Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/char/mmtimer.c
15109 views
1
/*
2
* Timer device implementation for SGI SN platforms.
3
*
4
* This file is subject to the terms and conditions of the GNU General Public
5
* License. See the file "COPYING" in the main directory of this archive
6
* for more details.
7
*
8
* Copyright (c) 2001-2006 Silicon Graphics, Inc. All rights reserved.
9
*
10
* This driver exports an API that should be supportable by any HPET or IA-PC
11
* multimedia timer. The code below is currently specific to the SGI Altix
12
* SHub RTC, however.
13
*
14
* 11/01/01 - jbarnes - initial revision
15
* 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
16
* 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
17
* 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
18
* support via the posix timer interface
19
*/
20
21
#include <linux/types.h>
22
#include <linux/kernel.h>
23
#include <linux/ioctl.h>
24
#include <linux/module.h>
25
#include <linux/init.h>
26
#include <linux/errno.h>
27
#include <linux/mm.h>
28
#include <linux/fs.h>
29
#include <linux/mmtimer.h>
30
#include <linux/miscdevice.h>
31
#include <linux/posix-timers.h>
32
#include <linux/interrupt.h>
33
#include <linux/time.h>
34
#include <linux/math64.h>
35
#include <linux/mutex.h>
36
#include <linux/slab.h>
37
38
#include <asm/uaccess.h>
39
#include <asm/sn/addrs.h>
40
#include <asm/sn/intr.h>
41
#include <asm/sn/shub_mmr.h>
42
#include <asm/sn/nodepda.h>
43
#include <asm/sn/shubio.h>
44
45
MODULE_AUTHOR("Jesse Barnes <[email protected]>");
46
MODULE_DESCRIPTION("SGI Altix RTC Timer");
47
MODULE_LICENSE("GPL");
48
49
/* name of the device, usually in /dev */
50
#define MMTIMER_NAME "mmtimer"
51
#define MMTIMER_DESC "SGI Altix RTC Timer"
52
#define MMTIMER_VERSION "2.1"
53
54
#define RTC_BITS 55 /* 55 bits for this implementation */
55
56
static struct k_clock sgi_clock;
57
58
extern unsigned long sn_rtc_cycles_per_second;
59
60
#define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC))
61
62
#define rtc_time() (*RTC_COUNTER_ADDR)
63
64
static DEFINE_MUTEX(mmtimer_mutex);
65
static long mmtimer_ioctl(struct file *file, unsigned int cmd,
66
unsigned long arg);
67
static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma);
68
69
/*
70
* Period in femtoseconds (10^-15 s)
71
*/
72
static unsigned long mmtimer_femtoperiod = 0;
73
74
static const struct file_operations mmtimer_fops = {
75
.owner = THIS_MODULE,
76
.mmap = mmtimer_mmap,
77
.unlocked_ioctl = mmtimer_ioctl,
78
.llseek = noop_llseek,
79
};
80
81
/*
82
* We only have comparison registers RTC1-4 currently available per
83
* node. RTC0 is used by SAL.
84
*/
85
/* Check for an RTC interrupt pending */
86
static int mmtimer_int_pending(int comparator)
87
{
88
if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) &
89
SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator)
90
return 1;
91
else
92
return 0;
93
}
94
95
/* Clear the RTC interrupt pending bit */
96
static void mmtimer_clr_int_pending(int comparator)
97
{
98
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
99
SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator);
100
}
101
102
/* Setup timer on comparator RTC1 */
103
static void mmtimer_setup_int_0(int cpu, u64 expires)
104
{
105
u64 val;
106
107
/* Disable interrupt */
108
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL);
109
110
/* Initialize comparator value */
111
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L);
112
113
/* Clear pending bit */
114
mmtimer_clr_int_pending(0);
115
116
val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) |
117
((u64)cpu_physical_id(cpu) <<
118
SH_RTC1_INT_CONFIG_PID_SHFT);
119
120
/* Set configuration */
121
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val);
122
123
/* Enable RTC interrupts */
124
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL);
125
126
/* Initialize comparator value */
127
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires);
128
129
130
}
131
132
/* Setup timer on comparator RTC2 */
133
static void mmtimer_setup_int_1(int cpu, u64 expires)
134
{
135
u64 val;
136
137
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL);
138
139
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L);
140
141
mmtimer_clr_int_pending(1);
142
143
val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) |
144
((u64)cpu_physical_id(cpu) <<
145
SH_RTC2_INT_CONFIG_PID_SHFT);
146
147
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val);
148
149
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL);
150
151
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires);
152
}
153
154
/* Setup timer on comparator RTC3 */
155
static void mmtimer_setup_int_2(int cpu, u64 expires)
156
{
157
u64 val;
158
159
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL);
160
161
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L);
162
163
mmtimer_clr_int_pending(2);
164
165
val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) |
166
((u64)cpu_physical_id(cpu) <<
167
SH_RTC3_INT_CONFIG_PID_SHFT);
168
169
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val);
170
171
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL);
172
173
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires);
174
}
175
176
/*
177
* This function must be called with interrupts disabled and preemption off
178
* in order to insure that the setup succeeds in a deterministic time frame.
179
* It will check if the interrupt setup succeeded.
180
*/
181
static int mmtimer_setup(int cpu, int comparator, unsigned long expires,
182
u64 *set_completion_time)
183
{
184
switch (comparator) {
185
case 0:
186
mmtimer_setup_int_0(cpu, expires);
187
break;
188
case 1:
189
mmtimer_setup_int_1(cpu, expires);
190
break;
191
case 2:
192
mmtimer_setup_int_2(cpu, expires);
193
break;
194
}
195
/* We might've missed our expiration time */
196
*set_completion_time = rtc_time();
197
if (*set_completion_time <= expires)
198
return 1;
199
200
/*
201
* If an interrupt is already pending then its okay
202
* if not then we failed
203
*/
204
return mmtimer_int_pending(comparator);
205
}
206
207
static int mmtimer_disable_int(long nasid, int comparator)
208
{
209
switch (comparator) {
210
case 0:
211
nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE),
212
0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL);
213
break;
214
case 1:
215
nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE),
216
0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL);
217
break;
218
case 2:
219
nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE),
220
0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL);
221
break;
222
default:
223
return -EFAULT;
224
}
225
return 0;
226
}
227
228
#define COMPARATOR 1 /* The comparator to use */
229
230
#define TIMER_OFF 0xbadcabLL /* Timer is not setup */
231
#define TIMER_SET 0 /* Comparator is set for this timer */
232
233
#define MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT 40
234
235
/* There is one of these for each timer */
236
struct mmtimer {
237
struct rb_node list;
238
struct k_itimer *timer;
239
int cpu;
240
};
241
242
struct mmtimer_node {
243
spinlock_t lock ____cacheline_aligned;
244
struct rb_root timer_head;
245
struct rb_node *next;
246
struct tasklet_struct tasklet;
247
};
248
static struct mmtimer_node *timers;
249
250
static unsigned mmtimer_interval_retry_increment =
251
MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT;
252
module_param(mmtimer_interval_retry_increment, uint, 0644);
253
MODULE_PARM_DESC(mmtimer_interval_retry_increment,
254
"RTC ticks to add to expiration on interval retry (default 40)");
255
256
/*
257
* Add a new mmtimer struct to the node's mmtimer list.
258
* This function assumes the struct mmtimer_node is locked.
259
*/
260
static void mmtimer_add_list(struct mmtimer *n)
261
{
262
int nodeid = n->timer->it.mmtimer.node;
263
unsigned long expires = n->timer->it.mmtimer.expires;
264
struct rb_node **link = &timers[nodeid].timer_head.rb_node;
265
struct rb_node *parent = NULL;
266
struct mmtimer *x;
267
268
/*
269
* Find the right place in the rbtree:
270
*/
271
while (*link) {
272
parent = *link;
273
x = rb_entry(parent, struct mmtimer, list);
274
275
if (expires < x->timer->it.mmtimer.expires)
276
link = &(*link)->rb_left;
277
else
278
link = &(*link)->rb_right;
279
}
280
281
/*
282
* Insert the timer to the rbtree and check whether it
283
* replaces the first pending timer
284
*/
285
rb_link_node(&n->list, parent, link);
286
rb_insert_color(&n->list, &timers[nodeid].timer_head);
287
288
if (!timers[nodeid].next || expires < rb_entry(timers[nodeid].next,
289
struct mmtimer, list)->timer->it.mmtimer.expires)
290
timers[nodeid].next = &n->list;
291
}
292
293
/*
294
* Set the comparator for the next timer.
295
* This function assumes the struct mmtimer_node is locked.
296
*/
297
static void mmtimer_set_next_timer(int nodeid)
298
{
299
struct mmtimer_node *n = &timers[nodeid];
300
struct mmtimer *x;
301
struct k_itimer *t;
302
u64 expires, exp, set_completion_time;
303
int i;
304
305
restart:
306
if (n->next == NULL)
307
return;
308
309
x = rb_entry(n->next, struct mmtimer, list);
310
t = x->timer;
311
if (!t->it.mmtimer.incr) {
312
/* Not an interval timer */
313
if (!mmtimer_setup(x->cpu, COMPARATOR,
314
t->it.mmtimer.expires,
315
&set_completion_time)) {
316
/* Late setup, fire now */
317
tasklet_schedule(&n->tasklet);
318
}
319
return;
320
}
321
322
/* Interval timer */
323
i = 0;
324
expires = exp = t->it.mmtimer.expires;
325
while (!mmtimer_setup(x->cpu, COMPARATOR, expires,
326
&set_completion_time)) {
327
int to;
328
329
i++;
330
expires = set_completion_time +
331
mmtimer_interval_retry_increment + (1 << i);
332
/* Calculate overruns as we go. */
333
to = ((u64)(expires - exp) / t->it.mmtimer.incr);
334
if (to) {
335
t->it_overrun += to;
336
t->it.mmtimer.expires += t->it.mmtimer.incr * to;
337
exp = t->it.mmtimer.expires;
338
}
339
if (i > 20) {
340
printk(KERN_ALERT "mmtimer: cannot reschedule timer\n");
341
t->it.mmtimer.clock = TIMER_OFF;
342
n->next = rb_next(&x->list);
343
rb_erase(&x->list, &n->timer_head);
344
kfree(x);
345
goto restart;
346
}
347
}
348
}
349
350
/**
351
* mmtimer_ioctl - ioctl interface for /dev/mmtimer
352
* @file: file structure for the device
353
* @cmd: command to execute
354
* @arg: optional argument to command
355
*
356
* Executes the command specified by @cmd. Returns 0 for success, < 0 for
357
* failure.
358
*
359
* Valid commands:
360
*
361
* %MMTIMER_GETOFFSET - Should return the offset (relative to the start
362
* of the page where the registers are mapped) for the counter in question.
363
*
364
* %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
365
* seconds
366
*
367
* %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
368
* specified by @arg
369
*
370
* %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
371
*
372
* %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
373
*
374
* %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
375
* in the address specified by @arg.
376
*/
377
static long mmtimer_ioctl(struct file *file, unsigned int cmd,
378
unsigned long arg)
379
{
380
int ret = 0;
381
382
mutex_lock(&mmtimer_mutex);
383
384
switch (cmd) {
385
case MMTIMER_GETOFFSET: /* offset of the counter */
386
/*
387
* SN RTC registers are on their own 64k page
388
*/
389
if(PAGE_SIZE <= (1 << 16))
390
ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8;
391
else
392
ret = -ENOSYS;
393
break;
394
395
case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */
396
if(copy_to_user((unsigned long __user *)arg,
397
&mmtimer_femtoperiod, sizeof(unsigned long)))
398
ret = -EFAULT;
399
break;
400
401
case MMTIMER_GETFREQ: /* frequency in Hz */
402
if(copy_to_user((unsigned long __user *)arg,
403
&sn_rtc_cycles_per_second,
404
sizeof(unsigned long)))
405
ret = -EFAULT;
406
break;
407
408
case MMTIMER_GETBITS: /* number of bits in the clock */
409
ret = RTC_BITS;
410
break;
411
412
case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */
413
ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0;
414
break;
415
416
case MMTIMER_GETCOUNTER:
417
if(copy_to_user((unsigned long __user *)arg,
418
RTC_COUNTER_ADDR, sizeof(unsigned long)))
419
ret = -EFAULT;
420
break;
421
default:
422
ret = -ENOTTY;
423
break;
424
}
425
mutex_unlock(&mmtimer_mutex);
426
return ret;
427
}
428
429
/**
430
* mmtimer_mmap - maps the clock's registers into userspace
431
* @file: file structure for the device
432
* @vma: VMA to map the registers into
433
*
434
* Calls remap_pfn_range() to map the clock's registers into
435
* the calling process' address space.
436
*/
437
static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma)
438
{
439
unsigned long mmtimer_addr;
440
441
if (vma->vm_end - vma->vm_start != PAGE_SIZE)
442
return -EINVAL;
443
444
if (vma->vm_flags & VM_WRITE)
445
return -EPERM;
446
447
if (PAGE_SIZE > (1 << 16))
448
return -ENOSYS;
449
450
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
451
452
mmtimer_addr = __pa(RTC_COUNTER_ADDR);
453
mmtimer_addr &= ~(PAGE_SIZE - 1);
454
mmtimer_addr &= 0xfffffffffffffffUL;
455
456
if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT,
457
PAGE_SIZE, vma->vm_page_prot)) {
458
printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n");
459
return -EAGAIN;
460
}
461
462
return 0;
463
}
464
465
static struct miscdevice mmtimer_miscdev = {
466
SGI_MMTIMER,
467
MMTIMER_NAME,
468
&mmtimer_fops
469
};
470
471
static struct timespec sgi_clock_offset;
472
static int sgi_clock_period;
473
474
/*
475
* Posix Timer Interface
476
*/
477
478
static struct timespec sgi_clock_offset;
479
static int sgi_clock_period;
480
481
static int sgi_clock_get(clockid_t clockid, struct timespec *tp)
482
{
483
u64 nsec;
484
485
nsec = rtc_time() * sgi_clock_period
486
+ sgi_clock_offset.tv_nsec;
487
*tp = ns_to_timespec(nsec);
488
tp->tv_sec += sgi_clock_offset.tv_sec;
489
return 0;
490
};
491
492
static int sgi_clock_set(const clockid_t clockid, const struct timespec *tp)
493
{
494
495
u64 nsec;
496
u32 rem;
497
498
nsec = rtc_time() * sgi_clock_period;
499
500
sgi_clock_offset.tv_sec = tp->tv_sec - div_u64_rem(nsec, NSEC_PER_SEC, &rem);
501
502
if (rem <= tp->tv_nsec)
503
sgi_clock_offset.tv_nsec = tp->tv_sec - rem;
504
else {
505
sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem;
506
sgi_clock_offset.tv_sec--;
507
}
508
return 0;
509
}
510
511
/**
512
* mmtimer_interrupt - timer interrupt handler
513
* @irq: irq received
514
* @dev_id: device the irq came from
515
*
516
* Called when one of the comarators matches the counter, This
517
* routine will send signals to processes that have requested
518
* them.
519
*
520
* This interrupt is run in an interrupt context
521
* by the SHUB. It is therefore safe to locally access SHub
522
* registers.
523
*/
524
static irqreturn_t
525
mmtimer_interrupt(int irq, void *dev_id)
526
{
527
unsigned long expires = 0;
528
int result = IRQ_NONE;
529
unsigned indx = cpu_to_node(smp_processor_id());
530
struct mmtimer *base;
531
532
spin_lock(&timers[indx].lock);
533
base = rb_entry(timers[indx].next, struct mmtimer, list);
534
if (base == NULL) {
535
spin_unlock(&timers[indx].lock);
536
return result;
537
}
538
539
if (base->cpu == smp_processor_id()) {
540
if (base->timer)
541
expires = base->timer->it.mmtimer.expires;
542
/* expires test won't work with shared irqs */
543
if ((mmtimer_int_pending(COMPARATOR) > 0) ||
544
(expires && (expires <= rtc_time()))) {
545
mmtimer_clr_int_pending(COMPARATOR);
546
tasklet_schedule(&timers[indx].tasklet);
547
result = IRQ_HANDLED;
548
}
549
}
550
spin_unlock(&timers[indx].lock);
551
return result;
552
}
553
554
static void mmtimer_tasklet(unsigned long data)
555
{
556
int nodeid = data;
557
struct mmtimer_node *mn = &timers[nodeid];
558
struct mmtimer *x;
559
struct k_itimer *t;
560
unsigned long flags;
561
562
/* Send signal and deal with periodic signals */
563
spin_lock_irqsave(&mn->lock, flags);
564
if (!mn->next)
565
goto out;
566
567
x = rb_entry(mn->next, struct mmtimer, list);
568
t = x->timer;
569
570
if (t->it.mmtimer.clock == TIMER_OFF)
571
goto out;
572
573
t->it_overrun = 0;
574
575
mn->next = rb_next(&x->list);
576
rb_erase(&x->list, &mn->timer_head);
577
578
if (posix_timer_event(t, 0) != 0)
579
t->it_overrun++;
580
581
if(t->it.mmtimer.incr) {
582
t->it.mmtimer.expires += t->it.mmtimer.incr;
583
mmtimer_add_list(x);
584
} else {
585
/* Ensure we don't false trigger in mmtimer_interrupt */
586
t->it.mmtimer.clock = TIMER_OFF;
587
t->it.mmtimer.expires = 0;
588
kfree(x);
589
}
590
/* Set comparator for next timer, if there is one */
591
mmtimer_set_next_timer(nodeid);
592
593
t->it_overrun_last = t->it_overrun;
594
out:
595
spin_unlock_irqrestore(&mn->lock, flags);
596
}
597
598
static int sgi_timer_create(struct k_itimer *timer)
599
{
600
/* Insure that a newly created timer is off */
601
timer->it.mmtimer.clock = TIMER_OFF;
602
return 0;
603
}
604
605
/* This does not really delete a timer. It just insures
606
* that the timer is not active
607
*
608
* Assumption: it_lock is already held with irq's disabled
609
*/
610
static int sgi_timer_del(struct k_itimer *timr)
611
{
612
cnodeid_t nodeid = timr->it.mmtimer.node;
613
unsigned long irqflags;
614
615
spin_lock_irqsave(&timers[nodeid].lock, irqflags);
616
if (timr->it.mmtimer.clock != TIMER_OFF) {
617
unsigned long expires = timr->it.mmtimer.expires;
618
struct rb_node *n = timers[nodeid].timer_head.rb_node;
619
struct mmtimer *uninitialized_var(t);
620
int r = 0;
621
622
timr->it.mmtimer.clock = TIMER_OFF;
623
timr->it.mmtimer.expires = 0;
624
625
while (n) {
626
t = rb_entry(n, struct mmtimer, list);
627
if (t->timer == timr)
628
break;
629
630
if (expires < t->timer->it.mmtimer.expires)
631
n = n->rb_left;
632
else
633
n = n->rb_right;
634
}
635
636
if (!n) {
637
spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
638
return 0;
639
}
640
641
if (timers[nodeid].next == n) {
642
timers[nodeid].next = rb_next(n);
643
r = 1;
644
}
645
646
rb_erase(n, &timers[nodeid].timer_head);
647
kfree(t);
648
649
if (r) {
650
mmtimer_disable_int(cnodeid_to_nasid(nodeid),
651
COMPARATOR);
652
mmtimer_set_next_timer(nodeid);
653
}
654
}
655
spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
656
return 0;
657
}
658
659
/* Assumption: it_lock is already held with irq's disabled */
660
static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
661
{
662
663
if (timr->it.mmtimer.clock == TIMER_OFF) {
664
cur_setting->it_interval.tv_nsec = 0;
665
cur_setting->it_interval.tv_sec = 0;
666
cur_setting->it_value.tv_nsec = 0;
667
cur_setting->it_value.tv_sec =0;
668
return;
669
}
670
671
cur_setting->it_interval = ns_to_timespec(timr->it.mmtimer.incr * sgi_clock_period);
672
cur_setting->it_value = ns_to_timespec((timr->it.mmtimer.expires - rtc_time()) * sgi_clock_period);
673
}
674
675
676
static int sgi_timer_set(struct k_itimer *timr, int flags,
677
struct itimerspec * new_setting,
678
struct itimerspec * old_setting)
679
{
680
unsigned long when, period, irqflags;
681
int err = 0;
682
cnodeid_t nodeid;
683
struct mmtimer *base;
684
struct rb_node *n;
685
686
if (old_setting)
687
sgi_timer_get(timr, old_setting);
688
689
sgi_timer_del(timr);
690
when = timespec_to_ns(&new_setting->it_value);
691
period = timespec_to_ns(&new_setting->it_interval);
692
693
if (when == 0)
694
/* Clear timer */
695
return 0;
696
697
base = kmalloc(sizeof(struct mmtimer), GFP_KERNEL);
698
if (base == NULL)
699
return -ENOMEM;
700
701
if (flags & TIMER_ABSTIME) {
702
struct timespec n;
703
unsigned long now;
704
705
getnstimeofday(&n);
706
now = timespec_to_ns(&n);
707
if (when > now)
708
when -= now;
709
else
710
/* Fire the timer immediately */
711
when = 0;
712
}
713
714
/*
715
* Convert to sgi clock period. Need to keep rtc_time() as near as possible
716
* to getnstimeofday() in order to be as faithful as possible to the time
717
* specified.
718
*/
719
when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time();
720
period = (period + sgi_clock_period - 1) / sgi_clock_period;
721
722
/*
723
* We are allocating a local SHub comparator. If we would be moved to another
724
* cpu then another SHub may be local to us. Prohibit that by switching off
725
* preemption.
726
*/
727
preempt_disable();
728
729
nodeid = cpu_to_node(smp_processor_id());
730
731
/* Lock the node timer structure */
732
spin_lock_irqsave(&timers[nodeid].lock, irqflags);
733
734
base->timer = timr;
735
base->cpu = smp_processor_id();
736
737
timr->it.mmtimer.clock = TIMER_SET;
738
timr->it.mmtimer.node = nodeid;
739
timr->it.mmtimer.incr = period;
740
timr->it.mmtimer.expires = when;
741
742
n = timers[nodeid].next;
743
744
/* Add the new struct mmtimer to node's timer list */
745
mmtimer_add_list(base);
746
747
if (timers[nodeid].next == n) {
748
/* No need to reprogram comparator for now */
749
spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
750
preempt_enable();
751
return err;
752
}
753
754
/* We need to reprogram the comparator */
755
if (n)
756
mmtimer_disable_int(cnodeid_to_nasid(nodeid), COMPARATOR);
757
758
mmtimer_set_next_timer(nodeid);
759
760
/* Unlock the node timer structure */
761
spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
762
763
preempt_enable();
764
765
return err;
766
}
767
768
static int sgi_clock_getres(const clockid_t which_clock, struct timespec *tp)
769
{
770
tp->tv_sec = 0;
771
tp->tv_nsec = sgi_clock_period;
772
return 0;
773
}
774
775
static struct k_clock sgi_clock = {
776
.clock_set = sgi_clock_set,
777
.clock_get = sgi_clock_get,
778
.clock_getres = sgi_clock_getres,
779
.timer_create = sgi_timer_create,
780
.timer_set = sgi_timer_set,
781
.timer_del = sgi_timer_del,
782
.timer_get = sgi_timer_get
783
};
784
785
/**
786
* mmtimer_init - device initialization routine
787
*
788
* Does initial setup for the mmtimer device.
789
*/
790
static int __init mmtimer_init(void)
791
{
792
cnodeid_t node, maxn = -1;
793
794
if (!ia64_platform_is("sn2"))
795
return 0;
796
797
/*
798
* Sanity check the cycles/sec variable
799
*/
800
if (sn_rtc_cycles_per_second < 100000) {
801
printk(KERN_ERR "%s: unable to determine clock frequency\n",
802
MMTIMER_NAME);
803
goto out1;
804
}
805
806
mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second /
807
2) / sn_rtc_cycles_per_second;
808
809
if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) {
810
printk(KERN_WARNING "%s: unable to allocate interrupt.",
811
MMTIMER_NAME);
812
goto out1;
813
}
814
815
if (misc_register(&mmtimer_miscdev)) {
816
printk(KERN_ERR "%s: failed to register device\n",
817
MMTIMER_NAME);
818
goto out2;
819
}
820
821
/* Get max numbered node, calculate slots needed */
822
for_each_online_node(node) {
823
maxn = node;
824
}
825
maxn++;
826
827
/* Allocate list of node ptrs to mmtimer_t's */
828
timers = kzalloc(sizeof(struct mmtimer_node)*maxn, GFP_KERNEL);
829
if (timers == NULL) {
830
printk(KERN_ERR "%s: failed to allocate memory for device\n",
831
MMTIMER_NAME);
832
goto out3;
833
}
834
835
/* Initialize struct mmtimer's for each online node */
836
for_each_online_node(node) {
837
spin_lock_init(&timers[node].lock);
838
tasklet_init(&timers[node].tasklet, mmtimer_tasklet,
839
(unsigned long) node);
840
}
841
842
sgi_clock_period = NSEC_PER_SEC / sn_rtc_cycles_per_second;
843
posix_timers_register_clock(CLOCK_SGI_CYCLE, &sgi_clock);
844
845
printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION,
846
sn_rtc_cycles_per_second/(unsigned long)1E6);
847
848
return 0;
849
850
out3:
851
kfree(timers);
852
misc_deregister(&mmtimer_miscdev);
853
out2:
854
free_irq(SGI_MMTIMER_VECTOR, NULL);
855
out1:
856
return -1;
857
}
858
859
module_init(mmtimer_init);
860
861