Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/clocksource/tcb_clksrc.c
15109 views
1
#include <linux/init.h>
2
#include <linux/clocksource.h>
3
#include <linux/clockchips.h>
4
#include <linux/interrupt.h>
5
#include <linux/irq.h>
6
7
#include <linux/clk.h>
8
#include <linux/err.h>
9
#include <linux/ioport.h>
10
#include <linux/io.h>
11
#include <linux/platform_device.h>
12
#include <linux/atmel_tc.h>
13
14
15
/*
16
* We're configured to use a specific TC block, one that's not hooked
17
* up to external hardware, to provide a time solution:
18
*
19
* - Two channels combine to create a free-running 32 bit counter
20
* with a base rate of 5+ MHz, packaged as a clocksource (with
21
* resolution better than 200 nsec).
22
*
23
* - The third channel may be used to provide a 16-bit clockevent
24
* source, used in either periodic or oneshot mode. This runs
25
* at 32 KiHZ, and can handle delays of up to two seconds.
26
*
27
* A boot clocksource and clockevent source are also currently needed,
28
* unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
29
* this code can be used when init_timers() is called, well before most
30
* devices are set up. (Some low end AT91 parts, which can run uClinux,
31
* have only the timers in one TC block... they currently don't support
32
* the tclib code, because of that initialization issue.)
33
*
34
* REVISIT behavior during system suspend states... we should disable
35
* all clocks and save the power. Easily done for clockevent devices,
36
* but clocksources won't necessarily get the needed notifications.
37
* For deeper system sleep states, this will be mandatory...
38
*/
39
40
static void __iomem *tcaddr;
41
42
static cycle_t tc_get_cycles(struct clocksource *cs)
43
{
44
unsigned long flags;
45
u32 lower, upper;
46
47
raw_local_irq_save(flags);
48
do {
49
upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
50
lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
51
} while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
52
53
raw_local_irq_restore(flags);
54
return (upper << 16) | lower;
55
}
56
57
static struct clocksource clksrc = {
58
.name = "tcb_clksrc",
59
.rating = 200,
60
.read = tc_get_cycles,
61
.mask = CLOCKSOURCE_MASK(32),
62
.shift = 18,
63
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
64
};
65
66
#ifdef CONFIG_GENERIC_CLOCKEVENTS
67
68
struct tc_clkevt_device {
69
struct clock_event_device clkevt;
70
struct clk *clk;
71
void __iomem *regs;
72
};
73
74
static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
75
{
76
return container_of(clkevt, struct tc_clkevt_device, clkevt);
77
}
78
79
/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
80
* because using one of the divided clocks would usually mean the
81
* tick rate can never be less than several dozen Hz (vs 0.5 Hz).
82
*
83
* A divided clock could be good for high resolution timers, since
84
* 30.5 usec resolution can seem "low".
85
*/
86
static u32 timer_clock;
87
88
static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
89
{
90
struct tc_clkevt_device *tcd = to_tc_clkevt(d);
91
void __iomem *regs = tcd->regs;
92
93
if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC
94
|| tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) {
95
__raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
96
__raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
97
clk_disable(tcd->clk);
98
}
99
100
switch (m) {
101
102
/* By not making the gentime core emulate periodic mode on top
103
* of oneshot, we get lower overhead and improved accuracy.
104
*/
105
case CLOCK_EVT_MODE_PERIODIC:
106
clk_enable(tcd->clk);
107
108
/* slow clock, count up to RC, then irq and restart */
109
__raw_writel(timer_clock
110
| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
111
regs + ATMEL_TC_REG(2, CMR));
112
__raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
113
114
/* Enable clock and interrupts on RC compare */
115
__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
116
117
/* go go gadget! */
118
__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
119
regs + ATMEL_TC_REG(2, CCR));
120
break;
121
122
case CLOCK_EVT_MODE_ONESHOT:
123
clk_enable(tcd->clk);
124
125
/* slow clock, count up to RC, then irq and stop */
126
__raw_writel(timer_clock | ATMEL_TC_CPCSTOP
127
| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
128
regs + ATMEL_TC_REG(2, CMR));
129
__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
130
131
/* set_next_event() configures and starts the timer */
132
break;
133
134
default:
135
break;
136
}
137
}
138
139
static int tc_next_event(unsigned long delta, struct clock_event_device *d)
140
{
141
__raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
142
143
/* go go gadget! */
144
__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
145
tcaddr + ATMEL_TC_REG(2, CCR));
146
return 0;
147
}
148
149
static struct tc_clkevt_device clkevt = {
150
.clkevt = {
151
.name = "tc_clkevt",
152
.features = CLOCK_EVT_FEAT_PERIODIC
153
| CLOCK_EVT_FEAT_ONESHOT,
154
.shift = 32,
155
/* Should be lower than at91rm9200's system timer */
156
.rating = 125,
157
.set_next_event = tc_next_event,
158
.set_mode = tc_mode,
159
},
160
};
161
162
static irqreturn_t ch2_irq(int irq, void *handle)
163
{
164
struct tc_clkevt_device *dev = handle;
165
unsigned int sr;
166
167
sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
168
if (sr & ATMEL_TC_CPCS) {
169
dev->clkevt.event_handler(&dev->clkevt);
170
return IRQ_HANDLED;
171
}
172
173
return IRQ_NONE;
174
}
175
176
static struct irqaction tc_irqaction = {
177
.name = "tc_clkevt",
178
.flags = IRQF_TIMER | IRQF_DISABLED,
179
.handler = ch2_irq,
180
};
181
182
static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
183
{
184
struct clk *t2_clk = tc->clk[2];
185
int irq = tc->irq[2];
186
187
clkevt.regs = tc->regs;
188
clkevt.clk = t2_clk;
189
tc_irqaction.dev_id = &clkevt;
190
191
timer_clock = clk32k_divisor_idx;
192
193
clkevt.clkevt.mult = div_sc(32768, NSEC_PER_SEC, clkevt.clkevt.shift);
194
clkevt.clkevt.max_delta_ns
195
= clockevent_delta2ns(0xffff, &clkevt.clkevt);
196
clkevt.clkevt.min_delta_ns = clockevent_delta2ns(1, &clkevt.clkevt) + 1;
197
clkevt.clkevt.cpumask = cpumask_of(0);
198
199
clockevents_register_device(&clkevt.clkevt);
200
201
setup_irq(irq, &tc_irqaction);
202
}
203
204
#else /* !CONFIG_GENERIC_CLOCKEVENTS */
205
206
static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
207
{
208
/* NOTHING */
209
}
210
211
#endif
212
213
static int __init tcb_clksrc_init(void)
214
{
215
static char bootinfo[] __initdata
216
= KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
217
218
struct platform_device *pdev;
219
struct atmel_tc *tc;
220
struct clk *t0_clk;
221
u32 rate, divided_rate = 0;
222
int best_divisor_idx = -1;
223
int clk32k_divisor_idx = -1;
224
int i;
225
226
tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK, clksrc.name);
227
if (!tc) {
228
pr_debug("can't alloc TC for clocksource\n");
229
return -ENODEV;
230
}
231
tcaddr = tc->regs;
232
pdev = tc->pdev;
233
234
t0_clk = tc->clk[0];
235
clk_enable(t0_clk);
236
237
/* How fast will we be counting? Pick something over 5 MHz. */
238
rate = (u32) clk_get_rate(t0_clk);
239
for (i = 0; i < 5; i++) {
240
unsigned divisor = atmel_tc_divisors[i];
241
unsigned tmp;
242
243
/* remember 32 KiHz clock for later */
244
if (!divisor) {
245
clk32k_divisor_idx = i;
246
continue;
247
}
248
249
tmp = rate / divisor;
250
pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
251
if (best_divisor_idx > 0) {
252
if (tmp < 5 * 1000 * 1000)
253
continue;
254
}
255
divided_rate = tmp;
256
best_divisor_idx = i;
257
}
258
259
clksrc.mult = clocksource_hz2mult(divided_rate, clksrc.shift);
260
261
printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
262
divided_rate / 1000000,
263
((divided_rate + 500000) % 1000000) / 1000);
264
265
/* tclib will give us three clocks no matter what the
266
* underlying platform supports.
267
*/
268
clk_enable(tc->clk[1]);
269
270
/* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
271
__raw_writel(best_divisor_idx /* likely divide-by-8 */
272
| ATMEL_TC_WAVE
273
| ATMEL_TC_WAVESEL_UP /* free-run */
274
| ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */
275
| ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */
276
tcaddr + ATMEL_TC_REG(0, CMR));
277
__raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
278
__raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
279
__raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
280
__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
281
282
/* channel 1: waveform mode, input TIOA0 */
283
__raw_writel(ATMEL_TC_XC1 /* input: TIOA0 */
284
| ATMEL_TC_WAVE
285
| ATMEL_TC_WAVESEL_UP, /* free-run */
286
tcaddr + ATMEL_TC_REG(1, CMR));
287
__raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */
288
__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
289
290
/* chain channel 0 to channel 1, then reset all the timers */
291
__raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
292
__raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
293
294
/* and away we go! */
295
clocksource_register(&clksrc);
296
297
/* channel 2: periodic and oneshot timer support */
298
setup_clkevents(tc, clk32k_divisor_idx);
299
300
return 0;
301
}
302
arch_initcall(tcb_clksrc_init);
303
304