Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/cpufreq/cpufreq_ondemand.c
15112 views
1
/*
2
* drivers/cpufreq/cpufreq_ondemand.c
3
*
4
* Copyright (C) 2001 Russell King
5
* (C) 2003 Venkatesh Pallipadi <[email protected]>.
6
* Jun Nakajima <[email protected]>
7
*
8
* This program is free software; you can redistribute it and/or modify
9
* it under the terms of the GNU General Public License version 2 as
10
* published by the Free Software Foundation.
11
*/
12
13
#include <linux/kernel.h>
14
#include <linux/module.h>
15
#include <linux/init.h>
16
#include <linux/cpufreq.h>
17
#include <linux/cpu.h>
18
#include <linux/jiffies.h>
19
#include <linux/kernel_stat.h>
20
#include <linux/mutex.h>
21
#include <linux/hrtimer.h>
22
#include <linux/tick.h>
23
#include <linux/ktime.h>
24
#include <linux/sched.h>
25
26
/*
27
* dbs is used in this file as a shortform for demandbased switching
28
* It helps to keep variable names smaller, simpler
29
*/
30
31
#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32
#define DEF_FREQUENCY_UP_THRESHOLD (80)
33
#define DEF_SAMPLING_DOWN_FACTOR (1)
34
#define MAX_SAMPLING_DOWN_FACTOR (100000)
35
#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
36
#define MICRO_FREQUENCY_UP_THRESHOLD (95)
37
#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
38
#define MIN_FREQUENCY_UP_THRESHOLD (11)
39
#define MAX_FREQUENCY_UP_THRESHOLD (100)
40
41
/*
42
* The polling frequency of this governor depends on the capability of
43
* the processor. Default polling frequency is 1000 times the transition
44
* latency of the processor. The governor will work on any processor with
45
* transition latency <= 10mS, using appropriate sampling
46
* rate.
47
* For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48
* this governor will not work.
49
* All times here are in uS.
50
*/
51
#define MIN_SAMPLING_RATE_RATIO (2)
52
53
static unsigned int min_sampling_rate;
54
55
#define LATENCY_MULTIPLIER (1000)
56
#define MIN_LATENCY_MULTIPLIER (100)
57
#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
58
59
static void do_dbs_timer(struct work_struct *work);
60
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61
unsigned int event);
62
63
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64
static
65
#endif
66
struct cpufreq_governor cpufreq_gov_ondemand = {
67
.name = "ondemand",
68
.governor = cpufreq_governor_dbs,
69
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
70
.owner = THIS_MODULE,
71
};
72
73
/* Sampling types */
74
enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
75
76
struct cpu_dbs_info_s {
77
cputime64_t prev_cpu_idle;
78
cputime64_t prev_cpu_iowait;
79
cputime64_t prev_cpu_wall;
80
cputime64_t prev_cpu_nice;
81
struct cpufreq_policy *cur_policy;
82
struct delayed_work work;
83
struct cpufreq_frequency_table *freq_table;
84
unsigned int freq_lo;
85
unsigned int freq_lo_jiffies;
86
unsigned int freq_hi_jiffies;
87
unsigned int rate_mult;
88
int cpu;
89
unsigned int sample_type:1;
90
/*
91
* percpu mutex that serializes governor limit change with
92
* do_dbs_timer invocation. We do not want do_dbs_timer to run
93
* when user is changing the governor or limits.
94
*/
95
struct mutex timer_mutex;
96
};
97
static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
98
99
static unsigned int dbs_enable; /* number of CPUs using this policy */
100
101
/*
102
* dbs_mutex protects dbs_enable in governor start/stop.
103
*/
104
static DEFINE_MUTEX(dbs_mutex);
105
106
static struct dbs_tuners {
107
unsigned int sampling_rate;
108
unsigned int up_threshold;
109
unsigned int down_differential;
110
unsigned int ignore_nice;
111
unsigned int sampling_down_factor;
112
unsigned int powersave_bias;
113
unsigned int io_is_busy;
114
} dbs_tuners_ins = {
115
.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
116
.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
117
.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
118
.ignore_nice = 0,
119
.powersave_bias = 0,
120
};
121
122
static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
123
cputime64_t *wall)
124
{
125
cputime64_t idle_time;
126
cputime64_t cur_wall_time;
127
cputime64_t busy_time;
128
129
cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
130
busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
131
kstat_cpu(cpu).cpustat.system);
132
133
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
134
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
135
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
136
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
137
138
idle_time = cputime64_sub(cur_wall_time, busy_time);
139
if (wall)
140
*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
141
142
return (cputime64_t)jiffies_to_usecs(idle_time);
143
}
144
145
static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
146
{
147
u64 idle_time = get_cpu_idle_time_us(cpu, wall);
148
149
if (idle_time == -1ULL)
150
return get_cpu_idle_time_jiffy(cpu, wall);
151
152
return idle_time;
153
}
154
155
static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
156
{
157
u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
158
159
if (iowait_time == -1ULL)
160
return 0;
161
162
return iowait_time;
163
}
164
165
/*
166
* Find right freq to be set now with powersave_bias on.
167
* Returns the freq_hi to be used right now and will set freq_hi_jiffies,
168
* freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
169
*/
170
static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
171
unsigned int freq_next,
172
unsigned int relation)
173
{
174
unsigned int freq_req, freq_reduc, freq_avg;
175
unsigned int freq_hi, freq_lo;
176
unsigned int index = 0;
177
unsigned int jiffies_total, jiffies_hi, jiffies_lo;
178
struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
179
policy->cpu);
180
181
if (!dbs_info->freq_table) {
182
dbs_info->freq_lo = 0;
183
dbs_info->freq_lo_jiffies = 0;
184
return freq_next;
185
}
186
187
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
188
relation, &index);
189
freq_req = dbs_info->freq_table[index].frequency;
190
freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
191
freq_avg = freq_req - freq_reduc;
192
193
/* Find freq bounds for freq_avg in freq_table */
194
index = 0;
195
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
196
CPUFREQ_RELATION_H, &index);
197
freq_lo = dbs_info->freq_table[index].frequency;
198
index = 0;
199
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
200
CPUFREQ_RELATION_L, &index);
201
freq_hi = dbs_info->freq_table[index].frequency;
202
203
/* Find out how long we have to be in hi and lo freqs */
204
if (freq_hi == freq_lo) {
205
dbs_info->freq_lo = 0;
206
dbs_info->freq_lo_jiffies = 0;
207
return freq_lo;
208
}
209
jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
210
jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
211
jiffies_hi += ((freq_hi - freq_lo) / 2);
212
jiffies_hi /= (freq_hi - freq_lo);
213
jiffies_lo = jiffies_total - jiffies_hi;
214
dbs_info->freq_lo = freq_lo;
215
dbs_info->freq_lo_jiffies = jiffies_lo;
216
dbs_info->freq_hi_jiffies = jiffies_hi;
217
return freq_hi;
218
}
219
220
static void ondemand_powersave_bias_init_cpu(int cpu)
221
{
222
struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
223
dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
224
dbs_info->freq_lo = 0;
225
}
226
227
static void ondemand_powersave_bias_init(void)
228
{
229
int i;
230
for_each_online_cpu(i) {
231
ondemand_powersave_bias_init_cpu(i);
232
}
233
}
234
235
/************************** sysfs interface ************************/
236
237
static ssize_t show_sampling_rate_min(struct kobject *kobj,
238
struct attribute *attr, char *buf)
239
{
240
return sprintf(buf, "%u\n", min_sampling_rate);
241
}
242
243
define_one_global_ro(sampling_rate_min);
244
245
/* cpufreq_ondemand Governor Tunables */
246
#define show_one(file_name, object) \
247
static ssize_t show_##file_name \
248
(struct kobject *kobj, struct attribute *attr, char *buf) \
249
{ \
250
return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
251
}
252
show_one(sampling_rate, sampling_rate);
253
show_one(io_is_busy, io_is_busy);
254
show_one(up_threshold, up_threshold);
255
show_one(sampling_down_factor, sampling_down_factor);
256
show_one(ignore_nice_load, ignore_nice);
257
show_one(powersave_bias, powersave_bias);
258
259
static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
260
const char *buf, size_t count)
261
{
262
unsigned int input;
263
int ret;
264
ret = sscanf(buf, "%u", &input);
265
if (ret != 1)
266
return -EINVAL;
267
dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
268
return count;
269
}
270
271
static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
272
const char *buf, size_t count)
273
{
274
unsigned int input;
275
int ret;
276
277
ret = sscanf(buf, "%u", &input);
278
if (ret != 1)
279
return -EINVAL;
280
dbs_tuners_ins.io_is_busy = !!input;
281
return count;
282
}
283
284
static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
285
const char *buf, size_t count)
286
{
287
unsigned int input;
288
int ret;
289
ret = sscanf(buf, "%u", &input);
290
291
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
292
input < MIN_FREQUENCY_UP_THRESHOLD) {
293
return -EINVAL;
294
}
295
dbs_tuners_ins.up_threshold = input;
296
return count;
297
}
298
299
static ssize_t store_sampling_down_factor(struct kobject *a,
300
struct attribute *b, const char *buf, size_t count)
301
{
302
unsigned int input, j;
303
int ret;
304
ret = sscanf(buf, "%u", &input);
305
306
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
307
return -EINVAL;
308
dbs_tuners_ins.sampling_down_factor = input;
309
310
/* Reset down sampling multiplier in case it was active */
311
for_each_online_cpu(j) {
312
struct cpu_dbs_info_s *dbs_info;
313
dbs_info = &per_cpu(od_cpu_dbs_info, j);
314
dbs_info->rate_mult = 1;
315
}
316
return count;
317
}
318
319
static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
320
const char *buf, size_t count)
321
{
322
unsigned int input;
323
int ret;
324
325
unsigned int j;
326
327
ret = sscanf(buf, "%u", &input);
328
if (ret != 1)
329
return -EINVAL;
330
331
if (input > 1)
332
input = 1;
333
334
if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
335
return count;
336
}
337
dbs_tuners_ins.ignore_nice = input;
338
339
/* we need to re-evaluate prev_cpu_idle */
340
for_each_online_cpu(j) {
341
struct cpu_dbs_info_s *dbs_info;
342
dbs_info = &per_cpu(od_cpu_dbs_info, j);
343
dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
344
&dbs_info->prev_cpu_wall);
345
if (dbs_tuners_ins.ignore_nice)
346
dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
347
348
}
349
return count;
350
}
351
352
static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
353
const char *buf, size_t count)
354
{
355
unsigned int input;
356
int ret;
357
ret = sscanf(buf, "%u", &input);
358
359
if (ret != 1)
360
return -EINVAL;
361
362
if (input > 1000)
363
input = 1000;
364
365
dbs_tuners_ins.powersave_bias = input;
366
ondemand_powersave_bias_init();
367
return count;
368
}
369
370
define_one_global_rw(sampling_rate);
371
define_one_global_rw(io_is_busy);
372
define_one_global_rw(up_threshold);
373
define_one_global_rw(sampling_down_factor);
374
define_one_global_rw(ignore_nice_load);
375
define_one_global_rw(powersave_bias);
376
377
static struct attribute *dbs_attributes[] = {
378
&sampling_rate_min.attr,
379
&sampling_rate.attr,
380
&up_threshold.attr,
381
&sampling_down_factor.attr,
382
&ignore_nice_load.attr,
383
&powersave_bias.attr,
384
&io_is_busy.attr,
385
NULL
386
};
387
388
static struct attribute_group dbs_attr_group = {
389
.attrs = dbs_attributes,
390
.name = "ondemand",
391
};
392
393
/************************** sysfs end ************************/
394
395
static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
396
{
397
if (dbs_tuners_ins.powersave_bias)
398
freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
399
else if (p->cur == p->max)
400
return;
401
402
__cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
403
CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
404
}
405
406
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
407
{
408
unsigned int max_load_freq;
409
410
struct cpufreq_policy *policy;
411
unsigned int j;
412
413
this_dbs_info->freq_lo = 0;
414
policy = this_dbs_info->cur_policy;
415
416
/*
417
* Every sampling_rate, we check, if current idle time is less
418
* than 20% (default), then we try to increase frequency
419
* Every sampling_rate, we look for a the lowest
420
* frequency which can sustain the load while keeping idle time over
421
* 30%. If such a frequency exist, we try to decrease to this frequency.
422
*
423
* Any frequency increase takes it to the maximum frequency.
424
* Frequency reduction happens at minimum steps of
425
* 5% (default) of current frequency
426
*/
427
428
/* Get Absolute Load - in terms of freq */
429
max_load_freq = 0;
430
431
for_each_cpu(j, policy->cpus) {
432
struct cpu_dbs_info_s *j_dbs_info;
433
cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
434
unsigned int idle_time, wall_time, iowait_time;
435
unsigned int load, load_freq;
436
int freq_avg;
437
438
j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
439
440
cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
441
cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
442
443
wall_time = (unsigned int) cputime64_sub(cur_wall_time,
444
j_dbs_info->prev_cpu_wall);
445
j_dbs_info->prev_cpu_wall = cur_wall_time;
446
447
idle_time = (unsigned int) cputime64_sub(cur_idle_time,
448
j_dbs_info->prev_cpu_idle);
449
j_dbs_info->prev_cpu_idle = cur_idle_time;
450
451
iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
452
j_dbs_info->prev_cpu_iowait);
453
j_dbs_info->prev_cpu_iowait = cur_iowait_time;
454
455
if (dbs_tuners_ins.ignore_nice) {
456
cputime64_t cur_nice;
457
unsigned long cur_nice_jiffies;
458
459
cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
460
j_dbs_info->prev_cpu_nice);
461
/*
462
* Assumption: nice time between sampling periods will
463
* be less than 2^32 jiffies for 32 bit sys
464
*/
465
cur_nice_jiffies = (unsigned long)
466
cputime64_to_jiffies64(cur_nice);
467
468
j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
469
idle_time += jiffies_to_usecs(cur_nice_jiffies);
470
}
471
472
/*
473
* For the purpose of ondemand, waiting for disk IO is an
474
* indication that you're performance critical, and not that
475
* the system is actually idle. So subtract the iowait time
476
* from the cpu idle time.
477
*/
478
479
if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
480
idle_time -= iowait_time;
481
482
if (unlikely(!wall_time || wall_time < idle_time))
483
continue;
484
485
load = 100 * (wall_time - idle_time) / wall_time;
486
487
freq_avg = __cpufreq_driver_getavg(policy, j);
488
if (freq_avg <= 0)
489
freq_avg = policy->cur;
490
491
load_freq = load * freq_avg;
492
if (load_freq > max_load_freq)
493
max_load_freq = load_freq;
494
}
495
496
/* Check for frequency increase */
497
if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
498
/* If switching to max speed, apply sampling_down_factor */
499
if (policy->cur < policy->max)
500
this_dbs_info->rate_mult =
501
dbs_tuners_ins.sampling_down_factor;
502
dbs_freq_increase(policy, policy->max);
503
return;
504
}
505
506
/* Check for frequency decrease */
507
/* if we cannot reduce the frequency anymore, break out early */
508
if (policy->cur == policy->min)
509
return;
510
511
/*
512
* The optimal frequency is the frequency that is the lowest that
513
* can support the current CPU usage without triggering the up
514
* policy. To be safe, we focus 10 points under the threshold.
515
*/
516
if (max_load_freq <
517
(dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
518
policy->cur) {
519
unsigned int freq_next;
520
freq_next = max_load_freq /
521
(dbs_tuners_ins.up_threshold -
522
dbs_tuners_ins.down_differential);
523
524
/* No longer fully busy, reset rate_mult */
525
this_dbs_info->rate_mult = 1;
526
527
if (freq_next < policy->min)
528
freq_next = policy->min;
529
530
if (!dbs_tuners_ins.powersave_bias) {
531
__cpufreq_driver_target(policy, freq_next,
532
CPUFREQ_RELATION_L);
533
} else {
534
int freq = powersave_bias_target(policy, freq_next,
535
CPUFREQ_RELATION_L);
536
__cpufreq_driver_target(policy, freq,
537
CPUFREQ_RELATION_L);
538
}
539
}
540
}
541
542
static void do_dbs_timer(struct work_struct *work)
543
{
544
struct cpu_dbs_info_s *dbs_info =
545
container_of(work, struct cpu_dbs_info_s, work.work);
546
unsigned int cpu = dbs_info->cpu;
547
int sample_type = dbs_info->sample_type;
548
549
int delay;
550
551
mutex_lock(&dbs_info->timer_mutex);
552
553
/* Common NORMAL_SAMPLE setup */
554
dbs_info->sample_type = DBS_NORMAL_SAMPLE;
555
if (!dbs_tuners_ins.powersave_bias ||
556
sample_type == DBS_NORMAL_SAMPLE) {
557
dbs_check_cpu(dbs_info);
558
if (dbs_info->freq_lo) {
559
/* Setup timer for SUB_SAMPLE */
560
dbs_info->sample_type = DBS_SUB_SAMPLE;
561
delay = dbs_info->freq_hi_jiffies;
562
} else {
563
/* We want all CPUs to do sampling nearly on
564
* same jiffy
565
*/
566
delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
567
* dbs_info->rate_mult);
568
569
if (num_online_cpus() > 1)
570
delay -= jiffies % delay;
571
}
572
} else {
573
__cpufreq_driver_target(dbs_info->cur_policy,
574
dbs_info->freq_lo, CPUFREQ_RELATION_H);
575
delay = dbs_info->freq_lo_jiffies;
576
}
577
schedule_delayed_work_on(cpu, &dbs_info->work, delay);
578
mutex_unlock(&dbs_info->timer_mutex);
579
}
580
581
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
582
{
583
/* We want all CPUs to do sampling nearly on same jiffy */
584
int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
585
586
if (num_online_cpus() > 1)
587
delay -= jiffies % delay;
588
589
dbs_info->sample_type = DBS_NORMAL_SAMPLE;
590
INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
591
schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
592
}
593
594
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
595
{
596
cancel_delayed_work_sync(&dbs_info->work);
597
}
598
599
/*
600
* Not all CPUs want IO time to be accounted as busy; this dependson how
601
* efficient idling at a higher frequency/voltage is.
602
* Pavel Machek says this is not so for various generations of AMD and old
603
* Intel systems.
604
* Mike Chan (androidlcom) calis this is also not true for ARM.
605
* Because of this, whitelist specific known (series) of CPUs by default, and
606
* leave all others up to the user.
607
*/
608
static int should_io_be_busy(void)
609
{
610
#if defined(CONFIG_X86)
611
/*
612
* For Intel, Core 2 (model 15) andl later have an efficient idle.
613
*/
614
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
615
boot_cpu_data.x86 == 6 &&
616
boot_cpu_data.x86_model >= 15)
617
return 1;
618
#endif
619
return 0;
620
}
621
622
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
623
unsigned int event)
624
{
625
unsigned int cpu = policy->cpu;
626
struct cpu_dbs_info_s *this_dbs_info;
627
unsigned int j;
628
int rc;
629
630
this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
631
632
switch (event) {
633
case CPUFREQ_GOV_START:
634
if ((!cpu_online(cpu)) || (!policy->cur))
635
return -EINVAL;
636
637
mutex_lock(&dbs_mutex);
638
639
dbs_enable++;
640
for_each_cpu(j, policy->cpus) {
641
struct cpu_dbs_info_s *j_dbs_info;
642
j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
643
j_dbs_info->cur_policy = policy;
644
645
j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
646
&j_dbs_info->prev_cpu_wall);
647
if (dbs_tuners_ins.ignore_nice) {
648
j_dbs_info->prev_cpu_nice =
649
kstat_cpu(j).cpustat.nice;
650
}
651
}
652
this_dbs_info->cpu = cpu;
653
this_dbs_info->rate_mult = 1;
654
ondemand_powersave_bias_init_cpu(cpu);
655
/*
656
* Start the timerschedule work, when this governor
657
* is used for first time
658
*/
659
if (dbs_enable == 1) {
660
unsigned int latency;
661
662
rc = sysfs_create_group(cpufreq_global_kobject,
663
&dbs_attr_group);
664
if (rc) {
665
mutex_unlock(&dbs_mutex);
666
return rc;
667
}
668
669
/* policy latency is in nS. Convert it to uS first */
670
latency = policy->cpuinfo.transition_latency / 1000;
671
if (latency == 0)
672
latency = 1;
673
/* Bring kernel and HW constraints together */
674
min_sampling_rate = max(min_sampling_rate,
675
MIN_LATENCY_MULTIPLIER * latency);
676
dbs_tuners_ins.sampling_rate =
677
max(min_sampling_rate,
678
latency * LATENCY_MULTIPLIER);
679
dbs_tuners_ins.io_is_busy = should_io_be_busy();
680
}
681
mutex_unlock(&dbs_mutex);
682
683
mutex_init(&this_dbs_info->timer_mutex);
684
dbs_timer_init(this_dbs_info);
685
break;
686
687
case CPUFREQ_GOV_STOP:
688
dbs_timer_exit(this_dbs_info);
689
690
mutex_lock(&dbs_mutex);
691
mutex_destroy(&this_dbs_info->timer_mutex);
692
dbs_enable--;
693
mutex_unlock(&dbs_mutex);
694
if (!dbs_enable)
695
sysfs_remove_group(cpufreq_global_kobject,
696
&dbs_attr_group);
697
698
break;
699
700
case CPUFREQ_GOV_LIMITS:
701
mutex_lock(&this_dbs_info->timer_mutex);
702
if (policy->max < this_dbs_info->cur_policy->cur)
703
__cpufreq_driver_target(this_dbs_info->cur_policy,
704
policy->max, CPUFREQ_RELATION_H);
705
else if (policy->min > this_dbs_info->cur_policy->cur)
706
__cpufreq_driver_target(this_dbs_info->cur_policy,
707
policy->min, CPUFREQ_RELATION_L);
708
mutex_unlock(&this_dbs_info->timer_mutex);
709
break;
710
}
711
return 0;
712
}
713
714
static int __init cpufreq_gov_dbs_init(void)
715
{
716
cputime64_t wall;
717
u64 idle_time;
718
int cpu = get_cpu();
719
720
idle_time = get_cpu_idle_time_us(cpu, &wall);
721
put_cpu();
722
if (idle_time != -1ULL) {
723
/* Idle micro accounting is supported. Use finer thresholds */
724
dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
725
dbs_tuners_ins.down_differential =
726
MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
727
/*
728
* In no_hz/micro accounting case we set the minimum frequency
729
* not depending on HZ, but fixed (very low). The deferred
730
* timer might skip some samples if idle/sleeping as needed.
731
*/
732
min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
733
} else {
734
/* For correct statistics, we need 10 ticks for each measure */
735
min_sampling_rate =
736
MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
737
}
738
739
return cpufreq_register_governor(&cpufreq_gov_ondemand);
740
}
741
742
static void __exit cpufreq_gov_dbs_exit(void)
743
{
744
cpufreq_unregister_governor(&cpufreq_gov_ondemand);
745
}
746
747
748
MODULE_AUTHOR("Venkatesh Pallipadi <[email protected]>");
749
MODULE_AUTHOR("Alexey Starikovskiy <[email protected]>");
750
MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
751
"Low Latency Frequency Transition capable processors");
752
MODULE_LICENSE("GPL");
753
754
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
755
fs_initcall(cpufreq_gov_dbs_init);
756
#else
757
module_init(cpufreq_gov_dbs_init);
758
#endif
759
module_exit(cpufreq_gov_dbs_exit);
760
761