order, num_entries, i;
245
void *temp;
246
247
/*
248
* Load up the fixed address of the GART SRAMS which hold our GATT table.
249
*/
250
temp = agp_bridge->current_size;
251
page_order = A_SIZE_8(temp)->page_order;
252
num_entries = A_SIZE_8(temp)->num_entries;
253
254
i460.gatt = ioremap(INTEL_I460_ATTBASE, PAGE_SIZE << page_order);
255
if (!i460.gatt) {
256
printk(KERN_ERR PFX "ioremap failed\n");
257
return -ENOMEM;
258
}
259
260
/* These are no good, the should be removed from the agp_bridge strucure... */
261
agp_bridge->gatt_table_real = NULL;
262
agp_bridge->gatt_table = NULL;
263
agp_bridge->gatt_bus_addr = 0;
264
265
for (i = 0; i < num_entries; ++i)
266
WR_GATT(i, 0);
267
WR_FLUSH_GATT(i - 1);
268
return 0;
269
}
270
271
static int i460_free_gatt_table (struct agp_bridge_data *bridge)
272
{
273
int num_entries, i;
274
void *temp;
275
276
temp = agp_bridge->current_size;
277
278
num_entries = A_SIZE_8(temp)->num_entries;
279
280
for (i = 0; i < num_entries; ++i)
281
WR_GATT(i, 0);
282
WR_FLUSH_GATT(num_entries - 1);
283
284
iounmap(i460.gatt);
285
return 0;
286
}
287
288
/*
289
* The following functions are called when the I/O (GART) page size is smaller than
290
* PAGE_SIZE.
291
*/
292
293
static int i460_insert_memory_small_io_page (struct agp_memory *mem,
294
off_t pg_start, int type)
295
{
296
unsigned long paddr, io_pg_start, io_page_size;
297
int i, j, k, num_entries;
298
void *temp;
299
300
pr_debug("i460_insert_memory_small_io_page(mem=%p, pg_start=%ld, type=%d, paddr0=0x%lx)\n",
301
mem, pg_start, type, page_to_phys(mem->pages[0]));
302
303
if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES)
304
return -EINVAL;
305
306
io_pg_start = I460_IOPAGES_PER_KPAGE * pg_start;
307
308
temp = agp_bridge->current_size;
309
num_entries = A_SIZE_8(temp)->num_entries;
310
311
if ((io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count) > num_entries) {
312
printk(KERN_ERR PFX "Looks like we're out of AGP memory\n");
313
return -EINVAL;
314
}
315
316
j = io_pg_start;
317
while (j < (io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count)) {
318
if (!PGE_EMPTY(agp_bridge, RD_GATT(j))) {
319
pr_debug("i460_insert_memory_small_io_page: GATT[%d]=0x%x is busy\n",
320
j, RD_GATT(j));
321
return -EBUSY;
322
}
323
j++;
324
}
325
326
io_page_size = 1UL << I460_IO_PAGE_SHIFT;
327
for (i = 0, j = io_pg_start; i < mem->page_count; i++) {
328
paddr = page_to_phys(mem->pages[i]);
329
for (k = 0; k < I460_IOPAGES_PER_KPAGE; k++, j++, paddr += io_page_size)
330
WR_GATT(j, i460_mask_memory(agp_bridge, paddr, mem->type));
331
}
332
WR_FLUSH_GATT(j - 1);
333
return 0;
334
}
335
336
static int i460_remove_memory_small_io_page(struct agp_memory *mem,
337
off_t pg_start, int type)
338
{
339
int i;
340
341
pr_debug("i460_remove_memory_small_io_page(mem=%p, pg_start=%ld, type=%d)\n",
342
mem, pg_start, type);
343
344
pg_start = I460_IOPAGES_PER_KPAGE * pg_start;
345
346
for (i = pg_start; i < (pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count); i++)
347
WR_GATT(i, 0);
348
WR_FLUSH_GATT(i - 1);
349
return 0;
350
}
351
352
#if I460_LARGE_IO_PAGES
353
354
/*
355
* These functions are called when the I/O (GART) page size exceeds PAGE_SIZE.
356
*
357
* This situation is interesting since AGP memory allocations that are smaller than a
358
* single GART page are possible. The i460.lp_desc array tracks partial allocation of the
359
* large GART pages to work around this issue.
360
*
361
* i460.lp_desc[pg_num].refcount tracks the number of kernel pages in use within GART page
362
* pg_num. i460.lp_desc[pg_num].paddr is the physical address of the large page and
363
* i460.lp_desc[pg_num].alloced_map is a bitmap of kernel pages that are in use (allocated).
364
*/
365
366
static int i460_alloc_large_page (struct lp_desc *lp)
367
{
368
unsigned long order = I460_IO_PAGE_SHIFT - PAGE_SHIFT;
369
size_t map_size;
370
371
lp->page = alloc_pages(GFP_KERNEL, order);
372
if (!lp->page) {
373
printk(KERN_ERR PFX "Couldn't alloc 4M GART page...\n");
374
return -ENOMEM;
375
}
376
377
map_size = ((I460_KPAGES_PER_IOPAGE + BITS_PER_LONG - 1) & -BITS_PER_LONG)/8;
378
lp->alloced_map = kzalloc(map_size, GFP_KERNEL);
379
if (!lp->alloced_map) {
380
__free_pages(lp->page, order);
381
printk(KERN_ERR PFX "Out of memory, we're in trouble...\n");
382
return -ENOMEM;
383
}
384
385
lp->paddr = page_to_phys(lp->page);
386
lp->refcount = 0;
387
atomic_add(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp);
388
return 0;
389
}
390
391
static void i460_free_large_page (struct lp_desc *lp)
392
{
393
kfree(lp->alloced_map);
394
lp->alloced_map = NULL;
395
396
__free_pages(lp->page, I460_IO_PAGE_SHIFT - PAGE_SHIFT);
397
atomic_sub(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp);
398
}
399
400
static int i460_insert_memory_large_io_page (struct agp_memory *mem,
401
off_t pg_start, int type)
402
{
403
int i, start_offset, end_offset, idx, pg, num_entries;
404
struct lp_desc *start, *end, *lp;
405
void *temp;
406
407
if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES)
408
return -EINVAL;
409
410
temp = agp_bridge->current_size;
411
num_entries = A_SIZE_8(temp)->num_entries;
412
413
/* Figure out what pg_start means in terms of our large GART pages */
414
start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE];
415
end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE];
416
start_offset = pg_start % I460_KPAGES_PER_IOPAGE;
417
end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE;
418
419
if (end > i460.lp_desc + num_entries) {
420
printk(KERN_ERR PFX "Looks like we're out of AGP memory\n");
421
return -EINVAL;
422
}
423
424
/* Check if the requested region of the aperture is free */
425
for (lp = start; lp <= end; ++lp) {
426
if (!lp->alloced_map)
427
continue; /* OK, the entire large page is available... */
428
429
for (idx = ((lp == start) ? start_offset : 0);
430
idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
431
idx++)
432
{
433
if (test_bit(idx, lp->alloced_map))
434
return -EBUSY;
435
}
436
}
437
438
for (lp = start, i = 0; lp <= end; ++lp) {
439
if (!lp->alloced_map) {
440
/* Allocate new GART pages... */
441
if (i460_alloc_large_page(lp) < 0)
442
return -ENOMEM;
443
pg = lp - i460.lp_desc;
444
WR_GATT(pg, i460_mask_memory(agp_bridge,
445
lp->paddr, 0));
446
WR_FLUSH_GATT(pg);
447
}
448
449
for (idx = ((lp == start) ? start_offset : 0);
450
idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
451
idx++, i++)
452
{
453
mem->pages[i] = lp->page;
454
__set_bit(idx, lp->alloced_map);
455
++lp->refcount;
456
}
457
}
458
return 0;
459
}
460
461
static int i460_remove_memory_large_io_page (struct agp_memory *mem,
462
off_t pg_start, int type)
463
{
464
int i, pg, start_offset, end_offset, idx, num_entries;
465
struct lp_desc *start, *end, *lp;
466
void *temp;
467
468
temp = agp_bridge->current_size;
469
num_entries = A_SIZE_8(temp)->num_entries;
470
471
/* Figure out what pg_start means in terms of our large GART pages */
472
start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE];
473
end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE];
474
start_offset = pg_start % I460_KPAGES_PER_IOPAGE;
475
end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE;
476
477
for (i = 0, lp = start; lp <= end; ++lp) {
478
for (idx = ((lp == start) ? start_offset : 0);
479
idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
480
idx++, i++)
481
{
482
mem->pages[i] = NULL;
483
__clear_bit(idx, lp->alloced_map);
484
--lp->refcount;
485
}
486
487
/* Free GART pages if they are unused */
488
if (lp->refcount == 0) {
489
pg = lp - i460.lp_desc;
490
WR_GATT(pg, 0);
491
WR_FLUSH_GATT(pg);
492
i460_free_large_page(lp);
493
}
494
}
495
return 0;
496
}
497
498
/* Wrapper routines to call the approriate {small_io_page,large_io_page} function */
499
500
static int i460_insert_memory (struct agp_memory *mem,
501
off_t pg_start, int type)
502
{
503
if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
504
return i460_insert_memory_small_io_page(mem, pg_start, type);
505
else
506
return i460_insert_memory_large_io_page(mem, pg_start, type);
507
}
508
509
static int i460_remove_memory (struct agp_memory *mem,
510
off_t pg_start, int type)
511
{
512
if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
513
return i460_remove_memory_small_io_page(mem, pg_start, type);
514
else
515
return i460_remove_memory_large_io_page(mem, pg_start, type);
516
}
517
518
/*
519
* If the I/O (GART) page size is bigger than the kernel page size, we don't want to
520
* allocate memory until we know where it is to be bound in the aperture (a
521
* multi-kernel-page alloc might fit inside of an already allocated GART page).
522
*
523
* Let's just hope nobody counts on the allocated AGP memory being there before bind time
524
* (I don't think current drivers do)...
525
*/
526
static struct page *i460_alloc_page (struct agp_bridge_data *bridge)
527
{
528
void *page;
529
530
if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) {
531
page = agp_generic_alloc_page(agp_bridge);
532
} else
533
/* Returning NULL would cause problems */
534
/* AK: really dubious code. */
535
page = (void *)~0UL;
536
return page;
537
}
538
539
static void i460_destroy_page (struct page *page, int flags)
540
{
541
if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) {
542
agp_generic_destroy_page(page, flags);
543
}
544
}
545
546
#endif /* I460_LARGE_IO_PAGES */
547
548
static unsigned long i460_mask_memory (struct agp_bridge_data *bridge,
549
dma_addr_t addr, int type)
550
{
551
/* Make sure the returned address is a valid GATT entry */
552
return bridge->driver->masks[0].mask
553
| (((addr & ~((1 << I460_IO_PAGE_SHIFT) - 1)) & 0xfffff000) >> 12);
554
}
555
556
const struct agp_bridge_driver intel_i460_driver = {
557
.owner = THIS_MODULE,
558
.aperture_sizes = i460_sizes,
559
.size_type = U8_APER_SIZE,
560
.num_aperture_sizes = 3,
561
.configure = i460_configure,
562
.fetch_size = i460_fetch_size,
563
.cleanup = i460_cleanup,
564
.tlb_flush = i460_tlb_flush,
565
.mask_memory = i460_mask_memory,
566
.masks = i460_masks,
567
.agp_enable = agp_generic_enable,
568
.cache_flush = global_cache_flush,
569
.create_gatt_table = i460_create_gatt_table,
570
.free_gatt_table = i460_free_gatt_table,
571
#if I460_LARGE_IO_PAGES
572
.insert_memory = i460_insert_memory,
573
.remove_memory = i460_remove_memory,
574
.agp_alloc_page = i460_alloc_page,
575
.agp_destroy_page = i460_destroy_page,
576
#else
577
.insert_memory = i460_insert_memory_small_io_page,
578
.remove_memory = i460_remove_memory_small_io_page,
579
.agp_alloc_page = agp_generic_alloc_page,
580
.agp_alloc_pages = agp_generic_alloc_pages,
581
.agp_destroy_page = agp_generic_destroy_page,
582
.agp_destroy_pages = agp_generic_destroy_pages,
583
#endif
584
.alloc_by_type = agp_generic_alloc_by_type,
585
.free_by_type = agp_generic_free_by_type,
586
.agp_type_to_mask_type = agp_generic_type_to_mask_type,
587
.cant_use_aperture = true,
588
};
589
590
static int __devinit agp_intel_i460_probe(struct pci_dev *pdev,
591
const struct pci_device_id *ent)
592
{
593
struct agp_bridge_data *bridge;
594
u8 cap_ptr;
595
596
cap_ptr = pci_find_capability(pdev, PCI_CAP_ID_AGP);
597
if (!cap_ptr)
598
return -ENODEV;
599
600
bridge = agp_alloc_bridge();
601
if (!bridge)
602
return -ENOMEM;
603
604
bridge->driver = &intel_i460_driver;
605
bridge->dev = pdev;
606
bridge->capndx = cap_ptr;
607
608
printk(KERN_INFO PFX "Detected Intel 460GX chipset\n");
609
610
pci_set_drvdata(pdev, bridge);
611
return agp_add_bridge(bridge);
612
}
613
614
static void __devexit agp_intel_i460_remove(struct pci_dev *pdev)
615
{
616
struct agp_bridge_data *bridge = pci_get_drvdata(pdev);
617
618
agp_remove_bridge(bridge);
619
agp_put_bridge(bridge);
620
}
621
622
static struct pci_device_id agp_intel_i460_pci_table[] = {
623
{
624
.class = (PCI_CLASS_BRIDGE_HOST << 8),
625
.class_mask = ~0,
626
.vendor = PCI_VENDOR_ID_INTEL,
627
.device = PCI_DEVICE_ID_INTEL_84460GX,
628
.subvendor = PCI_ANY_ID,
629
.subdevice = PCI_ANY_ID,
630
},
631
{ }
632
};
633
634
MODULE_DEVICE_TABLE(pci, agp_intel_i460_pci_table);
635
636
static struct pci_driver agp_intel_i460_pci_driver = {
637
.name = "agpgart-intel-i460",
638
.id_table = agp_intel_i460_pci_table,
639
.probe = agp_intel_i460_probe,
640
.remove = __devexit_p(agp_intel_i460_remove),
641
};
642
643
static int __init agp_intel_i460_init(void)
644
{
645
if (agp_off)
646
return -EINVAL;
647
return pci_register_driver(&agp_intel_i460_pci_driver);
648
}
649
650
static void __exit agp_intel_i460_cleanup(void)
651
{
652
pci_unregister_driver(&agp_intel_i460_pci_driver);
653
}
654
655
module_init(agp_intel_i460_init);
656
module_exit(agp_intel_i460_cleanup);
657
658
MODULE_AUTHOR("Chris Ahna <[email protected]>");
659
MODULE_LICENSE("GPL and additional rights");
660
661