Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/clocksource/sh_tmu.c
15109 views
1
/*
2
* SuperH Timer Support - TMU
3
*
4
* Copyright (C) 2009 Magnus Damm
5
*
6
* This program is free software; you can redistribute it and/or modify
7
* it under the terms of the GNU General Public License as published by
8
* the Free Software Foundation; either version 2 of the License
9
*
10
* This program is distributed in the hope that it will be useful,
11
* but WITHOUT ANY WARRANTY; without even the implied warranty of
12
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
* GNU General Public License for more details.
14
*
15
* You should have received a copy of the GNU General Public License
16
* along with this program; if not, write to the Free Software
17
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18
*/
19
20
#include <linux/init.h>
21
#include <linux/platform_device.h>
22
#include <linux/spinlock.h>
23
#include <linux/interrupt.h>
24
#include <linux/ioport.h>
25
#include <linux/delay.h>
26
#include <linux/io.h>
27
#include <linux/clk.h>
28
#include <linux/irq.h>
29
#include <linux/err.h>
30
#include <linux/clocksource.h>
31
#include <linux/clockchips.h>
32
#include <linux/sh_timer.h>
33
#include <linux/slab.h>
34
35
struct sh_tmu_priv {
36
void __iomem *mapbase;
37
struct clk *clk;
38
struct irqaction irqaction;
39
struct platform_device *pdev;
40
unsigned long rate;
41
unsigned long periodic;
42
struct clock_event_device ced;
43
struct clocksource cs;
44
};
45
46
static DEFINE_SPINLOCK(sh_tmu_lock);
47
48
#define TSTR -1 /* shared register */
49
#define TCOR 0 /* channel register */
50
#define TCNT 1 /* channel register */
51
#define TCR 2 /* channel register */
52
53
static inline unsigned long sh_tmu_read(struct sh_tmu_priv *p, int reg_nr)
54
{
55
struct sh_timer_config *cfg = p->pdev->dev.platform_data;
56
void __iomem *base = p->mapbase;
57
unsigned long offs;
58
59
if (reg_nr == TSTR)
60
return ioread8(base - cfg->channel_offset);
61
62
offs = reg_nr << 2;
63
64
if (reg_nr == TCR)
65
return ioread16(base + offs);
66
else
67
return ioread32(base + offs);
68
}
69
70
static inline void sh_tmu_write(struct sh_tmu_priv *p, int reg_nr,
71
unsigned long value)
72
{
73
struct sh_timer_config *cfg = p->pdev->dev.platform_data;
74
void __iomem *base = p->mapbase;
75
unsigned long offs;
76
77
if (reg_nr == TSTR) {
78
iowrite8(value, base - cfg->channel_offset);
79
return;
80
}
81
82
offs = reg_nr << 2;
83
84
if (reg_nr == TCR)
85
iowrite16(value, base + offs);
86
else
87
iowrite32(value, base + offs);
88
}
89
90
static void sh_tmu_start_stop_ch(struct sh_tmu_priv *p, int start)
91
{
92
struct sh_timer_config *cfg = p->pdev->dev.platform_data;
93
unsigned long flags, value;
94
95
/* start stop register shared by multiple timer channels */
96
spin_lock_irqsave(&sh_tmu_lock, flags);
97
value = sh_tmu_read(p, TSTR);
98
99
if (start)
100
value |= 1 << cfg->timer_bit;
101
else
102
value &= ~(1 << cfg->timer_bit);
103
104
sh_tmu_write(p, TSTR, value);
105
spin_unlock_irqrestore(&sh_tmu_lock, flags);
106
}
107
108
static int sh_tmu_enable(struct sh_tmu_priv *p)
109
{
110
int ret;
111
112
/* enable clock */
113
ret = clk_enable(p->clk);
114
if (ret) {
115
dev_err(&p->pdev->dev, "cannot enable clock\n");
116
return ret;
117
}
118
119
/* make sure channel is disabled */
120
sh_tmu_start_stop_ch(p, 0);
121
122
/* maximum timeout */
123
sh_tmu_write(p, TCOR, 0xffffffff);
124
sh_tmu_write(p, TCNT, 0xffffffff);
125
126
/* configure channel to parent clock / 4, irq off */
127
p->rate = clk_get_rate(p->clk) / 4;
128
sh_tmu_write(p, TCR, 0x0000);
129
130
/* enable channel */
131
sh_tmu_start_stop_ch(p, 1);
132
133
return 0;
134
}
135
136
static void sh_tmu_disable(struct sh_tmu_priv *p)
137
{
138
/* disable channel */
139
sh_tmu_start_stop_ch(p, 0);
140
141
/* disable interrupts in TMU block */
142
sh_tmu_write(p, TCR, 0x0000);
143
144
/* stop clock */
145
clk_disable(p->clk);
146
}
147
148
static void sh_tmu_set_next(struct sh_tmu_priv *p, unsigned long delta,
149
int periodic)
150
{
151
/* stop timer */
152
sh_tmu_start_stop_ch(p, 0);
153
154
/* acknowledge interrupt */
155
sh_tmu_read(p, TCR);
156
157
/* enable interrupt */
158
sh_tmu_write(p, TCR, 0x0020);
159
160
/* reload delta value in case of periodic timer */
161
if (periodic)
162
sh_tmu_write(p, TCOR, delta);
163
else
164
sh_tmu_write(p, TCOR, 0xffffffff);
165
166
sh_tmu_write(p, TCNT, delta);
167
168
/* start timer */
169
sh_tmu_start_stop_ch(p, 1);
170
}
171
172
static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
173
{
174
struct sh_tmu_priv *p = dev_id;
175
176
/* disable or acknowledge interrupt */
177
if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT)
178
sh_tmu_write(p, TCR, 0x0000);
179
else
180
sh_tmu_write(p, TCR, 0x0020);
181
182
/* notify clockevent layer */
183
p->ced.event_handler(&p->ced);
184
return IRQ_HANDLED;
185
}
186
187
static struct sh_tmu_priv *cs_to_sh_tmu(struct clocksource *cs)
188
{
189
return container_of(cs, struct sh_tmu_priv, cs);
190
}
191
192
static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
193
{
194
struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
195
196
return sh_tmu_read(p, TCNT) ^ 0xffffffff;
197
}
198
199
static int sh_tmu_clocksource_enable(struct clocksource *cs)
200
{
201
struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
202
int ret;
203
204
ret = sh_tmu_enable(p);
205
if (!ret)
206
__clocksource_updatefreq_hz(cs, p->rate);
207
return ret;
208
}
209
210
static void sh_tmu_clocksource_disable(struct clocksource *cs)
211
{
212
sh_tmu_disable(cs_to_sh_tmu(cs));
213
}
214
215
static int sh_tmu_register_clocksource(struct sh_tmu_priv *p,
216
char *name, unsigned long rating)
217
{
218
struct clocksource *cs = &p->cs;
219
220
cs->name = name;
221
cs->rating = rating;
222
cs->read = sh_tmu_clocksource_read;
223
cs->enable = sh_tmu_clocksource_enable;
224
cs->disable = sh_tmu_clocksource_disable;
225
cs->mask = CLOCKSOURCE_MASK(32);
226
cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
227
228
dev_info(&p->pdev->dev, "used as clock source\n");
229
230
/* Register with dummy 1 Hz value, gets updated in ->enable() */
231
clocksource_register_hz(cs, 1);
232
return 0;
233
}
234
235
static struct sh_tmu_priv *ced_to_sh_tmu(struct clock_event_device *ced)
236
{
237
return container_of(ced, struct sh_tmu_priv, ced);
238
}
239
240
static void sh_tmu_clock_event_start(struct sh_tmu_priv *p, int periodic)
241
{
242
struct clock_event_device *ced = &p->ced;
243
244
sh_tmu_enable(p);
245
246
/* TODO: calculate good shift from rate and counter bit width */
247
248
ced->shift = 32;
249
ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
250
ced->max_delta_ns = clockevent_delta2ns(0xffffffff, ced);
251
ced->min_delta_ns = 5000;
252
253
if (periodic) {
254
p->periodic = (p->rate + HZ/2) / HZ;
255
sh_tmu_set_next(p, p->periodic, 1);
256
}
257
}
258
259
static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
260
struct clock_event_device *ced)
261
{
262
struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
263
int disabled = 0;
264
265
/* deal with old setting first */
266
switch (ced->mode) {
267
case CLOCK_EVT_MODE_PERIODIC:
268
case CLOCK_EVT_MODE_ONESHOT:
269
sh_tmu_disable(p);
270
disabled = 1;
271
break;
272
default:
273
break;
274
}
275
276
switch (mode) {
277
case CLOCK_EVT_MODE_PERIODIC:
278
dev_info(&p->pdev->dev, "used for periodic clock events\n");
279
sh_tmu_clock_event_start(p, 1);
280
break;
281
case CLOCK_EVT_MODE_ONESHOT:
282
dev_info(&p->pdev->dev, "used for oneshot clock events\n");
283
sh_tmu_clock_event_start(p, 0);
284
break;
285
case CLOCK_EVT_MODE_UNUSED:
286
if (!disabled)
287
sh_tmu_disable(p);
288
break;
289
case CLOCK_EVT_MODE_SHUTDOWN:
290
default:
291
break;
292
}
293
}
294
295
static int sh_tmu_clock_event_next(unsigned long delta,
296
struct clock_event_device *ced)
297
{
298
struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
299
300
BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
301
302
/* program new delta value */
303
sh_tmu_set_next(p, delta, 0);
304
return 0;
305
}
306
307
static void sh_tmu_register_clockevent(struct sh_tmu_priv *p,
308
char *name, unsigned long rating)
309
{
310
struct clock_event_device *ced = &p->ced;
311
int ret;
312
313
memset(ced, 0, sizeof(*ced));
314
315
ced->name = name;
316
ced->features = CLOCK_EVT_FEAT_PERIODIC;
317
ced->features |= CLOCK_EVT_FEAT_ONESHOT;
318
ced->rating = rating;
319
ced->cpumask = cpumask_of(0);
320
ced->set_next_event = sh_tmu_clock_event_next;
321
ced->set_mode = sh_tmu_clock_event_mode;
322
323
dev_info(&p->pdev->dev, "used for clock events\n");
324
clockevents_register_device(ced);
325
326
ret = setup_irq(p->irqaction.irq, &p->irqaction);
327
if (ret) {
328
dev_err(&p->pdev->dev, "failed to request irq %d\n",
329
p->irqaction.irq);
330
return;
331
}
332
}
333
334
static int sh_tmu_register(struct sh_tmu_priv *p, char *name,
335
unsigned long clockevent_rating,
336
unsigned long clocksource_rating)
337
{
338
if (clockevent_rating)
339
sh_tmu_register_clockevent(p, name, clockevent_rating);
340
else if (clocksource_rating)
341
sh_tmu_register_clocksource(p, name, clocksource_rating);
342
343
return 0;
344
}
345
346
static int sh_tmu_setup(struct sh_tmu_priv *p, struct platform_device *pdev)
347
{
348
struct sh_timer_config *cfg = pdev->dev.platform_data;
349
struct resource *res;
350
int irq, ret;
351
ret = -ENXIO;
352
353
memset(p, 0, sizeof(*p));
354
p->pdev = pdev;
355
356
if (!cfg) {
357
dev_err(&p->pdev->dev, "missing platform data\n");
358
goto err0;
359
}
360
361
platform_set_drvdata(pdev, p);
362
363
res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
364
if (!res) {
365
dev_err(&p->pdev->dev, "failed to get I/O memory\n");
366
goto err0;
367
}
368
369
irq = platform_get_irq(p->pdev, 0);
370
if (irq < 0) {
371
dev_err(&p->pdev->dev, "failed to get irq\n");
372
goto err0;
373
}
374
375
/* map memory, let mapbase point to our channel */
376
p->mapbase = ioremap_nocache(res->start, resource_size(res));
377
if (p->mapbase == NULL) {
378
dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
379
goto err0;
380
}
381
382
/* setup data for setup_irq() (too early for request_irq()) */
383
p->irqaction.name = dev_name(&p->pdev->dev);
384
p->irqaction.handler = sh_tmu_interrupt;
385
p->irqaction.dev_id = p;
386
p->irqaction.irq = irq;
387
p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \
388
IRQF_IRQPOLL | IRQF_NOBALANCING;
389
390
/* get hold of clock */
391
p->clk = clk_get(&p->pdev->dev, "tmu_fck");
392
if (IS_ERR(p->clk)) {
393
dev_err(&p->pdev->dev, "cannot get clock\n");
394
ret = PTR_ERR(p->clk);
395
goto err1;
396
}
397
398
return sh_tmu_register(p, (char *)dev_name(&p->pdev->dev),
399
cfg->clockevent_rating,
400
cfg->clocksource_rating);
401
err1:
402
iounmap(p->mapbase);
403
err0:
404
return ret;
405
}
406
407
static int __devinit sh_tmu_probe(struct platform_device *pdev)
408
{
409
struct sh_tmu_priv *p = platform_get_drvdata(pdev);
410
int ret;
411
412
if (p) {
413
dev_info(&pdev->dev, "kept as earlytimer\n");
414
return 0;
415
}
416
417
p = kmalloc(sizeof(*p), GFP_KERNEL);
418
if (p == NULL) {
419
dev_err(&pdev->dev, "failed to allocate driver data\n");
420
return -ENOMEM;
421
}
422
423
ret = sh_tmu_setup(p, pdev);
424
if (ret) {
425
kfree(p);
426
platform_set_drvdata(pdev, NULL);
427
}
428
return ret;
429
}
430
431
static int __devexit sh_tmu_remove(struct platform_device *pdev)
432
{
433
return -EBUSY; /* cannot unregister clockevent and clocksource */
434
}
435
436
static struct platform_driver sh_tmu_device_driver = {
437
.probe = sh_tmu_probe,
438
.remove = __devexit_p(sh_tmu_remove),
439
.driver = {
440
.name = "sh_tmu",
441
}
442
};
443
444
static int __init sh_tmu_init(void)
445
{
446
return platform_driver_register(&sh_tmu_device_driver);
447
}
448
449
static void __exit sh_tmu_exit(void)
450
{
451
platform_driver_unregister(&sh_tmu_device_driver);
452
}
453
454
early_platform_init("earlytimer", &sh_tmu_device_driver);
455
module_init(sh_tmu_init);
456
module_exit(sh_tmu_exit);
457
458
MODULE_AUTHOR("Magnus Damm");
459
MODULE_DESCRIPTION("SuperH TMU Timer Driver");
460
MODULE_LICENSE("GPL v2");
461
462