Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/char/rtc.c
15109 views
1
/*
2
* Real Time Clock interface for Linux
3
*
4
* Copyright (C) 1996 Paul Gortmaker
5
*
6
* This driver allows use of the real time clock (built into
7
* nearly all computers) from user space. It exports the /dev/rtc
8
* interface supporting various ioctl() and also the
9
* /proc/driver/rtc pseudo-file for status information.
10
*
11
* The ioctls can be used to set the interrupt behaviour and
12
* generation rate from the RTC via IRQ 8. Then the /dev/rtc
13
* interface can be used to make use of these timer interrupts,
14
* be they interval or alarm based.
15
*
16
* The /dev/rtc interface will block on reads until an interrupt
17
* has been received. If a RTC interrupt has already happened,
18
* it will output an unsigned long and then block. The output value
19
* contains the interrupt status in the low byte and the number of
20
* interrupts since the last read in the remaining high bytes. The
21
* /dev/rtc interface can also be used with the select(2) call.
22
*
23
* This program is free software; you can redistribute it and/or
24
* modify it under the terms of the GNU General Public License
25
* as published by the Free Software Foundation; either version
26
* 2 of the License, or (at your option) any later version.
27
*
28
* Based on other minimal char device drivers, like Alan's
29
* watchdog, Ted's random, etc. etc.
30
*
31
* 1.07 Paul Gortmaker.
32
* 1.08 Miquel van Smoorenburg: disallow certain things on the
33
* DEC Alpha as the CMOS clock is also used for other things.
34
* 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
35
* 1.09a Pete Zaitcev: Sun SPARC
36
* 1.09b Jeff Garzik: Modularize, init cleanup
37
* 1.09c Jeff Garzik: SMP cleanup
38
* 1.10 Paul Barton-Davis: add support for async I/O
39
* 1.10a Andrea Arcangeli: Alpha updates
40
* 1.10b Andrew Morton: SMP lock fix
41
* 1.10c Cesar Barros: SMP locking fixes and cleanup
42
* 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
43
* 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
44
* 1.11 Takashi Iwai: Kernel access functions
45
* rtc_register/rtc_unregister/rtc_control
46
* 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47
* 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48
* CONFIG_HPET_EMULATE_RTC
49
* 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
50
* 1.12ac Alan Cox: Allow read access to the day of week register
51
* 1.12b David John: Remove calls to the BKL.
52
*/
53
54
#define RTC_VERSION "1.12b"
55
56
/*
57
* Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
58
* interrupts disabled. Due to the index-port/data-port (0x70/0x71)
59
* design of the RTC, we don't want two different things trying to
60
* get to it at once. (e.g. the periodic 11 min sync from time.c vs.
61
* this driver.)
62
*/
63
64
#include <linux/interrupt.h>
65
#include <linux/module.h>
66
#include <linux/kernel.h>
67
#include <linux/types.h>
68
#include <linux/miscdevice.h>
69
#include <linux/ioport.h>
70
#include <linux/fcntl.h>
71
#include <linux/mc146818rtc.h>
72
#include <linux/init.h>
73
#include <linux/poll.h>
74
#include <linux/proc_fs.h>
75
#include <linux/seq_file.h>
76
#include <linux/spinlock.h>
77
#include <linux/sched.h>
78
#include <linux/sysctl.h>
79
#include <linux/wait.h>
80
#include <linux/bcd.h>
81
#include <linux/delay.h>
82
#include <linux/uaccess.h>
83
84
#include <asm/current.h>
85
#include <asm/system.h>
86
87
#ifdef CONFIG_X86
88
#include <asm/hpet.h>
89
#endif
90
91
#ifdef CONFIG_SPARC32
92
#include <linux/of.h>
93
#include <linux/of_device.h>
94
#include <asm/io.h>
95
96
static unsigned long rtc_port;
97
static int rtc_irq;
98
#endif
99
100
#ifdef CONFIG_HPET_EMULATE_RTC
101
#undef RTC_IRQ
102
#endif
103
104
#ifdef RTC_IRQ
105
static int rtc_has_irq = 1;
106
#endif
107
108
#ifndef CONFIG_HPET_EMULATE_RTC
109
#define is_hpet_enabled() 0
110
#define hpet_set_alarm_time(hrs, min, sec) 0
111
#define hpet_set_periodic_freq(arg) 0
112
#define hpet_mask_rtc_irq_bit(arg) 0
113
#define hpet_set_rtc_irq_bit(arg) 0
114
#define hpet_rtc_timer_init() do { } while (0)
115
#define hpet_rtc_dropped_irq() 0
116
#define hpet_register_irq_handler(h) ({ 0; })
117
#define hpet_unregister_irq_handler(h) ({ 0; })
118
#ifdef RTC_IRQ
119
static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
120
{
121
return 0;
122
}
123
#endif
124
#endif
125
126
/*
127
* We sponge a minor off of the misc major. No need slurping
128
* up another valuable major dev number for this. If you add
129
* an ioctl, make sure you don't conflict with SPARC's RTC
130
* ioctls.
131
*/
132
133
static struct fasync_struct *rtc_async_queue;
134
135
static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
136
137
#ifdef RTC_IRQ
138
static void rtc_dropped_irq(unsigned long data);
139
140
static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
141
#endif
142
143
static ssize_t rtc_read(struct file *file, char __user *buf,
144
size_t count, loff_t *ppos);
145
146
static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147
static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
148
149
#ifdef RTC_IRQ
150
static unsigned int rtc_poll(struct file *file, poll_table *wait);
151
#endif
152
153
static void get_rtc_alm_time(struct rtc_time *alm_tm);
154
#ifdef RTC_IRQ
155
static void set_rtc_irq_bit_locked(unsigned char bit);
156
static void mask_rtc_irq_bit_locked(unsigned char bit);
157
158
static inline void set_rtc_irq_bit(unsigned char bit)
159
{
160
spin_lock_irq(&rtc_lock);
161
set_rtc_irq_bit_locked(bit);
162
spin_unlock_irq(&rtc_lock);
163
}
164
165
static void mask_rtc_irq_bit(unsigned char bit)
166
{
167
spin_lock_irq(&rtc_lock);
168
mask_rtc_irq_bit_locked(bit);
169
spin_unlock_irq(&rtc_lock);
170
}
171
#endif
172
173
#ifdef CONFIG_PROC_FS
174
static int rtc_proc_open(struct inode *inode, struct file *file);
175
#endif
176
177
/*
178
* Bits in rtc_status. (6 bits of room for future expansion)
179
*/
180
181
#define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
182
#define RTC_TIMER_ON 0x02 /* missed irq timer active */
183
184
/*
185
* rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
186
* protected by the spin lock rtc_lock. However, ioctl can still disable the
187
* timer in rtc_status and then with del_timer after the interrupt has read
188
* rtc_status but before mod_timer is called, which would then reenable the
189
* timer (but you would need to have an awful timing before you'd trip on it)
190
*/
191
static unsigned long rtc_status; /* bitmapped status byte. */
192
static unsigned long rtc_freq; /* Current periodic IRQ rate */
193
static unsigned long rtc_irq_data; /* our output to the world */
194
static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
195
196
#ifdef RTC_IRQ
197
/*
198
* rtc_task_lock nests inside rtc_lock.
199
*/
200
static DEFINE_SPINLOCK(rtc_task_lock);
201
static rtc_task_t *rtc_callback;
202
#endif
203
204
/*
205
* If this driver ever becomes modularised, it will be really nice
206
* to make the epoch retain its value across module reload...
207
*/
208
209
static unsigned long epoch = 1900; /* year corresponding to 0x00 */
210
211
static const unsigned char days_in_mo[] =
212
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
213
214
/*
215
* Returns true if a clock update is in progress
216
*/
217
static inline unsigned char rtc_is_updating(void)
218
{
219
unsigned long flags;
220
unsigned char uip;
221
222
spin_lock_irqsave(&rtc_lock, flags);
223
uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
224
spin_unlock_irqrestore(&rtc_lock, flags);
225
return uip;
226
}
227
228
#ifdef RTC_IRQ
229
/*
230
* A very tiny interrupt handler. It runs with IRQF_DISABLED set,
231
* but there is possibility of conflicting with the set_rtc_mmss()
232
* call (the rtc irq and the timer irq can easily run at the same
233
* time in two different CPUs). So we need to serialize
234
* accesses to the chip with the rtc_lock spinlock that each
235
* architecture should implement in the timer code.
236
* (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
237
*/
238
239
static irqreturn_t rtc_interrupt(int irq, void *dev_id)
240
{
241
/*
242
* Can be an alarm interrupt, update complete interrupt,
243
* or a periodic interrupt. We store the status in the
244
* low byte and the number of interrupts received since
245
* the last read in the remainder of rtc_irq_data.
246
*/
247
248
spin_lock(&rtc_lock);
249
rtc_irq_data += 0x100;
250
rtc_irq_data &= ~0xff;
251
if (is_hpet_enabled()) {
252
/*
253
* In this case it is HPET RTC interrupt handler
254
* calling us, with the interrupt information
255
* passed as arg1, instead of irq.
256
*/
257
rtc_irq_data |= (unsigned long)irq & 0xF0;
258
} else {
259
rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
260
}
261
262
if (rtc_status & RTC_TIMER_ON)
263
mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
264
265
spin_unlock(&rtc_lock);
266
267
/* Now do the rest of the actions */
268
spin_lock(&rtc_task_lock);
269
if (rtc_callback)
270
rtc_callback->func(rtc_callback->private_data);
271
spin_unlock(&rtc_task_lock);
272
wake_up_interruptible(&rtc_wait);
273
274
kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
275
276
return IRQ_HANDLED;
277
}
278
#endif
279
280
/*
281
* sysctl-tuning infrastructure.
282
*/
283
static ctl_table rtc_table[] = {
284
{
285
.procname = "max-user-freq",
286
.data = &rtc_max_user_freq,
287
.maxlen = sizeof(int),
288
.mode = 0644,
289
.proc_handler = proc_dointvec,
290
},
291
{ }
292
};
293
294
static ctl_table rtc_root[] = {
295
{
296
.procname = "rtc",
297
.mode = 0555,
298
.child = rtc_table,
299
},
300
{ }
301
};
302
303
static ctl_table dev_root[] = {
304
{
305
.procname = "dev",
306
.mode = 0555,
307
.child = rtc_root,
308
},
309
{ }
310
};
311
312
static struct ctl_table_header *sysctl_header;
313
314
static int __init init_sysctl(void)
315
{
316
sysctl_header = register_sysctl_table(dev_root);
317
return 0;
318
}
319
320
static void __exit cleanup_sysctl(void)
321
{
322
unregister_sysctl_table(sysctl_header);
323
}
324
325
/*
326
* Now all the various file operations that we export.
327
*/
328
329
static ssize_t rtc_read(struct file *file, char __user *buf,
330
size_t count, loff_t *ppos)
331
{
332
#ifndef RTC_IRQ
333
return -EIO;
334
#else
335
DECLARE_WAITQUEUE(wait, current);
336
unsigned long data;
337
ssize_t retval;
338
339
if (rtc_has_irq == 0)
340
return -EIO;
341
342
/*
343
* Historically this function used to assume that sizeof(unsigned long)
344
* is the same in userspace and kernelspace. This lead to problems
345
* for configurations with multiple ABIs such a the MIPS o32 and 64
346
* ABIs supported on the same kernel. So now we support read of both
347
* 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
348
* userspace ABI.
349
*/
350
if (count != sizeof(unsigned int) && count != sizeof(unsigned long))
351
return -EINVAL;
352
353
add_wait_queue(&rtc_wait, &wait);
354
355
do {
356
/* First make it right. Then make it fast. Putting this whole
357
* block within the parentheses of a while would be too
358
* confusing. And no, xchg() is not the answer. */
359
360
__set_current_state(TASK_INTERRUPTIBLE);
361
362
spin_lock_irq(&rtc_lock);
363
data = rtc_irq_data;
364
rtc_irq_data = 0;
365
spin_unlock_irq(&rtc_lock);
366
367
if (data != 0)
368
break;
369
370
if (file->f_flags & O_NONBLOCK) {
371
retval = -EAGAIN;
372
goto out;
373
}
374
if (signal_pending(current)) {
375
retval = -ERESTARTSYS;
376
goto out;
377
}
378
schedule();
379
} while (1);
380
381
if (count == sizeof(unsigned int)) {
382
retval = put_user(data,
383
(unsigned int __user *)buf) ?: sizeof(int);
384
} else {
385
retval = put_user(data,
386
(unsigned long __user *)buf) ?: sizeof(long);
387
}
388
if (!retval)
389
retval = count;
390
out:
391
__set_current_state(TASK_RUNNING);
392
remove_wait_queue(&rtc_wait, &wait);
393
394
return retval;
395
#endif
396
}
397
398
static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
399
{
400
struct rtc_time wtime;
401
402
#ifdef RTC_IRQ
403
if (rtc_has_irq == 0) {
404
switch (cmd) {
405
case RTC_AIE_OFF:
406
case RTC_AIE_ON:
407
case RTC_PIE_OFF:
408
case RTC_PIE_ON:
409
case RTC_UIE_OFF:
410
case RTC_UIE_ON:
411
case RTC_IRQP_READ:
412
case RTC_IRQP_SET:
413
return -EINVAL;
414
};
415
}
416
#endif
417
418
switch (cmd) {
419
#ifdef RTC_IRQ
420
case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
421
{
422
mask_rtc_irq_bit(RTC_AIE);
423
return 0;
424
}
425
case RTC_AIE_ON: /* Allow alarm interrupts. */
426
{
427
set_rtc_irq_bit(RTC_AIE);
428
return 0;
429
}
430
case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
431
{
432
/* can be called from isr via rtc_control() */
433
unsigned long flags;
434
435
spin_lock_irqsave(&rtc_lock, flags);
436
mask_rtc_irq_bit_locked(RTC_PIE);
437
if (rtc_status & RTC_TIMER_ON) {
438
rtc_status &= ~RTC_TIMER_ON;
439
del_timer(&rtc_irq_timer);
440
}
441
spin_unlock_irqrestore(&rtc_lock, flags);
442
443
return 0;
444
}
445
case RTC_PIE_ON: /* Allow periodic ints */
446
{
447
/* can be called from isr via rtc_control() */
448
unsigned long flags;
449
450
/*
451
* We don't really want Joe User enabling more
452
* than 64Hz of interrupts on a multi-user machine.
453
*/
454
if (!kernel && (rtc_freq > rtc_max_user_freq) &&
455
(!capable(CAP_SYS_RESOURCE)))
456
return -EACCES;
457
458
spin_lock_irqsave(&rtc_lock, flags);
459
if (!(rtc_status & RTC_TIMER_ON)) {
460
mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
461
2*HZ/100);
462
rtc_status |= RTC_TIMER_ON;
463
}
464
set_rtc_irq_bit_locked(RTC_PIE);
465
spin_unlock_irqrestore(&rtc_lock, flags);
466
467
return 0;
468
}
469
case RTC_UIE_OFF: /* Mask ints from RTC updates. */
470
{
471
mask_rtc_irq_bit(RTC_UIE);
472
return 0;
473
}
474
case RTC_UIE_ON: /* Allow ints for RTC updates. */
475
{
476
set_rtc_irq_bit(RTC_UIE);
477
return 0;
478
}
479
#endif
480
case RTC_ALM_READ: /* Read the present alarm time */
481
{
482
/*
483
* This returns a struct rtc_time. Reading >= 0xc0
484
* means "don't care" or "match all". Only the tm_hour,
485
* tm_min, and tm_sec values are filled in.
486
*/
487
memset(&wtime, 0, sizeof(struct rtc_time));
488
get_rtc_alm_time(&wtime);
489
break;
490
}
491
case RTC_ALM_SET: /* Store a time into the alarm */
492
{
493
/*
494
* This expects a struct rtc_time. Writing 0xff means
495
* "don't care" or "match all". Only the tm_hour,
496
* tm_min and tm_sec are used.
497
*/
498
unsigned char hrs, min, sec;
499
struct rtc_time alm_tm;
500
501
if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
502
sizeof(struct rtc_time)))
503
return -EFAULT;
504
505
hrs = alm_tm.tm_hour;
506
min = alm_tm.tm_min;
507
sec = alm_tm.tm_sec;
508
509
spin_lock_irq(&rtc_lock);
510
if (hpet_set_alarm_time(hrs, min, sec)) {
511
/*
512
* Fallthru and set alarm time in CMOS too,
513
* so that we will get proper value in RTC_ALM_READ
514
*/
515
}
516
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
517
RTC_ALWAYS_BCD) {
518
if (sec < 60)
519
sec = bin2bcd(sec);
520
else
521
sec = 0xff;
522
523
if (min < 60)
524
min = bin2bcd(min);
525
else
526
min = 0xff;
527
528
if (hrs < 24)
529
hrs = bin2bcd(hrs);
530
else
531
hrs = 0xff;
532
}
533
CMOS_WRITE(hrs, RTC_HOURS_ALARM);
534
CMOS_WRITE(min, RTC_MINUTES_ALARM);
535
CMOS_WRITE(sec, RTC_SECONDS_ALARM);
536
spin_unlock_irq(&rtc_lock);
537
538
return 0;
539
}
540
case RTC_RD_TIME: /* Read the time/date from RTC */
541
{
542
memset(&wtime, 0, sizeof(struct rtc_time));
543
rtc_get_rtc_time(&wtime);
544
break;
545
}
546
case RTC_SET_TIME: /* Set the RTC */
547
{
548
struct rtc_time rtc_tm;
549
unsigned char mon, day, hrs, min, sec, leap_yr;
550
unsigned char save_control, save_freq_select;
551
unsigned int yrs;
552
#ifdef CONFIG_MACH_DECSTATION
553
unsigned int real_yrs;
554
#endif
555
556
if (!capable(CAP_SYS_TIME))
557
return -EACCES;
558
559
if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
560
sizeof(struct rtc_time)))
561
return -EFAULT;
562
563
yrs = rtc_tm.tm_year + 1900;
564
mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
565
day = rtc_tm.tm_mday;
566
hrs = rtc_tm.tm_hour;
567
min = rtc_tm.tm_min;
568
sec = rtc_tm.tm_sec;
569
570
if (yrs < 1970)
571
return -EINVAL;
572
573
leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
574
575
if ((mon > 12) || (day == 0))
576
return -EINVAL;
577
578
if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
579
return -EINVAL;
580
581
if ((hrs >= 24) || (min >= 60) || (sec >= 60))
582
return -EINVAL;
583
584
yrs -= epoch;
585
if (yrs > 255) /* They are unsigned */
586
return -EINVAL;
587
588
spin_lock_irq(&rtc_lock);
589
#ifdef CONFIG_MACH_DECSTATION
590
real_yrs = yrs;
591
yrs = 72;
592
593
/*
594
* We want to keep the year set to 73 until March
595
* for non-leap years, so that Feb, 29th is handled
596
* correctly.
597
*/
598
if (!leap_yr && mon < 3) {
599
real_yrs--;
600
yrs = 73;
601
}
602
#endif
603
/* These limits and adjustments are independent of
604
* whether the chip is in binary mode or not.
605
*/
606
if (yrs > 169) {
607
spin_unlock_irq(&rtc_lock);
608
return -EINVAL;
609
}
610
if (yrs >= 100)
611
yrs -= 100;
612
613
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
614
|| RTC_ALWAYS_BCD) {
615
sec = bin2bcd(sec);
616
min = bin2bcd(min);
617
hrs = bin2bcd(hrs);
618
day = bin2bcd(day);
619
mon = bin2bcd(mon);
620
yrs = bin2bcd(yrs);
621
}
622
623
save_control = CMOS_READ(RTC_CONTROL);
624
CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
625
save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
626
CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
627
628
#ifdef CONFIG_MACH_DECSTATION
629
CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
630
#endif
631
CMOS_WRITE(yrs, RTC_YEAR);
632
CMOS_WRITE(mon, RTC_MONTH);
633
CMOS_WRITE(day, RTC_DAY_OF_MONTH);
634
CMOS_WRITE(hrs, RTC_HOURS);
635
CMOS_WRITE(min, RTC_MINUTES);
636
CMOS_WRITE(sec, RTC_SECONDS);
637
638
CMOS_WRITE(save_control, RTC_CONTROL);
639
CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
640
641
spin_unlock_irq(&rtc_lock);
642
return 0;
643
}
644
#ifdef RTC_IRQ
645
case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
646
{
647
return put_user(rtc_freq, (unsigned long __user *)arg);
648
}
649
case RTC_IRQP_SET: /* Set periodic IRQ rate. */
650
{
651
int tmp = 0;
652
unsigned char val;
653
/* can be called from isr via rtc_control() */
654
unsigned long flags;
655
656
/*
657
* The max we can do is 8192Hz.
658
*/
659
if ((arg < 2) || (arg > 8192))
660
return -EINVAL;
661
/*
662
* We don't really want Joe User generating more
663
* than 64Hz of interrupts on a multi-user machine.
664
*/
665
if (!kernel && (arg > rtc_max_user_freq) &&
666
!capable(CAP_SYS_RESOURCE))
667
return -EACCES;
668
669
while (arg > (1<<tmp))
670
tmp++;
671
672
/*
673
* Check that the input was really a power of 2.
674
*/
675
if (arg != (1<<tmp))
676
return -EINVAL;
677
678
rtc_freq = arg;
679
680
spin_lock_irqsave(&rtc_lock, flags);
681
if (hpet_set_periodic_freq(arg)) {
682
spin_unlock_irqrestore(&rtc_lock, flags);
683
return 0;
684
}
685
686
val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
687
val |= (16 - tmp);
688
CMOS_WRITE(val, RTC_FREQ_SELECT);
689
spin_unlock_irqrestore(&rtc_lock, flags);
690
return 0;
691
}
692
#endif
693
case RTC_EPOCH_READ: /* Read the epoch. */
694
{
695
return put_user(epoch, (unsigned long __user *)arg);
696
}
697
case RTC_EPOCH_SET: /* Set the epoch. */
698
{
699
/*
700
* There were no RTC clocks before 1900.
701
*/
702
if (arg < 1900)
703
return -EINVAL;
704
705
if (!capable(CAP_SYS_TIME))
706
return -EACCES;
707
708
epoch = arg;
709
return 0;
710
}
711
default:
712
return -ENOTTY;
713
}
714
return copy_to_user((void __user *)arg,
715
&wtime, sizeof wtime) ? -EFAULT : 0;
716
}
717
718
static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
719
{
720
long ret;
721
ret = rtc_do_ioctl(cmd, arg, 0);
722
return ret;
723
}
724
725
/*
726
* We enforce only one user at a time here with the open/close.
727
* Also clear the previous interrupt data on an open, and clean
728
* up things on a close.
729
*/
730
static int rtc_open(struct inode *inode, struct file *file)
731
{
732
spin_lock_irq(&rtc_lock);
733
734
if (rtc_status & RTC_IS_OPEN)
735
goto out_busy;
736
737
rtc_status |= RTC_IS_OPEN;
738
739
rtc_irq_data = 0;
740
spin_unlock_irq(&rtc_lock);
741
return 0;
742
743
out_busy:
744
spin_unlock_irq(&rtc_lock);
745
return -EBUSY;
746
}
747
748
static int rtc_fasync(int fd, struct file *filp, int on)
749
{
750
return fasync_helper(fd, filp, on, &rtc_async_queue);
751
}
752
753
static int rtc_release(struct inode *inode, struct file *file)
754
{
755
#ifdef RTC_IRQ
756
unsigned char tmp;
757
758
if (rtc_has_irq == 0)
759
goto no_irq;
760
761
/*
762
* Turn off all interrupts once the device is no longer
763
* in use, and clear the data.
764
*/
765
766
spin_lock_irq(&rtc_lock);
767
if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
768
tmp = CMOS_READ(RTC_CONTROL);
769
tmp &= ~RTC_PIE;
770
tmp &= ~RTC_AIE;
771
tmp &= ~RTC_UIE;
772
CMOS_WRITE(tmp, RTC_CONTROL);
773
CMOS_READ(RTC_INTR_FLAGS);
774
}
775
if (rtc_status & RTC_TIMER_ON) {
776
rtc_status &= ~RTC_TIMER_ON;
777
del_timer(&rtc_irq_timer);
778
}
779
spin_unlock_irq(&rtc_lock);
780
781
no_irq:
782
#endif
783
784
spin_lock_irq(&rtc_lock);
785
rtc_irq_data = 0;
786
rtc_status &= ~RTC_IS_OPEN;
787
spin_unlock_irq(&rtc_lock);
788
789
return 0;
790
}
791
792
#ifdef RTC_IRQ
793
static unsigned int rtc_poll(struct file *file, poll_table *wait)
794
{
795
unsigned long l;
796
797
if (rtc_has_irq == 0)
798
return 0;
799
800
poll_wait(file, &rtc_wait, wait);
801
802
spin_lock_irq(&rtc_lock);
803
l = rtc_irq_data;
804
spin_unlock_irq(&rtc_lock);
805
806
if (l != 0)
807
return POLLIN | POLLRDNORM;
808
return 0;
809
}
810
#endif
811
812
int rtc_register(rtc_task_t *task)
813
{
814
#ifndef RTC_IRQ
815
return -EIO;
816
#else
817
if (task == NULL || task->func == NULL)
818
return -EINVAL;
819
spin_lock_irq(&rtc_lock);
820
if (rtc_status & RTC_IS_OPEN) {
821
spin_unlock_irq(&rtc_lock);
822
return -EBUSY;
823
}
824
spin_lock(&rtc_task_lock);
825
if (rtc_callback) {
826
spin_unlock(&rtc_task_lock);
827
spin_unlock_irq(&rtc_lock);
828
return -EBUSY;
829
}
830
rtc_status |= RTC_IS_OPEN;
831
rtc_callback = task;
832
spin_unlock(&rtc_task_lock);
833
spin_unlock_irq(&rtc_lock);
834
return 0;
835
#endif
836
}
837
EXPORT_SYMBOL(rtc_register);
838
839
int rtc_unregister(rtc_task_t *task)
840
{
841
#ifndef RTC_IRQ
842
return -EIO;
843
#else
844
unsigned char tmp;
845
846
spin_lock_irq(&rtc_lock);
847
spin_lock(&rtc_task_lock);
848
if (rtc_callback != task) {
849
spin_unlock(&rtc_task_lock);
850
spin_unlock_irq(&rtc_lock);
851
return -ENXIO;
852
}
853
rtc_callback = NULL;
854
855
/* disable controls */
856
if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
857
tmp = CMOS_READ(RTC_CONTROL);
858
tmp &= ~RTC_PIE;
859
tmp &= ~RTC_AIE;
860
tmp &= ~RTC_UIE;
861
CMOS_WRITE(tmp, RTC_CONTROL);
862
CMOS_READ(RTC_INTR_FLAGS);
863
}
864
if (rtc_status & RTC_TIMER_ON) {
865
rtc_status &= ~RTC_TIMER_ON;
866
del_timer(&rtc_irq_timer);
867
}
868
rtc_status &= ~RTC_IS_OPEN;
869
spin_unlock(&rtc_task_lock);
870
spin_unlock_irq(&rtc_lock);
871
return 0;
872
#endif
873
}
874
EXPORT_SYMBOL(rtc_unregister);
875
876
int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
877
{
878
#ifndef RTC_IRQ
879
return -EIO;
880
#else
881
unsigned long flags;
882
if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
883
return -EINVAL;
884
spin_lock_irqsave(&rtc_task_lock, flags);
885
if (rtc_callback != task) {
886
spin_unlock_irqrestore(&rtc_task_lock, flags);
887
return -ENXIO;
888
}
889
spin_unlock_irqrestore(&rtc_task_lock, flags);
890
return rtc_do_ioctl(cmd, arg, 1);
891
#endif
892
}
893
EXPORT_SYMBOL(rtc_control);
894
895
/*
896
* The various file operations we support.
897
*/
898
899
static const struct file_operations rtc_fops = {
900
.owner = THIS_MODULE,
901
.llseek = no_llseek,
902
.read = rtc_read,
903
#ifdef RTC_IRQ
904
.poll = rtc_poll,
905
#endif
906
.unlocked_ioctl = rtc_ioctl,
907
.open = rtc_open,
908
.release = rtc_release,
909
.fasync = rtc_fasync,
910
};
911
912
static struct miscdevice rtc_dev = {
913
.minor = RTC_MINOR,
914
.name = "rtc",
915
.fops = &rtc_fops,
916
};
917
918
#ifdef CONFIG_PROC_FS
919
static const struct file_operations rtc_proc_fops = {
920
.owner = THIS_MODULE,
921
.open = rtc_proc_open,
922
.read = seq_read,
923
.llseek = seq_lseek,
924
.release = single_release,
925
};
926
#endif
927
928
static resource_size_t rtc_size;
929
930
static struct resource * __init rtc_request_region(resource_size_t size)
931
{
932
struct resource *r;
933
934
if (RTC_IOMAPPED)
935
r = request_region(RTC_PORT(0), size, "rtc");
936
else
937
r = request_mem_region(RTC_PORT(0), size, "rtc");
938
939
if (r)
940
rtc_size = size;
941
942
return r;
943
}
944
945
static void rtc_release_region(void)
946
{
947
if (RTC_IOMAPPED)
948
release_region(RTC_PORT(0), rtc_size);
949
else
950
release_mem_region(RTC_PORT(0), rtc_size);
951
}
952
953
static int __init rtc_init(void)
954
{
955
#ifdef CONFIG_PROC_FS
956
struct proc_dir_entry *ent;
957
#endif
958
#if defined(__alpha__) || defined(__mips__)
959
unsigned int year, ctrl;
960
char *guess = NULL;
961
#endif
962
#ifdef CONFIG_SPARC32
963
struct device_node *ebus_dp;
964
struct platform_device *op;
965
#else
966
void *r;
967
#ifdef RTC_IRQ
968
irq_handler_t rtc_int_handler_ptr;
969
#endif
970
#endif
971
972
#ifdef CONFIG_SPARC32
973
for_each_node_by_name(ebus_dp, "ebus") {
974
struct device_node *dp;
975
for (dp = ebus_dp; dp; dp = dp->sibling) {
976
if (!strcmp(dp->name, "rtc")) {
977
op = of_find_device_by_node(dp);
978
if (op) {
979
rtc_port = op->resource[0].start;
980
rtc_irq = op->irqs[0];
981
goto found;
982
}
983
}
984
}
985
}
986
rtc_has_irq = 0;
987
printk(KERN_ERR "rtc_init: no PC rtc found\n");
988
return -EIO;
989
990
found:
991
if (!rtc_irq) {
992
rtc_has_irq = 0;
993
goto no_irq;
994
}
995
996
/*
997
* XXX Interrupt pin #7 in Espresso is shared between RTC and
998
* PCI Slot 2 INTA# (and some INTx# in Slot 1).
999
*/
1000
if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
1001
(void *)&rtc_port)) {
1002
rtc_has_irq = 0;
1003
printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
1004
return -EIO;
1005
}
1006
no_irq:
1007
#else
1008
r = rtc_request_region(RTC_IO_EXTENT);
1009
1010
/*
1011
* If we've already requested a smaller range (for example, because
1012
* PNPBIOS or ACPI told us how the device is configured), the request
1013
* above might fail because it's too big.
1014
*
1015
* If so, request just the range we actually use.
1016
*/
1017
if (!r)
1018
r = rtc_request_region(RTC_IO_EXTENT_USED);
1019
if (!r) {
1020
#ifdef RTC_IRQ
1021
rtc_has_irq = 0;
1022
#endif
1023
printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1024
(long)(RTC_PORT(0)));
1025
return -EIO;
1026
}
1027
1028
#ifdef RTC_IRQ
1029
if (is_hpet_enabled()) {
1030
int err;
1031
1032
rtc_int_handler_ptr = hpet_rtc_interrupt;
1033
err = hpet_register_irq_handler(rtc_interrupt);
1034
if (err != 0) {
1035
printk(KERN_WARNING "hpet_register_irq_handler failed "
1036
"in rtc_init().");
1037
return err;
1038
}
1039
} else {
1040
rtc_int_handler_ptr = rtc_interrupt;
1041
}
1042
1043
if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
1044
"rtc", NULL)) {
1045
/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1046
rtc_has_irq = 0;
1047
printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1048
rtc_release_region();
1049
1050
return -EIO;
1051
}
1052
hpet_rtc_timer_init();
1053
1054
#endif
1055
1056
#endif /* CONFIG_SPARC32 vs. others */
1057
1058
if (misc_register(&rtc_dev)) {
1059
#ifdef RTC_IRQ
1060
free_irq(RTC_IRQ, NULL);
1061
hpet_unregister_irq_handler(rtc_interrupt);
1062
rtc_has_irq = 0;
1063
#endif
1064
rtc_release_region();
1065
return -ENODEV;
1066
}
1067
1068
#ifdef CONFIG_PROC_FS
1069
ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
1070
if (!ent)
1071
printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1072
#endif
1073
1074
#if defined(__alpha__) || defined(__mips__)
1075
rtc_freq = HZ;
1076
1077
/* Each operating system on an Alpha uses its own epoch.
1078
Let's try to guess which one we are using now. */
1079
1080
if (rtc_is_updating() != 0)
1081
msleep(20);
1082
1083
spin_lock_irq(&rtc_lock);
1084
year = CMOS_READ(RTC_YEAR);
1085
ctrl = CMOS_READ(RTC_CONTROL);
1086
spin_unlock_irq(&rtc_lock);
1087
1088
if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1089
year = bcd2bin(year); /* This should never happen... */
1090
1091
if (year < 20) {
1092
epoch = 2000;
1093
guess = "SRM (post-2000)";
1094
} else if (year >= 20 && year < 48) {
1095
epoch = 1980;
1096
guess = "ARC console";
1097
} else if (year >= 48 && year < 72) {
1098
epoch = 1952;
1099
guess = "Digital UNIX";
1100
#if defined(__mips__)
1101
} else if (year >= 72 && year < 74) {
1102
epoch = 2000;
1103
guess = "Digital DECstation";
1104
#else
1105
} else if (year >= 70) {
1106
epoch = 1900;
1107
guess = "Standard PC (1900)";
1108
#endif
1109
}
1110
if (guess)
1111
printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1112
guess, epoch);
1113
#endif
1114
#ifdef RTC_IRQ
1115
if (rtc_has_irq == 0)
1116
goto no_irq2;
1117
1118
spin_lock_irq(&rtc_lock);
1119
rtc_freq = 1024;
1120
if (!hpet_set_periodic_freq(rtc_freq)) {
1121
/*
1122
* Initialize periodic frequency to CMOS reset default,
1123
* which is 1024Hz
1124
*/
1125
CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1126
RTC_FREQ_SELECT);
1127
}
1128
spin_unlock_irq(&rtc_lock);
1129
no_irq2:
1130
#endif
1131
1132
(void) init_sysctl();
1133
1134
printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1135
1136
return 0;
1137
}
1138
1139
static void __exit rtc_exit(void)
1140
{
1141
cleanup_sysctl();
1142
remove_proc_entry("driver/rtc", NULL);
1143
misc_deregister(&rtc_dev);
1144
1145
#ifdef CONFIG_SPARC32
1146
if (rtc_has_irq)
1147
free_irq(rtc_irq, &rtc_port);
1148
#else
1149
rtc_release_region();
1150
#ifdef RTC_IRQ
1151
if (rtc_has_irq) {
1152
free_irq(RTC_IRQ, NULL);
1153
hpet_unregister_irq_handler(hpet_rtc_interrupt);
1154
}
1155
#endif
1156
#endif /* CONFIG_SPARC32 */
1157
}
1158
1159
module_init(rtc_init);
1160
module_exit(rtc_exit);
1161
1162
#ifdef RTC_IRQ
1163
/*
1164
* At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1165
* (usually during an IDE disk interrupt, with IRQ unmasking off)
1166
* Since the interrupt handler doesn't get called, the IRQ status
1167
* byte doesn't get read, and the RTC stops generating interrupts.
1168
* A timer is set, and will call this function if/when that happens.
1169
* To get it out of this stalled state, we just read the status.
1170
* At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1171
* (You *really* shouldn't be trying to use a non-realtime system
1172
* for something that requires a steady > 1KHz signal anyways.)
1173
*/
1174
1175
static void rtc_dropped_irq(unsigned long data)
1176
{
1177
unsigned long freq;
1178
1179
spin_lock_irq(&rtc_lock);
1180
1181
if (hpet_rtc_dropped_irq()) {
1182
spin_unlock_irq(&rtc_lock);
1183
return;
1184
}
1185
1186
/* Just in case someone disabled the timer from behind our back... */
1187
if (rtc_status & RTC_TIMER_ON)
1188
mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1189
1190
rtc_irq_data += ((rtc_freq/HZ)<<8);
1191
rtc_irq_data &= ~0xff;
1192
rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
1193
1194
freq = rtc_freq;
1195
1196
spin_unlock_irq(&rtc_lock);
1197
1198
if (printk_ratelimit()) {
1199
printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1200
freq);
1201
}
1202
1203
/* Now we have new data */
1204
wake_up_interruptible(&rtc_wait);
1205
1206
kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1207
}
1208
#endif
1209
1210
#ifdef CONFIG_PROC_FS
1211
/*
1212
* Info exported via "/proc/driver/rtc".
1213
*/
1214
1215
static int rtc_proc_show(struct seq_file *seq, void *v)
1216
{
1217
#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1218
#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1219
struct rtc_time tm;
1220
unsigned char batt, ctrl;
1221
unsigned long freq;
1222
1223
spin_lock_irq(&rtc_lock);
1224
batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1225
ctrl = CMOS_READ(RTC_CONTROL);
1226
freq = rtc_freq;
1227
spin_unlock_irq(&rtc_lock);
1228
1229
1230
rtc_get_rtc_time(&tm);
1231
1232
/*
1233
* There is no way to tell if the luser has the RTC set for local
1234
* time or for Universal Standard Time (GMT). Probably local though.
1235
*/
1236
seq_printf(seq,
1237
"rtc_time\t: %02d:%02d:%02d\n"
1238
"rtc_date\t: %04d-%02d-%02d\n"
1239
"rtc_epoch\t: %04lu\n",
1240
tm.tm_hour, tm.tm_min, tm.tm_sec,
1241
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1242
1243
get_rtc_alm_time(&tm);
1244
1245
/*
1246
* We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1247
* match any value for that particular field. Values that are
1248
* greater than a valid time, but less than 0xc0 shouldn't appear.
1249
*/
1250
seq_puts(seq, "alarm\t\t: ");
1251
if (tm.tm_hour <= 24)
1252
seq_printf(seq, "%02d:", tm.tm_hour);
1253
else
1254
seq_puts(seq, "**:");
1255
1256
if (tm.tm_min <= 59)
1257
seq_printf(seq, "%02d:", tm.tm_min);
1258
else
1259
seq_puts(seq, "**:");
1260
1261
if (tm.tm_sec <= 59)
1262
seq_printf(seq, "%02d\n", tm.tm_sec);
1263
else
1264
seq_puts(seq, "**\n");
1265
1266
seq_printf(seq,
1267
"DST_enable\t: %s\n"
1268
"BCD\t\t: %s\n"
1269
"24hr\t\t: %s\n"
1270
"square_wave\t: %s\n"
1271
"alarm_IRQ\t: %s\n"
1272
"update_IRQ\t: %s\n"
1273
"periodic_IRQ\t: %s\n"
1274
"periodic_freq\t: %ld\n"
1275
"batt_status\t: %s\n",
1276
YN(RTC_DST_EN),
1277
NY(RTC_DM_BINARY),
1278
YN(RTC_24H),
1279
YN(RTC_SQWE),
1280
YN(RTC_AIE),
1281
YN(RTC_UIE),
1282
YN(RTC_PIE),
1283
freq,
1284
batt ? "okay" : "dead");
1285
1286
return 0;
1287
#undef YN
1288
#undef NY
1289
}
1290
1291
static int rtc_proc_open(struct inode *inode, struct file *file)
1292
{
1293
return single_open(file, rtc_proc_show, NULL);
1294
}
1295
#endif
1296
1297
static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1298
{
1299
unsigned long uip_watchdog = jiffies, flags;
1300
unsigned char ctrl;
1301
#ifdef CONFIG_MACH_DECSTATION
1302
unsigned int real_year;
1303
#endif
1304
1305
/*
1306
* read RTC once any update in progress is done. The update
1307
* can take just over 2ms. We wait 20ms. There is no need to
1308
* to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1309
* If you need to know *exactly* when a second has started, enable
1310
* periodic update complete interrupts, (via ioctl) and then
1311
* immediately read /dev/rtc which will block until you get the IRQ.
1312
* Once the read clears, read the RTC time (again via ioctl). Easy.
1313
*/
1314
1315
while (rtc_is_updating() != 0 &&
1316
time_before(jiffies, uip_watchdog + 2*HZ/100))
1317
cpu_relax();
1318
1319
/*
1320
* Only the values that we read from the RTC are set. We leave
1321
* tm_wday, tm_yday and tm_isdst untouched. Note that while the
1322
* RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1323
* only updated by the RTC when initially set to a non-zero value.
1324
*/
1325
spin_lock_irqsave(&rtc_lock, flags);
1326
rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1327
rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1328
rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1329
rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1330
rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1331
rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1332
/* Only set from 2.6.16 onwards */
1333
rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1334
1335
#ifdef CONFIG_MACH_DECSTATION
1336
real_year = CMOS_READ(RTC_DEC_YEAR);
1337
#endif
1338
ctrl = CMOS_READ(RTC_CONTROL);
1339
spin_unlock_irqrestore(&rtc_lock, flags);
1340
1341
if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1342
rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1343
rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1344
rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1345
rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1346
rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1347
rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1348
rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1349
}
1350
1351
#ifdef CONFIG_MACH_DECSTATION
1352
rtc_tm->tm_year += real_year - 72;
1353
#endif
1354
1355
/*
1356
* Account for differences between how the RTC uses the values
1357
* and how they are defined in a struct rtc_time;
1358
*/
1359
rtc_tm->tm_year += epoch - 1900;
1360
if (rtc_tm->tm_year <= 69)
1361
rtc_tm->tm_year += 100;
1362
1363
rtc_tm->tm_mon--;
1364
}
1365
1366
static void get_rtc_alm_time(struct rtc_time *alm_tm)
1367
{
1368
unsigned char ctrl;
1369
1370
/*
1371
* Only the values that we read from the RTC are set. That
1372
* means only tm_hour, tm_min, and tm_sec.
1373
*/
1374
spin_lock_irq(&rtc_lock);
1375
alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1376
alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1377
alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1378
ctrl = CMOS_READ(RTC_CONTROL);
1379
spin_unlock_irq(&rtc_lock);
1380
1381
if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1382
alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1383
alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1384
alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1385
}
1386
}
1387
1388
#ifdef RTC_IRQ
1389
/*
1390
* Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1391
* Rumour has it that if you frob the interrupt enable/disable
1392
* bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1393
* ensure you actually start getting interrupts. Probably for
1394
* compatibility with older/broken chipset RTC implementations.
1395
* We also clear out any old irq data after an ioctl() that
1396
* meddles with the interrupt enable/disable bits.
1397
*/
1398
1399
static void mask_rtc_irq_bit_locked(unsigned char bit)
1400
{
1401
unsigned char val;
1402
1403
if (hpet_mask_rtc_irq_bit(bit))
1404
return;
1405
val = CMOS_READ(RTC_CONTROL);
1406
val &= ~bit;
1407
CMOS_WRITE(val, RTC_CONTROL);
1408
CMOS_READ(RTC_INTR_FLAGS);
1409
1410
rtc_irq_data = 0;
1411
}
1412
1413
static void set_rtc_irq_bit_locked(unsigned char bit)
1414
{
1415
unsigned char val;
1416
1417
if (hpet_set_rtc_irq_bit(bit))
1418
return;
1419
val = CMOS_READ(RTC_CONTROL);
1420
val |= bit;
1421
CMOS_WRITE(val, RTC_CONTROL);
1422
CMOS_READ(RTC_INTR_FLAGS);
1423
1424
rtc_irq_data = 0;
1425
}
1426
#endif
1427
1428
MODULE_AUTHOR("Paul Gortmaker");
1429
MODULE_LICENSE("GPL");
1430
MODULE_ALIAS_MISCDEV(RTC_MINOR);
1431
1432