Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/cpufreq/cpufreq_conservative.c
15109 views
1
/*
2
* drivers/cpufreq/cpufreq_conservative.c
3
*
4
* Copyright (C) 2001 Russell King
5
* (C) 2003 Venkatesh Pallipadi <[email protected]>.
6
* Jun Nakajima <[email protected]>
7
* (C) 2009 Alexander Clouter <[email protected]>
8
*
9
* This program is free software; you can redistribute it and/or modify
10
* it under the terms of the GNU General Public License version 2 as
11
* published by the Free Software Foundation.
12
*/
13
14
#include <linux/kernel.h>
15
#include <linux/module.h>
16
#include <linux/init.h>
17
#include <linux/cpufreq.h>
18
#include <linux/cpu.h>
19
#include <linux/jiffies.h>
20
#include <linux/kernel_stat.h>
21
#include <linux/mutex.h>
22
#include <linux/hrtimer.h>
23
#include <linux/tick.h>
24
#include <linux/ktime.h>
25
#include <linux/sched.h>
26
27
/*
28
* dbs is used in this file as a shortform for demandbased switching
29
* It helps to keep variable names smaller, simpler
30
*/
31
32
#define DEF_FREQUENCY_UP_THRESHOLD (80)
33
#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
34
35
/*
36
* The polling frequency of this governor depends on the capability of
37
* the processor. Default polling frequency is 1000 times the transition
38
* latency of the processor. The governor will work on any processor with
39
* transition latency <= 10mS, using appropriate sampling
40
* rate.
41
* For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42
* this governor will not work.
43
* All times here are in uS.
44
*/
45
#define MIN_SAMPLING_RATE_RATIO (2)
46
47
static unsigned int min_sampling_rate;
48
49
#define LATENCY_MULTIPLIER (1000)
50
#define MIN_LATENCY_MULTIPLIER (100)
51
#define DEF_SAMPLING_DOWN_FACTOR (1)
52
#define MAX_SAMPLING_DOWN_FACTOR (10)
53
#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
54
55
static void do_dbs_timer(struct work_struct *work);
56
57
struct cpu_dbs_info_s {
58
cputime64_t prev_cpu_idle;
59
cputime64_t prev_cpu_wall;
60
cputime64_t prev_cpu_nice;
61
struct cpufreq_policy *cur_policy;
62
struct delayed_work work;
63
unsigned int down_skip;
64
unsigned int requested_freq;
65
int cpu;
66
unsigned int enable:1;
67
/*
68
* percpu mutex that serializes governor limit change with
69
* do_dbs_timer invocation. We do not want do_dbs_timer to run
70
* when user is changing the governor or limits.
71
*/
72
struct mutex timer_mutex;
73
};
74
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
75
76
static unsigned int dbs_enable; /* number of CPUs using this policy */
77
78
/*
79
* dbs_mutex protects dbs_enable in governor start/stop.
80
*/
81
static DEFINE_MUTEX(dbs_mutex);
82
83
static struct dbs_tuners {
84
unsigned int sampling_rate;
85
unsigned int sampling_down_factor;
86
unsigned int up_threshold;
87
unsigned int down_threshold;
88
unsigned int ignore_nice;
89
unsigned int freq_step;
90
} dbs_tuners_ins = {
91
.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
92
.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
93
.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
94
.ignore_nice = 0,
95
.freq_step = 5,
96
};
97
98
static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
99
cputime64_t *wall)
100
{
101
cputime64_t idle_time;
102
cputime64_t cur_wall_time;
103
cputime64_t busy_time;
104
105
cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
106
busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
107
kstat_cpu(cpu).cpustat.system);
108
109
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
110
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
111
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
112
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
113
114
idle_time = cputime64_sub(cur_wall_time, busy_time);
115
if (wall)
116
*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
117
118
return (cputime64_t)jiffies_to_usecs(idle_time);
119
}
120
121
static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
122
{
123
u64 idle_time = get_cpu_idle_time_us(cpu, wall);
124
125
if (idle_time == -1ULL)
126
return get_cpu_idle_time_jiffy(cpu, wall);
127
128
return idle_time;
129
}
130
131
/* keep track of frequency transitions */
132
static int
133
dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
134
void *data)
135
{
136
struct cpufreq_freqs *freq = data;
137
struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
138
freq->cpu);
139
140
struct cpufreq_policy *policy;
141
142
if (!this_dbs_info->enable)
143
return 0;
144
145
policy = this_dbs_info->cur_policy;
146
147
/*
148
* we only care if our internally tracked freq moves outside
149
* the 'valid' ranges of freqency available to us otherwise
150
* we do not change it
151
*/
152
if (this_dbs_info->requested_freq > policy->max
153
|| this_dbs_info->requested_freq < policy->min)
154
this_dbs_info->requested_freq = freq->new;
155
156
return 0;
157
}
158
159
static struct notifier_block dbs_cpufreq_notifier_block = {
160
.notifier_call = dbs_cpufreq_notifier
161
};
162
163
/************************** sysfs interface ************************/
164
static ssize_t show_sampling_rate_min(struct kobject *kobj,
165
struct attribute *attr, char *buf)
166
{
167
return sprintf(buf, "%u\n", min_sampling_rate);
168
}
169
170
define_one_global_ro(sampling_rate_min);
171
172
/* cpufreq_conservative Governor Tunables */
173
#define show_one(file_name, object) \
174
static ssize_t show_##file_name \
175
(struct kobject *kobj, struct attribute *attr, char *buf) \
176
{ \
177
return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
178
}
179
show_one(sampling_rate, sampling_rate);
180
show_one(sampling_down_factor, sampling_down_factor);
181
show_one(up_threshold, up_threshold);
182
show_one(down_threshold, down_threshold);
183
show_one(ignore_nice_load, ignore_nice);
184
show_one(freq_step, freq_step);
185
186
static ssize_t store_sampling_down_factor(struct kobject *a,
187
struct attribute *b,
188
const char *buf, size_t count)
189
{
190
unsigned int input;
191
int ret;
192
ret = sscanf(buf, "%u", &input);
193
194
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
195
return -EINVAL;
196
197
dbs_tuners_ins.sampling_down_factor = input;
198
return count;
199
}
200
201
static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
202
const char *buf, size_t count)
203
{
204
unsigned int input;
205
int ret;
206
ret = sscanf(buf, "%u", &input);
207
208
if (ret != 1)
209
return -EINVAL;
210
211
dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
212
return count;
213
}
214
215
static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
216
const char *buf, size_t count)
217
{
218
unsigned int input;
219
int ret;
220
ret = sscanf(buf, "%u", &input);
221
222
if (ret != 1 || input > 100 ||
223
input <= dbs_tuners_ins.down_threshold)
224
return -EINVAL;
225
226
dbs_tuners_ins.up_threshold = input;
227
return count;
228
}
229
230
static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
231
const char *buf, size_t count)
232
{
233
unsigned int input;
234
int ret;
235
ret = sscanf(buf, "%u", &input);
236
237
/* cannot be lower than 11 otherwise freq will not fall */
238
if (ret != 1 || input < 11 || input > 100 ||
239
input >= dbs_tuners_ins.up_threshold)
240
return -EINVAL;
241
242
dbs_tuners_ins.down_threshold = input;
243
return count;
244
}
245
246
static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
247
const char *buf, size_t count)
248
{
249
unsigned int input;
250
int ret;
251
252
unsigned int j;
253
254
ret = sscanf(buf, "%u", &input);
255
if (ret != 1)
256
return -EINVAL;
257
258
if (input > 1)
259
input = 1;
260
261
if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
262
return count;
263
264
dbs_tuners_ins.ignore_nice = input;
265
266
/* we need to re-evaluate prev_cpu_idle */
267
for_each_online_cpu(j) {
268
struct cpu_dbs_info_s *dbs_info;
269
dbs_info = &per_cpu(cs_cpu_dbs_info, j);
270
dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
271
&dbs_info->prev_cpu_wall);
272
if (dbs_tuners_ins.ignore_nice)
273
dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
274
}
275
return count;
276
}
277
278
static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
279
const char *buf, size_t count)
280
{
281
unsigned int input;
282
int ret;
283
ret = sscanf(buf, "%u", &input);
284
285
if (ret != 1)
286
return -EINVAL;
287
288
if (input > 100)
289
input = 100;
290
291
/* no need to test here if freq_step is zero as the user might actually
292
* want this, they would be crazy though :) */
293
dbs_tuners_ins.freq_step = input;
294
return count;
295
}
296
297
define_one_global_rw(sampling_rate);
298
define_one_global_rw(sampling_down_factor);
299
define_one_global_rw(up_threshold);
300
define_one_global_rw(down_threshold);
301
define_one_global_rw(ignore_nice_load);
302
define_one_global_rw(freq_step);
303
304
static struct attribute *dbs_attributes[] = {
305
&sampling_rate_min.attr,
306
&sampling_rate.attr,
307
&sampling_down_factor.attr,
308
&up_threshold.attr,
309
&down_threshold.attr,
310
&ignore_nice_load.attr,
311
&freq_step.attr,
312
NULL
313
};
314
315
static struct attribute_group dbs_attr_group = {
316
.attrs = dbs_attributes,
317
.name = "conservative",
318
};
319
320
/************************** sysfs end ************************/
321
322
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
323
{
324
unsigned int load = 0;
325
unsigned int max_load = 0;
326
unsigned int freq_target;
327
328
struct cpufreq_policy *policy;
329
unsigned int j;
330
331
policy = this_dbs_info->cur_policy;
332
333
/*
334
* Every sampling_rate, we check, if current idle time is less
335
* than 20% (default), then we try to increase frequency
336
* Every sampling_rate*sampling_down_factor, we check, if current
337
* idle time is more than 80%, then we try to decrease frequency
338
*
339
* Any frequency increase takes it to the maximum frequency.
340
* Frequency reduction happens at minimum steps of
341
* 5% (default) of maximum frequency
342
*/
343
344
/* Get Absolute Load */
345
for_each_cpu(j, policy->cpus) {
346
struct cpu_dbs_info_s *j_dbs_info;
347
cputime64_t cur_wall_time, cur_idle_time;
348
unsigned int idle_time, wall_time;
349
350
j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
351
352
cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
353
354
wall_time = (unsigned int) cputime64_sub(cur_wall_time,
355
j_dbs_info->prev_cpu_wall);
356
j_dbs_info->prev_cpu_wall = cur_wall_time;
357
358
idle_time = (unsigned int) cputime64_sub(cur_idle_time,
359
j_dbs_info->prev_cpu_idle);
360
j_dbs_info->prev_cpu_idle = cur_idle_time;
361
362
if (dbs_tuners_ins.ignore_nice) {
363
cputime64_t cur_nice;
364
unsigned long cur_nice_jiffies;
365
366
cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
367
j_dbs_info->prev_cpu_nice);
368
/*
369
* Assumption: nice time between sampling periods will
370
* be less than 2^32 jiffies for 32 bit sys
371
*/
372
cur_nice_jiffies = (unsigned long)
373
cputime64_to_jiffies64(cur_nice);
374
375
j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
376
idle_time += jiffies_to_usecs(cur_nice_jiffies);
377
}
378
379
if (unlikely(!wall_time || wall_time < idle_time))
380
continue;
381
382
load = 100 * (wall_time - idle_time) / wall_time;
383
384
if (load > max_load)
385
max_load = load;
386
}
387
388
/*
389
* break out if we 'cannot' reduce the speed as the user might
390
* want freq_step to be zero
391
*/
392
if (dbs_tuners_ins.freq_step == 0)
393
return;
394
395
/* Check for frequency increase */
396
if (max_load > dbs_tuners_ins.up_threshold) {
397
this_dbs_info->down_skip = 0;
398
399
/* if we are already at full speed then break out early */
400
if (this_dbs_info->requested_freq == policy->max)
401
return;
402
403
freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
404
405
/* max freq cannot be less than 100. But who knows.... */
406
if (unlikely(freq_target == 0))
407
freq_target = 5;
408
409
this_dbs_info->requested_freq += freq_target;
410
if (this_dbs_info->requested_freq > policy->max)
411
this_dbs_info->requested_freq = policy->max;
412
413
__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
414
CPUFREQ_RELATION_H);
415
return;
416
}
417
418
/*
419
* The optimal frequency is the frequency that is the lowest that
420
* can support the current CPU usage without triggering the up
421
* policy. To be safe, we focus 10 points under the threshold.
422
*/
423
if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
424
freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
425
426
this_dbs_info->requested_freq -= freq_target;
427
if (this_dbs_info->requested_freq < policy->min)
428
this_dbs_info->requested_freq = policy->min;
429
430
/*
431
* if we cannot reduce the frequency anymore, break out early
432
*/
433
if (policy->cur == policy->min)
434
return;
435
436
__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
437
CPUFREQ_RELATION_H);
438
return;
439
}
440
}
441
442
static void do_dbs_timer(struct work_struct *work)
443
{
444
struct cpu_dbs_info_s *dbs_info =
445
container_of(work, struct cpu_dbs_info_s, work.work);
446
unsigned int cpu = dbs_info->cpu;
447
448
/* We want all CPUs to do sampling nearly on same jiffy */
449
int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
450
451
delay -= jiffies % delay;
452
453
mutex_lock(&dbs_info->timer_mutex);
454
455
dbs_check_cpu(dbs_info);
456
457
schedule_delayed_work_on(cpu, &dbs_info->work, delay);
458
mutex_unlock(&dbs_info->timer_mutex);
459
}
460
461
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
462
{
463
/* We want all CPUs to do sampling nearly on same jiffy */
464
int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
465
delay -= jiffies % delay;
466
467
dbs_info->enable = 1;
468
INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
469
schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
470
}
471
472
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
473
{
474
dbs_info->enable = 0;
475
cancel_delayed_work_sync(&dbs_info->work);
476
}
477
478
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
479
unsigned int event)
480
{
481
unsigned int cpu = policy->cpu;
482
struct cpu_dbs_info_s *this_dbs_info;
483
unsigned int j;
484
int rc;
485
486
this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
487
488
switch (event) {
489
case CPUFREQ_GOV_START:
490
if ((!cpu_online(cpu)) || (!policy->cur))
491
return -EINVAL;
492
493
mutex_lock(&dbs_mutex);
494
495
for_each_cpu(j, policy->cpus) {
496
struct cpu_dbs_info_s *j_dbs_info;
497
j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
498
j_dbs_info->cur_policy = policy;
499
500
j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
501
&j_dbs_info->prev_cpu_wall);
502
if (dbs_tuners_ins.ignore_nice) {
503
j_dbs_info->prev_cpu_nice =
504
kstat_cpu(j).cpustat.nice;
505
}
506
}
507
this_dbs_info->down_skip = 0;
508
this_dbs_info->requested_freq = policy->cur;
509
510
mutex_init(&this_dbs_info->timer_mutex);
511
dbs_enable++;
512
/*
513
* Start the timerschedule work, when this governor
514
* is used for first time
515
*/
516
if (dbs_enable == 1) {
517
unsigned int latency;
518
/* policy latency is in nS. Convert it to uS first */
519
latency = policy->cpuinfo.transition_latency / 1000;
520
if (latency == 0)
521
latency = 1;
522
523
rc = sysfs_create_group(cpufreq_global_kobject,
524
&dbs_attr_group);
525
if (rc) {
526
mutex_unlock(&dbs_mutex);
527
return rc;
528
}
529
530
/*
531
* conservative does not implement micro like ondemand
532
* governor, thus we are bound to jiffes/HZ
533
*/
534
min_sampling_rate =
535
MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
536
/* Bring kernel and HW constraints together */
537
min_sampling_rate = max(min_sampling_rate,
538
MIN_LATENCY_MULTIPLIER * latency);
539
dbs_tuners_ins.sampling_rate =
540
max(min_sampling_rate,
541
latency * LATENCY_MULTIPLIER);
542
543
cpufreq_register_notifier(
544
&dbs_cpufreq_notifier_block,
545
CPUFREQ_TRANSITION_NOTIFIER);
546
}
547
mutex_unlock(&dbs_mutex);
548
549
dbs_timer_init(this_dbs_info);
550
551
break;
552
553
case CPUFREQ_GOV_STOP:
554
dbs_timer_exit(this_dbs_info);
555
556
mutex_lock(&dbs_mutex);
557
dbs_enable--;
558
mutex_destroy(&this_dbs_info->timer_mutex);
559
560
/*
561
* Stop the timerschedule work, when this governor
562
* is used for first time
563
*/
564
if (dbs_enable == 0)
565
cpufreq_unregister_notifier(
566
&dbs_cpufreq_notifier_block,
567
CPUFREQ_TRANSITION_NOTIFIER);
568
569
mutex_unlock(&dbs_mutex);
570
if (!dbs_enable)
571
sysfs_remove_group(cpufreq_global_kobject,
572
&dbs_attr_group);
573
574
break;
575
576
case CPUFREQ_GOV_LIMITS:
577
mutex_lock(&this_dbs_info->timer_mutex);
578
if (policy->max < this_dbs_info->cur_policy->cur)
579
__cpufreq_driver_target(
580
this_dbs_info->cur_policy,
581
policy->max, CPUFREQ_RELATION_H);
582
else if (policy->min > this_dbs_info->cur_policy->cur)
583
__cpufreq_driver_target(
584
this_dbs_info->cur_policy,
585
policy->min, CPUFREQ_RELATION_L);
586
mutex_unlock(&this_dbs_info->timer_mutex);
587
588
break;
589
}
590
return 0;
591
}
592
593
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
594
static
595
#endif
596
struct cpufreq_governor cpufreq_gov_conservative = {
597
.name = "conservative",
598
.governor = cpufreq_governor_dbs,
599
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
600
.owner = THIS_MODULE,
601
};
602
603
static int __init cpufreq_gov_dbs_init(void)
604
{
605
return cpufreq_register_governor(&cpufreq_gov_conservative);
606
}
607
608
static void __exit cpufreq_gov_dbs_exit(void)
609
{
610
cpufreq_unregister_governor(&cpufreq_gov_conservative);
611
}
612
613
614
MODULE_AUTHOR("Alexander Clouter <[email protected]>");
615
MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
616
"Low Latency Frequency Transition capable processors "
617
"optimised for use in a battery environment");
618
MODULE_LICENSE("GPL");
619
620
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
621
fs_initcall(cpufreq_gov_dbs_init);
622
#else
623
module_init(cpufreq_gov_dbs_init);
624
#endif
625
module_exit(cpufreq_gov_dbs_exit);
626
627