Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/char/ipmi/ipmi_si_intf.c
15112 views
1
/*
2
* ipmi_si.c
3
*
4
* The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5
* BT).
6
*
7
* Author: MontaVista Software, Inc.
8
* Corey Minyard <[email protected]>
9
* [email protected]
10
*
11
* Copyright 2002 MontaVista Software Inc.
12
* Copyright 2006 IBM Corp., Christian Krafft <[email protected]>
13
*
14
* This program is free software; you can redistribute it and/or modify it
15
* under the terms of the GNU General Public License as published by the
16
* Free Software Foundation; either version 2 of the License, or (at your
17
* option) any later version.
18
*
19
*
20
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
*
31
* You should have received a copy of the GNU General Public License along
32
* with this program; if not, write to the Free Software Foundation, Inc.,
33
* 675 Mass Ave, Cambridge, MA 02139, USA.
34
*/
35
36
/*
37
* This file holds the "policy" for the interface to the SMI state
38
* machine. It does the configuration, handles timers and interrupts,
39
* and drives the real SMI state machine.
40
*/
41
42
#include <linux/module.h>
43
#include <linux/moduleparam.h>
44
#include <asm/system.h>
45
#include <linux/sched.h>
46
#include <linux/seq_file.h>
47
#include <linux/timer.h>
48
#include <linux/errno.h>
49
#include <linux/spinlock.h>
50
#include <linux/slab.h>
51
#include <linux/delay.h>
52
#include <linux/list.h>
53
#include <linux/pci.h>
54
#include <linux/ioport.h>
55
#include <linux/notifier.h>
56
#include <linux/mutex.h>
57
#include <linux/kthread.h>
58
#include <asm/irq.h>
59
#include <linux/interrupt.h>
60
#include <linux/rcupdate.h>
61
#include <linux/ipmi.h>
62
#include <linux/ipmi_smi.h>
63
#include <asm/io.h>
64
#include "ipmi_si_sm.h"
65
#include <linux/init.h>
66
#include <linux/dmi.h>
67
#include <linux/string.h>
68
#include <linux/ctype.h>
69
#include <linux/pnp.h>
70
#include <linux/of_device.h>
71
#include <linux/of_platform.h>
72
#include <linux/of_address.h>
73
#include <linux/of_irq.h>
74
75
#define PFX "ipmi_si: "
76
77
/* Measure times between events in the driver. */
78
#undef DEBUG_TIMING
79
80
/* Call every 10 ms. */
81
#define SI_TIMEOUT_TIME_USEC 10000
82
#define SI_USEC_PER_JIFFY (1000000/HZ)
83
#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
84
#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
85
short timeout */
86
87
enum si_intf_state {
88
SI_NORMAL,
89
SI_GETTING_FLAGS,
90
SI_GETTING_EVENTS,
91
SI_CLEARING_FLAGS,
92
SI_CLEARING_FLAGS_THEN_SET_IRQ,
93
SI_GETTING_MESSAGES,
94
SI_ENABLE_INTERRUPTS1,
95
SI_ENABLE_INTERRUPTS2,
96
SI_DISABLE_INTERRUPTS1,
97
SI_DISABLE_INTERRUPTS2
98
/* FIXME - add watchdog stuff. */
99
};
100
101
/* Some BT-specific defines we need here. */
102
#define IPMI_BT_INTMASK_REG 2
103
#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
104
#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
105
106
enum si_type {
107
SI_KCS, SI_SMIC, SI_BT
108
};
109
static char *si_to_str[] = { "kcs", "smic", "bt" };
110
111
static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
112
"ACPI", "SMBIOS", "PCI",
113
"device-tree", "default" };
114
115
#define DEVICE_NAME "ipmi_si"
116
117
static struct platform_driver ipmi_driver;
118
119
/*
120
* Indexes into stats[] in smi_info below.
121
*/
122
enum si_stat_indexes {
123
/*
124
* Number of times the driver requested a timer while an operation
125
* was in progress.
126
*/
127
SI_STAT_short_timeouts = 0,
128
129
/*
130
* Number of times the driver requested a timer while nothing was in
131
* progress.
132
*/
133
SI_STAT_long_timeouts,
134
135
/* Number of times the interface was idle while being polled. */
136
SI_STAT_idles,
137
138
/* Number of interrupts the driver handled. */
139
SI_STAT_interrupts,
140
141
/* Number of time the driver got an ATTN from the hardware. */
142
SI_STAT_attentions,
143
144
/* Number of times the driver requested flags from the hardware. */
145
SI_STAT_flag_fetches,
146
147
/* Number of times the hardware didn't follow the state machine. */
148
SI_STAT_hosed_count,
149
150
/* Number of completed messages. */
151
SI_STAT_complete_transactions,
152
153
/* Number of IPMI events received from the hardware. */
154
SI_STAT_events,
155
156
/* Number of watchdog pretimeouts. */
157
SI_STAT_watchdog_pretimeouts,
158
159
/* Number of asyncronous messages received. */
160
SI_STAT_incoming_messages,
161
162
163
/* This *must* remain last, add new values above this. */
164
SI_NUM_STATS
165
};
166
167
struct smi_info {
168
int intf_num;
169
ipmi_smi_t intf;
170
struct si_sm_data *si_sm;
171
struct si_sm_handlers *handlers;
172
enum si_type si_type;
173
spinlock_t si_lock;
174
spinlock_t msg_lock;
175
struct list_head xmit_msgs;
176
struct list_head hp_xmit_msgs;
177
struct ipmi_smi_msg *curr_msg;
178
enum si_intf_state si_state;
179
180
/*
181
* Used to handle the various types of I/O that can occur with
182
* IPMI
183
*/
184
struct si_sm_io io;
185
int (*io_setup)(struct smi_info *info);
186
void (*io_cleanup)(struct smi_info *info);
187
int (*irq_setup)(struct smi_info *info);
188
void (*irq_cleanup)(struct smi_info *info);
189
unsigned int io_size;
190
enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
191
void (*addr_source_cleanup)(struct smi_info *info);
192
void *addr_source_data;
193
194
/*
195
* Per-OEM handler, called from handle_flags(). Returns 1
196
* when handle_flags() needs to be re-run or 0 indicating it
197
* set si_state itself.
198
*/
199
int (*oem_data_avail_handler)(struct smi_info *smi_info);
200
201
/*
202
* Flags from the last GET_MSG_FLAGS command, used when an ATTN
203
* is set to hold the flags until we are done handling everything
204
* from the flags.
205
*/
206
#define RECEIVE_MSG_AVAIL 0x01
207
#define EVENT_MSG_BUFFER_FULL 0x02
208
#define WDT_PRE_TIMEOUT_INT 0x08
209
#define OEM0_DATA_AVAIL 0x20
210
#define OEM1_DATA_AVAIL 0x40
211
#define OEM2_DATA_AVAIL 0x80
212
#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
213
OEM1_DATA_AVAIL | \
214
OEM2_DATA_AVAIL)
215
unsigned char msg_flags;
216
217
/* Does the BMC have an event buffer? */
218
char has_event_buffer;
219
220
/*
221
* If set to true, this will request events the next time the
222
* state machine is idle.
223
*/
224
atomic_t req_events;
225
226
/*
227
* If true, run the state machine to completion on every send
228
* call. Generally used after a panic to make sure stuff goes
229
* out.
230
*/
231
int run_to_completion;
232
233
/* The I/O port of an SI interface. */
234
int port;
235
236
/*
237
* The space between start addresses of the two ports. For
238
* instance, if the first port is 0xca2 and the spacing is 4, then
239
* the second port is 0xca6.
240
*/
241
unsigned int spacing;
242
243
/* zero if no irq; */
244
int irq;
245
246
/* The timer for this si. */
247
struct timer_list si_timer;
248
249
/* The time (in jiffies) the last timeout occurred at. */
250
unsigned long last_timeout_jiffies;
251
252
/* Used to gracefully stop the timer without race conditions. */
253
atomic_t stop_operation;
254
255
/*
256
* The driver will disable interrupts when it gets into a
257
* situation where it cannot handle messages due to lack of
258
* memory. Once that situation clears up, it will re-enable
259
* interrupts.
260
*/
261
int interrupt_disabled;
262
263
/* From the get device id response... */
264
struct ipmi_device_id device_id;
265
266
/* Driver model stuff. */
267
struct device *dev;
268
struct platform_device *pdev;
269
270
/*
271
* True if we allocated the device, false if it came from
272
* someplace else (like PCI).
273
*/
274
int dev_registered;
275
276
/* Slave address, could be reported from DMI. */
277
unsigned char slave_addr;
278
279
/* Counters and things for the proc filesystem. */
280
atomic_t stats[SI_NUM_STATS];
281
282
struct task_struct *thread;
283
284
struct list_head link;
285
union ipmi_smi_info_union addr_info;
286
};
287
288
#define smi_inc_stat(smi, stat) \
289
atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
290
#define smi_get_stat(smi, stat) \
291
((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
292
293
#define SI_MAX_PARMS 4
294
295
static int force_kipmid[SI_MAX_PARMS];
296
static int num_force_kipmid;
297
#ifdef CONFIG_PCI
298
static int pci_registered;
299
#endif
300
#ifdef CONFIG_ACPI
301
static int pnp_registered;
302
#endif
303
304
static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
305
static int num_max_busy_us;
306
307
static int unload_when_empty = 1;
308
309
static int add_smi(struct smi_info *smi);
310
static int try_smi_init(struct smi_info *smi);
311
static void cleanup_one_si(struct smi_info *to_clean);
312
static void cleanup_ipmi_si(void);
313
314
static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
315
static int register_xaction_notifier(struct notifier_block *nb)
316
{
317
return atomic_notifier_chain_register(&xaction_notifier_list, nb);
318
}
319
320
static void deliver_recv_msg(struct smi_info *smi_info,
321
struct ipmi_smi_msg *msg)
322
{
323
/* Deliver the message to the upper layer with the lock
324
released. */
325
326
if (smi_info->run_to_completion) {
327
ipmi_smi_msg_received(smi_info->intf, msg);
328
} else {
329
spin_unlock(&(smi_info->si_lock));
330
ipmi_smi_msg_received(smi_info->intf, msg);
331
spin_lock(&(smi_info->si_lock));
332
}
333
}
334
335
static void return_hosed_msg(struct smi_info *smi_info, int cCode)
336
{
337
struct ipmi_smi_msg *msg = smi_info->curr_msg;
338
339
if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
340
cCode = IPMI_ERR_UNSPECIFIED;
341
/* else use it as is */
342
343
/* Make it a response */
344
msg->rsp[0] = msg->data[0] | 4;
345
msg->rsp[1] = msg->data[1];
346
msg->rsp[2] = cCode;
347
msg->rsp_size = 3;
348
349
smi_info->curr_msg = NULL;
350
deliver_recv_msg(smi_info, msg);
351
}
352
353
static enum si_sm_result start_next_msg(struct smi_info *smi_info)
354
{
355
int rv;
356
struct list_head *entry = NULL;
357
#ifdef DEBUG_TIMING
358
struct timeval t;
359
#endif
360
361
/*
362
* No need to save flags, we aleady have interrupts off and we
363
* already hold the SMI lock.
364
*/
365
if (!smi_info->run_to_completion)
366
spin_lock(&(smi_info->msg_lock));
367
368
/* Pick the high priority queue first. */
369
if (!list_empty(&(smi_info->hp_xmit_msgs))) {
370
entry = smi_info->hp_xmit_msgs.next;
371
} else if (!list_empty(&(smi_info->xmit_msgs))) {
372
entry = smi_info->xmit_msgs.next;
373
}
374
375
if (!entry) {
376
smi_info->curr_msg = NULL;
377
rv = SI_SM_IDLE;
378
} else {
379
int err;
380
381
list_del(entry);
382
smi_info->curr_msg = list_entry(entry,
383
struct ipmi_smi_msg,
384
link);
385
#ifdef DEBUG_TIMING
386
do_gettimeofday(&t);
387
printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
388
#endif
389
err = atomic_notifier_call_chain(&xaction_notifier_list,
390
0, smi_info);
391
if (err & NOTIFY_STOP_MASK) {
392
rv = SI_SM_CALL_WITHOUT_DELAY;
393
goto out;
394
}
395
err = smi_info->handlers->start_transaction(
396
smi_info->si_sm,
397
smi_info->curr_msg->data,
398
smi_info->curr_msg->data_size);
399
if (err)
400
return_hosed_msg(smi_info, err);
401
402
rv = SI_SM_CALL_WITHOUT_DELAY;
403
}
404
out:
405
if (!smi_info->run_to_completion)
406
spin_unlock(&(smi_info->msg_lock));
407
408
return rv;
409
}
410
411
static void start_enable_irq(struct smi_info *smi_info)
412
{
413
unsigned char msg[2];
414
415
/*
416
* If we are enabling interrupts, we have to tell the
417
* BMC to use them.
418
*/
419
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
420
msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
421
422
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
423
smi_info->si_state = SI_ENABLE_INTERRUPTS1;
424
}
425
426
static void start_disable_irq(struct smi_info *smi_info)
427
{
428
unsigned char msg[2];
429
430
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
431
msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
432
433
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
434
smi_info->si_state = SI_DISABLE_INTERRUPTS1;
435
}
436
437
static void start_clear_flags(struct smi_info *smi_info)
438
{
439
unsigned char msg[3];
440
441
/* Make sure the watchdog pre-timeout flag is not set at startup. */
442
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
443
msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
444
msg[2] = WDT_PRE_TIMEOUT_INT;
445
446
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
447
smi_info->si_state = SI_CLEARING_FLAGS;
448
}
449
450
/*
451
* When we have a situtaion where we run out of memory and cannot
452
* allocate messages, we just leave them in the BMC and run the system
453
* polled until we can allocate some memory. Once we have some
454
* memory, we will re-enable the interrupt.
455
*/
456
static inline void disable_si_irq(struct smi_info *smi_info)
457
{
458
if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
459
start_disable_irq(smi_info);
460
smi_info->interrupt_disabled = 1;
461
if (!atomic_read(&smi_info->stop_operation))
462
mod_timer(&smi_info->si_timer,
463
jiffies + SI_TIMEOUT_JIFFIES);
464
}
465
}
466
467
static inline void enable_si_irq(struct smi_info *smi_info)
468
{
469
if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
470
start_enable_irq(smi_info);
471
smi_info->interrupt_disabled = 0;
472
}
473
}
474
475
static void handle_flags(struct smi_info *smi_info)
476
{
477
retry:
478
if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
479
/* Watchdog pre-timeout */
480
smi_inc_stat(smi_info, watchdog_pretimeouts);
481
482
start_clear_flags(smi_info);
483
smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
484
spin_unlock(&(smi_info->si_lock));
485
ipmi_smi_watchdog_pretimeout(smi_info->intf);
486
spin_lock(&(smi_info->si_lock));
487
} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
488
/* Messages available. */
489
smi_info->curr_msg = ipmi_alloc_smi_msg();
490
if (!smi_info->curr_msg) {
491
disable_si_irq(smi_info);
492
smi_info->si_state = SI_NORMAL;
493
return;
494
}
495
enable_si_irq(smi_info);
496
497
smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
498
smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
499
smi_info->curr_msg->data_size = 2;
500
501
smi_info->handlers->start_transaction(
502
smi_info->si_sm,
503
smi_info->curr_msg->data,
504
smi_info->curr_msg->data_size);
505
smi_info->si_state = SI_GETTING_MESSAGES;
506
} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
507
/* Events available. */
508
smi_info->curr_msg = ipmi_alloc_smi_msg();
509
if (!smi_info->curr_msg) {
510
disable_si_irq(smi_info);
511
smi_info->si_state = SI_NORMAL;
512
return;
513
}
514
enable_si_irq(smi_info);
515
516
smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
517
smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
518
smi_info->curr_msg->data_size = 2;
519
520
smi_info->handlers->start_transaction(
521
smi_info->si_sm,
522
smi_info->curr_msg->data,
523
smi_info->curr_msg->data_size);
524
smi_info->si_state = SI_GETTING_EVENTS;
525
} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
526
smi_info->oem_data_avail_handler) {
527
if (smi_info->oem_data_avail_handler(smi_info))
528
goto retry;
529
} else
530
smi_info->si_state = SI_NORMAL;
531
}
532
533
static void handle_transaction_done(struct smi_info *smi_info)
534
{
535
struct ipmi_smi_msg *msg;
536
#ifdef DEBUG_TIMING
537
struct timeval t;
538
539
do_gettimeofday(&t);
540
printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
541
#endif
542
switch (smi_info->si_state) {
543
case SI_NORMAL:
544
if (!smi_info->curr_msg)
545
break;
546
547
smi_info->curr_msg->rsp_size
548
= smi_info->handlers->get_result(
549
smi_info->si_sm,
550
smi_info->curr_msg->rsp,
551
IPMI_MAX_MSG_LENGTH);
552
553
/*
554
* Do this here becase deliver_recv_msg() releases the
555
* lock, and a new message can be put in during the
556
* time the lock is released.
557
*/
558
msg = smi_info->curr_msg;
559
smi_info->curr_msg = NULL;
560
deliver_recv_msg(smi_info, msg);
561
break;
562
563
case SI_GETTING_FLAGS:
564
{
565
unsigned char msg[4];
566
unsigned int len;
567
568
/* We got the flags from the SMI, now handle them. */
569
len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
570
if (msg[2] != 0) {
571
/* Error fetching flags, just give up for now. */
572
smi_info->si_state = SI_NORMAL;
573
} else if (len < 4) {
574
/*
575
* Hmm, no flags. That's technically illegal, but
576
* don't use uninitialized data.
577
*/
578
smi_info->si_state = SI_NORMAL;
579
} else {
580
smi_info->msg_flags = msg[3];
581
handle_flags(smi_info);
582
}
583
break;
584
}
585
586
case SI_CLEARING_FLAGS:
587
case SI_CLEARING_FLAGS_THEN_SET_IRQ:
588
{
589
unsigned char msg[3];
590
591
/* We cleared the flags. */
592
smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
593
if (msg[2] != 0) {
594
/* Error clearing flags */
595
dev_warn(smi_info->dev,
596
"Error clearing flags: %2.2x\n", msg[2]);
597
}
598
if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
599
start_enable_irq(smi_info);
600
else
601
smi_info->si_state = SI_NORMAL;
602
break;
603
}
604
605
case SI_GETTING_EVENTS:
606
{
607
smi_info->curr_msg->rsp_size
608
= smi_info->handlers->get_result(
609
smi_info->si_sm,
610
smi_info->curr_msg->rsp,
611
IPMI_MAX_MSG_LENGTH);
612
613
/*
614
* Do this here becase deliver_recv_msg() releases the
615
* lock, and a new message can be put in during the
616
* time the lock is released.
617
*/
618
msg = smi_info->curr_msg;
619
smi_info->curr_msg = NULL;
620
if (msg->rsp[2] != 0) {
621
/* Error getting event, probably done. */
622
msg->done(msg);
623
624
/* Take off the event flag. */
625
smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
626
handle_flags(smi_info);
627
} else {
628
smi_inc_stat(smi_info, events);
629
630
/*
631
* Do this before we deliver the message
632
* because delivering the message releases the
633
* lock and something else can mess with the
634
* state.
635
*/
636
handle_flags(smi_info);
637
638
deliver_recv_msg(smi_info, msg);
639
}
640
break;
641
}
642
643
case SI_GETTING_MESSAGES:
644
{
645
smi_info->curr_msg->rsp_size
646
= smi_info->handlers->get_result(
647
smi_info->si_sm,
648
smi_info->curr_msg->rsp,
649
IPMI_MAX_MSG_LENGTH);
650
651
/*
652
* Do this here becase deliver_recv_msg() releases the
653
* lock, and a new message can be put in during the
654
* time the lock is released.
655
*/
656
msg = smi_info->curr_msg;
657
smi_info->curr_msg = NULL;
658
if (msg->rsp[2] != 0) {
659
/* Error getting event, probably done. */
660
msg->done(msg);
661
662
/* Take off the msg flag. */
663
smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
664
handle_flags(smi_info);
665
} else {
666
smi_inc_stat(smi_info, incoming_messages);
667
668
/*
669
* Do this before we deliver the message
670
* because delivering the message releases the
671
* lock and something else can mess with the
672
* state.
673
*/
674
handle_flags(smi_info);
675
676
deliver_recv_msg(smi_info, msg);
677
}
678
break;
679
}
680
681
case SI_ENABLE_INTERRUPTS1:
682
{
683
unsigned char msg[4];
684
685
/* We got the flags from the SMI, now handle them. */
686
smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
687
if (msg[2] != 0) {
688
dev_warn(smi_info->dev, "Could not enable interrupts"
689
", failed get, using polled mode.\n");
690
smi_info->si_state = SI_NORMAL;
691
} else {
692
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
693
msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
694
msg[2] = (msg[3] |
695
IPMI_BMC_RCV_MSG_INTR |
696
IPMI_BMC_EVT_MSG_INTR);
697
smi_info->handlers->start_transaction(
698
smi_info->si_sm, msg, 3);
699
smi_info->si_state = SI_ENABLE_INTERRUPTS2;
700
}
701
break;
702
}
703
704
case SI_ENABLE_INTERRUPTS2:
705
{
706
unsigned char msg[4];
707
708
/* We got the flags from the SMI, now handle them. */
709
smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
710
if (msg[2] != 0)
711
dev_warn(smi_info->dev, "Could not enable interrupts"
712
", failed set, using polled mode.\n");
713
else
714
smi_info->interrupt_disabled = 0;
715
smi_info->si_state = SI_NORMAL;
716
break;
717
}
718
719
case SI_DISABLE_INTERRUPTS1:
720
{
721
unsigned char msg[4];
722
723
/* We got the flags from the SMI, now handle them. */
724
smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
725
if (msg[2] != 0) {
726
dev_warn(smi_info->dev, "Could not disable interrupts"
727
", failed get.\n");
728
smi_info->si_state = SI_NORMAL;
729
} else {
730
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
731
msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
732
msg[2] = (msg[3] &
733
~(IPMI_BMC_RCV_MSG_INTR |
734
IPMI_BMC_EVT_MSG_INTR));
735
smi_info->handlers->start_transaction(
736
smi_info->si_sm, msg, 3);
737
smi_info->si_state = SI_DISABLE_INTERRUPTS2;
738
}
739
break;
740
}
741
742
case SI_DISABLE_INTERRUPTS2:
743
{
744
unsigned char msg[4];
745
746
/* We got the flags from the SMI, now handle them. */
747
smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
748
if (msg[2] != 0) {
749
dev_warn(smi_info->dev, "Could not disable interrupts"
750
", failed set.\n");
751
}
752
smi_info->si_state = SI_NORMAL;
753
break;
754
}
755
}
756
}
757
758
/*
759
* Called on timeouts and events. Timeouts should pass the elapsed
760
* time, interrupts should pass in zero. Must be called with
761
* si_lock held and interrupts disabled.
762
*/
763
static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
764
int time)
765
{
766
enum si_sm_result si_sm_result;
767
768
restart:
769
/*
770
* There used to be a loop here that waited a little while
771
* (around 25us) before giving up. That turned out to be
772
* pointless, the minimum delays I was seeing were in the 300us
773
* range, which is far too long to wait in an interrupt. So
774
* we just run until the state machine tells us something
775
* happened or it needs a delay.
776
*/
777
si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
778
time = 0;
779
while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
780
si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
781
782
if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
783
smi_inc_stat(smi_info, complete_transactions);
784
785
handle_transaction_done(smi_info);
786
si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
787
} else if (si_sm_result == SI_SM_HOSED) {
788
smi_inc_stat(smi_info, hosed_count);
789
790
/*
791
* Do the before return_hosed_msg, because that
792
* releases the lock.
793
*/
794
smi_info->si_state = SI_NORMAL;
795
if (smi_info->curr_msg != NULL) {
796
/*
797
* If we were handling a user message, format
798
* a response to send to the upper layer to
799
* tell it about the error.
800
*/
801
return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
802
}
803
si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
804
}
805
806
/*
807
* We prefer handling attn over new messages. But don't do
808
* this if there is not yet an upper layer to handle anything.
809
*/
810
if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
811
unsigned char msg[2];
812
813
smi_inc_stat(smi_info, attentions);
814
815
/*
816
* Got a attn, send down a get message flags to see
817
* what's causing it. It would be better to handle
818
* this in the upper layer, but due to the way
819
* interrupts work with the SMI, that's not really
820
* possible.
821
*/
822
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
823
msg[1] = IPMI_GET_MSG_FLAGS_CMD;
824
825
smi_info->handlers->start_transaction(
826
smi_info->si_sm, msg, 2);
827
smi_info->si_state = SI_GETTING_FLAGS;
828
goto restart;
829
}
830
831
/* If we are currently idle, try to start the next message. */
832
if (si_sm_result == SI_SM_IDLE) {
833
smi_inc_stat(smi_info, idles);
834
835
si_sm_result = start_next_msg(smi_info);
836
if (si_sm_result != SI_SM_IDLE)
837
goto restart;
838
}
839
840
if ((si_sm_result == SI_SM_IDLE)
841
&& (atomic_read(&smi_info->req_events))) {
842
/*
843
* We are idle and the upper layer requested that I fetch
844
* events, so do so.
845
*/
846
atomic_set(&smi_info->req_events, 0);
847
848
smi_info->curr_msg = ipmi_alloc_smi_msg();
849
if (!smi_info->curr_msg)
850
goto out;
851
852
smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
853
smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
854
smi_info->curr_msg->data_size = 2;
855
856
smi_info->handlers->start_transaction(
857
smi_info->si_sm,
858
smi_info->curr_msg->data,
859
smi_info->curr_msg->data_size);
860
smi_info->si_state = SI_GETTING_EVENTS;
861
goto restart;
862
}
863
out:
864
return si_sm_result;
865
}
866
867
static void sender(void *send_info,
868
struct ipmi_smi_msg *msg,
869
int priority)
870
{
871
struct smi_info *smi_info = send_info;
872
enum si_sm_result result;
873
unsigned long flags;
874
#ifdef DEBUG_TIMING
875
struct timeval t;
876
#endif
877
878
if (atomic_read(&smi_info->stop_operation)) {
879
msg->rsp[0] = msg->data[0] | 4;
880
msg->rsp[1] = msg->data[1];
881
msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
882
msg->rsp_size = 3;
883
deliver_recv_msg(smi_info, msg);
884
return;
885
}
886
887
#ifdef DEBUG_TIMING
888
do_gettimeofday(&t);
889
printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
890
#endif
891
892
/*
893
* last_timeout_jiffies is updated here to avoid
894
* smi_timeout() handler passing very large time_diff
895
* value to smi_event_handler() that causes
896
* the send command to abort.
897
*/
898
smi_info->last_timeout_jiffies = jiffies;
899
900
mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
901
902
if (smi_info->thread)
903
wake_up_process(smi_info->thread);
904
905
if (smi_info->run_to_completion) {
906
/*
907
* If we are running to completion, then throw it in
908
* the list and run transactions until everything is
909
* clear. Priority doesn't matter here.
910
*/
911
912
/*
913
* Run to completion means we are single-threaded, no
914
* need for locks.
915
*/
916
list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
917
918
result = smi_event_handler(smi_info, 0);
919
while (result != SI_SM_IDLE) {
920
udelay(SI_SHORT_TIMEOUT_USEC);
921
result = smi_event_handler(smi_info,
922
SI_SHORT_TIMEOUT_USEC);
923
}
924
return;
925
}
926
927
spin_lock_irqsave(&smi_info->msg_lock, flags);
928
if (priority > 0)
929
list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
930
else
931
list_add_tail(&msg->link, &smi_info->xmit_msgs);
932
spin_unlock_irqrestore(&smi_info->msg_lock, flags);
933
934
spin_lock_irqsave(&smi_info->si_lock, flags);
935
if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
936
start_next_msg(smi_info);
937
spin_unlock_irqrestore(&smi_info->si_lock, flags);
938
}
939
940
static void set_run_to_completion(void *send_info, int i_run_to_completion)
941
{
942
struct smi_info *smi_info = send_info;
943
enum si_sm_result result;
944
945
smi_info->run_to_completion = i_run_to_completion;
946
if (i_run_to_completion) {
947
result = smi_event_handler(smi_info, 0);
948
while (result != SI_SM_IDLE) {
949
udelay(SI_SHORT_TIMEOUT_USEC);
950
result = smi_event_handler(smi_info,
951
SI_SHORT_TIMEOUT_USEC);
952
}
953
}
954
}
955
956
/*
957
* Use -1 in the nsec value of the busy waiting timespec to tell that
958
* we are spinning in kipmid looking for something and not delaying
959
* between checks
960
*/
961
static inline void ipmi_si_set_not_busy(struct timespec *ts)
962
{
963
ts->tv_nsec = -1;
964
}
965
static inline int ipmi_si_is_busy(struct timespec *ts)
966
{
967
return ts->tv_nsec != -1;
968
}
969
970
static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
971
const struct smi_info *smi_info,
972
struct timespec *busy_until)
973
{
974
unsigned int max_busy_us = 0;
975
976
if (smi_info->intf_num < num_max_busy_us)
977
max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
978
if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
979
ipmi_si_set_not_busy(busy_until);
980
else if (!ipmi_si_is_busy(busy_until)) {
981
getnstimeofday(busy_until);
982
timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
983
} else {
984
struct timespec now;
985
getnstimeofday(&now);
986
if (unlikely(timespec_compare(&now, busy_until) > 0)) {
987
ipmi_si_set_not_busy(busy_until);
988
return 0;
989
}
990
}
991
return 1;
992
}
993
994
995
/*
996
* A busy-waiting loop for speeding up IPMI operation.
997
*
998
* Lousy hardware makes this hard. This is only enabled for systems
999
* that are not BT and do not have interrupts. It starts spinning
1000
* when an operation is complete or until max_busy tells it to stop
1001
* (if that is enabled). See the paragraph on kimid_max_busy_us in
1002
* Documentation/IPMI.txt for details.
1003
*/
1004
static int ipmi_thread(void *data)
1005
{
1006
struct smi_info *smi_info = data;
1007
unsigned long flags;
1008
enum si_sm_result smi_result;
1009
struct timespec busy_until;
1010
1011
ipmi_si_set_not_busy(&busy_until);
1012
set_user_nice(current, 19);
1013
while (!kthread_should_stop()) {
1014
int busy_wait;
1015
1016
spin_lock_irqsave(&(smi_info->si_lock), flags);
1017
smi_result = smi_event_handler(smi_info, 0);
1018
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1019
busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1020
&busy_until);
1021
if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1022
; /* do nothing */
1023
else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1024
schedule();
1025
else if (smi_result == SI_SM_IDLE)
1026
schedule_timeout_interruptible(100);
1027
else
1028
schedule_timeout_interruptible(1);
1029
}
1030
return 0;
1031
}
1032
1033
1034
static void poll(void *send_info)
1035
{
1036
struct smi_info *smi_info = send_info;
1037
unsigned long flags;
1038
1039
/*
1040
* Make sure there is some delay in the poll loop so we can
1041
* drive time forward and timeout things.
1042
*/
1043
udelay(10);
1044
spin_lock_irqsave(&smi_info->si_lock, flags);
1045
smi_event_handler(smi_info, 10);
1046
spin_unlock_irqrestore(&smi_info->si_lock, flags);
1047
}
1048
1049
static void request_events(void *send_info)
1050
{
1051
struct smi_info *smi_info = send_info;
1052
1053
if (atomic_read(&smi_info->stop_operation) ||
1054
!smi_info->has_event_buffer)
1055
return;
1056
1057
atomic_set(&smi_info->req_events, 1);
1058
}
1059
1060
static int initialized;
1061
1062
static void smi_timeout(unsigned long data)
1063
{
1064
struct smi_info *smi_info = (struct smi_info *) data;
1065
enum si_sm_result smi_result;
1066
unsigned long flags;
1067
unsigned long jiffies_now;
1068
long time_diff;
1069
long timeout;
1070
#ifdef DEBUG_TIMING
1071
struct timeval t;
1072
#endif
1073
1074
spin_lock_irqsave(&(smi_info->si_lock), flags);
1075
#ifdef DEBUG_TIMING
1076
do_gettimeofday(&t);
1077
printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1078
#endif
1079
jiffies_now = jiffies;
1080
time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1081
* SI_USEC_PER_JIFFY);
1082
smi_result = smi_event_handler(smi_info, time_diff);
1083
1084
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1085
1086
smi_info->last_timeout_jiffies = jiffies_now;
1087
1088
if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1089
/* Running with interrupts, only do long timeouts. */
1090
timeout = jiffies + SI_TIMEOUT_JIFFIES;
1091
smi_inc_stat(smi_info, long_timeouts);
1092
goto do_mod_timer;
1093
}
1094
1095
/*
1096
* If the state machine asks for a short delay, then shorten
1097
* the timer timeout.
1098
*/
1099
if (smi_result == SI_SM_CALL_WITH_DELAY) {
1100
smi_inc_stat(smi_info, short_timeouts);
1101
timeout = jiffies + 1;
1102
} else {
1103
smi_inc_stat(smi_info, long_timeouts);
1104
timeout = jiffies + SI_TIMEOUT_JIFFIES;
1105
}
1106
1107
do_mod_timer:
1108
if (smi_result != SI_SM_IDLE)
1109
mod_timer(&(smi_info->si_timer), timeout);
1110
}
1111
1112
static irqreturn_t si_irq_handler(int irq, void *data)
1113
{
1114
struct smi_info *smi_info = data;
1115
unsigned long flags;
1116
#ifdef DEBUG_TIMING
1117
struct timeval t;
1118
#endif
1119
1120
spin_lock_irqsave(&(smi_info->si_lock), flags);
1121
1122
smi_inc_stat(smi_info, interrupts);
1123
1124
#ifdef DEBUG_TIMING
1125
do_gettimeofday(&t);
1126
printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1127
#endif
1128
smi_event_handler(smi_info, 0);
1129
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1130
return IRQ_HANDLED;
1131
}
1132
1133
static irqreturn_t si_bt_irq_handler(int irq, void *data)
1134
{
1135
struct smi_info *smi_info = data;
1136
/* We need to clear the IRQ flag for the BT interface. */
1137
smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1138
IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1139
| IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1140
return si_irq_handler(irq, data);
1141
}
1142
1143
static int smi_start_processing(void *send_info,
1144
ipmi_smi_t intf)
1145
{
1146
struct smi_info *new_smi = send_info;
1147
int enable = 0;
1148
1149
new_smi->intf = intf;
1150
1151
/* Try to claim any interrupts. */
1152
if (new_smi->irq_setup)
1153
new_smi->irq_setup(new_smi);
1154
1155
/* Set up the timer that drives the interface. */
1156
setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1157
new_smi->last_timeout_jiffies = jiffies;
1158
mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1159
1160
/*
1161
* Check if the user forcefully enabled the daemon.
1162
*/
1163
if (new_smi->intf_num < num_force_kipmid)
1164
enable = force_kipmid[new_smi->intf_num];
1165
/*
1166
* The BT interface is efficient enough to not need a thread,
1167
* and there is no need for a thread if we have interrupts.
1168
*/
1169
else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1170
enable = 1;
1171
1172
if (enable) {
1173
new_smi->thread = kthread_run(ipmi_thread, new_smi,
1174
"kipmi%d", new_smi->intf_num);
1175
if (IS_ERR(new_smi->thread)) {
1176
dev_notice(new_smi->dev, "Could not start"
1177
" kernel thread due to error %ld, only using"
1178
" timers to drive the interface\n",
1179
PTR_ERR(new_smi->thread));
1180
new_smi->thread = NULL;
1181
}
1182
}
1183
1184
return 0;
1185
}
1186
1187
static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1188
{
1189
struct smi_info *smi = send_info;
1190
1191
data->addr_src = smi->addr_source;
1192
data->dev = smi->dev;
1193
data->addr_info = smi->addr_info;
1194
get_device(smi->dev);
1195
1196
return 0;
1197
}
1198
1199
static void set_maintenance_mode(void *send_info, int enable)
1200
{
1201
struct smi_info *smi_info = send_info;
1202
1203
if (!enable)
1204
atomic_set(&smi_info->req_events, 0);
1205
}
1206
1207
static struct ipmi_smi_handlers handlers = {
1208
.owner = THIS_MODULE,
1209
.start_processing = smi_start_processing,
1210
.get_smi_info = get_smi_info,
1211
.sender = sender,
1212
.request_events = request_events,
1213
.set_maintenance_mode = set_maintenance_mode,
1214
.set_run_to_completion = set_run_to_completion,
1215
.poll = poll,
1216
};
1217
1218
/*
1219
* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1220
* a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1221
*/
1222
1223
static LIST_HEAD(smi_infos);
1224
static DEFINE_MUTEX(smi_infos_lock);
1225
static int smi_num; /* Used to sequence the SMIs */
1226
1227
#define DEFAULT_REGSPACING 1
1228
#define DEFAULT_REGSIZE 1
1229
1230
static int si_trydefaults = 1;
1231
static char *si_type[SI_MAX_PARMS];
1232
#define MAX_SI_TYPE_STR 30
1233
static char si_type_str[MAX_SI_TYPE_STR];
1234
static unsigned long addrs[SI_MAX_PARMS];
1235
static unsigned int num_addrs;
1236
static unsigned int ports[SI_MAX_PARMS];
1237
static unsigned int num_ports;
1238
static int irqs[SI_MAX_PARMS];
1239
static unsigned int num_irqs;
1240
static int regspacings[SI_MAX_PARMS];
1241
static unsigned int num_regspacings;
1242
static int regsizes[SI_MAX_PARMS];
1243
static unsigned int num_regsizes;
1244
static int regshifts[SI_MAX_PARMS];
1245
static unsigned int num_regshifts;
1246
static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1247
static unsigned int num_slave_addrs;
1248
1249
#define IPMI_IO_ADDR_SPACE 0
1250
#define IPMI_MEM_ADDR_SPACE 1
1251
static char *addr_space_to_str[] = { "i/o", "mem" };
1252
1253
static int hotmod_handler(const char *val, struct kernel_param *kp);
1254
1255
module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1256
MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1257
" Documentation/IPMI.txt in the kernel sources for the"
1258
" gory details.");
1259
1260
module_param_named(trydefaults, si_trydefaults, bool, 0);
1261
MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1262
" default scan of the KCS and SMIC interface at the standard"
1263
" address");
1264
module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1265
MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1266
" interface separated by commas. The types are 'kcs',"
1267
" 'smic', and 'bt'. For example si_type=kcs,bt will set"
1268
" the first interface to kcs and the second to bt");
1269
module_param_array(addrs, ulong, &num_addrs, 0);
1270
MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1271
" addresses separated by commas. Only use if an interface"
1272
" is in memory. Otherwise, set it to zero or leave"
1273
" it blank.");
1274
module_param_array(ports, uint, &num_ports, 0);
1275
MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1276
" addresses separated by commas. Only use if an interface"
1277
" is a port. Otherwise, set it to zero or leave"
1278
" it blank.");
1279
module_param_array(irqs, int, &num_irqs, 0);
1280
MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1281
" addresses separated by commas. Only use if an interface"
1282
" has an interrupt. Otherwise, set it to zero or leave"
1283
" it blank.");
1284
module_param_array(regspacings, int, &num_regspacings, 0);
1285
MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1286
" and each successive register used by the interface. For"
1287
" instance, if the start address is 0xca2 and the spacing"
1288
" is 2, then the second address is at 0xca4. Defaults"
1289
" to 1.");
1290
module_param_array(regsizes, int, &num_regsizes, 0);
1291
MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1292
" This should generally be 1, 2, 4, or 8 for an 8-bit,"
1293
" 16-bit, 32-bit, or 64-bit register. Use this if you"
1294
" the 8-bit IPMI register has to be read from a larger"
1295
" register.");
1296
module_param_array(regshifts, int, &num_regshifts, 0);
1297
MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1298
" IPMI register, in bits. For instance, if the data"
1299
" is read from a 32-bit word and the IPMI data is in"
1300
" bit 8-15, then the shift would be 8");
1301
module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1302
MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1303
" the controller. Normally this is 0x20, but can be"
1304
" overridden by this parm. This is an array indexed"
1305
" by interface number.");
1306
module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1307
MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1308
" disabled(0). Normally the IPMI driver auto-detects"
1309
" this, but the value may be overridden by this parm.");
1310
module_param(unload_when_empty, int, 0);
1311
MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1312
" specified or found, default is 1. Setting to 0"
1313
" is useful for hot add of devices using hotmod.");
1314
module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1315
MODULE_PARM_DESC(kipmid_max_busy_us,
1316
"Max time (in microseconds) to busy-wait for IPMI data before"
1317
" sleeping. 0 (default) means to wait forever. Set to 100-500"
1318
" if kipmid is using up a lot of CPU time.");
1319
1320
1321
static void std_irq_cleanup(struct smi_info *info)
1322
{
1323
if (info->si_type == SI_BT)
1324
/* Disable the interrupt in the BT interface. */
1325
info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1326
free_irq(info->irq, info);
1327
}
1328
1329
static int std_irq_setup(struct smi_info *info)
1330
{
1331
int rv;
1332
1333
if (!info->irq)
1334
return 0;
1335
1336
if (info->si_type == SI_BT) {
1337
rv = request_irq(info->irq,
1338
si_bt_irq_handler,
1339
IRQF_SHARED | IRQF_DISABLED,
1340
DEVICE_NAME,
1341
info);
1342
if (!rv)
1343
/* Enable the interrupt in the BT interface. */
1344
info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1345
IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1346
} else
1347
rv = request_irq(info->irq,
1348
si_irq_handler,
1349
IRQF_SHARED | IRQF_DISABLED,
1350
DEVICE_NAME,
1351
info);
1352
if (rv) {
1353
dev_warn(info->dev, "%s unable to claim interrupt %d,"
1354
" running polled\n",
1355
DEVICE_NAME, info->irq);
1356
info->irq = 0;
1357
} else {
1358
info->irq_cleanup = std_irq_cleanup;
1359
dev_info(info->dev, "Using irq %d\n", info->irq);
1360
}
1361
1362
return rv;
1363
}
1364
1365
static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1366
{
1367
unsigned int addr = io->addr_data;
1368
1369
return inb(addr + (offset * io->regspacing));
1370
}
1371
1372
static void port_outb(struct si_sm_io *io, unsigned int offset,
1373
unsigned char b)
1374
{
1375
unsigned int addr = io->addr_data;
1376
1377
outb(b, addr + (offset * io->regspacing));
1378
}
1379
1380
static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1381
{
1382
unsigned int addr = io->addr_data;
1383
1384
return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1385
}
1386
1387
static void port_outw(struct si_sm_io *io, unsigned int offset,
1388
unsigned char b)
1389
{
1390
unsigned int addr = io->addr_data;
1391
1392
outw(b << io->regshift, addr + (offset * io->regspacing));
1393
}
1394
1395
static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1396
{
1397
unsigned int addr = io->addr_data;
1398
1399
return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1400
}
1401
1402
static void port_outl(struct si_sm_io *io, unsigned int offset,
1403
unsigned char b)
1404
{
1405
unsigned int addr = io->addr_data;
1406
1407
outl(b << io->regshift, addr+(offset * io->regspacing));
1408
}
1409
1410
static void port_cleanup(struct smi_info *info)
1411
{
1412
unsigned int addr = info->io.addr_data;
1413
int idx;
1414
1415
if (addr) {
1416
for (idx = 0; idx < info->io_size; idx++)
1417
release_region(addr + idx * info->io.regspacing,
1418
info->io.regsize);
1419
}
1420
}
1421
1422
static int port_setup(struct smi_info *info)
1423
{
1424
unsigned int addr = info->io.addr_data;
1425
int idx;
1426
1427
if (!addr)
1428
return -ENODEV;
1429
1430
info->io_cleanup = port_cleanup;
1431
1432
/*
1433
* Figure out the actual inb/inw/inl/etc routine to use based
1434
* upon the register size.
1435
*/
1436
switch (info->io.regsize) {
1437
case 1:
1438
info->io.inputb = port_inb;
1439
info->io.outputb = port_outb;
1440
break;
1441
case 2:
1442
info->io.inputb = port_inw;
1443
info->io.outputb = port_outw;
1444
break;
1445
case 4:
1446
info->io.inputb = port_inl;
1447
info->io.outputb = port_outl;
1448
break;
1449
default:
1450
dev_warn(info->dev, "Invalid register size: %d\n",
1451
info->io.regsize);
1452
return -EINVAL;
1453
}
1454
1455
/*
1456
* Some BIOSes reserve disjoint I/O regions in their ACPI
1457
* tables. This causes problems when trying to register the
1458
* entire I/O region. Therefore we must register each I/O
1459
* port separately.
1460
*/
1461
for (idx = 0; idx < info->io_size; idx++) {
1462
if (request_region(addr + idx * info->io.regspacing,
1463
info->io.regsize, DEVICE_NAME) == NULL) {
1464
/* Undo allocations */
1465
while (idx--) {
1466
release_region(addr + idx * info->io.regspacing,
1467
info->io.regsize);
1468
}
1469
return -EIO;
1470
}
1471
}
1472
return 0;
1473
}
1474
1475
static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1476
{
1477
return readb((io->addr)+(offset * io->regspacing));
1478
}
1479
1480
static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1481
unsigned char b)
1482
{
1483
writeb(b, (io->addr)+(offset * io->regspacing));
1484
}
1485
1486
static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1487
{
1488
return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1489
& 0xff;
1490
}
1491
1492
static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1493
unsigned char b)
1494
{
1495
writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1496
}
1497
1498
static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1499
{
1500
return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1501
& 0xff;
1502
}
1503
1504
static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1505
unsigned char b)
1506
{
1507
writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1508
}
1509
1510
#ifdef readq
1511
static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1512
{
1513
return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1514
& 0xff;
1515
}
1516
1517
static void mem_outq(struct si_sm_io *io, unsigned int offset,
1518
unsigned char b)
1519
{
1520
writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1521
}
1522
#endif
1523
1524
static void mem_cleanup(struct smi_info *info)
1525
{
1526
unsigned long addr = info->io.addr_data;
1527
int mapsize;
1528
1529
if (info->io.addr) {
1530
iounmap(info->io.addr);
1531
1532
mapsize = ((info->io_size * info->io.regspacing)
1533
- (info->io.regspacing - info->io.regsize));
1534
1535
release_mem_region(addr, mapsize);
1536
}
1537
}
1538
1539
static int mem_setup(struct smi_info *info)
1540
{
1541
unsigned long addr = info->io.addr_data;
1542
int mapsize;
1543
1544
if (!addr)
1545
return -ENODEV;
1546
1547
info->io_cleanup = mem_cleanup;
1548
1549
/*
1550
* Figure out the actual readb/readw/readl/etc routine to use based
1551
* upon the register size.
1552
*/
1553
switch (info->io.regsize) {
1554
case 1:
1555
info->io.inputb = intf_mem_inb;
1556
info->io.outputb = intf_mem_outb;
1557
break;
1558
case 2:
1559
info->io.inputb = intf_mem_inw;
1560
info->io.outputb = intf_mem_outw;
1561
break;
1562
case 4:
1563
info->io.inputb = intf_mem_inl;
1564
info->io.outputb = intf_mem_outl;
1565
break;
1566
#ifdef readq
1567
case 8:
1568
info->io.inputb = mem_inq;
1569
info->io.outputb = mem_outq;
1570
break;
1571
#endif
1572
default:
1573
dev_warn(info->dev, "Invalid register size: %d\n",
1574
info->io.regsize);
1575
return -EINVAL;
1576
}
1577
1578
/*
1579
* Calculate the total amount of memory to claim. This is an
1580
* unusual looking calculation, but it avoids claiming any
1581
* more memory than it has to. It will claim everything
1582
* between the first address to the end of the last full
1583
* register.
1584
*/
1585
mapsize = ((info->io_size * info->io.regspacing)
1586
- (info->io.regspacing - info->io.regsize));
1587
1588
if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1589
return -EIO;
1590
1591
info->io.addr = ioremap(addr, mapsize);
1592
if (info->io.addr == NULL) {
1593
release_mem_region(addr, mapsize);
1594
return -EIO;
1595
}
1596
return 0;
1597
}
1598
1599
/*
1600
* Parms come in as <op1>[:op2[:op3...]]. ops are:
1601
* add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1602
* Options are:
1603
* rsp=<regspacing>
1604
* rsi=<regsize>
1605
* rsh=<regshift>
1606
* irq=<irq>
1607
* ipmb=<ipmb addr>
1608
*/
1609
enum hotmod_op { HM_ADD, HM_REMOVE };
1610
struct hotmod_vals {
1611
char *name;
1612
int val;
1613
};
1614
static struct hotmod_vals hotmod_ops[] = {
1615
{ "add", HM_ADD },
1616
{ "remove", HM_REMOVE },
1617
{ NULL }
1618
};
1619
static struct hotmod_vals hotmod_si[] = {
1620
{ "kcs", SI_KCS },
1621
{ "smic", SI_SMIC },
1622
{ "bt", SI_BT },
1623
{ NULL }
1624
};
1625
static struct hotmod_vals hotmod_as[] = {
1626
{ "mem", IPMI_MEM_ADDR_SPACE },
1627
{ "i/o", IPMI_IO_ADDR_SPACE },
1628
{ NULL }
1629
};
1630
1631
static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1632
{
1633
char *s;
1634
int i;
1635
1636
s = strchr(*curr, ',');
1637
if (!s) {
1638
printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1639
return -EINVAL;
1640
}
1641
*s = '\0';
1642
s++;
1643
for (i = 0; hotmod_ops[i].name; i++) {
1644
if (strcmp(*curr, v[i].name) == 0) {
1645
*val = v[i].val;
1646
*curr = s;
1647
return 0;
1648
}
1649
}
1650
1651
printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1652
return -EINVAL;
1653
}
1654
1655
static int check_hotmod_int_op(const char *curr, const char *option,
1656
const char *name, int *val)
1657
{
1658
char *n;
1659
1660
if (strcmp(curr, name) == 0) {
1661
if (!option) {
1662
printk(KERN_WARNING PFX
1663
"No option given for '%s'\n",
1664
curr);
1665
return -EINVAL;
1666
}
1667
*val = simple_strtoul(option, &n, 0);
1668
if ((*n != '\0') || (*option == '\0')) {
1669
printk(KERN_WARNING PFX
1670
"Bad option given for '%s'\n",
1671
curr);
1672
return -EINVAL;
1673
}
1674
return 1;
1675
}
1676
return 0;
1677
}
1678
1679
static struct smi_info *smi_info_alloc(void)
1680
{
1681
struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1682
1683
if (info) {
1684
spin_lock_init(&info->si_lock);
1685
spin_lock_init(&info->msg_lock);
1686
}
1687
return info;
1688
}
1689
1690
static int hotmod_handler(const char *val, struct kernel_param *kp)
1691
{
1692
char *str = kstrdup(val, GFP_KERNEL);
1693
int rv;
1694
char *next, *curr, *s, *n, *o;
1695
enum hotmod_op op;
1696
enum si_type si_type;
1697
int addr_space;
1698
unsigned long addr;
1699
int regspacing;
1700
int regsize;
1701
int regshift;
1702
int irq;
1703
int ipmb;
1704
int ival;
1705
int len;
1706
struct smi_info *info;
1707
1708
if (!str)
1709
return -ENOMEM;
1710
1711
/* Kill any trailing spaces, as we can get a "\n" from echo. */
1712
len = strlen(str);
1713
ival = len - 1;
1714
while ((ival >= 0) && isspace(str[ival])) {
1715
str[ival] = '\0';
1716
ival--;
1717
}
1718
1719
for (curr = str; curr; curr = next) {
1720
regspacing = 1;
1721
regsize = 1;
1722
regshift = 0;
1723
irq = 0;
1724
ipmb = 0; /* Choose the default if not specified */
1725
1726
next = strchr(curr, ':');
1727
if (next) {
1728
*next = '\0';
1729
next++;
1730
}
1731
1732
rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1733
if (rv)
1734
break;
1735
op = ival;
1736
1737
rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1738
if (rv)
1739
break;
1740
si_type = ival;
1741
1742
rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1743
if (rv)
1744
break;
1745
1746
s = strchr(curr, ',');
1747
if (s) {
1748
*s = '\0';
1749
s++;
1750
}
1751
addr = simple_strtoul(curr, &n, 0);
1752
if ((*n != '\0') || (*curr == '\0')) {
1753
printk(KERN_WARNING PFX "Invalid hotmod address"
1754
" '%s'\n", curr);
1755
break;
1756
}
1757
1758
while (s) {
1759
curr = s;
1760
s = strchr(curr, ',');
1761
if (s) {
1762
*s = '\0';
1763
s++;
1764
}
1765
o = strchr(curr, '=');
1766
if (o) {
1767
*o = '\0';
1768
o++;
1769
}
1770
rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1771
if (rv < 0)
1772
goto out;
1773
else if (rv)
1774
continue;
1775
rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1776
if (rv < 0)
1777
goto out;
1778
else if (rv)
1779
continue;
1780
rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1781
if (rv < 0)
1782
goto out;
1783
else if (rv)
1784
continue;
1785
rv = check_hotmod_int_op(curr, o, "irq", &irq);
1786
if (rv < 0)
1787
goto out;
1788
else if (rv)
1789
continue;
1790
rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1791
if (rv < 0)
1792
goto out;
1793
else if (rv)
1794
continue;
1795
1796
rv = -EINVAL;
1797
printk(KERN_WARNING PFX
1798
"Invalid hotmod option '%s'\n",
1799
curr);
1800
goto out;
1801
}
1802
1803
if (op == HM_ADD) {
1804
info = smi_info_alloc();
1805
if (!info) {
1806
rv = -ENOMEM;
1807
goto out;
1808
}
1809
1810
info->addr_source = SI_HOTMOD;
1811
info->si_type = si_type;
1812
info->io.addr_data = addr;
1813
info->io.addr_type = addr_space;
1814
if (addr_space == IPMI_MEM_ADDR_SPACE)
1815
info->io_setup = mem_setup;
1816
else
1817
info->io_setup = port_setup;
1818
1819
info->io.addr = NULL;
1820
info->io.regspacing = regspacing;
1821
if (!info->io.regspacing)
1822
info->io.regspacing = DEFAULT_REGSPACING;
1823
info->io.regsize = regsize;
1824
if (!info->io.regsize)
1825
info->io.regsize = DEFAULT_REGSPACING;
1826
info->io.regshift = regshift;
1827
info->irq = irq;
1828
if (info->irq)
1829
info->irq_setup = std_irq_setup;
1830
info->slave_addr = ipmb;
1831
1832
if (!add_smi(info)) {
1833
if (try_smi_init(info))
1834
cleanup_one_si(info);
1835
} else {
1836
kfree(info);
1837
}
1838
} else {
1839
/* remove */
1840
struct smi_info *e, *tmp_e;
1841
1842
mutex_lock(&smi_infos_lock);
1843
list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1844
if (e->io.addr_type != addr_space)
1845
continue;
1846
if (e->si_type != si_type)
1847
continue;
1848
if (e->io.addr_data == addr)
1849
cleanup_one_si(e);
1850
}
1851
mutex_unlock(&smi_infos_lock);
1852
}
1853
}
1854
rv = len;
1855
out:
1856
kfree(str);
1857
return rv;
1858
}
1859
1860
static int __devinit hardcode_find_bmc(void)
1861
{
1862
int ret = -ENODEV;
1863
int i;
1864
struct smi_info *info;
1865
1866
for (i = 0; i < SI_MAX_PARMS; i++) {
1867
if (!ports[i] && !addrs[i])
1868
continue;
1869
1870
info = smi_info_alloc();
1871
if (!info)
1872
return -ENOMEM;
1873
1874
info->addr_source = SI_HARDCODED;
1875
printk(KERN_INFO PFX "probing via hardcoded address\n");
1876
1877
if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1878
info->si_type = SI_KCS;
1879
} else if (strcmp(si_type[i], "smic") == 0) {
1880
info->si_type = SI_SMIC;
1881
} else if (strcmp(si_type[i], "bt") == 0) {
1882
info->si_type = SI_BT;
1883
} else {
1884
printk(KERN_WARNING PFX "Interface type specified "
1885
"for interface %d, was invalid: %s\n",
1886
i, si_type[i]);
1887
kfree(info);
1888
continue;
1889
}
1890
1891
if (ports[i]) {
1892
/* An I/O port */
1893
info->io_setup = port_setup;
1894
info->io.addr_data = ports[i];
1895
info->io.addr_type = IPMI_IO_ADDR_SPACE;
1896
} else if (addrs[i]) {
1897
/* A memory port */
1898
info->io_setup = mem_setup;
1899
info->io.addr_data = addrs[i];
1900
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1901
} else {
1902
printk(KERN_WARNING PFX "Interface type specified "
1903
"for interface %d, but port and address were "
1904
"not set or set to zero.\n", i);
1905
kfree(info);
1906
continue;
1907
}
1908
1909
info->io.addr = NULL;
1910
info->io.regspacing = regspacings[i];
1911
if (!info->io.regspacing)
1912
info->io.regspacing = DEFAULT_REGSPACING;
1913
info->io.regsize = regsizes[i];
1914
if (!info->io.regsize)
1915
info->io.regsize = DEFAULT_REGSPACING;
1916
info->io.regshift = regshifts[i];
1917
info->irq = irqs[i];
1918
if (info->irq)
1919
info->irq_setup = std_irq_setup;
1920
info->slave_addr = slave_addrs[i];
1921
1922
if (!add_smi(info)) {
1923
if (try_smi_init(info))
1924
cleanup_one_si(info);
1925
ret = 0;
1926
} else {
1927
kfree(info);
1928
}
1929
}
1930
return ret;
1931
}
1932
1933
#ifdef CONFIG_ACPI
1934
1935
#include <linux/acpi.h>
1936
1937
/*
1938
* Once we get an ACPI failure, we don't try any more, because we go
1939
* through the tables sequentially. Once we don't find a table, there
1940
* are no more.
1941
*/
1942
static int acpi_failure;
1943
1944
/* For GPE-type interrupts. */
1945
static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1946
u32 gpe_number, void *context)
1947
{
1948
struct smi_info *smi_info = context;
1949
unsigned long flags;
1950
#ifdef DEBUG_TIMING
1951
struct timeval t;
1952
#endif
1953
1954
spin_lock_irqsave(&(smi_info->si_lock), flags);
1955
1956
smi_inc_stat(smi_info, interrupts);
1957
1958
#ifdef DEBUG_TIMING
1959
do_gettimeofday(&t);
1960
printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1961
#endif
1962
smi_event_handler(smi_info, 0);
1963
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1964
1965
return ACPI_INTERRUPT_HANDLED;
1966
}
1967
1968
static void acpi_gpe_irq_cleanup(struct smi_info *info)
1969
{
1970
if (!info->irq)
1971
return;
1972
1973
acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1974
}
1975
1976
static int acpi_gpe_irq_setup(struct smi_info *info)
1977
{
1978
acpi_status status;
1979
1980
if (!info->irq)
1981
return 0;
1982
1983
/* FIXME - is level triggered right? */
1984
status = acpi_install_gpe_handler(NULL,
1985
info->irq,
1986
ACPI_GPE_LEVEL_TRIGGERED,
1987
&ipmi_acpi_gpe,
1988
info);
1989
if (status != AE_OK) {
1990
dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1991
" running polled\n", DEVICE_NAME, info->irq);
1992
info->irq = 0;
1993
return -EINVAL;
1994
} else {
1995
info->irq_cleanup = acpi_gpe_irq_cleanup;
1996
dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1997
return 0;
1998
}
1999
}
2000
2001
/*
2002
* Defined at
2003
* http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2004
*/
2005
struct SPMITable {
2006
s8 Signature[4];
2007
u32 Length;
2008
u8 Revision;
2009
u8 Checksum;
2010
s8 OEMID[6];
2011
s8 OEMTableID[8];
2012
s8 OEMRevision[4];
2013
s8 CreatorID[4];
2014
s8 CreatorRevision[4];
2015
u8 InterfaceType;
2016
u8 IPMIlegacy;
2017
s16 SpecificationRevision;
2018
2019
/*
2020
* Bit 0 - SCI interrupt supported
2021
* Bit 1 - I/O APIC/SAPIC
2022
*/
2023
u8 InterruptType;
2024
2025
/*
2026
* If bit 0 of InterruptType is set, then this is the SCI
2027
* interrupt in the GPEx_STS register.
2028
*/
2029
u8 GPE;
2030
2031
s16 Reserved;
2032
2033
/*
2034
* If bit 1 of InterruptType is set, then this is the I/O
2035
* APIC/SAPIC interrupt.
2036
*/
2037
u32 GlobalSystemInterrupt;
2038
2039
/* The actual register address. */
2040
struct acpi_generic_address addr;
2041
2042
u8 UID[4];
2043
2044
s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2045
};
2046
2047
static int __devinit try_init_spmi(struct SPMITable *spmi)
2048
{
2049
struct smi_info *info;
2050
2051
if (spmi->IPMIlegacy != 1) {
2052
printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2053
return -ENODEV;
2054
}
2055
2056
info = smi_info_alloc();
2057
if (!info) {
2058
printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2059
return -ENOMEM;
2060
}
2061
2062
info->addr_source = SI_SPMI;
2063
printk(KERN_INFO PFX "probing via SPMI\n");
2064
2065
/* Figure out the interface type. */
2066
switch (spmi->InterfaceType) {
2067
case 1: /* KCS */
2068
info->si_type = SI_KCS;
2069
break;
2070
case 2: /* SMIC */
2071
info->si_type = SI_SMIC;
2072
break;
2073
case 3: /* BT */
2074
info->si_type = SI_BT;
2075
break;
2076
default:
2077
printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2078
spmi->InterfaceType);
2079
kfree(info);
2080
return -EIO;
2081
}
2082
2083
if (spmi->InterruptType & 1) {
2084
/* We've got a GPE interrupt. */
2085
info->irq = spmi->GPE;
2086
info->irq_setup = acpi_gpe_irq_setup;
2087
} else if (spmi->InterruptType & 2) {
2088
/* We've got an APIC/SAPIC interrupt. */
2089
info->irq = spmi->GlobalSystemInterrupt;
2090
info->irq_setup = std_irq_setup;
2091
} else {
2092
/* Use the default interrupt setting. */
2093
info->irq = 0;
2094
info->irq_setup = NULL;
2095
}
2096
2097
if (spmi->addr.bit_width) {
2098
/* A (hopefully) properly formed register bit width. */
2099
info->io.regspacing = spmi->addr.bit_width / 8;
2100
} else {
2101
info->io.regspacing = DEFAULT_REGSPACING;
2102
}
2103
info->io.regsize = info->io.regspacing;
2104
info->io.regshift = spmi->addr.bit_offset;
2105
2106
if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2107
info->io_setup = mem_setup;
2108
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2109
} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2110
info->io_setup = port_setup;
2111
info->io.addr_type = IPMI_IO_ADDR_SPACE;
2112
} else {
2113
kfree(info);
2114
printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2115
return -EIO;
2116
}
2117
info->io.addr_data = spmi->addr.address;
2118
2119
pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2120
(info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2121
info->io.addr_data, info->io.regsize, info->io.regspacing,
2122
info->irq);
2123
2124
if (add_smi(info))
2125
kfree(info);
2126
2127
return 0;
2128
}
2129
2130
static void __devinit spmi_find_bmc(void)
2131
{
2132
acpi_status status;
2133
struct SPMITable *spmi;
2134
int i;
2135
2136
if (acpi_disabled)
2137
return;
2138
2139
if (acpi_failure)
2140
return;
2141
2142
for (i = 0; ; i++) {
2143
status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2144
(struct acpi_table_header **)&spmi);
2145
if (status != AE_OK)
2146
return;
2147
2148
try_init_spmi(spmi);
2149
}
2150
}
2151
2152
static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2153
const struct pnp_device_id *dev_id)
2154
{
2155
struct acpi_device *acpi_dev;
2156
struct smi_info *info;
2157
struct resource *res, *res_second;
2158
acpi_handle handle;
2159
acpi_status status;
2160
unsigned long long tmp;
2161
2162
acpi_dev = pnp_acpi_device(dev);
2163
if (!acpi_dev)
2164
return -ENODEV;
2165
2166
info = smi_info_alloc();
2167
if (!info)
2168
return -ENOMEM;
2169
2170
info->addr_source = SI_ACPI;
2171
printk(KERN_INFO PFX "probing via ACPI\n");
2172
2173
handle = acpi_dev->handle;
2174
info->addr_info.acpi_info.acpi_handle = handle;
2175
2176
/* _IFT tells us the interface type: KCS, BT, etc */
2177
status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2178
if (ACPI_FAILURE(status))
2179
goto err_free;
2180
2181
switch (tmp) {
2182
case 1:
2183
info->si_type = SI_KCS;
2184
break;
2185
case 2:
2186
info->si_type = SI_SMIC;
2187
break;
2188
case 3:
2189
info->si_type = SI_BT;
2190
break;
2191
default:
2192
dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2193
goto err_free;
2194
}
2195
2196
res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2197
if (res) {
2198
info->io_setup = port_setup;
2199
info->io.addr_type = IPMI_IO_ADDR_SPACE;
2200
} else {
2201
res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2202
if (res) {
2203
info->io_setup = mem_setup;
2204
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2205
}
2206
}
2207
if (!res) {
2208
dev_err(&dev->dev, "no I/O or memory address\n");
2209
goto err_free;
2210
}
2211
info->io.addr_data = res->start;
2212
2213
info->io.regspacing = DEFAULT_REGSPACING;
2214
res_second = pnp_get_resource(dev,
2215
(info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2216
IORESOURCE_IO : IORESOURCE_MEM,
2217
1);
2218
if (res_second) {
2219
if (res_second->start > info->io.addr_data)
2220
info->io.regspacing = res_second->start - info->io.addr_data;
2221
}
2222
info->io.regsize = DEFAULT_REGSPACING;
2223
info->io.regshift = 0;
2224
2225
/* If _GPE exists, use it; otherwise use standard interrupts */
2226
status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2227
if (ACPI_SUCCESS(status)) {
2228
info->irq = tmp;
2229
info->irq_setup = acpi_gpe_irq_setup;
2230
} else if (pnp_irq_valid(dev, 0)) {
2231
info->irq = pnp_irq(dev, 0);
2232
info->irq_setup = std_irq_setup;
2233
}
2234
2235
info->dev = &dev->dev;
2236
pnp_set_drvdata(dev, info);
2237
2238
dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2239
res, info->io.regsize, info->io.regspacing,
2240
info->irq);
2241
2242
if (add_smi(info))
2243
goto err_free;
2244
2245
return 0;
2246
2247
err_free:
2248
kfree(info);
2249
return -EINVAL;
2250
}
2251
2252
static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2253
{
2254
struct smi_info *info = pnp_get_drvdata(dev);
2255
2256
cleanup_one_si(info);
2257
}
2258
2259
static const struct pnp_device_id pnp_dev_table[] = {
2260
{"IPI0001", 0},
2261
{"", 0},
2262
};
2263
2264
static struct pnp_driver ipmi_pnp_driver = {
2265
.name = DEVICE_NAME,
2266
.probe = ipmi_pnp_probe,
2267
.remove = __devexit_p(ipmi_pnp_remove),
2268
.id_table = pnp_dev_table,
2269
};
2270
#endif
2271
2272
#ifdef CONFIG_DMI
2273
struct dmi_ipmi_data {
2274
u8 type;
2275
u8 addr_space;
2276
unsigned long base_addr;
2277
u8 irq;
2278
u8 offset;
2279
u8 slave_addr;
2280
};
2281
2282
static int __devinit decode_dmi(const struct dmi_header *dm,
2283
struct dmi_ipmi_data *dmi)
2284
{
2285
const u8 *data = (const u8 *)dm;
2286
unsigned long base_addr;
2287
u8 reg_spacing;
2288
u8 len = dm->length;
2289
2290
dmi->type = data[4];
2291
2292
memcpy(&base_addr, data+8, sizeof(unsigned long));
2293
if (len >= 0x11) {
2294
if (base_addr & 1) {
2295
/* I/O */
2296
base_addr &= 0xFFFE;
2297
dmi->addr_space = IPMI_IO_ADDR_SPACE;
2298
} else
2299
/* Memory */
2300
dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2301
2302
/* If bit 4 of byte 0x10 is set, then the lsb for the address
2303
is odd. */
2304
dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2305
2306
dmi->irq = data[0x11];
2307
2308
/* The top two bits of byte 0x10 hold the register spacing. */
2309
reg_spacing = (data[0x10] & 0xC0) >> 6;
2310
switch (reg_spacing) {
2311
case 0x00: /* Byte boundaries */
2312
dmi->offset = 1;
2313
break;
2314
case 0x01: /* 32-bit boundaries */
2315
dmi->offset = 4;
2316
break;
2317
case 0x02: /* 16-byte boundaries */
2318
dmi->offset = 16;
2319
break;
2320
default:
2321
/* Some other interface, just ignore it. */
2322
return -EIO;
2323
}
2324
} else {
2325
/* Old DMI spec. */
2326
/*
2327
* Note that technically, the lower bit of the base
2328
* address should be 1 if the address is I/O and 0 if
2329
* the address is in memory. So many systems get that
2330
* wrong (and all that I have seen are I/O) so we just
2331
* ignore that bit and assume I/O. Systems that use
2332
* memory should use the newer spec, anyway.
2333
*/
2334
dmi->base_addr = base_addr & 0xfffe;
2335
dmi->addr_space = IPMI_IO_ADDR_SPACE;
2336
dmi->offset = 1;
2337
}
2338
2339
dmi->slave_addr = data[6];
2340
2341
return 0;
2342
}
2343
2344
static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2345
{
2346
struct smi_info *info;
2347
2348
info = smi_info_alloc();
2349
if (!info) {
2350
printk(KERN_ERR PFX "Could not allocate SI data\n");
2351
return;
2352
}
2353
2354
info->addr_source = SI_SMBIOS;
2355
printk(KERN_INFO PFX "probing via SMBIOS\n");
2356
2357
switch (ipmi_data->type) {
2358
case 0x01: /* KCS */
2359
info->si_type = SI_KCS;
2360
break;
2361
case 0x02: /* SMIC */
2362
info->si_type = SI_SMIC;
2363
break;
2364
case 0x03: /* BT */
2365
info->si_type = SI_BT;
2366
break;
2367
default:
2368
kfree(info);
2369
return;
2370
}
2371
2372
switch (ipmi_data->addr_space) {
2373
case IPMI_MEM_ADDR_SPACE:
2374
info->io_setup = mem_setup;
2375
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2376
break;
2377
2378
case IPMI_IO_ADDR_SPACE:
2379
info->io_setup = port_setup;
2380
info->io.addr_type = IPMI_IO_ADDR_SPACE;
2381
break;
2382
2383
default:
2384
kfree(info);
2385
printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2386
ipmi_data->addr_space);
2387
return;
2388
}
2389
info->io.addr_data = ipmi_data->base_addr;
2390
2391
info->io.regspacing = ipmi_data->offset;
2392
if (!info->io.regspacing)
2393
info->io.regspacing = DEFAULT_REGSPACING;
2394
info->io.regsize = DEFAULT_REGSPACING;
2395
info->io.regshift = 0;
2396
2397
info->slave_addr = ipmi_data->slave_addr;
2398
2399
info->irq = ipmi_data->irq;
2400
if (info->irq)
2401
info->irq_setup = std_irq_setup;
2402
2403
pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2404
(info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2405
info->io.addr_data, info->io.regsize, info->io.regspacing,
2406
info->irq);
2407
2408
if (add_smi(info))
2409
kfree(info);
2410
}
2411
2412
static void __devinit dmi_find_bmc(void)
2413
{
2414
const struct dmi_device *dev = NULL;
2415
struct dmi_ipmi_data data;
2416
int rv;
2417
2418
while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2419
memset(&data, 0, sizeof(data));
2420
rv = decode_dmi((const struct dmi_header *) dev->device_data,
2421
&data);
2422
if (!rv)
2423
try_init_dmi(&data);
2424
}
2425
}
2426
#endif /* CONFIG_DMI */
2427
2428
#ifdef CONFIG_PCI
2429
2430
#define PCI_ERMC_CLASSCODE 0x0C0700
2431
#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2432
#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2433
#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2434
#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2435
#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2436
2437
#define PCI_HP_VENDOR_ID 0x103C
2438
#define PCI_MMC_DEVICE_ID 0x121A
2439
#define PCI_MMC_ADDR_CW 0x10
2440
2441
static void ipmi_pci_cleanup(struct smi_info *info)
2442
{
2443
struct pci_dev *pdev = info->addr_source_data;
2444
2445
pci_disable_device(pdev);
2446
}
2447
2448
static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2449
const struct pci_device_id *ent)
2450
{
2451
int rv;
2452
int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2453
struct smi_info *info;
2454
2455
info = smi_info_alloc();
2456
if (!info)
2457
return -ENOMEM;
2458
2459
info->addr_source = SI_PCI;
2460
dev_info(&pdev->dev, "probing via PCI");
2461
2462
switch (class_type) {
2463
case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2464
info->si_type = SI_SMIC;
2465
break;
2466
2467
case PCI_ERMC_CLASSCODE_TYPE_KCS:
2468
info->si_type = SI_KCS;
2469
break;
2470
2471
case PCI_ERMC_CLASSCODE_TYPE_BT:
2472
info->si_type = SI_BT;
2473
break;
2474
2475
default:
2476
kfree(info);
2477
dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2478
return -ENOMEM;
2479
}
2480
2481
rv = pci_enable_device(pdev);
2482
if (rv) {
2483
dev_err(&pdev->dev, "couldn't enable PCI device\n");
2484
kfree(info);
2485
return rv;
2486
}
2487
2488
info->addr_source_cleanup = ipmi_pci_cleanup;
2489
info->addr_source_data = pdev;
2490
2491
if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2492
info->io_setup = port_setup;
2493
info->io.addr_type = IPMI_IO_ADDR_SPACE;
2494
} else {
2495
info->io_setup = mem_setup;
2496
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2497
}
2498
info->io.addr_data = pci_resource_start(pdev, 0);
2499
2500
info->io.regspacing = DEFAULT_REGSPACING;
2501
info->io.regsize = DEFAULT_REGSPACING;
2502
info->io.regshift = 0;
2503
2504
info->irq = pdev->irq;
2505
if (info->irq)
2506
info->irq_setup = std_irq_setup;
2507
2508
info->dev = &pdev->dev;
2509
pci_set_drvdata(pdev, info);
2510
2511
dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2512
&pdev->resource[0], info->io.regsize, info->io.regspacing,
2513
info->irq);
2514
2515
if (add_smi(info))
2516
kfree(info);
2517
2518
return 0;
2519
}
2520
2521
static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2522
{
2523
struct smi_info *info = pci_get_drvdata(pdev);
2524
cleanup_one_si(info);
2525
}
2526
2527
#ifdef CONFIG_PM
2528
static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2529
{
2530
return 0;
2531
}
2532
2533
static int ipmi_pci_resume(struct pci_dev *pdev)
2534
{
2535
return 0;
2536
}
2537
#endif
2538
2539
static struct pci_device_id ipmi_pci_devices[] = {
2540
{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2541
{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2542
{ 0, }
2543
};
2544
MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2545
2546
static struct pci_driver ipmi_pci_driver = {
2547
.name = DEVICE_NAME,
2548
.id_table = ipmi_pci_devices,
2549
.probe = ipmi_pci_probe,
2550
.remove = __devexit_p(ipmi_pci_remove),
2551
#ifdef CONFIG_PM
2552
.suspend = ipmi_pci_suspend,
2553
.resume = ipmi_pci_resume,
2554
#endif
2555
};
2556
#endif /* CONFIG_PCI */
2557
2558
static struct of_device_id ipmi_match[];
2559
static int __devinit ipmi_probe(struct platform_device *dev)
2560
{
2561
#ifdef CONFIG_OF
2562
const struct of_device_id *match;
2563
struct smi_info *info;
2564
struct resource resource;
2565
const __be32 *regsize, *regspacing, *regshift;
2566
struct device_node *np = dev->dev.of_node;
2567
int ret;
2568
int proplen;
2569
2570
dev_info(&dev->dev, "probing via device tree\n");
2571
2572
match = of_match_device(ipmi_match, &dev->dev);
2573
if (!match)
2574
return -EINVAL;
2575
2576
ret = of_address_to_resource(np, 0, &resource);
2577
if (ret) {
2578
dev_warn(&dev->dev, PFX "invalid address from OF\n");
2579
return ret;
2580
}
2581
2582
regsize = of_get_property(np, "reg-size", &proplen);
2583
if (regsize && proplen != 4) {
2584
dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2585
return -EINVAL;
2586
}
2587
2588
regspacing = of_get_property(np, "reg-spacing", &proplen);
2589
if (regspacing && proplen != 4) {
2590
dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2591
return -EINVAL;
2592
}
2593
2594
regshift = of_get_property(np, "reg-shift", &proplen);
2595
if (regshift && proplen != 4) {
2596
dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2597
return -EINVAL;
2598
}
2599
2600
info = smi_info_alloc();
2601
2602
if (!info) {
2603
dev_err(&dev->dev,
2604
"could not allocate memory for OF probe\n");
2605
return -ENOMEM;
2606
}
2607
2608
info->si_type = (enum si_type) match->data;
2609
info->addr_source = SI_DEVICETREE;
2610
info->irq_setup = std_irq_setup;
2611
2612
if (resource.flags & IORESOURCE_IO) {
2613
info->io_setup = port_setup;
2614
info->io.addr_type = IPMI_IO_ADDR_SPACE;
2615
} else {
2616
info->io_setup = mem_setup;
2617
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2618
}
2619
2620
info->io.addr_data = resource.start;
2621
2622
info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2623
info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2624
info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2625
2626
info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2627
info->dev = &dev->dev;
2628
2629
dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2630
info->io.addr_data, info->io.regsize, info->io.regspacing,
2631
info->irq);
2632
2633
dev_set_drvdata(&dev->dev, info);
2634
2635
if (add_smi(info)) {
2636
kfree(info);
2637
return -EBUSY;
2638
}
2639
#endif
2640
return 0;
2641
}
2642
2643
static int __devexit ipmi_remove(struct platform_device *dev)
2644
{
2645
#ifdef CONFIG_OF
2646
cleanup_one_si(dev_get_drvdata(&dev->dev));
2647
#endif
2648
return 0;
2649
}
2650
2651
static struct of_device_id ipmi_match[] =
2652
{
2653
{ .type = "ipmi", .compatible = "ipmi-kcs",
2654
.data = (void *)(unsigned long) SI_KCS },
2655
{ .type = "ipmi", .compatible = "ipmi-smic",
2656
.data = (void *)(unsigned long) SI_SMIC },
2657
{ .type = "ipmi", .compatible = "ipmi-bt",
2658
.data = (void *)(unsigned long) SI_BT },
2659
{},
2660
};
2661
2662
static struct platform_driver ipmi_driver = {
2663
.driver = {
2664
.name = DEVICE_NAME,
2665
.owner = THIS_MODULE,
2666
.of_match_table = ipmi_match,
2667
},
2668
.probe = ipmi_probe,
2669
.remove = __devexit_p(ipmi_remove),
2670
};
2671
2672
static int wait_for_msg_done(struct smi_info *smi_info)
2673
{
2674
enum si_sm_result smi_result;
2675
2676
smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2677
for (;;) {
2678
if (smi_result == SI_SM_CALL_WITH_DELAY ||
2679
smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2680
schedule_timeout_uninterruptible(1);
2681
smi_result = smi_info->handlers->event(
2682
smi_info->si_sm, 100);
2683
} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2684
smi_result = smi_info->handlers->event(
2685
smi_info->si_sm, 0);
2686
} else
2687
break;
2688
}
2689
if (smi_result == SI_SM_HOSED)
2690
/*
2691
* We couldn't get the state machine to run, so whatever's at
2692
* the port is probably not an IPMI SMI interface.
2693
*/
2694
return -ENODEV;
2695
2696
return 0;
2697
}
2698
2699
static int try_get_dev_id(struct smi_info *smi_info)
2700
{
2701
unsigned char msg[2];
2702
unsigned char *resp;
2703
unsigned long resp_len;
2704
int rv = 0;
2705
2706
resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2707
if (!resp)
2708
return -ENOMEM;
2709
2710
/*
2711
* Do a Get Device ID command, since it comes back with some
2712
* useful info.
2713
*/
2714
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2715
msg[1] = IPMI_GET_DEVICE_ID_CMD;
2716
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2717
2718
rv = wait_for_msg_done(smi_info);
2719
if (rv)
2720
goto out;
2721
2722
resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2723
resp, IPMI_MAX_MSG_LENGTH);
2724
2725
/* Check and record info from the get device id, in case we need it. */
2726
rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2727
2728
out:
2729
kfree(resp);
2730
return rv;
2731
}
2732
2733
static int try_enable_event_buffer(struct smi_info *smi_info)
2734
{
2735
unsigned char msg[3];
2736
unsigned char *resp;
2737
unsigned long resp_len;
2738
int rv = 0;
2739
2740
resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2741
if (!resp)
2742
return -ENOMEM;
2743
2744
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2745
msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2746
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2747
2748
rv = wait_for_msg_done(smi_info);
2749
if (rv) {
2750
printk(KERN_WARNING PFX "Error getting response from get"
2751
" global enables command, the event buffer is not"
2752
" enabled.\n");
2753
goto out;
2754
}
2755
2756
resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2757
resp, IPMI_MAX_MSG_LENGTH);
2758
2759
if (resp_len < 4 ||
2760
resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2761
resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2762
resp[2] != 0) {
2763
printk(KERN_WARNING PFX "Invalid return from get global"
2764
" enables command, cannot enable the event buffer.\n");
2765
rv = -EINVAL;
2766
goto out;
2767
}
2768
2769
if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2770
/* buffer is already enabled, nothing to do. */
2771
goto out;
2772
2773
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2774
msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2775
msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2776
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2777
2778
rv = wait_for_msg_done(smi_info);
2779
if (rv) {
2780
printk(KERN_WARNING PFX "Error getting response from set"
2781
" global, enables command, the event buffer is not"
2782
" enabled.\n");
2783
goto out;
2784
}
2785
2786
resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2787
resp, IPMI_MAX_MSG_LENGTH);
2788
2789
if (resp_len < 3 ||
2790
resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2791
resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2792
printk(KERN_WARNING PFX "Invalid return from get global,"
2793
"enables command, not enable the event buffer.\n");
2794
rv = -EINVAL;
2795
goto out;
2796
}
2797
2798
if (resp[2] != 0)
2799
/*
2800
* An error when setting the event buffer bit means
2801
* that the event buffer is not supported.
2802
*/
2803
rv = -ENOENT;
2804
out:
2805
kfree(resp);
2806
return rv;
2807
}
2808
2809
static int smi_type_proc_show(struct seq_file *m, void *v)
2810
{
2811
struct smi_info *smi = m->private;
2812
2813
return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2814
}
2815
2816
static int smi_type_proc_open(struct inode *inode, struct file *file)
2817
{
2818
return single_open(file, smi_type_proc_show, PDE(inode)->data);
2819
}
2820
2821
static const struct file_operations smi_type_proc_ops = {
2822
.open = smi_type_proc_open,
2823
.read = seq_read,
2824
.llseek = seq_lseek,
2825
.release = single_release,
2826
};
2827
2828
static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2829
{
2830
struct smi_info *smi = m->private;
2831
2832
seq_printf(m, "interrupts_enabled: %d\n",
2833
smi->irq && !smi->interrupt_disabled);
2834
seq_printf(m, "short_timeouts: %u\n",
2835
smi_get_stat(smi, short_timeouts));
2836
seq_printf(m, "long_timeouts: %u\n",
2837
smi_get_stat(smi, long_timeouts));
2838
seq_printf(m, "idles: %u\n",
2839
smi_get_stat(smi, idles));
2840
seq_printf(m, "interrupts: %u\n",
2841
smi_get_stat(smi, interrupts));
2842
seq_printf(m, "attentions: %u\n",
2843
smi_get_stat(smi, attentions));
2844
seq_printf(m, "flag_fetches: %u\n",
2845
smi_get_stat(smi, flag_fetches));
2846
seq_printf(m, "hosed_count: %u\n",
2847
smi_get_stat(smi, hosed_count));
2848
seq_printf(m, "complete_transactions: %u\n",
2849
smi_get_stat(smi, complete_transactions));
2850
seq_printf(m, "events: %u\n",
2851
smi_get_stat(smi, events));
2852
seq_printf(m, "watchdog_pretimeouts: %u\n",
2853
smi_get_stat(smi, watchdog_pretimeouts));
2854
seq_printf(m, "incoming_messages: %u\n",
2855
smi_get_stat(smi, incoming_messages));
2856
return 0;
2857
}
2858
2859
static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2860
{
2861
return single_open(file, smi_si_stats_proc_show, PDE(inode)->data);
2862
}
2863
2864
static const struct file_operations smi_si_stats_proc_ops = {
2865
.open = smi_si_stats_proc_open,
2866
.read = seq_read,
2867
.llseek = seq_lseek,
2868
.release = single_release,
2869
};
2870
2871
static int smi_params_proc_show(struct seq_file *m, void *v)
2872
{
2873
struct smi_info *smi = m->private;
2874
2875
return seq_printf(m,
2876
"%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2877
si_to_str[smi->si_type],
2878
addr_space_to_str[smi->io.addr_type],
2879
smi->io.addr_data,
2880
smi->io.regspacing,
2881
smi->io.regsize,
2882
smi->io.regshift,
2883
smi->irq,
2884
smi->slave_addr);
2885
}
2886
2887
static int smi_params_proc_open(struct inode *inode, struct file *file)
2888
{
2889
return single_open(file, smi_params_proc_show, PDE(inode)->data);
2890
}
2891
2892
static const struct file_operations smi_params_proc_ops = {
2893
.open = smi_params_proc_open,
2894
.read = seq_read,
2895
.llseek = seq_lseek,
2896
.release = single_release,
2897
};
2898
2899
/*
2900
* oem_data_avail_to_receive_msg_avail
2901
* @info - smi_info structure with msg_flags set
2902
*
2903
* Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2904
* Returns 1 indicating need to re-run handle_flags().
2905
*/
2906
static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2907
{
2908
smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2909
RECEIVE_MSG_AVAIL);
2910
return 1;
2911
}
2912
2913
/*
2914
* setup_dell_poweredge_oem_data_handler
2915
* @info - smi_info.device_id must be populated
2916
*
2917
* Systems that match, but have firmware version < 1.40 may assert
2918
* OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2919
* it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2920
* upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2921
* as RECEIVE_MSG_AVAIL instead.
2922
*
2923
* As Dell has no plans to release IPMI 1.5 firmware that *ever*
2924
* assert the OEM[012] bits, and if it did, the driver would have to
2925
* change to handle that properly, we don't actually check for the
2926
* firmware version.
2927
* Device ID = 0x20 BMC on PowerEdge 8G servers
2928
* Device Revision = 0x80
2929
* Firmware Revision1 = 0x01 BMC version 1.40
2930
* Firmware Revision2 = 0x40 BCD encoded
2931
* IPMI Version = 0x51 IPMI 1.5
2932
* Manufacturer ID = A2 02 00 Dell IANA
2933
*
2934
* Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2935
* OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2936
*
2937
*/
2938
#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2939
#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2940
#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2941
#define DELL_IANA_MFR_ID 0x0002a2
2942
static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2943
{
2944
struct ipmi_device_id *id = &smi_info->device_id;
2945
if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2946
if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2947
id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2948
id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2949
smi_info->oem_data_avail_handler =
2950
oem_data_avail_to_receive_msg_avail;
2951
} else if (ipmi_version_major(id) < 1 ||
2952
(ipmi_version_major(id) == 1 &&
2953
ipmi_version_minor(id) < 5)) {
2954
smi_info->oem_data_avail_handler =
2955
oem_data_avail_to_receive_msg_avail;
2956
}
2957
}
2958
}
2959
2960
#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2961
static void return_hosed_msg_badsize(struct smi_info *smi_info)
2962
{
2963
struct ipmi_smi_msg *msg = smi_info->curr_msg;
2964
2965
/* Make it a response */
2966
msg->rsp[0] = msg->data[0] | 4;
2967
msg->rsp[1] = msg->data[1];
2968
msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2969
msg->rsp_size = 3;
2970
smi_info->curr_msg = NULL;
2971
deliver_recv_msg(smi_info, msg);
2972
}
2973
2974
/*
2975
* dell_poweredge_bt_xaction_handler
2976
* @info - smi_info.device_id must be populated
2977
*
2978
* Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2979
* not respond to a Get SDR command if the length of the data
2980
* requested is exactly 0x3A, which leads to command timeouts and no
2981
* data returned. This intercepts such commands, and causes userspace
2982
* callers to try again with a different-sized buffer, which succeeds.
2983
*/
2984
2985
#define STORAGE_NETFN 0x0A
2986
#define STORAGE_CMD_GET_SDR 0x23
2987
static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2988
unsigned long unused,
2989
void *in)
2990
{
2991
struct smi_info *smi_info = in;
2992
unsigned char *data = smi_info->curr_msg->data;
2993
unsigned int size = smi_info->curr_msg->data_size;
2994
if (size >= 8 &&
2995
(data[0]>>2) == STORAGE_NETFN &&
2996
data[1] == STORAGE_CMD_GET_SDR &&
2997
data[7] == 0x3A) {
2998
return_hosed_msg_badsize(smi_info);
2999
return NOTIFY_STOP;
3000
}
3001
return NOTIFY_DONE;
3002
}
3003
3004
static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3005
.notifier_call = dell_poweredge_bt_xaction_handler,
3006
};
3007
3008
/*
3009
* setup_dell_poweredge_bt_xaction_handler
3010
* @info - smi_info.device_id must be filled in already
3011
*
3012
* Fills in smi_info.device_id.start_transaction_pre_hook
3013
* when we know what function to use there.
3014
*/
3015
static void
3016
setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3017
{
3018
struct ipmi_device_id *id = &smi_info->device_id;
3019
if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3020
smi_info->si_type == SI_BT)
3021
register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3022
}
3023
3024
/*
3025
* setup_oem_data_handler
3026
* @info - smi_info.device_id must be filled in already
3027
*
3028
* Fills in smi_info.device_id.oem_data_available_handler
3029
* when we know what function to use there.
3030
*/
3031
3032
static void setup_oem_data_handler(struct smi_info *smi_info)
3033
{
3034
setup_dell_poweredge_oem_data_handler(smi_info);
3035
}
3036
3037
static void setup_xaction_handlers(struct smi_info *smi_info)
3038
{
3039
setup_dell_poweredge_bt_xaction_handler(smi_info);
3040
}
3041
3042
static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3043
{
3044
if (smi_info->intf) {
3045
/*
3046
* The timer and thread are only running if the
3047
* interface has been started up and registered.
3048
*/
3049
if (smi_info->thread != NULL)
3050
kthread_stop(smi_info->thread);
3051
del_timer_sync(&smi_info->si_timer);
3052
}
3053
}
3054
3055
static __devinitdata struct ipmi_default_vals
3056
{
3057
int type;
3058
int port;
3059
} ipmi_defaults[] =
3060
{
3061
{ .type = SI_KCS, .port = 0xca2 },
3062
{ .type = SI_SMIC, .port = 0xca9 },
3063
{ .type = SI_BT, .port = 0xe4 },
3064
{ .port = 0 }
3065
};
3066
3067
static void __devinit default_find_bmc(void)
3068
{
3069
struct smi_info *info;
3070
int i;
3071
3072
for (i = 0; ; i++) {
3073
if (!ipmi_defaults[i].port)
3074
break;
3075
#ifdef CONFIG_PPC
3076
if (check_legacy_ioport(ipmi_defaults[i].port))
3077
continue;
3078
#endif
3079
info = smi_info_alloc();
3080
if (!info)
3081
return;
3082
3083
info->addr_source = SI_DEFAULT;
3084
3085
info->si_type = ipmi_defaults[i].type;
3086
info->io_setup = port_setup;
3087
info->io.addr_data = ipmi_defaults[i].port;
3088
info->io.addr_type = IPMI_IO_ADDR_SPACE;
3089
3090
info->io.addr = NULL;
3091
info->io.regspacing = DEFAULT_REGSPACING;
3092
info->io.regsize = DEFAULT_REGSPACING;
3093
info->io.regshift = 0;
3094
3095
if (add_smi(info) == 0) {
3096
if ((try_smi_init(info)) == 0) {
3097
/* Found one... */
3098
printk(KERN_INFO PFX "Found default %s"
3099
" state machine at %s address 0x%lx\n",
3100
si_to_str[info->si_type],
3101
addr_space_to_str[info->io.addr_type],
3102
info->io.addr_data);
3103
} else
3104
cleanup_one_si(info);
3105
} else {
3106
kfree(info);
3107
}
3108
}
3109
}
3110
3111
static int is_new_interface(struct smi_info *info)
3112
{
3113
struct smi_info *e;
3114
3115
list_for_each_entry(e, &smi_infos, link) {
3116
if (e->io.addr_type != info->io.addr_type)
3117
continue;
3118
if (e->io.addr_data == info->io.addr_data)
3119
return 0;
3120
}
3121
3122
return 1;
3123
}
3124
3125
static int add_smi(struct smi_info *new_smi)
3126
{
3127
int rv = 0;
3128
3129
printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3130
ipmi_addr_src_to_str[new_smi->addr_source],
3131
si_to_str[new_smi->si_type]);
3132
mutex_lock(&smi_infos_lock);
3133
if (!is_new_interface(new_smi)) {
3134
printk(KERN_CONT " duplicate interface\n");
3135
rv = -EBUSY;
3136
goto out_err;
3137
}
3138
3139
printk(KERN_CONT "\n");
3140
3141
/* So we know not to free it unless we have allocated one. */
3142
new_smi->intf = NULL;
3143
new_smi->si_sm = NULL;
3144
new_smi->handlers = NULL;
3145
3146
list_add_tail(&new_smi->link, &smi_infos);
3147
3148
out_err:
3149
mutex_unlock(&smi_infos_lock);
3150
return rv;
3151
}
3152
3153
static int try_smi_init(struct smi_info *new_smi)
3154
{
3155
int rv = 0;
3156
int i;
3157
3158
printk(KERN_INFO PFX "Trying %s-specified %s state"
3159
" machine at %s address 0x%lx, slave address 0x%x,"
3160
" irq %d\n",
3161
ipmi_addr_src_to_str[new_smi->addr_source],
3162
si_to_str[new_smi->si_type],
3163
addr_space_to_str[new_smi->io.addr_type],
3164
new_smi->io.addr_data,
3165
new_smi->slave_addr, new_smi->irq);
3166
3167
switch (new_smi->si_type) {
3168
case SI_KCS:
3169
new_smi->handlers = &kcs_smi_handlers;
3170
break;
3171
3172
case SI_SMIC:
3173
new_smi->handlers = &smic_smi_handlers;
3174
break;
3175
3176
case SI_BT:
3177
new_smi->handlers = &bt_smi_handlers;
3178
break;
3179
3180
default:
3181
/* No support for anything else yet. */
3182
rv = -EIO;
3183
goto out_err;
3184
}
3185
3186
/* Allocate the state machine's data and initialize it. */
3187
new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3188
if (!new_smi->si_sm) {
3189
printk(KERN_ERR PFX
3190
"Could not allocate state machine memory\n");
3191
rv = -ENOMEM;
3192
goto out_err;
3193
}
3194
new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3195
&new_smi->io);
3196
3197
/* Now that we know the I/O size, we can set up the I/O. */
3198
rv = new_smi->io_setup(new_smi);
3199
if (rv) {
3200
printk(KERN_ERR PFX "Could not set up I/O space\n");
3201
goto out_err;
3202
}
3203
3204
/* Do low-level detection first. */
3205
if (new_smi->handlers->detect(new_smi->si_sm)) {
3206
if (new_smi->addr_source)
3207
printk(KERN_INFO PFX "Interface detection failed\n");
3208
rv = -ENODEV;
3209
goto out_err;
3210
}
3211
3212
/*
3213
* Attempt a get device id command. If it fails, we probably
3214
* don't have a BMC here.
3215
*/
3216
rv = try_get_dev_id(new_smi);
3217
if (rv) {
3218
if (new_smi->addr_source)
3219
printk(KERN_INFO PFX "There appears to be no BMC"
3220
" at this location\n");
3221
goto out_err;
3222
}
3223
3224
setup_oem_data_handler(new_smi);
3225
setup_xaction_handlers(new_smi);
3226
3227
INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3228
INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3229
new_smi->curr_msg = NULL;
3230
atomic_set(&new_smi->req_events, 0);
3231
new_smi->run_to_completion = 0;
3232
for (i = 0; i < SI_NUM_STATS; i++)
3233
atomic_set(&new_smi->stats[i], 0);
3234
3235
new_smi->interrupt_disabled = 1;
3236
atomic_set(&new_smi->stop_operation, 0);
3237
new_smi->intf_num = smi_num;
3238
smi_num++;
3239
3240
rv = try_enable_event_buffer(new_smi);
3241
if (rv == 0)
3242
new_smi->has_event_buffer = 1;
3243
3244
/*
3245
* Start clearing the flags before we enable interrupts or the
3246
* timer to avoid racing with the timer.
3247
*/
3248
start_clear_flags(new_smi);
3249
/* IRQ is defined to be set when non-zero. */
3250
if (new_smi->irq)
3251
new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3252
3253
if (!new_smi->dev) {
3254
/*
3255
* If we don't already have a device from something
3256
* else (like PCI), then register a new one.
3257
*/
3258
new_smi->pdev = platform_device_alloc("ipmi_si",
3259
new_smi->intf_num);
3260
if (!new_smi->pdev) {
3261
printk(KERN_ERR PFX
3262
"Unable to allocate platform device\n");
3263
goto out_err;
3264
}
3265
new_smi->dev = &new_smi->pdev->dev;
3266
new_smi->dev->driver = &ipmi_driver.driver;
3267
3268
rv = platform_device_add(new_smi->pdev);
3269
if (rv) {
3270
printk(KERN_ERR PFX
3271
"Unable to register system interface device:"
3272
" %d\n",
3273
rv);
3274
goto out_err;
3275
}
3276
new_smi->dev_registered = 1;
3277
}
3278
3279
rv = ipmi_register_smi(&handlers,
3280
new_smi,
3281
&new_smi->device_id,
3282
new_smi->dev,
3283
"bmc",
3284
new_smi->slave_addr);
3285
if (rv) {
3286
dev_err(new_smi->dev, "Unable to register device: error %d\n",
3287
rv);
3288
goto out_err_stop_timer;
3289
}
3290
3291
rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3292
&smi_type_proc_ops,
3293
new_smi);
3294
if (rv) {
3295
dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3296
goto out_err_stop_timer;
3297
}
3298
3299
rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3300
&smi_si_stats_proc_ops,
3301
new_smi);
3302
if (rv) {
3303
dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3304
goto out_err_stop_timer;
3305
}
3306
3307
rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3308
&smi_params_proc_ops,
3309
new_smi);
3310
if (rv) {
3311
dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3312
goto out_err_stop_timer;
3313
}
3314
3315
dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3316
si_to_str[new_smi->si_type]);
3317
3318
return 0;
3319
3320
out_err_stop_timer:
3321
atomic_inc(&new_smi->stop_operation);
3322
wait_for_timer_and_thread(new_smi);
3323
3324
out_err:
3325
new_smi->interrupt_disabled = 1;
3326
3327
if (new_smi->intf) {
3328
ipmi_unregister_smi(new_smi->intf);
3329
new_smi->intf = NULL;
3330
}
3331
3332
if (new_smi->irq_cleanup) {
3333
new_smi->irq_cleanup(new_smi);
3334
new_smi->irq_cleanup = NULL;
3335
}
3336
3337
/*
3338
* Wait until we know that we are out of any interrupt
3339
* handlers might have been running before we freed the
3340
* interrupt.
3341
*/
3342
synchronize_sched();
3343
3344
if (new_smi->si_sm) {
3345
if (new_smi->handlers)
3346
new_smi->handlers->cleanup(new_smi->si_sm);
3347
kfree(new_smi->si_sm);
3348
new_smi->si_sm = NULL;
3349
}
3350
if (new_smi->addr_source_cleanup) {
3351
new_smi->addr_source_cleanup(new_smi);
3352
new_smi->addr_source_cleanup = NULL;
3353
}
3354
if (new_smi->io_cleanup) {
3355
new_smi->io_cleanup(new_smi);
3356
new_smi->io_cleanup = NULL;
3357
}
3358
3359
if (new_smi->dev_registered) {
3360
platform_device_unregister(new_smi->pdev);
3361
new_smi->dev_registered = 0;
3362
}
3363
3364
return rv;
3365
}
3366
3367
static int __devinit init_ipmi_si(void)
3368
{
3369
int i;
3370
char *str;
3371
int rv;
3372
struct smi_info *e;
3373
enum ipmi_addr_src type = SI_INVALID;
3374
3375
if (initialized)
3376
return 0;
3377
initialized = 1;
3378
3379
rv = platform_driver_register(&ipmi_driver);
3380
if (rv) {
3381
printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3382
return rv;
3383
}
3384
3385
3386
/* Parse out the si_type string into its components. */
3387
str = si_type_str;
3388
if (*str != '\0') {
3389
for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3390
si_type[i] = str;
3391
str = strchr(str, ',');
3392
if (str) {
3393
*str = '\0';
3394
str++;
3395
} else {
3396
break;
3397
}
3398
}
3399
}
3400
3401
printk(KERN_INFO "IPMI System Interface driver.\n");
3402
3403
/* If the user gave us a device, they presumably want us to use it */
3404
if (!hardcode_find_bmc())
3405
return 0;
3406
3407
#ifdef CONFIG_PCI
3408
rv = pci_register_driver(&ipmi_pci_driver);
3409
if (rv)
3410
printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3411
else
3412
pci_registered = 1;
3413
#endif
3414
3415
#ifdef CONFIG_ACPI
3416
pnp_register_driver(&ipmi_pnp_driver);
3417
pnp_registered = 1;
3418
#endif
3419
3420
#ifdef CONFIG_DMI
3421
dmi_find_bmc();
3422
#endif
3423
3424
#ifdef CONFIG_ACPI
3425
spmi_find_bmc();
3426
#endif
3427
3428
/* We prefer devices with interrupts, but in the case of a machine
3429
with multiple BMCs we assume that there will be several instances
3430
of a given type so if we succeed in registering a type then also
3431
try to register everything else of the same type */
3432
3433
mutex_lock(&smi_infos_lock);
3434
list_for_each_entry(e, &smi_infos, link) {
3435
/* Try to register a device if it has an IRQ and we either
3436
haven't successfully registered a device yet or this
3437
device has the same type as one we successfully registered */
3438
if (e->irq && (!type || e->addr_source == type)) {
3439
if (!try_smi_init(e)) {
3440
type = e->addr_source;
3441
}
3442
}
3443
}
3444
3445
/* type will only have been set if we successfully registered an si */
3446
if (type) {
3447
mutex_unlock(&smi_infos_lock);
3448
return 0;
3449
}
3450
3451
/* Fall back to the preferred device */
3452
3453
list_for_each_entry(e, &smi_infos, link) {
3454
if (!e->irq && (!type || e->addr_source == type)) {
3455
if (!try_smi_init(e)) {
3456
type = e->addr_source;
3457
}
3458
}
3459
}
3460
mutex_unlock(&smi_infos_lock);
3461
3462
if (type)
3463
return 0;
3464
3465
if (si_trydefaults) {
3466
mutex_lock(&smi_infos_lock);
3467
if (list_empty(&smi_infos)) {
3468
/* No BMC was found, try defaults. */
3469
mutex_unlock(&smi_infos_lock);
3470
default_find_bmc();
3471
} else
3472
mutex_unlock(&smi_infos_lock);
3473
}
3474
3475
mutex_lock(&smi_infos_lock);
3476
if (unload_when_empty && list_empty(&smi_infos)) {
3477
mutex_unlock(&smi_infos_lock);
3478
cleanup_ipmi_si();
3479
printk(KERN_WARNING PFX
3480
"Unable to find any System Interface(s)\n");
3481
return -ENODEV;
3482
} else {
3483
mutex_unlock(&smi_infos_lock);
3484
return 0;
3485
}
3486
}
3487
module_init(init_ipmi_si);
3488
3489
static void cleanup_one_si(struct smi_info *to_clean)
3490
{
3491
int rv = 0;
3492
unsigned long flags;
3493
3494
if (!to_clean)
3495
return;
3496
3497
list_del(&to_clean->link);
3498
3499
/* Tell the driver that we are shutting down. */
3500
atomic_inc(&to_clean->stop_operation);
3501
3502
/*
3503
* Make sure the timer and thread are stopped and will not run
3504
* again.
3505
*/
3506
wait_for_timer_and_thread(to_clean);
3507
3508
/*
3509
* Timeouts are stopped, now make sure the interrupts are off
3510
* for the device. A little tricky with locks to make sure
3511
* there are no races.
3512
*/
3513
spin_lock_irqsave(&to_clean->si_lock, flags);
3514
while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3515
spin_unlock_irqrestore(&to_clean->si_lock, flags);
3516
poll(to_clean);
3517
schedule_timeout_uninterruptible(1);
3518
spin_lock_irqsave(&to_clean->si_lock, flags);
3519
}
3520
disable_si_irq(to_clean);
3521
spin_unlock_irqrestore(&to_clean->si_lock, flags);
3522
while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3523
poll(to_clean);
3524
schedule_timeout_uninterruptible(1);
3525
}
3526
3527
/* Clean up interrupts and make sure that everything is done. */
3528
if (to_clean->irq_cleanup)
3529
to_clean->irq_cleanup(to_clean);
3530
while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3531
poll(to_clean);
3532
schedule_timeout_uninterruptible(1);
3533
}
3534
3535
if (to_clean->intf)
3536
rv = ipmi_unregister_smi(to_clean->intf);
3537
3538
if (rv) {
3539
printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3540
rv);
3541
}
3542
3543
if (to_clean->handlers)
3544
to_clean->handlers->cleanup(to_clean->si_sm);
3545
3546
kfree(to_clean->si_sm);
3547
3548
if (to_clean->addr_source_cleanup)
3549
to_clean->addr_source_cleanup(to_clean);
3550
if (to_clean->io_cleanup)
3551
to_clean->io_cleanup(to_clean);
3552
3553
if (to_clean->dev_registered)
3554
platform_device_unregister(to_clean->pdev);
3555
3556
kfree(to_clean);
3557
}
3558
3559
static void cleanup_ipmi_si(void)
3560
{
3561
struct smi_info *e, *tmp_e;
3562
3563
if (!initialized)
3564
return;
3565
3566
#ifdef CONFIG_PCI
3567
if (pci_registered)
3568
pci_unregister_driver(&ipmi_pci_driver);
3569
#endif
3570
#ifdef CONFIG_ACPI
3571
if (pnp_registered)
3572
pnp_unregister_driver(&ipmi_pnp_driver);
3573
#endif
3574
3575
platform_driver_unregister(&ipmi_driver);
3576
3577
mutex_lock(&smi_infos_lock);
3578
list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3579
cleanup_one_si(e);
3580
mutex_unlock(&smi_infos_lock);
3581
}
3582
module_exit(cleanup_ipmi_si);
3583
3584
MODULE_LICENSE("GPL");
3585
MODULE_AUTHOR("Corey Minyard <[email protected]>");
3586
MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3587
" system interfaces.");
3588
3589