Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/cpufreq/acpi-cpufreq.c
15109 views
1
/*
2
* acpi-cpufreq.c - ACPI Processor P-States Driver
3
*
4
* Copyright (C) 2001, 2002 Andy Grover <[email protected]>
5
* Copyright (C) 2001, 2002 Paul Diefenbaugh <[email protected]>
6
* Copyright (C) 2002 - 2004 Dominik Brodowski <[email protected]>
7
* Copyright (C) 2006 Denis Sadykov <[email protected]>
8
*
9
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10
*
11
* This program is free software; you can redistribute it and/or modify
12
* it under the terms of the GNU General Public License as published by
13
* the Free Software Foundation; either version 2 of the License, or (at
14
* your option) any later version.
15
*
16
* This program is distributed in the hope that it will be useful, but
17
* WITHOUT ANY WARRANTY; without even the implied warranty of
18
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19
* General Public License for more details.
20
*
21
* You should have received a copy of the GNU General Public License along
22
* with this program; if not, write to the Free Software Foundation, Inc.,
23
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24
*
25
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26
*/
27
28
#include <linux/kernel.h>
29
#include <linux/module.h>
30
#include <linux/init.h>
31
#include <linux/smp.h>
32
#include <linux/sched.h>
33
#include <linux/cpufreq.h>
34
#include <linux/compiler.h>
35
#include <linux/dmi.h>
36
#include <linux/slab.h>
37
38
#include <linux/acpi.h>
39
#include <linux/io.h>
40
#include <linux/delay.h>
41
#include <linux/uaccess.h>
42
43
#include <acpi/processor.h>
44
45
#include <asm/msr.h>
46
#include <asm/processor.h>
47
#include <asm/cpufeature.h>
48
#include "mperf.h"
49
50
MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51
MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52
MODULE_LICENSE("GPL");
53
54
enum {
55
UNDEFINED_CAPABLE = 0,
56
SYSTEM_INTEL_MSR_CAPABLE,
57
SYSTEM_IO_CAPABLE,
58
};
59
60
#define INTEL_MSR_RANGE (0xffff)
61
62
struct acpi_cpufreq_data {
63
struct acpi_processor_performance *acpi_data;
64
struct cpufreq_frequency_table *freq_table;
65
unsigned int resume;
66
unsigned int cpu_feature;
67
};
68
69
static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
70
71
/* acpi_perf_data is a pointer to percpu data. */
72
static struct acpi_processor_performance __percpu *acpi_perf_data;
73
74
static struct cpufreq_driver acpi_cpufreq_driver;
75
76
static unsigned int acpi_pstate_strict;
77
78
static int check_est_cpu(unsigned int cpuid)
79
{
80
struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
81
82
return cpu_has(cpu, X86_FEATURE_EST);
83
}
84
85
static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
86
{
87
struct acpi_processor_performance *perf;
88
int i;
89
90
perf = data->acpi_data;
91
92
for (i = 0; i < perf->state_count; i++) {
93
if (value == perf->states[i].status)
94
return data->freq_table[i].frequency;
95
}
96
return 0;
97
}
98
99
static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
100
{
101
int i;
102
struct acpi_processor_performance *perf;
103
104
msr &= INTEL_MSR_RANGE;
105
perf = data->acpi_data;
106
107
for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
108
if (msr == perf->states[data->freq_table[i].index].status)
109
return data->freq_table[i].frequency;
110
}
111
return data->freq_table[0].frequency;
112
}
113
114
static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
115
{
116
switch (data->cpu_feature) {
117
case SYSTEM_INTEL_MSR_CAPABLE:
118
return extract_msr(val, data);
119
case SYSTEM_IO_CAPABLE:
120
return extract_io(val, data);
121
default:
122
return 0;
123
}
124
}
125
126
struct msr_addr {
127
u32 reg;
128
};
129
130
struct io_addr {
131
u16 port;
132
u8 bit_width;
133
};
134
135
struct drv_cmd {
136
unsigned int type;
137
const struct cpumask *mask;
138
union {
139
struct msr_addr msr;
140
struct io_addr io;
141
} addr;
142
u32 val;
143
};
144
145
/* Called via smp_call_function_single(), on the target CPU */
146
static void do_drv_read(void *_cmd)
147
{
148
struct drv_cmd *cmd = _cmd;
149
u32 h;
150
151
switch (cmd->type) {
152
case SYSTEM_INTEL_MSR_CAPABLE:
153
rdmsr(cmd->addr.msr.reg, cmd->val, h);
154
break;
155
case SYSTEM_IO_CAPABLE:
156
acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
157
&cmd->val,
158
(u32)cmd->addr.io.bit_width);
159
break;
160
default:
161
break;
162
}
163
}
164
165
/* Called via smp_call_function_many(), on the target CPUs */
166
static void do_drv_write(void *_cmd)
167
{
168
struct drv_cmd *cmd = _cmd;
169
u32 lo, hi;
170
171
switch (cmd->type) {
172
case SYSTEM_INTEL_MSR_CAPABLE:
173
rdmsr(cmd->addr.msr.reg, lo, hi);
174
lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
175
wrmsr(cmd->addr.msr.reg, lo, hi);
176
break;
177
case SYSTEM_IO_CAPABLE:
178
acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
179
cmd->val,
180
(u32)cmd->addr.io.bit_width);
181
break;
182
default:
183
break;
184
}
185
}
186
187
static void drv_read(struct drv_cmd *cmd)
188
{
189
int err;
190
cmd->val = 0;
191
192
err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
193
WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
194
}
195
196
static void drv_write(struct drv_cmd *cmd)
197
{
198
int this_cpu;
199
200
this_cpu = get_cpu();
201
if (cpumask_test_cpu(this_cpu, cmd->mask))
202
do_drv_write(cmd);
203
smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
204
put_cpu();
205
}
206
207
static u32 get_cur_val(const struct cpumask *mask)
208
{
209
struct acpi_processor_performance *perf;
210
struct drv_cmd cmd;
211
212
if (unlikely(cpumask_empty(mask)))
213
return 0;
214
215
switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
216
case SYSTEM_INTEL_MSR_CAPABLE:
217
cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
218
cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
219
break;
220
case SYSTEM_IO_CAPABLE:
221
cmd.type = SYSTEM_IO_CAPABLE;
222
perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
223
cmd.addr.io.port = perf->control_register.address;
224
cmd.addr.io.bit_width = perf->control_register.bit_width;
225
break;
226
default:
227
return 0;
228
}
229
230
cmd.mask = mask;
231
drv_read(&cmd);
232
233
pr_debug("get_cur_val = %u\n", cmd.val);
234
235
return cmd.val;
236
}
237
238
static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
239
{
240
struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
241
unsigned int freq;
242
unsigned int cached_freq;
243
244
pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
245
246
if (unlikely(data == NULL ||
247
data->acpi_data == NULL || data->freq_table == NULL)) {
248
return 0;
249
}
250
251
cached_freq = data->freq_table[data->acpi_data->state].frequency;
252
freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
253
if (freq != cached_freq) {
254
/*
255
* The dreaded BIOS frequency change behind our back.
256
* Force set the frequency on next target call.
257
*/
258
data->resume = 1;
259
}
260
261
pr_debug("cur freq = %u\n", freq);
262
263
return freq;
264
}
265
266
static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
267
struct acpi_cpufreq_data *data)
268
{
269
unsigned int cur_freq;
270
unsigned int i;
271
272
for (i = 0; i < 100; i++) {
273
cur_freq = extract_freq(get_cur_val(mask), data);
274
if (cur_freq == freq)
275
return 1;
276
udelay(10);
277
}
278
return 0;
279
}
280
281
static int acpi_cpufreq_target(struct cpufreq_policy *policy,
282
unsigned int target_freq, unsigned int relation)
283
{
284
struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
285
struct acpi_processor_performance *perf;
286
struct cpufreq_freqs freqs;
287
struct drv_cmd cmd;
288
unsigned int next_state = 0; /* Index into freq_table */
289
unsigned int next_perf_state = 0; /* Index into perf table */
290
unsigned int i;
291
int result = 0;
292
293
pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
294
295
if (unlikely(data == NULL ||
296
data->acpi_data == NULL || data->freq_table == NULL)) {
297
return -ENODEV;
298
}
299
300
perf = data->acpi_data;
301
result = cpufreq_frequency_table_target(policy,
302
data->freq_table,
303
target_freq,
304
relation, &next_state);
305
if (unlikely(result)) {
306
result = -ENODEV;
307
goto out;
308
}
309
310
next_perf_state = data->freq_table[next_state].index;
311
if (perf->state == next_perf_state) {
312
if (unlikely(data->resume)) {
313
pr_debug("Called after resume, resetting to P%d\n",
314
next_perf_state);
315
data->resume = 0;
316
} else {
317
pr_debug("Already at target state (P%d)\n",
318
next_perf_state);
319
goto out;
320
}
321
}
322
323
switch (data->cpu_feature) {
324
case SYSTEM_INTEL_MSR_CAPABLE:
325
cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
326
cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
327
cmd.val = (u32) perf->states[next_perf_state].control;
328
break;
329
case SYSTEM_IO_CAPABLE:
330
cmd.type = SYSTEM_IO_CAPABLE;
331
cmd.addr.io.port = perf->control_register.address;
332
cmd.addr.io.bit_width = perf->control_register.bit_width;
333
cmd.val = (u32) perf->states[next_perf_state].control;
334
break;
335
default:
336
result = -ENODEV;
337
goto out;
338
}
339
340
/* cpufreq holds the hotplug lock, so we are safe from here on */
341
if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
342
cmd.mask = policy->cpus;
343
else
344
cmd.mask = cpumask_of(policy->cpu);
345
346
freqs.old = perf->states[perf->state].core_frequency * 1000;
347
freqs.new = data->freq_table[next_state].frequency;
348
for_each_cpu(i, policy->cpus) {
349
freqs.cpu = i;
350
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
351
}
352
353
drv_write(&cmd);
354
355
if (acpi_pstate_strict) {
356
if (!check_freqs(cmd.mask, freqs.new, data)) {
357
pr_debug("acpi_cpufreq_target failed (%d)\n",
358
policy->cpu);
359
result = -EAGAIN;
360
goto out;
361
}
362
}
363
364
for_each_cpu(i, policy->cpus) {
365
freqs.cpu = i;
366
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
367
}
368
perf->state = next_perf_state;
369
370
out:
371
return result;
372
}
373
374
static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
375
{
376
struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
377
378
pr_debug("acpi_cpufreq_verify\n");
379
380
return cpufreq_frequency_table_verify(policy, data->freq_table);
381
}
382
383
static unsigned long
384
acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
385
{
386
struct acpi_processor_performance *perf = data->acpi_data;
387
388
if (cpu_khz) {
389
/* search the closest match to cpu_khz */
390
unsigned int i;
391
unsigned long freq;
392
unsigned long freqn = perf->states[0].core_frequency * 1000;
393
394
for (i = 0; i < (perf->state_count-1); i++) {
395
freq = freqn;
396
freqn = perf->states[i+1].core_frequency * 1000;
397
if ((2 * cpu_khz) > (freqn + freq)) {
398
perf->state = i;
399
return freq;
400
}
401
}
402
perf->state = perf->state_count-1;
403
return freqn;
404
} else {
405
/* assume CPU is at P0... */
406
perf->state = 0;
407
return perf->states[0].core_frequency * 1000;
408
}
409
}
410
411
static void free_acpi_perf_data(void)
412
{
413
unsigned int i;
414
415
/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
416
for_each_possible_cpu(i)
417
free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
418
->shared_cpu_map);
419
free_percpu(acpi_perf_data);
420
}
421
422
/*
423
* acpi_cpufreq_early_init - initialize ACPI P-States library
424
*
425
* Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
426
* in order to determine correct frequency and voltage pairings. We can
427
* do _PDC and _PSD and find out the processor dependency for the
428
* actual init that will happen later...
429
*/
430
static int __init acpi_cpufreq_early_init(void)
431
{
432
unsigned int i;
433
pr_debug("acpi_cpufreq_early_init\n");
434
435
acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
436
if (!acpi_perf_data) {
437
pr_debug("Memory allocation error for acpi_perf_data.\n");
438
return -ENOMEM;
439
}
440
for_each_possible_cpu(i) {
441
if (!zalloc_cpumask_var_node(
442
&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
443
GFP_KERNEL, cpu_to_node(i))) {
444
445
/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
446
free_acpi_perf_data();
447
return -ENOMEM;
448
}
449
}
450
451
/* Do initialization in ACPI core */
452
acpi_processor_preregister_performance(acpi_perf_data);
453
return 0;
454
}
455
456
#ifdef CONFIG_SMP
457
/*
458
* Some BIOSes do SW_ANY coordination internally, either set it up in hw
459
* or do it in BIOS firmware and won't inform about it to OS. If not
460
* detected, this has a side effect of making CPU run at a different speed
461
* than OS intended it to run at. Detect it and handle it cleanly.
462
*/
463
static int bios_with_sw_any_bug;
464
465
static int sw_any_bug_found(const struct dmi_system_id *d)
466
{
467
bios_with_sw_any_bug = 1;
468
return 0;
469
}
470
471
static const struct dmi_system_id sw_any_bug_dmi_table[] = {
472
{
473
.callback = sw_any_bug_found,
474
.ident = "Supermicro Server X6DLP",
475
.matches = {
476
DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
477
DMI_MATCH(DMI_BIOS_VERSION, "080010"),
478
DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
479
},
480
},
481
{ }
482
};
483
484
static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
485
{
486
/* Intel Xeon Processor 7100 Series Specification Update
487
* http://www.intel.com/Assets/PDF/specupdate/314554.pdf
488
* AL30: A Machine Check Exception (MCE) Occurring during an
489
* Enhanced Intel SpeedStep Technology Ratio Change May Cause
490
* Both Processor Cores to Lock Up. */
491
if (c->x86_vendor == X86_VENDOR_INTEL) {
492
if ((c->x86 == 15) &&
493
(c->x86_model == 6) &&
494
(c->x86_mask == 8)) {
495
printk(KERN_INFO "acpi-cpufreq: Intel(R) "
496
"Xeon(R) 7100 Errata AL30, processors may "
497
"lock up on frequency changes: disabling "
498
"acpi-cpufreq.\n");
499
return -ENODEV;
500
}
501
}
502
return 0;
503
}
504
#endif
505
506
static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
507
{
508
unsigned int i;
509
unsigned int valid_states = 0;
510
unsigned int cpu = policy->cpu;
511
struct acpi_cpufreq_data *data;
512
unsigned int result = 0;
513
struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
514
struct acpi_processor_performance *perf;
515
#ifdef CONFIG_SMP
516
static int blacklisted;
517
#endif
518
519
pr_debug("acpi_cpufreq_cpu_init\n");
520
521
#ifdef CONFIG_SMP
522
if (blacklisted)
523
return blacklisted;
524
blacklisted = acpi_cpufreq_blacklist(c);
525
if (blacklisted)
526
return blacklisted;
527
#endif
528
529
data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
530
if (!data)
531
return -ENOMEM;
532
533
data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
534
per_cpu(acfreq_data, cpu) = data;
535
536
if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
537
acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
538
539
result = acpi_processor_register_performance(data->acpi_data, cpu);
540
if (result)
541
goto err_free;
542
543
perf = data->acpi_data;
544
policy->shared_type = perf->shared_type;
545
546
/*
547
* Will let policy->cpus know about dependency only when software
548
* coordination is required.
549
*/
550
if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
551
policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
552
cpumask_copy(policy->cpus, perf->shared_cpu_map);
553
}
554
cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
555
556
#ifdef CONFIG_SMP
557
dmi_check_system(sw_any_bug_dmi_table);
558
if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
559
policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
560
cpumask_copy(policy->cpus, cpu_core_mask(cpu));
561
}
562
#endif
563
564
/* capability check */
565
if (perf->state_count <= 1) {
566
pr_debug("No P-States\n");
567
result = -ENODEV;
568
goto err_unreg;
569
}
570
571
if (perf->control_register.space_id != perf->status_register.space_id) {
572
result = -ENODEV;
573
goto err_unreg;
574
}
575
576
switch (perf->control_register.space_id) {
577
case ACPI_ADR_SPACE_SYSTEM_IO:
578
pr_debug("SYSTEM IO addr space\n");
579
data->cpu_feature = SYSTEM_IO_CAPABLE;
580
break;
581
case ACPI_ADR_SPACE_FIXED_HARDWARE:
582
pr_debug("HARDWARE addr space\n");
583
if (!check_est_cpu(cpu)) {
584
result = -ENODEV;
585
goto err_unreg;
586
}
587
data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
588
break;
589
default:
590
pr_debug("Unknown addr space %d\n",
591
(u32) (perf->control_register.space_id));
592
result = -ENODEV;
593
goto err_unreg;
594
}
595
596
data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
597
(perf->state_count+1), GFP_KERNEL);
598
if (!data->freq_table) {
599
result = -ENOMEM;
600
goto err_unreg;
601
}
602
603
/* detect transition latency */
604
policy->cpuinfo.transition_latency = 0;
605
for (i = 0; i < perf->state_count; i++) {
606
if ((perf->states[i].transition_latency * 1000) >
607
policy->cpuinfo.transition_latency)
608
policy->cpuinfo.transition_latency =
609
perf->states[i].transition_latency * 1000;
610
}
611
612
/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
613
if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
614
policy->cpuinfo.transition_latency > 20 * 1000) {
615
policy->cpuinfo.transition_latency = 20 * 1000;
616
printk_once(KERN_INFO
617
"P-state transition latency capped at 20 uS\n");
618
}
619
620
/* table init */
621
for (i = 0; i < perf->state_count; i++) {
622
if (i > 0 && perf->states[i].core_frequency >=
623
data->freq_table[valid_states-1].frequency / 1000)
624
continue;
625
626
data->freq_table[valid_states].index = i;
627
data->freq_table[valid_states].frequency =
628
perf->states[i].core_frequency * 1000;
629
valid_states++;
630
}
631
data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
632
perf->state = 0;
633
634
result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
635
if (result)
636
goto err_freqfree;
637
638
if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
639
printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
640
641
switch (perf->control_register.space_id) {
642
case ACPI_ADR_SPACE_SYSTEM_IO:
643
/* Current speed is unknown and not detectable by IO port */
644
policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
645
break;
646
case ACPI_ADR_SPACE_FIXED_HARDWARE:
647
acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
648
policy->cur = get_cur_freq_on_cpu(cpu);
649
break;
650
default:
651
break;
652
}
653
654
/* notify BIOS that we exist */
655
acpi_processor_notify_smm(THIS_MODULE);
656
657
/* Check for APERF/MPERF support in hardware */
658
if (cpu_has(c, X86_FEATURE_APERFMPERF))
659
acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf;
660
661
pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
662
for (i = 0; i < perf->state_count; i++)
663
pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n",
664
(i == perf->state ? '*' : ' '), i,
665
(u32) perf->states[i].core_frequency,
666
(u32) perf->states[i].power,
667
(u32) perf->states[i].transition_latency);
668
669
cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
670
671
/*
672
* the first call to ->target() should result in us actually
673
* writing something to the appropriate registers.
674
*/
675
data->resume = 1;
676
677
return result;
678
679
err_freqfree:
680
kfree(data->freq_table);
681
err_unreg:
682
acpi_processor_unregister_performance(perf, cpu);
683
err_free:
684
kfree(data);
685
per_cpu(acfreq_data, cpu) = NULL;
686
687
return result;
688
}
689
690
static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
691
{
692
struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
693
694
pr_debug("acpi_cpufreq_cpu_exit\n");
695
696
if (data) {
697
cpufreq_frequency_table_put_attr(policy->cpu);
698
per_cpu(acfreq_data, policy->cpu) = NULL;
699
acpi_processor_unregister_performance(data->acpi_data,
700
policy->cpu);
701
kfree(data->freq_table);
702
kfree(data);
703
}
704
705
return 0;
706
}
707
708
static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
709
{
710
struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
711
712
pr_debug("acpi_cpufreq_resume\n");
713
714
data->resume = 1;
715
716
return 0;
717
}
718
719
static struct freq_attr *acpi_cpufreq_attr[] = {
720
&cpufreq_freq_attr_scaling_available_freqs,
721
NULL,
722
};
723
724
static struct cpufreq_driver acpi_cpufreq_driver = {
725
.verify = acpi_cpufreq_verify,
726
.target = acpi_cpufreq_target,
727
.bios_limit = acpi_processor_get_bios_limit,
728
.init = acpi_cpufreq_cpu_init,
729
.exit = acpi_cpufreq_cpu_exit,
730
.resume = acpi_cpufreq_resume,
731
.name = "acpi-cpufreq",
732
.owner = THIS_MODULE,
733
.attr = acpi_cpufreq_attr,
734
};
735
736
static int __init acpi_cpufreq_init(void)
737
{
738
int ret;
739
740
if (acpi_disabled)
741
return 0;
742
743
pr_debug("acpi_cpufreq_init\n");
744
745
ret = acpi_cpufreq_early_init();
746
if (ret)
747
return ret;
748
749
ret = cpufreq_register_driver(&acpi_cpufreq_driver);
750
if (ret)
751
free_acpi_perf_data();
752
753
return ret;
754
}
755
756
static void __exit acpi_cpufreq_exit(void)
757
{
758
pr_debug("acpi_cpufreq_exit\n");
759
760
cpufreq_unregister_driver(&acpi_cpufreq_driver);
761
762
free_acpi_perf_data();
763
}
764
765
module_param(acpi_pstate_strict, uint, 0644);
766
MODULE_PARM_DESC(acpi_pstate_strict,
767
"value 0 or non-zero. non-zero -> strict ACPI checks are "
768
"performed during frequency changes.");
769
770
late_initcall(acpi_cpufreq_init);
771
module_exit(acpi_cpufreq_exit);
772
773
MODULE_ALIAS("acpi");
774
775