Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/char/agp/isoch.c
15109 views
1
/*
2
* Setup routines for AGP 3.5 compliant bridges.
3
*/
4
5
#include <linux/list.h>
6
#include <linux/pci.h>
7
#include <linux/agp_backend.h>
8
#include <linux/module.h>
9
#include <linux/slab.h>
10
11
#include "agp.h"
12
13
/* Generic AGP 3.5 enabling routines */
14
15
struct agp_3_5_dev {
16
struct list_head list;
17
u8 capndx;
18
u32 maxbw;
19
struct pci_dev *dev;
20
};
21
22
static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
23
{
24
struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
25
struct list_head *pos;
26
27
list_for_each(pos, head) {
28
cur = list_entry(pos, struct agp_3_5_dev, list);
29
if (cur->maxbw > n->maxbw)
30
break;
31
}
32
list_add_tail(new, pos);
33
}
34
35
static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
36
{
37
struct agp_3_5_dev *cur;
38
struct pci_dev *dev;
39
struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
40
u32 nistat;
41
42
INIT_LIST_HEAD(head);
43
44
for (pos=start; pos!=head; ) {
45
cur = list_entry(pos, struct agp_3_5_dev, list);
46
dev = cur->dev;
47
48
pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
49
cur->maxbw = (nistat >> 16) & 0xff;
50
51
tmp = pos;
52
pos = pos->next;
53
agp_3_5_dev_list_insert(head, tmp);
54
}
55
}
56
57
/*
58
* Initialize all isochronous transfer parameters for an AGP 3.0
59
* node (i.e. a host bridge in combination with the adapters
60
* lying behind it...)
61
*/
62
63
static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
64
struct agp_3_5_dev *dev_list, unsigned int ndevs)
65
{
66
/*
67
* Convenience structure to make the calculations clearer
68
* here. The field names come straight from the AGP 3.0 spec.
69
*/
70
struct isoch_data {
71
u32 maxbw;
72
u32 n;
73
u32 y;
74
u32 l;
75
u32 rq;
76
struct agp_3_5_dev *dev;
77
};
78
79
struct pci_dev *td = bridge->dev, *dev;
80
struct list_head *head = &dev_list->list, *pos;
81
struct agp_3_5_dev *cur;
82
struct isoch_data *master, target;
83
unsigned int cdev = 0;
84
u32 mnistat, tnistat, tstatus, mcmd;
85
u16 tnicmd, mnicmd;
86
u8 mcapndx;
87
u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
88
u32 step, rem, rem_isoch, rem_async;
89
int ret = 0;
90
91
/*
92
* We'll work with an array of isoch_data's (one for each
93
* device in dev_list) throughout this function.
94
*/
95
if ((master = kmalloc(ndevs * sizeof(*master), GFP_KERNEL)) == NULL) {
96
ret = -ENOMEM;
97
goto get_out;
98
}
99
100
/*
101
* Sort the device list by maxbw. We need to do this because the
102
* spec suggests that the devices with the smallest requirements
103
* have their resources allocated first, with all remaining resources
104
* falling to the device with the largest requirement.
105
*
106
* We don't exactly do this, we divide target resources by ndevs
107
* and split them amongst the AGP 3.0 devices. The remainder of such
108
* division operations are dropped on the last device, sort of like
109
* the spec mentions it should be done.
110
*
111
* We can't do this sort when we initially construct the dev_list
112
* because we don't know until this function whether isochronous
113
* transfers are enabled and consequently whether maxbw will mean
114
* anything.
115
*/
116
agp_3_5_dev_list_sort(dev_list, ndevs);
117
118
pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
119
pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
120
121
/* Extract power-on defaults from the target */
122
target.maxbw = (tnistat >> 16) & 0xff;
123
target.n = (tnistat >> 8) & 0xff;
124
target.y = (tnistat >> 6) & 0x3;
125
target.l = (tnistat >> 3) & 0x7;
126
target.rq = (tstatus >> 24) & 0xff;
127
128
y_max = target.y;
129
130
/*
131
* Extract power-on defaults for each device in dev_list. Along
132
* the way, calculate the total isochronous bandwidth required
133
* by these devices and the largest requested payload size.
134
*/
135
list_for_each(pos, head) {
136
cur = list_entry(pos, struct agp_3_5_dev, list);
137
dev = cur->dev;
138
139
mcapndx = cur->capndx;
140
141
pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
142
143
master[cdev].maxbw = (mnistat >> 16) & 0xff;
144
master[cdev].n = (mnistat >> 8) & 0xff;
145
master[cdev].y = (mnistat >> 6) & 0x3;
146
master[cdev].dev = cur;
147
148
tot_bw += master[cdev].maxbw;
149
y_max = max(y_max, master[cdev].y);
150
151
cdev++;
152
}
153
154
/* Check if this configuration has any chance of working */
155
if (tot_bw > target.maxbw) {
156
dev_err(&td->dev, "isochronous bandwidth required "
157
"by AGP 3.0 devices exceeds that which is supported by "
158
"the AGP 3.0 bridge!\n");
159
ret = -ENODEV;
160
goto free_and_exit;
161
}
162
163
target.y = y_max;
164
165
/*
166
* Write the calculated payload size into the target's NICMD
167
* register. Doing this directly effects the ISOCH_N value
168
* in the target's NISTAT register, so we need to do this now
169
* to get an accurate value for ISOCH_N later.
170
*/
171
pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
172
tnicmd &= ~(0x3 << 6);
173
tnicmd |= target.y << 6;
174
pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
175
176
/* Reread the target's ISOCH_N */
177
pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
178
target.n = (tnistat >> 8) & 0xff;
179
180
/* Calculate the minimum ISOCH_N needed by each master */
181
for (cdev=0; cdev<ndevs; cdev++) {
182
master[cdev].y = target.y;
183
master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
184
185
tot_n += master[cdev].n;
186
}
187
188
/* Exit if the minimal ISOCH_N allocation among the masters is more
189
* than the target can handle. */
190
if (tot_n > target.n) {
191
dev_err(&td->dev, "number of isochronous "
192
"transactions per period required by AGP 3.0 devices "
193
"exceeds that which is supported by the AGP 3.0 "
194
"bridge!\n");
195
ret = -ENODEV;
196
goto free_and_exit;
197
}
198
199
/* Calculate left over ISOCH_N capability in the target. We'll give
200
* this to the hungriest device (as per the spec) */
201
rem = target.n - tot_n;
202
203
/*
204
* Calculate the minimum isochronous RQ depth needed by each master.
205
* Along the way, distribute the extra ISOCH_N capability calculated
206
* above.
207
*/
208
for (cdev=0; cdev<ndevs; cdev++) {
209
/*
210
* This is a little subtle. If ISOCH_Y > 64B, then ISOCH_Y
211
* byte isochronous writes will be broken into 64B pieces.
212
* This means we need to budget more RQ depth to account for
213
* these kind of writes (each isochronous write is actually
214
* many writes on the AGP bus).
215
*/
216
master[cdev].rq = master[cdev].n;
217
if (master[cdev].y > 0x1)
218
master[cdev].rq *= (1 << (master[cdev].y - 1));
219
220
tot_rq += master[cdev].rq;
221
}
222
master[ndevs-1].n += rem;
223
224
/* Figure the number of isochronous and asynchronous RQ slots the
225
* target is providing. */
226
rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
227
rq_async = target.rq - rq_isoch;
228
229
/* Exit if the minimal RQ needs of the masters exceeds what the target
230
* can provide. */
231
if (tot_rq > rq_isoch) {
232
dev_err(&td->dev, "number of request queue slots "
233
"required by the isochronous bandwidth requested by "
234
"AGP 3.0 devices exceeds the number provided by the "
235
"AGP 3.0 bridge!\n");
236
ret = -ENODEV;
237
goto free_and_exit;
238
}
239
240
/* Calculate asynchronous RQ capability in the target (per master) as
241
* well as the total number of leftover isochronous RQ slots. */
242
step = rq_async / ndevs;
243
rem_async = step + (rq_async % ndevs);
244
rem_isoch = rq_isoch - tot_rq;
245
246
/* Distribute the extra RQ slots calculated above and write our
247
* isochronous settings out to the actual devices. */
248
for (cdev=0; cdev<ndevs; cdev++) {
249
cur = master[cdev].dev;
250
dev = cur->dev;
251
252
mcapndx = cur->capndx;
253
254
master[cdev].rq += (cdev == ndevs - 1)
255
? (rem_async + rem_isoch) : step;
256
257
pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
258
pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
259
260
mnicmd &= ~(0xff << 8);
261
mnicmd &= ~(0x3 << 6);
262
mcmd &= ~(0xff << 24);
263
264
mnicmd |= master[cdev].n << 8;
265
mnicmd |= master[cdev].y << 6;
266
mcmd |= master[cdev].rq << 24;
267
268
pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
269
pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
270
}
271
272
free_and_exit:
273
kfree(master);
274
275
get_out:
276
return ret;
277
}
278
279
/*
280
* This function basically allocates request queue slots among the
281
* AGP 3.0 systems in nonisochronous nodes. The algorithm is
282
* pretty stupid, divide the total number of RQ slots provided by the
283
* target by ndevs. Distribute this many slots to each AGP 3.0 device,
284
* giving any left over slots to the last device in dev_list.
285
*/
286
static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
287
struct agp_3_5_dev *dev_list, unsigned int ndevs)
288
{
289
struct agp_3_5_dev *cur;
290
struct list_head *head = &dev_list->list, *pos;
291
u32 tstatus, mcmd;
292
u32 trq, mrq, rem;
293
unsigned int cdev = 0;
294
295
pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
296
297
trq = (tstatus >> 24) & 0xff;
298
mrq = trq / ndevs;
299
300
rem = mrq + (trq % ndevs);
301
302
for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
303
cur = list_entry(pos, struct agp_3_5_dev, list);
304
305
pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
306
mcmd &= ~(0xff << 24);
307
mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
308
pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
309
}
310
}
311
312
/*
313
* Fully configure and enable an AGP 3.0 host bridge and all the devices
314
* lying behind it.
315
*/
316
int agp_3_5_enable(struct agp_bridge_data *bridge)
317
{
318
struct pci_dev *td = bridge->dev, *dev = NULL;
319
u8 mcapndx;
320
u32 isoch, arqsz;
321
u32 tstatus, mstatus, ncapid;
322
u32 mmajor;
323
u16 mpstat;
324
struct agp_3_5_dev *dev_list, *cur;
325
struct list_head *head, *pos;
326
unsigned int ndevs = 0;
327
int ret = 0;
328
329
/* Extract some power-on defaults from the target */
330
pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
331
isoch = (tstatus >> 17) & 0x1;
332
if (isoch == 0) /* isoch xfers not available, bail out. */
333
return -ENODEV;
334
335
arqsz = (tstatus >> 13) & 0x7;
336
337
/*
338
* Allocate a head for our AGP 3.5 device list
339
* (multiple AGP v3 devices are allowed behind a single bridge).
340
*/
341
if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
342
ret = -ENOMEM;
343
goto get_out;
344
}
345
head = &dev_list->list;
346
INIT_LIST_HEAD(head);
347
348
/* Find all AGP devices, and add them to dev_list. */
349
for_each_pci_dev(dev) {
350
mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
351
if (mcapndx == 0)
352
continue;
353
354
switch ((dev->class >>8) & 0xff00) {
355
case 0x0600: /* Bridge */
356
/* Skip bridges. We should call this function for each one. */
357
continue;
358
359
case 0x0001: /* Unclassified device */
360
/* Don't know what this is, but log it for investigation. */
361
if (mcapndx != 0) {
362
dev_info(&td->dev, "wacky, found unclassified AGP device %s [%04x/%04x]\n",
363
pci_name(dev),
364
dev->vendor, dev->device);
365
}
366
continue;
367
368
case 0x0300: /* Display controller */
369
case 0x0400: /* Multimedia controller */
370
if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
371
ret = -ENOMEM;
372
goto free_and_exit;
373
}
374
cur->dev = dev;
375
376
pos = &cur->list;
377
list_add(pos, head);
378
ndevs++;
379
continue;
380
381
default:
382
continue;
383
}
384
}
385
386
/*
387
* Take an initial pass through the devices lying behind our host
388
* bridge. Make sure each one is actually an AGP 3.0 device, otherwise
389
* exit with an error message. Along the way store the AGP 3.0
390
* cap_ptr for each device
391
*/
392
list_for_each(pos, head) {
393
cur = list_entry(pos, struct agp_3_5_dev, list);
394
dev = cur->dev;
395
396
pci_read_config_word(dev, PCI_STATUS, &mpstat);
397
if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
398
continue;
399
400
pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
401
if (mcapndx != 0) {
402
do {
403
pci_read_config_dword(dev, mcapndx, &ncapid);
404
if ((ncapid & 0xff) != 2)
405
mcapndx = (ncapid >> 8) & 0xff;
406
}
407
while (((ncapid & 0xff) != 2) && (mcapndx != 0));
408
}
409
410
if (mcapndx == 0) {
411
dev_err(&td->dev, "woah! Non-AGP device %s on "
412
"secondary bus of AGP 3.5 bridge!\n",
413
pci_name(dev));
414
ret = -ENODEV;
415
goto free_and_exit;
416
}
417
418
mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
419
if (mmajor < 3) {
420
dev_err(&td->dev, "woah! AGP 2.0 device %s on "
421
"secondary bus of AGP 3.5 bridge operating "
422
"with AGP 3.0 electricals!\n", pci_name(dev));
423
ret = -ENODEV;
424
goto free_and_exit;
425
}
426
427
cur->capndx = mcapndx;
428
429
pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
430
431
if (((mstatus >> 3) & 0x1) == 0) {
432
dev_err(&td->dev, "woah! AGP 3.x device %s not "
433
"operating in AGP 3.x mode on secondary bus "
434
"of AGP 3.5 bridge operating with AGP 3.0 "
435
"electricals!\n", pci_name(dev));
436
ret = -ENODEV;
437
goto free_and_exit;
438
}
439
}
440
441
/*
442
* Call functions to divide target resources amongst the AGP 3.0
443
* masters. This process is dramatically different depending on
444
* whether isochronous transfers are supported.
445
*/
446
if (isoch) {
447
ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
448
if (ret) {
449
dev_info(&td->dev, "something bad happened setting "
450
"up isochronous xfers; falling back to "
451
"non-isochronous xfer mode\n");
452
} else {
453
goto free_and_exit;
454
}
455
}
456
agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
457
458
free_and_exit:
459
/* Be sure to free the dev_list */
460
for (pos=head->next; pos!=head; ) {
461
cur = list_entry(pos, struct agp_3_5_dev, list);
462
463
pos = pos->next;
464
kfree(cur);
465
}
466
kfree(dev_list);
467
468
get_out:
469
return ret;
470
}
471
472