Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/cpufreq/cpufreq.c
15109 views
1
/*
2
* linux/drivers/cpufreq/cpufreq.c
3
*
4
* Copyright (C) 2001 Russell King
5
* (C) 2002 - 2003 Dominik Brodowski <[email protected]>
6
*
7
* Oct 2005 - Ashok Raj <[email protected]>
8
* Added handling for CPU hotplug
9
* Feb 2006 - Jacob Shin <[email protected]>
10
* Fix handling for CPU hotplug -- affected CPUs
11
*
12
* This program is free software; you can redistribute it and/or modify
13
* it under the terms of the GNU General Public License version 2 as
14
* published by the Free Software Foundation.
15
*
16
*/
17
18
#include <linux/kernel.h>
19
#include <linux/module.h>
20
#include <linux/init.h>
21
#include <linux/notifier.h>
22
#include <linux/cpufreq.h>
23
#include <linux/delay.h>
24
#include <linux/interrupt.h>
25
#include <linux/spinlock.h>
26
#include <linux/device.h>
27
#include <linux/slab.h>
28
#include <linux/cpu.h>
29
#include <linux/completion.h>
30
#include <linux/mutex.h>
31
#include <linux/syscore_ops.h>
32
33
#include <trace/events/power.h>
34
35
/**
36
* The "cpufreq driver" - the arch- or hardware-dependent low
37
* level driver of CPUFreq support, and its spinlock. This lock
38
* also protects the cpufreq_cpu_data array.
39
*/
40
static struct cpufreq_driver *cpufreq_driver;
41
static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
42
#ifdef CONFIG_HOTPLUG_CPU
43
/* This one keeps track of the previously set governor of a removed CPU */
44
static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
45
#endif
46
static DEFINE_SPINLOCK(cpufreq_driver_lock);
47
48
/*
49
* cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50
* all cpufreq/hotplug/workqueue/etc related lock issues.
51
*
52
* The rules for this semaphore:
53
* - Any routine that wants to read from the policy structure will
54
* do a down_read on this semaphore.
55
* - Any routine that will write to the policy structure and/or may take away
56
* the policy altogether (eg. CPU hotplug), will hold this lock in write
57
* mode before doing so.
58
*
59
* Additional rules:
60
* - All holders of the lock should check to make sure that the CPU they
61
* are concerned with are online after they get the lock.
62
* - Governor routines that can be called in cpufreq hotplug path should not
63
* take this sem as top level hotplug notifier handler takes this.
64
* - Lock should not be held across
65
* __cpufreq_governor(data, CPUFREQ_GOV_STOP);
66
*/
67
static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
68
static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
69
70
#define lock_policy_rwsem(mode, cpu) \
71
static int lock_policy_rwsem_##mode \
72
(int cpu) \
73
{ \
74
int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); \
75
BUG_ON(policy_cpu == -1); \
76
down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
77
if (unlikely(!cpu_online(cpu))) { \
78
up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
79
return -1; \
80
} \
81
\
82
return 0; \
83
}
84
85
lock_policy_rwsem(read, cpu);
86
87
lock_policy_rwsem(write, cpu);
88
89
static void unlock_policy_rwsem_read(int cpu)
90
{
91
int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
92
BUG_ON(policy_cpu == -1);
93
up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
94
}
95
96
static void unlock_policy_rwsem_write(int cpu)
97
{
98
int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
99
BUG_ON(policy_cpu == -1);
100
up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
101
}
102
103
104
/* internal prototypes */
105
static int __cpufreq_governor(struct cpufreq_policy *policy,
106
unsigned int event);
107
static unsigned int __cpufreq_get(unsigned int cpu);
108
static void handle_update(struct work_struct *work);
109
110
/**
111
* Two notifier lists: the "policy" list is involved in the
112
* validation process for a new CPU frequency policy; the
113
* "transition" list for kernel code that needs to handle
114
* changes to devices when the CPU clock speed changes.
115
* The mutex locks both lists.
116
*/
117
static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
118
static struct srcu_notifier_head cpufreq_transition_notifier_list;
119
120
static bool init_cpufreq_transition_notifier_list_called;
121
static int __init init_cpufreq_transition_notifier_list(void)
122
{
123
srcu_init_notifier_head(&cpufreq_transition_notifier_list);
124
init_cpufreq_transition_notifier_list_called = true;
125
return 0;
126
}
127
pure_initcall(init_cpufreq_transition_notifier_list);
128
129
static LIST_HEAD(cpufreq_governor_list);
130
static DEFINE_MUTEX(cpufreq_governor_mutex);
131
132
struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
133
{
134
struct cpufreq_policy *data;
135
unsigned long flags;
136
137
if (cpu >= nr_cpu_ids)
138
goto err_out;
139
140
/* get the cpufreq driver */
141
spin_lock_irqsave(&cpufreq_driver_lock, flags);
142
143
if (!cpufreq_driver)
144
goto err_out_unlock;
145
146
if (!try_module_get(cpufreq_driver->owner))
147
goto err_out_unlock;
148
149
150
/* get the CPU */
151
data = per_cpu(cpufreq_cpu_data, cpu);
152
153
if (!data)
154
goto err_out_put_module;
155
156
if (!kobject_get(&data->kobj))
157
goto err_out_put_module;
158
159
spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
160
return data;
161
162
err_out_put_module:
163
module_put(cpufreq_driver->owner);
164
err_out_unlock:
165
spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
166
err_out:
167
return NULL;
168
}
169
EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
170
171
172
void cpufreq_cpu_put(struct cpufreq_policy *data)
173
{
174
kobject_put(&data->kobj);
175
module_put(cpufreq_driver->owner);
176
}
177
EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
178
179
180
/*********************************************************************
181
* EXTERNALLY AFFECTING FREQUENCY CHANGES *
182
*********************************************************************/
183
184
/**
185
* adjust_jiffies - adjust the system "loops_per_jiffy"
186
*
187
* This function alters the system "loops_per_jiffy" for the clock
188
* speed change. Note that loops_per_jiffy cannot be updated on SMP
189
* systems as each CPU might be scaled differently. So, use the arch
190
* per-CPU loops_per_jiffy value wherever possible.
191
*/
192
#ifndef CONFIG_SMP
193
static unsigned long l_p_j_ref;
194
static unsigned int l_p_j_ref_freq;
195
196
static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
197
{
198
if (ci->flags & CPUFREQ_CONST_LOOPS)
199
return;
200
201
if (!l_p_j_ref_freq) {
202
l_p_j_ref = loops_per_jiffy;
203
l_p_j_ref_freq = ci->old;
204
pr_debug("saving %lu as reference value for loops_per_jiffy; "
205
"freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
206
}
207
if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) ||
208
(val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
209
(val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
210
loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
211
ci->new);
212
pr_debug("scaling loops_per_jiffy to %lu "
213
"for frequency %u kHz\n", loops_per_jiffy, ci->new);
214
}
215
}
216
#else
217
static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
218
{
219
return;
220
}
221
#endif
222
223
224
/**
225
* cpufreq_notify_transition - call notifier chain and adjust_jiffies
226
* on frequency transition.
227
*
228
* This function calls the transition notifiers and the "adjust_jiffies"
229
* function. It is called twice on all CPU frequency changes that have
230
* external effects.
231
*/
232
void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
233
{
234
struct cpufreq_policy *policy;
235
236
BUG_ON(irqs_disabled());
237
238
freqs->flags = cpufreq_driver->flags;
239
pr_debug("notification %u of frequency transition to %u kHz\n",
240
state, freqs->new);
241
242
policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
243
switch (state) {
244
245
case CPUFREQ_PRECHANGE:
246
/* detect if the driver reported a value as "old frequency"
247
* which is not equal to what the cpufreq core thinks is
248
* "old frequency".
249
*/
250
if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
251
if ((policy) && (policy->cpu == freqs->cpu) &&
252
(policy->cur) && (policy->cur != freqs->old)) {
253
pr_debug("Warning: CPU frequency is"
254
" %u, cpufreq assumed %u kHz.\n",
255
freqs->old, policy->cur);
256
freqs->old = policy->cur;
257
}
258
}
259
srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
260
CPUFREQ_PRECHANGE, freqs);
261
adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
262
break;
263
264
case CPUFREQ_POSTCHANGE:
265
adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
266
pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
267
(unsigned long)freqs->cpu);
268
trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu);
269
trace_cpu_frequency(freqs->new, freqs->cpu);
270
srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
271
CPUFREQ_POSTCHANGE, freqs);
272
if (likely(policy) && likely(policy->cpu == freqs->cpu))
273
policy->cur = freqs->new;
274
break;
275
}
276
}
277
EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
278
279
280
281
/*********************************************************************
282
* SYSFS INTERFACE *
283
*********************************************************************/
284
285
static struct cpufreq_governor *__find_governor(const char *str_governor)
286
{
287
struct cpufreq_governor *t;
288
289
list_for_each_entry(t, &cpufreq_governor_list, governor_list)
290
if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
291
return t;
292
293
return NULL;
294
}
295
296
/**
297
* cpufreq_parse_governor - parse a governor string
298
*/
299
static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
300
struct cpufreq_governor **governor)
301
{
302
int err = -EINVAL;
303
304
if (!cpufreq_driver)
305
goto out;
306
307
if (cpufreq_driver->setpolicy) {
308
if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
309
*policy = CPUFREQ_POLICY_PERFORMANCE;
310
err = 0;
311
} else if (!strnicmp(str_governor, "powersave",
312
CPUFREQ_NAME_LEN)) {
313
*policy = CPUFREQ_POLICY_POWERSAVE;
314
err = 0;
315
}
316
} else if (cpufreq_driver->target) {
317
struct cpufreq_governor *t;
318
319
mutex_lock(&cpufreq_governor_mutex);
320
321
t = __find_governor(str_governor);
322
323
if (t == NULL) {
324
int ret;
325
326
mutex_unlock(&cpufreq_governor_mutex);
327
ret = request_module("cpufreq_%s", str_governor);
328
mutex_lock(&cpufreq_governor_mutex);
329
330
if (ret == 0)
331
t = __find_governor(str_governor);
332
}
333
334
if (t != NULL) {
335
*governor = t;
336
err = 0;
337
}
338
339
mutex_unlock(&cpufreq_governor_mutex);
340
}
341
out:
342
return err;
343
}
344
345
346
/**
347
* cpufreq_per_cpu_attr_read() / show_##file_name() -
348
* print out cpufreq information
349
*
350
* Write out information from cpufreq_driver->policy[cpu]; object must be
351
* "unsigned int".
352
*/
353
354
#define show_one(file_name, object) \
355
static ssize_t show_##file_name \
356
(struct cpufreq_policy *policy, char *buf) \
357
{ \
358
return sprintf(buf, "%u\n", policy->object); \
359
}
360
361
show_one(cpuinfo_min_freq, cpuinfo.min_freq);
362
show_one(cpuinfo_max_freq, cpuinfo.max_freq);
363
show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
364
show_one(scaling_min_freq, min);
365
show_one(scaling_max_freq, max);
366
show_one(scaling_cur_freq, cur);
367
368
static int __cpufreq_set_policy(struct cpufreq_policy *data,
369
struct cpufreq_policy *policy);
370
371
/**
372
* cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
373
*/
374
#define store_one(file_name, object) \
375
static ssize_t store_##file_name \
376
(struct cpufreq_policy *policy, const char *buf, size_t count) \
377
{ \
378
unsigned int ret = -EINVAL; \
379
struct cpufreq_policy new_policy; \
380
\
381
ret = cpufreq_get_policy(&new_policy, policy->cpu); \
382
if (ret) \
383
return -EINVAL; \
384
\
385
ret = sscanf(buf, "%u", &new_policy.object); \
386
if (ret != 1) \
387
return -EINVAL; \
388
\
389
ret = __cpufreq_set_policy(policy, &new_policy); \
390
policy->user_policy.object = policy->object; \
391
\
392
return ret ? ret : count; \
393
}
394
395
store_one(scaling_min_freq, min);
396
store_one(scaling_max_freq, max);
397
398
/**
399
* show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
400
*/
401
static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
402
char *buf)
403
{
404
unsigned int cur_freq = __cpufreq_get(policy->cpu);
405
if (!cur_freq)
406
return sprintf(buf, "<unknown>");
407
return sprintf(buf, "%u\n", cur_freq);
408
}
409
410
411
/**
412
* show_scaling_governor - show the current policy for the specified CPU
413
*/
414
static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
415
{
416
if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
417
return sprintf(buf, "powersave\n");
418
else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
419
return sprintf(buf, "performance\n");
420
else if (policy->governor)
421
return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
422
policy->governor->name);
423
return -EINVAL;
424
}
425
426
427
/**
428
* store_scaling_governor - store policy for the specified CPU
429
*/
430
static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
431
const char *buf, size_t count)
432
{
433
unsigned int ret = -EINVAL;
434
char str_governor[16];
435
struct cpufreq_policy new_policy;
436
437
ret = cpufreq_get_policy(&new_policy, policy->cpu);
438
if (ret)
439
return ret;
440
441
ret = sscanf(buf, "%15s", str_governor);
442
if (ret != 1)
443
return -EINVAL;
444
445
if (cpufreq_parse_governor(str_governor, &new_policy.policy,
446
&new_policy.governor))
447
return -EINVAL;
448
449
/* Do not use cpufreq_set_policy here or the user_policy.max
450
will be wrongly overridden */
451
ret = __cpufreq_set_policy(policy, &new_policy);
452
453
policy->user_policy.policy = policy->policy;
454
policy->user_policy.governor = policy->governor;
455
456
if (ret)
457
return ret;
458
else
459
return count;
460
}
461
462
/**
463
* show_scaling_driver - show the cpufreq driver currently loaded
464
*/
465
static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
466
{
467
return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
468
}
469
470
/**
471
* show_scaling_available_governors - show the available CPUfreq governors
472
*/
473
static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
474
char *buf)
475
{
476
ssize_t i = 0;
477
struct cpufreq_governor *t;
478
479
if (!cpufreq_driver->target) {
480
i += sprintf(buf, "performance powersave");
481
goto out;
482
}
483
484
list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
485
if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
486
- (CPUFREQ_NAME_LEN + 2)))
487
goto out;
488
i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
489
}
490
out:
491
i += sprintf(&buf[i], "\n");
492
return i;
493
}
494
495
static ssize_t show_cpus(const struct cpumask *mask, char *buf)
496
{
497
ssize_t i = 0;
498
unsigned int cpu;
499
500
for_each_cpu(cpu, mask) {
501
if (i)
502
i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
503
i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
504
if (i >= (PAGE_SIZE - 5))
505
break;
506
}
507
i += sprintf(&buf[i], "\n");
508
return i;
509
}
510
511
/**
512
* show_related_cpus - show the CPUs affected by each transition even if
513
* hw coordination is in use
514
*/
515
static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
516
{
517
if (cpumask_empty(policy->related_cpus))
518
return show_cpus(policy->cpus, buf);
519
return show_cpus(policy->related_cpus, buf);
520
}
521
522
/**
523
* show_affected_cpus - show the CPUs affected by each transition
524
*/
525
static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
526
{
527
return show_cpus(policy->cpus, buf);
528
}
529
530
static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
531
const char *buf, size_t count)
532
{
533
unsigned int freq = 0;
534
unsigned int ret;
535
536
if (!policy->governor || !policy->governor->store_setspeed)
537
return -EINVAL;
538
539
ret = sscanf(buf, "%u", &freq);
540
if (ret != 1)
541
return -EINVAL;
542
543
policy->governor->store_setspeed(policy, freq);
544
545
return count;
546
}
547
548
static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
549
{
550
if (!policy->governor || !policy->governor->show_setspeed)
551
return sprintf(buf, "<unsupported>\n");
552
553
return policy->governor->show_setspeed(policy, buf);
554
}
555
556
/**
557
* show_scaling_driver - show the current cpufreq HW/BIOS limitation
558
*/
559
static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
560
{
561
unsigned int limit;
562
int ret;
563
if (cpufreq_driver->bios_limit) {
564
ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
565
if (!ret)
566
return sprintf(buf, "%u\n", limit);
567
}
568
return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
569
}
570
571
cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
572
cpufreq_freq_attr_ro(cpuinfo_min_freq);
573
cpufreq_freq_attr_ro(cpuinfo_max_freq);
574
cpufreq_freq_attr_ro(cpuinfo_transition_latency);
575
cpufreq_freq_attr_ro(scaling_available_governors);
576
cpufreq_freq_attr_ro(scaling_driver);
577
cpufreq_freq_attr_ro(scaling_cur_freq);
578
cpufreq_freq_attr_ro(bios_limit);
579
cpufreq_freq_attr_ro(related_cpus);
580
cpufreq_freq_attr_ro(affected_cpus);
581
cpufreq_freq_attr_rw(scaling_min_freq);
582
cpufreq_freq_attr_rw(scaling_max_freq);
583
cpufreq_freq_attr_rw(scaling_governor);
584
cpufreq_freq_attr_rw(scaling_setspeed);
585
586
static struct attribute *default_attrs[] = {
587
&cpuinfo_min_freq.attr,
588
&cpuinfo_max_freq.attr,
589
&cpuinfo_transition_latency.attr,
590
&scaling_min_freq.attr,
591
&scaling_max_freq.attr,
592
&affected_cpus.attr,
593
&related_cpus.attr,
594
&scaling_governor.attr,
595
&scaling_driver.attr,
596
&scaling_available_governors.attr,
597
&scaling_setspeed.attr,
598
NULL
599
};
600
601
struct kobject *cpufreq_global_kobject;
602
EXPORT_SYMBOL(cpufreq_global_kobject);
603
604
#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
605
#define to_attr(a) container_of(a, struct freq_attr, attr)
606
607
static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
608
{
609
struct cpufreq_policy *policy = to_policy(kobj);
610
struct freq_attr *fattr = to_attr(attr);
611
ssize_t ret = -EINVAL;
612
policy = cpufreq_cpu_get(policy->cpu);
613
if (!policy)
614
goto no_policy;
615
616
if (lock_policy_rwsem_read(policy->cpu) < 0)
617
goto fail;
618
619
if (fattr->show)
620
ret = fattr->show(policy, buf);
621
else
622
ret = -EIO;
623
624
unlock_policy_rwsem_read(policy->cpu);
625
fail:
626
cpufreq_cpu_put(policy);
627
no_policy:
628
return ret;
629
}
630
631
static ssize_t store(struct kobject *kobj, struct attribute *attr,
632
const char *buf, size_t count)
633
{
634
struct cpufreq_policy *policy = to_policy(kobj);
635
struct freq_attr *fattr = to_attr(attr);
636
ssize_t ret = -EINVAL;
637
policy = cpufreq_cpu_get(policy->cpu);
638
if (!policy)
639
goto no_policy;
640
641
if (lock_policy_rwsem_write(policy->cpu) < 0)
642
goto fail;
643
644
if (fattr->store)
645
ret = fattr->store(policy, buf, count);
646
else
647
ret = -EIO;
648
649
unlock_policy_rwsem_write(policy->cpu);
650
fail:
651
cpufreq_cpu_put(policy);
652
no_policy:
653
return ret;
654
}
655
656
static void cpufreq_sysfs_release(struct kobject *kobj)
657
{
658
struct cpufreq_policy *policy = to_policy(kobj);
659
pr_debug("last reference is dropped\n");
660
complete(&policy->kobj_unregister);
661
}
662
663
static const struct sysfs_ops sysfs_ops = {
664
.show = show,
665
.store = store,
666
};
667
668
static struct kobj_type ktype_cpufreq = {
669
.sysfs_ops = &sysfs_ops,
670
.default_attrs = default_attrs,
671
.release = cpufreq_sysfs_release,
672
};
673
674
/*
675
* Returns:
676
* Negative: Failure
677
* 0: Success
678
* Positive: When we have a managed CPU and the sysfs got symlinked
679
*/
680
static int cpufreq_add_dev_policy(unsigned int cpu,
681
struct cpufreq_policy *policy,
682
struct sys_device *sys_dev)
683
{
684
int ret = 0;
685
#ifdef CONFIG_SMP
686
unsigned long flags;
687
unsigned int j;
688
#ifdef CONFIG_HOTPLUG_CPU
689
struct cpufreq_governor *gov;
690
691
gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
692
if (gov) {
693
policy->governor = gov;
694
pr_debug("Restoring governor %s for cpu %d\n",
695
policy->governor->name, cpu);
696
}
697
#endif
698
699
for_each_cpu(j, policy->cpus) {
700
struct cpufreq_policy *managed_policy;
701
702
if (cpu == j)
703
continue;
704
705
/* Check for existing affected CPUs.
706
* They may not be aware of it due to CPU Hotplug.
707
* cpufreq_cpu_put is called when the device is removed
708
* in __cpufreq_remove_dev()
709
*/
710
managed_policy = cpufreq_cpu_get(j);
711
if (unlikely(managed_policy)) {
712
713
/* Set proper policy_cpu */
714
unlock_policy_rwsem_write(cpu);
715
per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
716
717
if (lock_policy_rwsem_write(cpu) < 0) {
718
/* Should not go through policy unlock path */
719
if (cpufreq_driver->exit)
720
cpufreq_driver->exit(policy);
721
cpufreq_cpu_put(managed_policy);
722
return -EBUSY;
723
}
724
725
spin_lock_irqsave(&cpufreq_driver_lock, flags);
726
cpumask_copy(managed_policy->cpus, policy->cpus);
727
per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
728
spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
729
730
pr_debug("CPU already managed, adding link\n");
731
ret = sysfs_create_link(&sys_dev->kobj,
732
&managed_policy->kobj,
733
"cpufreq");
734
if (ret)
735
cpufreq_cpu_put(managed_policy);
736
/*
737
* Success. We only needed to be added to the mask.
738
* Call driver->exit() because only the cpu parent of
739
* the kobj needed to call init().
740
*/
741
if (cpufreq_driver->exit)
742
cpufreq_driver->exit(policy);
743
744
if (!ret)
745
return 1;
746
else
747
return ret;
748
}
749
}
750
#endif
751
return ret;
752
}
753
754
755
/* symlink affected CPUs */
756
static int cpufreq_add_dev_symlink(unsigned int cpu,
757
struct cpufreq_policy *policy)
758
{
759
unsigned int j;
760
int ret = 0;
761
762
for_each_cpu(j, policy->cpus) {
763
struct cpufreq_policy *managed_policy;
764
struct sys_device *cpu_sys_dev;
765
766
if (j == cpu)
767
continue;
768
if (!cpu_online(j))
769
continue;
770
771
pr_debug("CPU %u already managed, adding link\n", j);
772
managed_policy = cpufreq_cpu_get(cpu);
773
cpu_sys_dev = get_cpu_sysdev(j);
774
ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
775
"cpufreq");
776
if (ret) {
777
cpufreq_cpu_put(managed_policy);
778
return ret;
779
}
780
}
781
return ret;
782
}
783
784
static int cpufreq_add_dev_interface(unsigned int cpu,
785
struct cpufreq_policy *policy,
786
struct sys_device *sys_dev)
787
{
788
struct cpufreq_policy new_policy;
789
struct freq_attr **drv_attr;
790
unsigned long flags;
791
int ret = 0;
792
unsigned int j;
793
794
/* prepare interface data */
795
ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
796
&sys_dev->kobj, "cpufreq");
797
if (ret)
798
return ret;
799
800
/* set up files for this cpu device */
801
drv_attr = cpufreq_driver->attr;
802
while ((drv_attr) && (*drv_attr)) {
803
ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
804
if (ret)
805
goto err_out_kobj_put;
806
drv_attr++;
807
}
808
if (cpufreq_driver->get) {
809
ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
810
if (ret)
811
goto err_out_kobj_put;
812
}
813
if (cpufreq_driver->target) {
814
ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
815
if (ret)
816
goto err_out_kobj_put;
817
}
818
if (cpufreq_driver->bios_limit) {
819
ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
820
if (ret)
821
goto err_out_kobj_put;
822
}
823
824
spin_lock_irqsave(&cpufreq_driver_lock, flags);
825
for_each_cpu(j, policy->cpus) {
826
if (!cpu_online(j))
827
continue;
828
per_cpu(cpufreq_cpu_data, j) = policy;
829
per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
830
}
831
spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
832
833
ret = cpufreq_add_dev_symlink(cpu, policy);
834
if (ret)
835
goto err_out_kobj_put;
836
837
memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
838
/* assure that the starting sequence is run in __cpufreq_set_policy */
839
policy->governor = NULL;
840
841
/* set default policy */
842
ret = __cpufreq_set_policy(policy, &new_policy);
843
policy->user_policy.policy = policy->policy;
844
policy->user_policy.governor = policy->governor;
845
846
if (ret) {
847
pr_debug("setting policy failed\n");
848
if (cpufreq_driver->exit)
849
cpufreq_driver->exit(policy);
850
}
851
return ret;
852
853
err_out_kobj_put:
854
kobject_put(&policy->kobj);
855
wait_for_completion(&policy->kobj_unregister);
856
return ret;
857
}
858
859
860
/**
861
* cpufreq_add_dev - add a CPU device
862
*
863
* Adds the cpufreq interface for a CPU device.
864
*
865
* The Oracle says: try running cpufreq registration/unregistration concurrently
866
* with with cpu hotplugging and all hell will break loose. Tried to clean this
867
* mess up, but more thorough testing is needed. - Mathieu
868
*/
869
static int cpufreq_add_dev(struct sys_device *sys_dev)
870
{
871
unsigned int cpu = sys_dev->id;
872
int ret = 0, found = 0;
873
struct cpufreq_policy *policy;
874
unsigned long flags;
875
unsigned int j;
876
#ifdef CONFIG_HOTPLUG_CPU
877
int sibling;
878
#endif
879
880
if (cpu_is_offline(cpu))
881
return 0;
882
883
pr_debug("adding CPU %u\n", cpu);
884
885
#ifdef CONFIG_SMP
886
/* check whether a different CPU already registered this
887
* CPU because it is in the same boat. */
888
policy = cpufreq_cpu_get(cpu);
889
if (unlikely(policy)) {
890
cpufreq_cpu_put(policy);
891
return 0;
892
}
893
#endif
894
895
if (!try_module_get(cpufreq_driver->owner)) {
896
ret = -EINVAL;
897
goto module_out;
898
}
899
900
ret = -ENOMEM;
901
policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
902
if (!policy)
903
goto nomem_out;
904
905
if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
906
goto err_free_policy;
907
908
if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
909
goto err_free_cpumask;
910
911
policy->cpu = cpu;
912
cpumask_copy(policy->cpus, cpumask_of(cpu));
913
914
/* Initially set CPU itself as the policy_cpu */
915
per_cpu(cpufreq_policy_cpu, cpu) = cpu;
916
ret = (lock_policy_rwsem_write(cpu) < 0);
917
WARN_ON(ret);
918
919
init_completion(&policy->kobj_unregister);
920
INIT_WORK(&policy->update, handle_update);
921
922
/* Set governor before ->init, so that driver could check it */
923
#ifdef CONFIG_HOTPLUG_CPU
924
for_each_online_cpu(sibling) {
925
struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
926
if (cp && cp->governor &&
927
(cpumask_test_cpu(cpu, cp->related_cpus))) {
928
policy->governor = cp->governor;
929
found = 1;
930
break;
931
}
932
}
933
#endif
934
if (!found)
935
policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
936
/* call driver. From then on the cpufreq must be able
937
* to accept all calls to ->verify and ->setpolicy for this CPU
938
*/
939
ret = cpufreq_driver->init(policy);
940
if (ret) {
941
pr_debug("initialization failed\n");
942
goto err_unlock_policy;
943
}
944
policy->user_policy.min = policy->min;
945
policy->user_policy.max = policy->max;
946
947
blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
948
CPUFREQ_START, policy);
949
950
ret = cpufreq_add_dev_policy(cpu, policy, sys_dev);
951
if (ret) {
952
if (ret > 0)
953
/* This is a managed cpu, symlink created,
954
exit with 0 */
955
ret = 0;
956
goto err_unlock_policy;
957
}
958
959
ret = cpufreq_add_dev_interface(cpu, policy, sys_dev);
960
if (ret)
961
goto err_out_unregister;
962
963
unlock_policy_rwsem_write(cpu);
964
965
kobject_uevent(&policy->kobj, KOBJ_ADD);
966
module_put(cpufreq_driver->owner);
967
pr_debug("initialization complete\n");
968
969
return 0;
970
971
972
err_out_unregister:
973
spin_lock_irqsave(&cpufreq_driver_lock, flags);
974
for_each_cpu(j, policy->cpus)
975
per_cpu(cpufreq_cpu_data, j) = NULL;
976
spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
977
978
kobject_put(&policy->kobj);
979
wait_for_completion(&policy->kobj_unregister);
980
981
err_unlock_policy:
982
unlock_policy_rwsem_write(cpu);
983
free_cpumask_var(policy->related_cpus);
984
err_free_cpumask:
985
free_cpumask_var(policy->cpus);
986
err_free_policy:
987
kfree(policy);
988
nomem_out:
989
module_put(cpufreq_driver->owner);
990
module_out:
991
return ret;
992
}
993
994
995
/**
996
* __cpufreq_remove_dev - remove a CPU device
997
*
998
* Removes the cpufreq interface for a CPU device.
999
* Caller should already have policy_rwsem in write mode for this CPU.
1000
* This routine frees the rwsem before returning.
1001
*/
1002
static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1003
{
1004
unsigned int cpu = sys_dev->id;
1005
unsigned long flags;
1006
struct cpufreq_policy *data;
1007
struct kobject *kobj;
1008
struct completion *cmp;
1009
#ifdef CONFIG_SMP
1010
struct sys_device *cpu_sys_dev;
1011
unsigned int j;
1012
#endif
1013
1014
pr_debug("unregistering CPU %u\n", cpu);
1015
1016
spin_lock_irqsave(&cpufreq_driver_lock, flags);
1017
data = per_cpu(cpufreq_cpu_data, cpu);
1018
1019
if (!data) {
1020
spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1021
unlock_policy_rwsem_write(cpu);
1022
return -EINVAL;
1023
}
1024
per_cpu(cpufreq_cpu_data, cpu) = NULL;
1025
1026
1027
#ifdef CONFIG_SMP
1028
/* if this isn't the CPU which is the parent of the kobj, we
1029
* only need to unlink, put and exit
1030
*/
1031
if (unlikely(cpu != data->cpu)) {
1032
pr_debug("removing link\n");
1033
cpumask_clear_cpu(cpu, data->cpus);
1034
spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1035
kobj = &sys_dev->kobj;
1036
cpufreq_cpu_put(data);
1037
unlock_policy_rwsem_write(cpu);
1038
sysfs_remove_link(kobj, "cpufreq");
1039
return 0;
1040
}
1041
#endif
1042
1043
#ifdef CONFIG_SMP
1044
1045
#ifdef CONFIG_HOTPLUG_CPU
1046
strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1047
CPUFREQ_NAME_LEN);
1048
#endif
1049
1050
/* if we have other CPUs still registered, we need to unlink them,
1051
* or else wait_for_completion below will lock up. Clean the
1052
* per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1053
* the sysfs links afterwards.
1054
*/
1055
if (unlikely(cpumask_weight(data->cpus) > 1)) {
1056
for_each_cpu(j, data->cpus) {
1057
if (j == cpu)
1058
continue;
1059
per_cpu(cpufreq_cpu_data, j) = NULL;
1060
}
1061
}
1062
1063
spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1064
1065
if (unlikely(cpumask_weight(data->cpus) > 1)) {
1066
for_each_cpu(j, data->cpus) {
1067
if (j == cpu)
1068
continue;
1069
pr_debug("removing link for cpu %u\n", j);
1070
#ifdef CONFIG_HOTPLUG_CPU
1071
strncpy(per_cpu(cpufreq_cpu_governor, j),
1072
data->governor->name, CPUFREQ_NAME_LEN);
1073
#endif
1074
cpu_sys_dev = get_cpu_sysdev(j);
1075
kobj = &cpu_sys_dev->kobj;
1076
unlock_policy_rwsem_write(cpu);
1077
sysfs_remove_link(kobj, "cpufreq");
1078
lock_policy_rwsem_write(cpu);
1079
cpufreq_cpu_put(data);
1080
}
1081
}
1082
#else
1083
spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1084
#endif
1085
1086
if (cpufreq_driver->target)
1087
__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1088
1089
kobj = &data->kobj;
1090
cmp = &data->kobj_unregister;
1091
unlock_policy_rwsem_write(cpu);
1092
kobject_put(kobj);
1093
1094
/* we need to make sure that the underlying kobj is actually
1095
* not referenced anymore by anybody before we proceed with
1096
* unloading.
1097
*/
1098
pr_debug("waiting for dropping of refcount\n");
1099
wait_for_completion(cmp);
1100
pr_debug("wait complete\n");
1101
1102
lock_policy_rwsem_write(cpu);
1103
if (cpufreq_driver->exit)
1104
cpufreq_driver->exit(data);
1105
unlock_policy_rwsem_write(cpu);
1106
1107
#ifdef CONFIG_HOTPLUG_CPU
1108
/* when the CPU which is the parent of the kobj is hotplugged
1109
* offline, check for siblings, and create cpufreq sysfs interface
1110
* and symlinks
1111
*/
1112
if (unlikely(cpumask_weight(data->cpus) > 1)) {
1113
/* first sibling now owns the new sysfs dir */
1114
cpumask_clear_cpu(cpu, data->cpus);
1115
cpufreq_add_dev(get_cpu_sysdev(cpumask_first(data->cpus)));
1116
1117
/* finally remove our own symlink */
1118
lock_policy_rwsem_write(cpu);
1119
__cpufreq_remove_dev(sys_dev);
1120
}
1121
#endif
1122
1123
free_cpumask_var(data->related_cpus);
1124
free_cpumask_var(data->cpus);
1125
kfree(data);
1126
1127
return 0;
1128
}
1129
1130
1131
static int cpufreq_remove_dev(struct sys_device *sys_dev)
1132
{
1133
unsigned int cpu = sys_dev->id;
1134
int retval;
1135
1136
if (cpu_is_offline(cpu))
1137
return 0;
1138
1139
if (unlikely(lock_policy_rwsem_write(cpu)))
1140
BUG();
1141
1142
retval = __cpufreq_remove_dev(sys_dev);
1143
return retval;
1144
}
1145
1146
1147
static void handle_update(struct work_struct *work)
1148
{
1149
struct cpufreq_policy *policy =
1150
container_of(work, struct cpufreq_policy, update);
1151
unsigned int cpu = policy->cpu;
1152
pr_debug("handle_update for cpu %u called\n", cpu);
1153
cpufreq_update_policy(cpu);
1154
}
1155
1156
/**
1157
* cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1158
* @cpu: cpu number
1159
* @old_freq: CPU frequency the kernel thinks the CPU runs at
1160
* @new_freq: CPU frequency the CPU actually runs at
1161
*
1162
* We adjust to current frequency first, and need to clean up later.
1163
* So either call to cpufreq_update_policy() or schedule handle_update()).
1164
*/
1165
static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1166
unsigned int new_freq)
1167
{
1168
struct cpufreq_freqs freqs;
1169
1170
pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1171
"core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1172
1173
freqs.cpu = cpu;
1174
freqs.old = old_freq;
1175
freqs.new = new_freq;
1176
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1177
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1178
}
1179
1180
1181
/**
1182
* cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1183
* @cpu: CPU number
1184
*
1185
* This is the last known freq, without actually getting it from the driver.
1186
* Return value will be same as what is shown in scaling_cur_freq in sysfs.
1187
*/
1188
unsigned int cpufreq_quick_get(unsigned int cpu)
1189
{
1190
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1191
unsigned int ret_freq = 0;
1192
1193
if (policy) {
1194
ret_freq = policy->cur;
1195
cpufreq_cpu_put(policy);
1196
}
1197
1198
return ret_freq;
1199
}
1200
EXPORT_SYMBOL(cpufreq_quick_get);
1201
1202
1203
static unsigned int __cpufreq_get(unsigned int cpu)
1204
{
1205
struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1206
unsigned int ret_freq = 0;
1207
1208
if (!cpufreq_driver->get)
1209
return ret_freq;
1210
1211
ret_freq = cpufreq_driver->get(cpu);
1212
1213
if (ret_freq && policy->cur &&
1214
!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1215
/* verify no discrepancy between actual and
1216
saved value exists */
1217
if (unlikely(ret_freq != policy->cur)) {
1218
cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1219
schedule_work(&policy->update);
1220
}
1221
}
1222
1223
return ret_freq;
1224
}
1225
1226
/**
1227
* cpufreq_get - get the current CPU frequency (in kHz)
1228
* @cpu: CPU number
1229
*
1230
* Get the CPU current (static) CPU frequency
1231
*/
1232
unsigned int cpufreq_get(unsigned int cpu)
1233
{
1234
unsigned int ret_freq = 0;
1235
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1236
1237
if (!policy)
1238
goto out;
1239
1240
if (unlikely(lock_policy_rwsem_read(cpu)))
1241
goto out_policy;
1242
1243
ret_freq = __cpufreq_get(cpu);
1244
1245
unlock_policy_rwsem_read(cpu);
1246
1247
out_policy:
1248
cpufreq_cpu_put(policy);
1249
out:
1250
return ret_freq;
1251
}
1252
EXPORT_SYMBOL(cpufreq_get);
1253
1254
static struct sysdev_driver cpufreq_sysdev_driver = {
1255
.add = cpufreq_add_dev,
1256
.remove = cpufreq_remove_dev,
1257
};
1258
1259
1260
/**
1261
* cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1262
*
1263
* This function is only executed for the boot processor. The other CPUs
1264
* have been put offline by means of CPU hotplug.
1265
*/
1266
static int cpufreq_bp_suspend(void)
1267
{
1268
int ret = 0;
1269
1270
int cpu = smp_processor_id();
1271
struct cpufreq_policy *cpu_policy;
1272
1273
pr_debug("suspending cpu %u\n", cpu);
1274
1275
/* If there's no policy for the boot CPU, we have nothing to do. */
1276
cpu_policy = cpufreq_cpu_get(cpu);
1277
if (!cpu_policy)
1278
return 0;
1279
1280
if (cpufreq_driver->suspend) {
1281
ret = cpufreq_driver->suspend(cpu_policy);
1282
if (ret)
1283
printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1284
"step on CPU %u\n", cpu_policy->cpu);
1285
}
1286
1287
cpufreq_cpu_put(cpu_policy);
1288
return ret;
1289
}
1290
1291
/**
1292
* cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1293
*
1294
* 1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1295
* 2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1296
* restored. It will verify that the current freq is in sync with
1297
* what we believe it to be. This is a bit later than when it
1298
* should be, but nonethteless it's better than calling
1299
* cpufreq_driver->get() here which might re-enable interrupts...
1300
*
1301
* This function is only executed for the boot CPU. The other CPUs have not
1302
* been turned on yet.
1303
*/
1304
static void cpufreq_bp_resume(void)
1305
{
1306
int ret = 0;
1307
1308
int cpu = smp_processor_id();
1309
struct cpufreq_policy *cpu_policy;
1310
1311
pr_debug("resuming cpu %u\n", cpu);
1312
1313
/* If there's no policy for the boot CPU, we have nothing to do. */
1314
cpu_policy = cpufreq_cpu_get(cpu);
1315
if (!cpu_policy)
1316
return;
1317
1318
if (cpufreq_driver->resume) {
1319
ret = cpufreq_driver->resume(cpu_policy);
1320
if (ret) {
1321
printk(KERN_ERR "cpufreq: resume failed in ->resume "
1322
"step on CPU %u\n", cpu_policy->cpu);
1323
goto fail;
1324
}
1325
}
1326
1327
schedule_work(&cpu_policy->update);
1328
1329
fail:
1330
cpufreq_cpu_put(cpu_policy);
1331
}
1332
1333
static struct syscore_ops cpufreq_syscore_ops = {
1334
.suspend = cpufreq_bp_suspend,
1335
.resume = cpufreq_bp_resume,
1336
};
1337
1338
1339
/*********************************************************************
1340
* NOTIFIER LISTS INTERFACE *
1341
*********************************************************************/
1342
1343
/**
1344
* cpufreq_register_notifier - register a driver with cpufreq
1345
* @nb: notifier function to register
1346
* @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1347
*
1348
* Add a driver to one of two lists: either a list of drivers that
1349
* are notified about clock rate changes (once before and once after
1350
* the transition), or a list of drivers that are notified about
1351
* changes in cpufreq policy.
1352
*
1353
* This function may sleep, and has the same return conditions as
1354
* blocking_notifier_chain_register.
1355
*/
1356
int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1357
{
1358
int ret;
1359
1360
WARN_ON(!init_cpufreq_transition_notifier_list_called);
1361
1362
switch (list) {
1363
case CPUFREQ_TRANSITION_NOTIFIER:
1364
ret = srcu_notifier_chain_register(
1365
&cpufreq_transition_notifier_list, nb);
1366
break;
1367
case CPUFREQ_POLICY_NOTIFIER:
1368
ret = blocking_notifier_chain_register(
1369
&cpufreq_policy_notifier_list, nb);
1370
break;
1371
default:
1372
ret = -EINVAL;
1373
}
1374
1375
return ret;
1376
}
1377
EXPORT_SYMBOL(cpufreq_register_notifier);
1378
1379
1380
/**
1381
* cpufreq_unregister_notifier - unregister a driver with cpufreq
1382
* @nb: notifier block to be unregistered
1383
* @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1384
*
1385
* Remove a driver from the CPU frequency notifier list.
1386
*
1387
* This function may sleep, and has the same return conditions as
1388
* blocking_notifier_chain_unregister.
1389
*/
1390
int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1391
{
1392
int ret;
1393
1394
switch (list) {
1395
case CPUFREQ_TRANSITION_NOTIFIER:
1396
ret = srcu_notifier_chain_unregister(
1397
&cpufreq_transition_notifier_list, nb);
1398
break;
1399
case CPUFREQ_POLICY_NOTIFIER:
1400
ret = blocking_notifier_chain_unregister(
1401
&cpufreq_policy_notifier_list, nb);
1402
break;
1403
default:
1404
ret = -EINVAL;
1405
}
1406
1407
return ret;
1408
}
1409
EXPORT_SYMBOL(cpufreq_unregister_notifier);
1410
1411
1412
/*********************************************************************
1413
* GOVERNORS *
1414
*********************************************************************/
1415
1416
1417
int __cpufreq_driver_target(struct cpufreq_policy *policy,
1418
unsigned int target_freq,
1419
unsigned int relation)
1420
{
1421
int retval = -EINVAL;
1422
1423
pr_debug("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1424
target_freq, relation);
1425
if (cpu_online(policy->cpu) && cpufreq_driver->target)
1426
retval = cpufreq_driver->target(policy, target_freq, relation);
1427
1428
return retval;
1429
}
1430
EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1431
1432
int cpufreq_driver_target(struct cpufreq_policy *policy,
1433
unsigned int target_freq,
1434
unsigned int relation)
1435
{
1436
int ret = -EINVAL;
1437
1438
policy = cpufreq_cpu_get(policy->cpu);
1439
if (!policy)
1440
goto no_policy;
1441
1442
if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1443
goto fail;
1444
1445
ret = __cpufreq_driver_target(policy, target_freq, relation);
1446
1447
unlock_policy_rwsem_write(policy->cpu);
1448
1449
fail:
1450
cpufreq_cpu_put(policy);
1451
no_policy:
1452
return ret;
1453
}
1454
EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1455
1456
int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1457
{
1458
int ret = 0;
1459
1460
policy = cpufreq_cpu_get(policy->cpu);
1461
if (!policy)
1462
return -EINVAL;
1463
1464
if (cpu_online(cpu) && cpufreq_driver->getavg)
1465
ret = cpufreq_driver->getavg(policy, cpu);
1466
1467
cpufreq_cpu_put(policy);
1468
return ret;
1469
}
1470
EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1471
1472
/*
1473
* when "event" is CPUFREQ_GOV_LIMITS
1474
*/
1475
1476
static int __cpufreq_governor(struct cpufreq_policy *policy,
1477
unsigned int event)
1478
{
1479
int ret;
1480
1481
/* Only must be defined when default governor is known to have latency
1482
restrictions, like e.g. conservative or ondemand.
1483
That this is the case is already ensured in Kconfig
1484
*/
1485
#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1486
struct cpufreq_governor *gov = &cpufreq_gov_performance;
1487
#else
1488
struct cpufreq_governor *gov = NULL;
1489
#endif
1490
1491
if (policy->governor->max_transition_latency &&
1492
policy->cpuinfo.transition_latency >
1493
policy->governor->max_transition_latency) {
1494
if (!gov)
1495
return -EINVAL;
1496
else {
1497
printk(KERN_WARNING "%s governor failed, too long"
1498
" transition latency of HW, fallback"
1499
" to %s governor\n",
1500
policy->governor->name,
1501
gov->name);
1502
policy->governor = gov;
1503
}
1504
}
1505
1506
if (!try_module_get(policy->governor->owner))
1507
return -EINVAL;
1508
1509
pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1510
policy->cpu, event);
1511
ret = policy->governor->governor(policy, event);
1512
1513
/* we keep one module reference alive for
1514
each CPU governed by this CPU */
1515
if ((event != CPUFREQ_GOV_START) || ret)
1516
module_put(policy->governor->owner);
1517
if ((event == CPUFREQ_GOV_STOP) && !ret)
1518
module_put(policy->governor->owner);
1519
1520
return ret;
1521
}
1522
1523
1524
int cpufreq_register_governor(struct cpufreq_governor *governor)
1525
{
1526
int err;
1527
1528
if (!governor)
1529
return -EINVAL;
1530
1531
mutex_lock(&cpufreq_governor_mutex);
1532
1533
err = -EBUSY;
1534
if (__find_governor(governor->name) == NULL) {
1535
err = 0;
1536
list_add(&governor->governor_list, &cpufreq_governor_list);
1537
}
1538
1539
mutex_unlock(&cpufreq_governor_mutex);
1540
return err;
1541
}
1542
EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1543
1544
1545
void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1546
{
1547
#ifdef CONFIG_HOTPLUG_CPU
1548
int cpu;
1549
#endif
1550
1551
if (!governor)
1552
return;
1553
1554
#ifdef CONFIG_HOTPLUG_CPU
1555
for_each_present_cpu(cpu) {
1556
if (cpu_online(cpu))
1557
continue;
1558
if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1559
strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
1560
}
1561
#endif
1562
1563
mutex_lock(&cpufreq_governor_mutex);
1564
list_del(&governor->governor_list);
1565
mutex_unlock(&cpufreq_governor_mutex);
1566
return;
1567
}
1568
EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1569
1570
1571
1572
/*********************************************************************
1573
* POLICY INTERFACE *
1574
*********************************************************************/
1575
1576
/**
1577
* cpufreq_get_policy - get the current cpufreq_policy
1578
* @policy: struct cpufreq_policy into which the current cpufreq_policy
1579
* is written
1580
*
1581
* Reads the current cpufreq policy.
1582
*/
1583
int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1584
{
1585
struct cpufreq_policy *cpu_policy;
1586
if (!policy)
1587
return -EINVAL;
1588
1589
cpu_policy = cpufreq_cpu_get(cpu);
1590
if (!cpu_policy)
1591
return -EINVAL;
1592
1593
memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1594
1595
cpufreq_cpu_put(cpu_policy);
1596
return 0;
1597
}
1598
EXPORT_SYMBOL(cpufreq_get_policy);
1599
1600
1601
/*
1602
* data : current policy.
1603
* policy : policy to be set.
1604
*/
1605
static int __cpufreq_set_policy(struct cpufreq_policy *data,
1606
struct cpufreq_policy *policy)
1607
{
1608
int ret = 0;
1609
1610
pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1611
policy->min, policy->max);
1612
1613
memcpy(&policy->cpuinfo, &data->cpuinfo,
1614
sizeof(struct cpufreq_cpuinfo));
1615
1616
if (policy->min > data->max || policy->max < data->min) {
1617
ret = -EINVAL;
1618
goto error_out;
1619
}
1620
1621
/* verify the cpu speed can be set within this limit */
1622
ret = cpufreq_driver->verify(policy);
1623
if (ret)
1624
goto error_out;
1625
1626
/* adjust if necessary - all reasons */
1627
blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1628
CPUFREQ_ADJUST, policy);
1629
1630
/* adjust if necessary - hardware incompatibility*/
1631
blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1632
CPUFREQ_INCOMPATIBLE, policy);
1633
1634
/* verify the cpu speed can be set within this limit,
1635
which might be different to the first one */
1636
ret = cpufreq_driver->verify(policy);
1637
if (ret)
1638
goto error_out;
1639
1640
/* notification of the new policy */
1641
blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1642
CPUFREQ_NOTIFY, policy);
1643
1644
data->min = policy->min;
1645
data->max = policy->max;
1646
1647
pr_debug("new min and max freqs are %u - %u kHz\n",
1648
data->min, data->max);
1649
1650
if (cpufreq_driver->setpolicy) {
1651
data->policy = policy->policy;
1652
pr_debug("setting range\n");
1653
ret = cpufreq_driver->setpolicy(policy);
1654
} else {
1655
if (policy->governor != data->governor) {
1656
/* save old, working values */
1657
struct cpufreq_governor *old_gov = data->governor;
1658
1659
pr_debug("governor switch\n");
1660
1661
/* end old governor */
1662
if (data->governor)
1663
__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1664
1665
/* start new governor */
1666
data->governor = policy->governor;
1667
if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1668
/* new governor failed, so re-start old one */
1669
pr_debug("starting governor %s failed\n",
1670
data->governor->name);
1671
if (old_gov) {
1672
data->governor = old_gov;
1673
__cpufreq_governor(data,
1674
CPUFREQ_GOV_START);
1675
}
1676
ret = -EINVAL;
1677
goto error_out;
1678
}
1679
/* might be a policy change, too, so fall through */
1680
}
1681
pr_debug("governor: change or update limits\n");
1682
__cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1683
}
1684
1685
error_out:
1686
return ret;
1687
}
1688
1689
/**
1690
* cpufreq_update_policy - re-evaluate an existing cpufreq policy
1691
* @cpu: CPU which shall be re-evaluated
1692
*
1693
* Useful for policy notifiers which have different necessities
1694
* at different times.
1695
*/
1696
int cpufreq_update_policy(unsigned int cpu)
1697
{
1698
struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1699
struct cpufreq_policy policy;
1700
int ret;
1701
1702
if (!data) {
1703
ret = -ENODEV;
1704
goto no_policy;
1705
}
1706
1707
if (unlikely(lock_policy_rwsem_write(cpu))) {
1708
ret = -EINVAL;
1709
goto fail;
1710
}
1711
1712
pr_debug("updating policy for CPU %u\n", cpu);
1713
memcpy(&policy, data, sizeof(struct cpufreq_policy));
1714
policy.min = data->user_policy.min;
1715
policy.max = data->user_policy.max;
1716
policy.policy = data->user_policy.policy;
1717
policy.governor = data->user_policy.governor;
1718
1719
/* BIOS might change freq behind our back
1720
-> ask driver for current freq and notify governors about a change */
1721
if (cpufreq_driver->get) {
1722
policy.cur = cpufreq_driver->get(cpu);
1723
if (!data->cur) {
1724
pr_debug("Driver did not initialize current freq");
1725
data->cur = policy.cur;
1726
} else {
1727
if (data->cur != policy.cur)
1728
cpufreq_out_of_sync(cpu, data->cur,
1729
policy.cur);
1730
}
1731
}
1732
1733
ret = __cpufreq_set_policy(data, &policy);
1734
1735
unlock_policy_rwsem_write(cpu);
1736
1737
fail:
1738
cpufreq_cpu_put(data);
1739
no_policy:
1740
return ret;
1741
}
1742
EXPORT_SYMBOL(cpufreq_update_policy);
1743
1744
static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1745
unsigned long action, void *hcpu)
1746
{
1747
unsigned int cpu = (unsigned long)hcpu;
1748
struct sys_device *sys_dev;
1749
1750
sys_dev = get_cpu_sysdev(cpu);
1751
if (sys_dev) {
1752
switch (action) {
1753
case CPU_ONLINE:
1754
case CPU_ONLINE_FROZEN:
1755
cpufreq_add_dev(sys_dev);
1756
break;
1757
case CPU_DOWN_PREPARE:
1758
case CPU_DOWN_PREPARE_FROZEN:
1759
if (unlikely(lock_policy_rwsem_write(cpu)))
1760
BUG();
1761
1762
__cpufreq_remove_dev(sys_dev);
1763
break;
1764
case CPU_DOWN_FAILED:
1765
case CPU_DOWN_FAILED_FROZEN:
1766
cpufreq_add_dev(sys_dev);
1767
break;
1768
}
1769
}
1770
return NOTIFY_OK;
1771
}
1772
1773
static struct notifier_block __refdata cpufreq_cpu_notifier = {
1774
.notifier_call = cpufreq_cpu_callback,
1775
};
1776
1777
/*********************************************************************
1778
* REGISTER / UNREGISTER CPUFREQ DRIVER *
1779
*********************************************************************/
1780
1781
/**
1782
* cpufreq_register_driver - register a CPU Frequency driver
1783
* @driver_data: A struct cpufreq_driver containing the values#
1784
* submitted by the CPU Frequency driver.
1785
*
1786
* Registers a CPU Frequency driver to this core code. This code
1787
* returns zero on success, -EBUSY when another driver got here first
1788
* (and isn't unregistered in the meantime).
1789
*
1790
*/
1791
int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1792
{
1793
unsigned long flags;
1794
int ret;
1795
1796
if (!driver_data || !driver_data->verify || !driver_data->init ||
1797
((!driver_data->setpolicy) && (!driver_data->target)))
1798
return -EINVAL;
1799
1800
pr_debug("trying to register driver %s\n", driver_data->name);
1801
1802
if (driver_data->setpolicy)
1803
driver_data->flags |= CPUFREQ_CONST_LOOPS;
1804
1805
spin_lock_irqsave(&cpufreq_driver_lock, flags);
1806
if (cpufreq_driver) {
1807
spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1808
return -EBUSY;
1809
}
1810
cpufreq_driver = driver_data;
1811
spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1812
1813
ret = sysdev_driver_register(&cpu_sysdev_class,
1814
&cpufreq_sysdev_driver);
1815
if (ret)
1816
goto err_null_driver;
1817
1818
if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1819
int i;
1820
ret = -ENODEV;
1821
1822
/* check for at least one working CPU */
1823
for (i = 0; i < nr_cpu_ids; i++)
1824
if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1825
ret = 0;
1826
break;
1827
}
1828
1829
/* if all ->init() calls failed, unregister */
1830
if (ret) {
1831
pr_debug("no CPU initialized for driver %s\n",
1832
driver_data->name);
1833
goto err_sysdev_unreg;
1834
}
1835
}
1836
1837
register_hotcpu_notifier(&cpufreq_cpu_notifier);
1838
pr_debug("driver %s up and running\n", driver_data->name);
1839
1840
return 0;
1841
err_sysdev_unreg:
1842
sysdev_driver_unregister(&cpu_sysdev_class,
1843
&cpufreq_sysdev_driver);
1844
err_null_driver:
1845
spin_lock_irqsave(&cpufreq_driver_lock, flags);
1846
cpufreq_driver = NULL;
1847
spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1848
return ret;
1849
}
1850
EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1851
1852
1853
/**
1854
* cpufreq_unregister_driver - unregister the current CPUFreq driver
1855
*
1856
* Unregister the current CPUFreq driver. Only call this if you have
1857
* the right to do so, i.e. if you have succeeded in initialising before!
1858
* Returns zero if successful, and -EINVAL if the cpufreq_driver is
1859
* currently not initialised.
1860
*/
1861
int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1862
{
1863
unsigned long flags;
1864
1865
if (!cpufreq_driver || (driver != cpufreq_driver))
1866
return -EINVAL;
1867
1868
pr_debug("unregistering driver %s\n", driver->name);
1869
1870
sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1871
unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1872
1873
spin_lock_irqsave(&cpufreq_driver_lock, flags);
1874
cpufreq_driver = NULL;
1875
spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1876
1877
return 0;
1878
}
1879
EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1880
1881
static int __init cpufreq_core_init(void)
1882
{
1883
int cpu;
1884
1885
for_each_possible_cpu(cpu) {
1886
per_cpu(cpufreq_policy_cpu, cpu) = -1;
1887
init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1888
}
1889
1890
cpufreq_global_kobject = kobject_create_and_add("cpufreq",
1891
&cpu_sysdev_class.kset.kobj);
1892
BUG_ON(!cpufreq_global_kobject);
1893
register_syscore_ops(&cpufreq_syscore_ops);
1894
1895
return 0;
1896
}
1897
core_initcall(cpufreq_core_init);
1898
1899