Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/cpufreq/powernow-k8.c
15109 views
1
/*
2
* (c) 2003-2010 Advanced Micro Devices, Inc.
3
* Your use of this code is subject to the terms and conditions of the
4
* GNU general public license version 2. See "COPYING" or
5
* http://www.gnu.org/licenses/gpl.html
6
*
7
* Support : [email protected]
8
*
9
* Based on the powernow-k7.c module written by Dave Jones.
10
* (C) 2003 Dave Jones on behalf of SuSE Labs
11
* (C) 2004 Dominik Brodowski <[email protected]>
12
* (C) 2004 Pavel Machek <[email protected]>
13
* Licensed under the terms of the GNU GPL License version 2.
14
* Based upon datasheets & sample CPUs kindly provided by AMD.
15
*
16
* Valuable input gratefully received from Dave Jones, Pavel Machek,
17
* Dominik Brodowski, Jacob Shin, and others.
18
* Originally developed by Paul Devriendt.
19
* Processor information obtained from Chapter 9 (Power and Thermal Management)
20
* of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21
* Opteron Processors" available for download from www.amd.com
22
*
23
* Tables for specific CPUs can be inferred from
24
* http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
25
*/
26
27
#include <linux/kernel.h>
28
#include <linux/smp.h>
29
#include <linux/module.h>
30
#include <linux/init.h>
31
#include <linux/cpufreq.h>
32
#include <linux/slab.h>
33
#include <linux/string.h>
34
#include <linux/cpumask.h>
35
#include <linux/sched.h> /* for current / set_cpus_allowed() */
36
#include <linux/io.h>
37
#include <linux/delay.h>
38
39
#include <asm/msr.h>
40
41
#include <linux/acpi.h>
42
#include <linux/mutex.h>
43
#include <acpi/processor.h>
44
45
#define PFX "powernow-k8: "
46
#define VERSION "version 2.20.00"
47
#include "powernow-k8.h"
48
#include "mperf.h"
49
50
/* serialize freq changes */
51
static DEFINE_MUTEX(fidvid_mutex);
52
53
static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
54
55
static int cpu_family = CPU_OPTERON;
56
57
/* core performance boost */
58
static bool cpb_capable, cpb_enabled;
59
static struct msr __percpu *msrs;
60
61
static struct cpufreq_driver cpufreq_amd64_driver;
62
63
#ifndef CONFIG_SMP
64
static inline const struct cpumask *cpu_core_mask(int cpu)
65
{
66
return cpumask_of(0);
67
}
68
#endif
69
70
/* Return a frequency in MHz, given an input fid */
71
static u32 find_freq_from_fid(u32 fid)
72
{
73
return 800 + (fid * 100);
74
}
75
76
/* Return a frequency in KHz, given an input fid */
77
static u32 find_khz_freq_from_fid(u32 fid)
78
{
79
return 1000 * find_freq_from_fid(fid);
80
}
81
82
static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
83
u32 pstate)
84
{
85
return data[pstate].frequency;
86
}
87
88
/* Return the vco fid for an input fid
89
*
90
* Each "low" fid has corresponding "high" fid, and you can get to "low" fids
91
* only from corresponding high fids. This returns "high" fid corresponding to
92
* "low" one.
93
*/
94
static u32 convert_fid_to_vco_fid(u32 fid)
95
{
96
if (fid < HI_FID_TABLE_BOTTOM)
97
return 8 + (2 * fid);
98
else
99
return fid;
100
}
101
102
/*
103
* Return 1 if the pending bit is set. Unless we just instructed the processor
104
* to transition to a new state, seeing this bit set is really bad news.
105
*/
106
static int pending_bit_stuck(void)
107
{
108
u32 lo, hi;
109
110
if (cpu_family == CPU_HW_PSTATE)
111
return 0;
112
113
rdmsr(MSR_FIDVID_STATUS, lo, hi);
114
return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
115
}
116
117
/*
118
* Update the global current fid / vid values from the status msr.
119
* Returns 1 on error.
120
*/
121
static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
122
{
123
u32 lo, hi;
124
u32 i = 0;
125
126
if (cpu_family == CPU_HW_PSTATE) {
127
rdmsr(MSR_PSTATE_STATUS, lo, hi);
128
i = lo & HW_PSTATE_MASK;
129
data->currpstate = i;
130
131
/*
132
* a workaround for family 11h erratum 311 might cause
133
* an "out-of-range Pstate if the core is in Pstate-0
134
*/
135
if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
136
data->currpstate = HW_PSTATE_0;
137
138
return 0;
139
}
140
do {
141
if (i++ > 10000) {
142
pr_debug("detected change pending stuck\n");
143
return 1;
144
}
145
rdmsr(MSR_FIDVID_STATUS, lo, hi);
146
} while (lo & MSR_S_LO_CHANGE_PENDING);
147
148
data->currvid = hi & MSR_S_HI_CURRENT_VID;
149
data->currfid = lo & MSR_S_LO_CURRENT_FID;
150
151
return 0;
152
}
153
154
/* the isochronous relief time */
155
static void count_off_irt(struct powernow_k8_data *data)
156
{
157
udelay((1 << data->irt) * 10);
158
return;
159
}
160
161
/* the voltage stabilization time */
162
static void count_off_vst(struct powernow_k8_data *data)
163
{
164
udelay(data->vstable * VST_UNITS_20US);
165
return;
166
}
167
168
/* need to init the control msr to a safe value (for each cpu) */
169
static void fidvid_msr_init(void)
170
{
171
u32 lo, hi;
172
u8 fid, vid;
173
174
rdmsr(MSR_FIDVID_STATUS, lo, hi);
175
vid = hi & MSR_S_HI_CURRENT_VID;
176
fid = lo & MSR_S_LO_CURRENT_FID;
177
lo = fid | (vid << MSR_C_LO_VID_SHIFT);
178
hi = MSR_C_HI_STP_GNT_BENIGN;
179
pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
180
wrmsr(MSR_FIDVID_CTL, lo, hi);
181
}
182
183
/* write the new fid value along with the other control fields to the msr */
184
static int write_new_fid(struct powernow_k8_data *data, u32 fid)
185
{
186
u32 lo;
187
u32 savevid = data->currvid;
188
u32 i = 0;
189
190
if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
191
printk(KERN_ERR PFX "internal error - overflow on fid write\n");
192
return 1;
193
}
194
195
lo = fid;
196
lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
197
lo |= MSR_C_LO_INIT_FID_VID;
198
199
pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
200
fid, lo, data->plllock * PLL_LOCK_CONVERSION);
201
202
do {
203
wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
204
if (i++ > 100) {
205
printk(KERN_ERR PFX
206
"Hardware error - pending bit very stuck - "
207
"no further pstate changes possible\n");
208
return 1;
209
}
210
} while (query_current_values_with_pending_wait(data));
211
212
count_off_irt(data);
213
214
if (savevid != data->currvid) {
215
printk(KERN_ERR PFX
216
"vid change on fid trans, old 0x%x, new 0x%x\n",
217
savevid, data->currvid);
218
return 1;
219
}
220
221
if (fid != data->currfid) {
222
printk(KERN_ERR PFX
223
"fid trans failed, fid 0x%x, curr 0x%x\n", fid,
224
data->currfid);
225
return 1;
226
}
227
228
return 0;
229
}
230
231
/* Write a new vid to the hardware */
232
static int write_new_vid(struct powernow_k8_data *data, u32 vid)
233
{
234
u32 lo;
235
u32 savefid = data->currfid;
236
int i = 0;
237
238
if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
239
printk(KERN_ERR PFX "internal error - overflow on vid write\n");
240
return 1;
241
}
242
243
lo = data->currfid;
244
lo |= (vid << MSR_C_LO_VID_SHIFT);
245
lo |= MSR_C_LO_INIT_FID_VID;
246
247
pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
248
vid, lo, STOP_GRANT_5NS);
249
250
do {
251
wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
252
if (i++ > 100) {
253
printk(KERN_ERR PFX "internal error - pending bit "
254
"very stuck - no further pstate "
255
"changes possible\n");
256
return 1;
257
}
258
} while (query_current_values_with_pending_wait(data));
259
260
if (savefid != data->currfid) {
261
printk(KERN_ERR PFX "fid changed on vid trans, old "
262
"0x%x new 0x%x\n",
263
savefid, data->currfid);
264
return 1;
265
}
266
267
if (vid != data->currvid) {
268
printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
269
"curr 0x%x\n",
270
vid, data->currvid);
271
return 1;
272
}
273
274
return 0;
275
}
276
277
/*
278
* Reduce the vid by the max of step or reqvid.
279
* Decreasing vid codes represent increasing voltages:
280
* vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
281
*/
282
static int decrease_vid_code_by_step(struct powernow_k8_data *data,
283
u32 reqvid, u32 step)
284
{
285
if ((data->currvid - reqvid) > step)
286
reqvid = data->currvid - step;
287
288
if (write_new_vid(data, reqvid))
289
return 1;
290
291
count_off_vst(data);
292
293
return 0;
294
}
295
296
/* Change hardware pstate by single MSR write */
297
static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
298
{
299
wrmsr(MSR_PSTATE_CTRL, pstate, 0);
300
data->currpstate = pstate;
301
return 0;
302
}
303
304
/* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
305
static int transition_fid_vid(struct powernow_k8_data *data,
306
u32 reqfid, u32 reqvid)
307
{
308
if (core_voltage_pre_transition(data, reqvid, reqfid))
309
return 1;
310
311
if (core_frequency_transition(data, reqfid))
312
return 1;
313
314
if (core_voltage_post_transition(data, reqvid))
315
return 1;
316
317
if (query_current_values_with_pending_wait(data))
318
return 1;
319
320
if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
321
printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
322
"curr 0x%x 0x%x\n",
323
smp_processor_id(),
324
reqfid, reqvid, data->currfid, data->currvid);
325
return 1;
326
}
327
328
pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
329
smp_processor_id(), data->currfid, data->currvid);
330
331
return 0;
332
}
333
334
/* Phase 1 - core voltage transition ... setup voltage */
335
static int core_voltage_pre_transition(struct powernow_k8_data *data,
336
u32 reqvid, u32 reqfid)
337
{
338
u32 rvosteps = data->rvo;
339
u32 savefid = data->currfid;
340
u32 maxvid, lo, rvomult = 1;
341
342
pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
343
"reqvid 0x%x, rvo 0x%x\n",
344
smp_processor_id(),
345
data->currfid, data->currvid, reqvid, data->rvo);
346
347
if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
348
rvomult = 2;
349
rvosteps *= rvomult;
350
rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
351
maxvid = 0x1f & (maxvid >> 16);
352
pr_debug("ph1 maxvid=0x%x\n", maxvid);
353
if (reqvid < maxvid) /* lower numbers are higher voltages */
354
reqvid = maxvid;
355
356
while (data->currvid > reqvid) {
357
pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
358
data->currvid, reqvid);
359
if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
360
return 1;
361
}
362
363
while ((rvosteps > 0) &&
364
((rvomult * data->rvo + data->currvid) > reqvid)) {
365
if (data->currvid == maxvid) {
366
rvosteps = 0;
367
} else {
368
pr_debug("ph1: changing vid for rvo, req 0x%x\n",
369
data->currvid - 1);
370
if (decrease_vid_code_by_step(data, data->currvid-1, 1))
371
return 1;
372
rvosteps--;
373
}
374
}
375
376
if (query_current_values_with_pending_wait(data))
377
return 1;
378
379
if (savefid != data->currfid) {
380
printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
381
data->currfid);
382
return 1;
383
}
384
385
pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
386
data->currfid, data->currvid);
387
388
return 0;
389
}
390
391
/* Phase 2 - core frequency transition */
392
static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
393
{
394
u32 vcoreqfid, vcocurrfid, vcofiddiff;
395
u32 fid_interval, savevid = data->currvid;
396
397
if (data->currfid == reqfid) {
398
printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
399
data->currfid);
400
return 0;
401
}
402
403
pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
404
"reqfid 0x%x\n",
405
smp_processor_id(),
406
data->currfid, data->currvid, reqfid);
407
408
vcoreqfid = convert_fid_to_vco_fid(reqfid);
409
vcocurrfid = convert_fid_to_vco_fid(data->currfid);
410
vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
411
: vcoreqfid - vcocurrfid;
412
413
if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
414
vcofiddiff = 0;
415
416
while (vcofiddiff > 2) {
417
(data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
418
419
if (reqfid > data->currfid) {
420
if (data->currfid > LO_FID_TABLE_TOP) {
421
if (write_new_fid(data,
422
data->currfid + fid_interval))
423
return 1;
424
} else {
425
if (write_new_fid
426
(data,
427
2 + convert_fid_to_vco_fid(data->currfid)))
428
return 1;
429
}
430
} else {
431
if (write_new_fid(data, data->currfid - fid_interval))
432
return 1;
433
}
434
435
vcocurrfid = convert_fid_to_vco_fid(data->currfid);
436
vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
437
: vcoreqfid - vcocurrfid;
438
}
439
440
if (write_new_fid(data, reqfid))
441
return 1;
442
443
if (query_current_values_with_pending_wait(data))
444
return 1;
445
446
if (data->currfid != reqfid) {
447
printk(KERN_ERR PFX
448
"ph2: mismatch, failed fid transition, "
449
"curr 0x%x, req 0x%x\n",
450
data->currfid, reqfid);
451
return 1;
452
}
453
454
if (savevid != data->currvid) {
455
printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
456
savevid, data->currvid);
457
return 1;
458
}
459
460
pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
461
data->currfid, data->currvid);
462
463
return 0;
464
}
465
466
/* Phase 3 - core voltage transition flow ... jump to the final vid. */
467
static int core_voltage_post_transition(struct powernow_k8_data *data,
468
u32 reqvid)
469
{
470
u32 savefid = data->currfid;
471
u32 savereqvid = reqvid;
472
473
pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
474
smp_processor_id(),
475
data->currfid, data->currvid);
476
477
if (reqvid != data->currvid) {
478
if (write_new_vid(data, reqvid))
479
return 1;
480
481
if (savefid != data->currfid) {
482
printk(KERN_ERR PFX
483
"ph3: bad fid change, save 0x%x, curr 0x%x\n",
484
savefid, data->currfid);
485
return 1;
486
}
487
488
if (data->currvid != reqvid) {
489
printk(KERN_ERR PFX
490
"ph3: failed vid transition\n, "
491
"req 0x%x, curr 0x%x",
492
reqvid, data->currvid);
493
return 1;
494
}
495
}
496
497
if (query_current_values_with_pending_wait(data))
498
return 1;
499
500
if (savereqvid != data->currvid) {
501
pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
502
return 1;
503
}
504
505
if (savefid != data->currfid) {
506
pr_debug("ph3 failed, currfid changed 0x%x\n",
507
data->currfid);
508
return 1;
509
}
510
511
pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
512
data->currfid, data->currvid);
513
514
return 0;
515
}
516
517
static void check_supported_cpu(void *_rc)
518
{
519
u32 eax, ebx, ecx, edx;
520
int *rc = _rc;
521
522
*rc = -ENODEV;
523
524
if (__this_cpu_read(cpu_info.x86_vendor) != X86_VENDOR_AMD)
525
return;
526
527
eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
528
if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
529
((eax & CPUID_XFAM) < CPUID_XFAM_10H))
530
return;
531
532
if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
533
if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
534
((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
535
printk(KERN_INFO PFX
536
"Processor cpuid %x not supported\n", eax);
537
return;
538
}
539
540
eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
541
if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
542
printk(KERN_INFO PFX
543
"No frequency change capabilities detected\n");
544
return;
545
}
546
547
cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
548
if ((edx & P_STATE_TRANSITION_CAPABLE)
549
!= P_STATE_TRANSITION_CAPABLE) {
550
printk(KERN_INFO PFX
551
"Power state transitions not supported\n");
552
return;
553
}
554
} else { /* must be a HW Pstate capable processor */
555
cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
556
if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
557
cpu_family = CPU_HW_PSTATE;
558
else
559
return;
560
}
561
562
*rc = 0;
563
}
564
565
static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
566
u8 maxvid)
567
{
568
unsigned int j;
569
u8 lastfid = 0xff;
570
571
for (j = 0; j < data->numps; j++) {
572
if (pst[j].vid > LEAST_VID) {
573
printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
574
j, pst[j].vid);
575
return -EINVAL;
576
}
577
if (pst[j].vid < data->rvo) {
578
/* vid + rvo >= 0 */
579
printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
580
" %d\n", j);
581
return -ENODEV;
582
}
583
if (pst[j].vid < maxvid + data->rvo) {
584
/* vid + rvo >= maxvid */
585
printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
586
" %d\n", j);
587
return -ENODEV;
588
}
589
if (pst[j].fid > MAX_FID) {
590
printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
591
" %d\n", j);
592
return -ENODEV;
593
}
594
if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
595
/* Only first fid is allowed to be in "low" range */
596
printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
597
"0x%x\n", j, pst[j].fid);
598
return -EINVAL;
599
}
600
if (pst[j].fid < lastfid)
601
lastfid = pst[j].fid;
602
}
603
if (lastfid & 1) {
604
printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
605
return -EINVAL;
606
}
607
if (lastfid > LO_FID_TABLE_TOP)
608
printk(KERN_INFO FW_BUG PFX
609
"first fid not from lo freq table\n");
610
611
return 0;
612
}
613
614
static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
615
unsigned int entry)
616
{
617
powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
618
}
619
620
static void print_basics(struct powernow_k8_data *data)
621
{
622
int j;
623
for (j = 0; j < data->numps; j++) {
624
if (data->powernow_table[j].frequency !=
625
CPUFREQ_ENTRY_INVALID) {
626
if (cpu_family == CPU_HW_PSTATE) {
627
printk(KERN_INFO PFX
628
" %d : pstate %d (%d MHz)\n", j,
629
data->powernow_table[j].index,
630
data->powernow_table[j].frequency/1000);
631
} else {
632
printk(KERN_INFO PFX
633
"fid 0x%x (%d MHz), vid 0x%x\n",
634
data->powernow_table[j].index & 0xff,
635
data->powernow_table[j].frequency/1000,
636
data->powernow_table[j].index >> 8);
637
}
638
}
639
}
640
if (data->batps)
641
printk(KERN_INFO PFX "Only %d pstates on battery\n",
642
data->batps);
643
}
644
645
static u32 freq_from_fid_did(u32 fid, u32 did)
646
{
647
u32 mhz = 0;
648
649
if (boot_cpu_data.x86 == 0x10)
650
mhz = (100 * (fid + 0x10)) >> did;
651
else if (boot_cpu_data.x86 == 0x11)
652
mhz = (100 * (fid + 8)) >> did;
653
else
654
BUG();
655
656
return mhz * 1000;
657
}
658
659
static int fill_powernow_table(struct powernow_k8_data *data,
660
struct pst_s *pst, u8 maxvid)
661
{
662
struct cpufreq_frequency_table *powernow_table;
663
unsigned int j;
664
665
if (data->batps) {
666
/* use ACPI support to get full speed on mains power */
667
printk(KERN_WARNING PFX
668
"Only %d pstates usable (use ACPI driver for full "
669
"range\n", data->batps);
670
data->numps = data->batps;
671
}
672
673
for (j = 1; j < data->numps; j++) {
674
if (pst[j-1].fid >= pst[j].fid) {
675
printk(KERN_ERR PFX "PST out of sequence\n");
676
return -EINVAL;
677
}
678
}
679
680
if (data->numps < 2) {
681
printk(KERN_ERR PFX "no p states to transition\n");
682
return -ENODEV;
683
}
684
685
if (check_pst_table(data, pst, maxvid))
686
return -EINVAL;
687
688
powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
689
* (data->numps + 1)), GFP_KERNEL);
690
if (!powernow_table) {
691
printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
692
return -ENOMEM;
693
}
694
695
for (j = 0; j < data->numps; j++) {
696
int freq;
697
powernow_table[j].index = pst[j].fid; /* lower 8 bits */
698
powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
699
freq = find_khz_freq_from_fid(pst[j].fid);
700
powernow_table[j].frequency = freq;
701
}
702
powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
703
powernow_table[data->numps].index = 0;
704
705
if (query_current_values_with_pending_wait(data)) {
706
kfree(powernow_table);
707
return -EIO;
708
}
709
710
pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
711
data->powernow_table = powernow_table;
712
if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
713
print_basics(data);
714
715
for (j = 0; j < data->numps; j++)
716
if ((pst[j].fid == data->currfid) &&
717
(pst[j].vid == data->currvid))
718
return 0;
719
720
pr_debug("currfid/vid do not match PST, ignoring\n");
721
return 0;
722
}
723
724
/* Find and validate the PSB/PST table in BIOS. */
725
static int find_psb_table(struct powernow_k8_data *data)
726
{
727
struct psb_s *psb;
728
unsigned int i;
729
u32 mvs;
730
u8 maxvid;
731
u32 cpst = 0;
732
u32 thiscpuid;
733
734
for (i = 0xc0000; i < 0xffff0; i += 0x10) {
735
/* Scan BIOS looking for the signature. */
736
/* It can not be at ffff0 - it is too big. */
737
738
psb = phys_to_virt(i);
739
if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
740
continue;
741
742
pr_debug("found PSB header at 0x%p\n", psb);
743
744
pr_debug("table vers: 0x%x\n", psb->tableversion);
745
if (psb->tableversion != PSB_VERSION_1_4) {
746
printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
747
return -ENODEV;
748
}
749
750
pr_debug("flags: 0x%x\n", psb->flags1);
751
if (psb->flags1) {
752
printk(KERN_ERR FW_BUG PFX "unknown flags\n");
753
return -ENODEV;
754
}
755
756
data->vstable = psb->vstable;
757
pr_debug("voltage stabilization time: %d(*20us)\n",
758
data->vstable);
759
760
pr_debug("flags2: 0x%x\n", psb->flags2);
761
data->rvo = psb->flags2 & 3;
762
data->irt = ((psb->flags2) >> 2) & 3;
763
mvs = ((psb->flags2) >> 4) & 3;
764
data->vidmvs = 1 << mvs;
765
data->batps = ((psb->flags2) >> 6) & 3;
766
767
pr_debug("ramp voltage offset: %d\n", data->rvo);
768
pr_debug("isochronous relief time: %d\n", data->irt);
769
pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
770
771
pr_debug("numpst: 0x%x\n", psb->num_tables);
772
cpst = psb->num_tables;
773
if ((psb->cpuid == 0x00000fc0) ||
774
(psb->cpuid == 0x00000fe0)) {
775
thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
776
if ((thiscpuid == 0x00000fc0) ||
777
(thiscpuid == 0x00000fe0))
778
cpst = 1;
779
}
780
if (cpst != 1) {
781
printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
782
return -ENODEV;
783
}
784
785
data->plllock = psb->plllocktime;
786
pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
787
pr_debug("maxfid: 0x%x\n", psb->maxfid);
788
pr_debug("maxvid: 0x%x\n", psb->maxvid);
789
maxvid = psb->maxvid;
790
791
data->numps = psb->numps;
792
pr_debug("numpstates: 0x%x\n", data->numps);
793
return fill_powernow_table(data,
794
(struct pst_s *)(psb+1), maxvid);
795
}
796
/*
797
* If you see this message, complain to BIOS manufacturer. If
798
* he tells you "we do not support Linux" or some similar
799
* nonsense, remember that Windows 2000 uses the same legacy
800
* mechanism that the old Linux PSB driver uses. Tell them it
801
* is broken with Windows 2000.
802
*
803
* The reference to the AMD documentation is chapter 9 in the
804
* BIOS and Kernel Developer's Guide, which is available on
805
* www.amd.com
806
*/
807
printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
808
printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
809
" and Cool'N'Quiet support is enabled in BIOS setup\n");
810
return -ENODEV;
811
}
812
813
static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
814
unsigned int index)
815
{
816
u64 control;
817
818
if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
819
return;
820
821
control = data->acpi_data.states[index].control;
822
data->irt = (control >> IRT_SHIFT) & IRT_MASK;
823
data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
824
data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
825
data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
826
data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
827
data->vstable = (control >> VST_SHIFT) & VST_MASK;
828
}
829
830
static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
831
{
832
struct cpufreq_frequency_table *powernow_table;
833
int ret_val = -ENODEV;
834
u64 control, status;
835
836
if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
837
pr_debug("register performance failed: bad ACPI data\n");
838
return -EIO;
839
}
840
841
/* verify the data contained in the ACPI structures */
842
if (data->acpi_data.state_count <= 1) {
843
pr_debug("No ACPI P-States\n");
844
goto err_out;
845
}
846
847
control = data->acpi_data.control_register.space_id;
848
status = data->acpi_data.status_register.space_id;
849
850
if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
851
(status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
852
pr_debug("Invalid control/status registers (%llx - %llx)\n",
853
control, status);
854
goto err_out;
855
}
856
857
/* fill in data->powernow_table */
858
powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
859
* (data->acpi_data.state_count + 1)), GFP_KERNEL);
860
if (!powernow_table) {
861
pr_debug("powernow_table memory alloc failure\n");
862
goto err_out;
863
}
864
865
/* fill in data */
866
data->numps = data->acpi_data.state_count;
867
powernow_k8_acpi_pst_values(data, 0);
868
869
if (cpu_family == CPU_HW_PSTATE)
870
ret_val = fill_powernow_table_pstate(data, powernow_table);
871
else
872
ret_val = fill_powernow_table_fidvid(data, powernow_table);
873
if (ret_val)
874
goto err_out_mem;
875
876
powernow_table[data->acpi_data.state_count].frequency =
877
CPUFREQ_TABLE_END;
878
powernow_table[data->acpi_data.state_count].index = 0;
879
data->powernow_table = powernow_table;
880
881
if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
882
print_basics(data);
883
884
/* notify BIOS that we exist */
885
acpi_processor_notify_smm(THIS_MODULE);
886
887
if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
888
printk(KERN_ERR PFX
889
"unable to alloc powernow_k8_data cpumask\n");
890
ret_val = -ENOMEM;
891
goto err_out_mem;
892
}
893
894
return 0;
895
896
err_out_mem:
897
kfree(powernow_table);
898
899
err_out:
900
acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
901
902
/* data->acpi_data.state_count informs us at ->exit()
903
* whether ACPI was used */
904
data->acpi_data.state_count = 0;
905
906
return ret_val;
907
}
908
909
static int fill_powernow_table_pstate(struct powernow_k8_data *data,
910
struct cpufreq_frequency_table *powernow_table)
911
{
912
int i;
913
u32 hi = 0, lo = 0;
914
rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
915
data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
916
917
for (i = 0; i < data->acpi_data.state_count; i++) {
918
u32 index;
919
920
index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
921
if (index > data->max_hw_pstate) {
922
printk(KERN_ERR PFX "invalid pstate %d - "
923
"bad value %d.\n", i, index);
924
printk(KERN_ERR PFX "Please report to BIOS "
925
"manufacturer\n");
926
invalidate_entry(powernow_table, i);
927
continue;
928
}
929
rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
930
if (!(hi & HW_PSTATE_VALID_MASK)) {
931
pr_debug("invalid pstate %d, ignoring\n", index);
932
invalidate_entry(powernow_table, i);
933
continue;
934
}
935
936
powernow_table[i].index = index;
937
938
/* Frequency may be rounded for these */
939
if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
940
|| boot_cpu_data.x86 == 0x11) {
941
powernow_table[i].frequency =
942
freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
943
} else
944
powernow_table[i].frequency =
945
data->acpi_data.states[i].core_frequency * 1000;
946
}
947
return 0;
948
}
949
950
static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
951
struct cpufreq_frequency_table *powernow_table)
952
{
953
int i;
954
955
for (i = 0; i < data->acpi_data.state_count; i++) {
956
u32 fid;
957
u32 vid;
958
u32 freq, index;
959
u64 status, control;
960
961
if (data->exttype) {
962
status = data->acpi_data.states[i].status;
963
fid = status & EXT_FID_MASK;
964
vid = (status >> VID_SHIFT) & EXT_VID_MASK;
965
} else {
966
control = data->acpi_data.states[i].control;
967
fid = control & FID_MASK;
968
vid = (control >> VID_SHIFT) & VID_MASK;
969
}
970
971
pr_debug(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
972
973
index = fid | (vid<<8);
974
powernow_table[i].index = index;
975
976
freq = find_khz_freq_from_fid(fid);
977
powernow_table[i].frequency = freq;
978
979
/* verify frequency is OK */
980
if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
981
pr_debug("invalid freq %u kHz, ignoring\n", freq);
982
invalidate_entry(powernow_table, i);
983
continue;
984
}
985
986
/* verify voltage is OK -
987
* BIOSs are using "off" to indicate invalid */
988
if (vid == VID_OFF) {
989
pr_debug("invalid vid %u, ignoring\n", vid);
990
invalidate_entry(powernow_table, i);
991
continue;
992
}
993
994
if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
995
printk(KERN_INFO PFX "invalid freq entries "
996
"%u kHz vs. %u kHz\n", freq,
997
(unsigned int)
998
(data->acpi_data.states[i].core_frequency
999
* 1000));
1000
invalidate_entry(powernow_table, i);
1001
continue;
1002
}
1003
}
1004
return 0;
1005
}
1006
1007
static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1008
{
1009
if (data->acpi_data.state_count)
1010
acpi_processor_unregister_performance(&data->acpi_data,
1011
data->cpu);
1012
free_cpumask_var(data->acpi_data.shared_cpu_map);
1013
}
1014
1015
static int get_transition_latency(struct powernow_k8_data *data)
1016
{
1017
int max_latency = 0;
1018
int i;
1019
for (i = 0; i < data->acpi_data.state_count; i++) {
1020
int cur_latency = data->acpi_data.states[i].transition_latency
1021
+ data->acpi_data.states[i].bus_master_latency;
1022
if (cur_latency > max_latency)
1023
max_latency = cur_latency;
1024
}
1025
if (max_latency == 0) {
1026
/*
1027
* Fam 11h and later may return 0 as transition latency. This
1028
* is intended and means "very fast". While cpufreq core and
1029
* governors currently can handle that gracefully, better set it
1030
* to 1 to avoid problems in the future.
1031
*/
1032
if (boot_cpu_data.x86 < 0x11)
1033
printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1034
"latency\n");
1035
max_latency = 1;
1036
}
1037
/* value in usecs, needs to be in nanoseconds */
1038
return 1000 * max_latency;
1039
}
1040
1041
/* Take a frequency, and issue the fid/vid transition command */
1042
static int transition_frequency_fidvid(struct powernow_k8_data *data,
1043
unsigned int index)
1044
{
1045
u32 fid = 0;
1046
u32 vid = 0;
1047
int res, i;
1048
struct cpufreq_freqs freqs;
1049
1050
pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1051
1052
/* fid/vid correctness check for k8 */
1053
/* fid are the lower 8 bits of the index we stored into
1054
* the cpufreq frequency table in find_psb_table, vid
1055
* are the upper 8 bits.
1056
*/
1057
fid = data->powernow_table[index].index & 0xFF;
1058
vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1059
1060
pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1061
1062
if (query_current_values_with_pending_wait(data))
1063
return 1;
1064
1065
if ((data->currvid == vid) && (data->currfid == fid)) {
1066
pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
1067
fid, vid);
1068
return 0;
1069
}
1070
1071
pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1072
smp_processor_id(), fid, vid);
1073
freqs.old = find_khz_freq_from_fid(data->currfid);
1074
freqs.new = find_khz_freq_from_fid(fid);
1075
1076
for_each_cpu(i, data->available_cores) {
1077
freqs.cpu = i;
1078
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1079
}
1080
1081
res = transition_fid_vid(data, fid, vid);
1082
if (res)
1083
return res;
1084
1085
freqs.new = find_khz_freq_from_fid(data->currfid);
1086
1087
for_each_cpu(i, data->available_cores) {
1088
freqs.cpu = i;
1089
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1090
}
1091
return res;
1092
}
1093
1094
/* Take a frequency, and issue the hardware pstate transition command */
1095
static int transition_frequency_pstate(struct powernow_k8_data *data,
1096
unsigned int index)
1097
{
1098
u32 pstate = 0;
1099
int res, i;
1100
struct cpufreq_freqs freqs;
1101
1102
pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1103
1104
/* get MSR index for hardware pstate transition */
1105
pstate = index & HW_PSTATE_MASK;
1106
if (pstate > data->max_hw_pstate)
1107
return -EINVAL;
1108
1109
freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1110
data->currpstate);
1111
freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1112
1113
for_each_cpu(i, data->available_cores) {
1114
freqs.cpu = i;
1115
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1116
}
1117
1118
res = transition_pstate(data, pstate);
1119
freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1120
1121
for_each_cpu(i, data->available_cores) {
1122
freqs.cpu = i;
1123
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1124
}
1125
return res;
1126
}
1127
1128
/* Driver entry point to switch to the target frequency */
1129
static int powernowk8_target(struct cpufreq_policy *pol,
1130
unsigned targfreq, unsigned relation)
1131
{
1132
cpumask_var_t oldmask;
1133
struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1134
u32 checkfid;
1135
u32 checkvid;
1136
unsigned int newstate;
1137
int ret = -EIO;
1138
1139
if (!data)
1140
return -EINVAL;
1141
1142
checkfid = data->currfid;
1143
checkvid = data->currvid;
1144
1145
/* only run on specific CPU from here on. */
1146
/* This is poor form: use a workqueue or smp_call_function_single */
1147
if (!alloc_cpumask_var(&oldmask, GFP_KERNEL))
1148
return -ENOMEM;
1149
1150
cpumask_copy(oldmask, tsk_cpus_allowed(current));
1151
set_cpus_allowed_ptr(current, cpumask_of(pol->cpu));
1152
1153
if (smp_processor_id() != pol->cpu) {
1154
printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1155
goto err_out;
1156
}
1157
1158
if (pending_bit_stuck()) {
1159
printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1160
goto err_out;
1161
}
1162
1163
pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1164
pol->cpu, targfreq, pol->min, pol->max, relation);
1165
1166
if (query_current_values_with_pending_wait(data))
1167
goto err_out;
1168
1169
if (cpu_family != CPU_HW_PSTATE) {
1170
pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
1171
data->currfid, data->currvid);
1172
1173
if ((checkvid != data->currvid) ||
1174
(checkfid != data->currfid)) {
1175
printk(KERN_INFO PFX
1176
"error - out of sync, fix 0x%x 0x%x, "
1177
"vid 0x%x 0x%x\n",
1178
checkfid, data->currfid,
1179
checkvid, data->currvid);
1180
}
1181
}
1182
1183
if (cpufreq_frequency_table_target(pol, data->powernow_table,
1184
targfreq, relation, &newstate))
1185
goto err_out;
1186
1187
mutex_lock(&fidvid_mutex);
1188
1189
powernow_k8_acpi_pst_values(data, newstate);
1190
1191
if (cpu_family == CPU_HW_PSTATE)
1192
ret = transition_frequency_pstate(data, newstate);
1193
else
1194
ret = transition_frequency_fidvid(data, newstate);
1195
if (ret) {
1196
printk(KERN_ERR PFX "transition frequency failed\n");
1197
ret = 1;
1198
mutex_unlock(&fidvid_mutex);
1199
goto err_out;
1200
}
1201
mutex_unlock(&fidvid_mutex);
1202
1203
if (cpu_family == CPU_HW_PSTATE)
1204
pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1205
newstate);
1206
else
1207
pol->cur = find_khz_freq_from_fid(data->currfid);
1208
ret = 0;
1209
1210
err_out:
1211
set_cpus_allowed_ptr(current, oldmask);
1212
free_cpumask_var(oldmask);
1213
return ret;
1214
}
1215
1216
/* Driver entry point to verify the policy and range of frequencies */
1217
static int powernowk8_verify(struct cpufreq_policy *pol)
1218
{
1219
struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1220
1221
if (!data)
1222
return -EINVAL;
1223
1224
return cpufreq_frequency_table_verify(pol, data->powernow_table);
1225
}
1226
1227
struct init_on_cpu {
1228
struct powernow_k8_data *data;
1229
int rc;
1230
};
1231
1232
static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1233
{
1234
struct init_on_cpu *init_on_cpu = _init_on_cpu;
1235
1236
if (pending_bit_stuck()) {
1237
printk(KERN_ERR PFX "failing init, change pending bit set\n");
1238
init_on_cpu->rc = -ENODEV;
1239
return;
1240
}
1241
1242
if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1243
init_on_cpu->rc = -ENODEV;
1244
return;
1245
}
1246
1247
if (cpu_family == CPU_OPTERON)
1248
fidvid_msr_init();
1249
1250
init_on_cpu->rc = 0;
1251
}
1252
1253
/* per CPU init entry point to the driver */
1254
static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1255
{
1256
static const char ACPI_PSS_BIOS_BUG_MSG[] =
1257
KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1258
FW_BUG PFX "Try again with latest BIOS.\n";
1259
struct powernow_k8_data *data;
1260
struct init_on_cpu init_on_cpu;
1261
int rc;
1262
struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1263
1264
if (!cpu_online(pol->cpu))
1265
return -ENODEV;
1266
1267
smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1268
if (rc)
1269
return -ENODEV;
1270
1271
data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1272
if (!data) {
1273
printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1274
return -ENOMEM;
1275
}
1276
1277
data->cpu = pol->cpu;
1278
data->currpstate = HW_PSTATE_INVALID;
1279
1280
if (powernow_k8_cpu_init_acpi(data)) {
1281
/*
1282
* Use the PSB BIOS structure. This is only available on
1283
* an UP version, and is deprecated by AMD.
1284
*/
1285
if (num_online_cpus() != 1) {
1286
printk_once(ACPI_PSS_BIOS_BUG_MSG);
1287
goto err_out;
1288
}
1289
if (pol->cpu != 0) {
1290
printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1291
"CPU other than CPU0. Complain to your BIOS "
1292
"vendor.\n");
1293
goto err_out;
1294
}
1295
rc = find_psb_table(data);
1296
if (rc)
1297
goto err_out;
1298
1299
/* Take a crude guess here.
1300
* That guess was in microseconds, so multiply with 1000 */
1301
pol->cpuinfo.transition_latency = (
1302
((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1303
((1 << data->irt) * 30)) * 1000;
1304
} else /* ACPI _PSS objects available */
1305
pol->cpuinfo.transition_latency = get_transition_latency(data);
1306
1307
/* only run on specific CPU from here on */
1308
init_on_cpu.data = data;
1309
smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1310
&init_on_cpu, 1);
1311
rc = init_on_cpu.rc;
1312
if (rc != 0)
1313
goto err_out_exit_acpi;
1314
1315
if (cpu_family == CPU_HW_PSTATE)
1316
cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1317
else
1318
cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1319
data->available_cores = pol->cpus;
1320
1321
if (cpu_family == CPU_HW_PSTATE)
1322
pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1323
data->currpstate);
1324
else
1325
pol->cur = find_khz_freq_from_fid(data->currfid);
1326
pr_debug("policy current frequency %d kHz\n", pol->cur);
1327
1328
/* min/max the cpu is capable of */
1329
if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1330
printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1331
powernow_k8_cpu_exit_acpi(data);
1332
kfree(data->powernow_table);
1333
kfree(data);
1334
return -EINVAL;
1335
}
1336
1337
/* Check for APERF/MPERF support in hardware */
1338
if (cpu_has(c, X86_FEATURE_APERFMPERF))
1339
cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1340
1341
cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1342
1343
if (cpu_family == CPU_HW_PSTATE)
1344
pr_debug("cpu_init done, current pstate 0x%x\n",
1345
data->currpstate);
1346
else
1347
pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1348
data->currfid, data->currvid);
1349
1350
per_cpu(powernow_data, pol->cpu) = data;
1351
1352
return 0;
1353
1354
err_out_exit_acpi:
1355
powernow_k8_cpu_exit_acpi(data);
1356
1357
err_out:
1358
kfree(data);
1359
return -ENODEV;
1360
}
1361
1362
static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1363
{
1364
struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1365
1366
if (!data)
1367
return -EINVAL;
1368
1369
powernow_k8_cpu_exit_acpi(data);
1370
1371
cpufreq_frequency_table_put_attr(pol->cpu);
1372
1373
kfree(data->powernow_table);
1374
kfree(data);
1375
per_cpu(powernow_data, pol->cpu) = NULL;
1376
1377
return 0;
1378
}
1379
1380
static void query_values_on_cpu(void *_err)
1381
{
1382
int *err = _err;
1383
struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1384
1385
*err = query_current_values_with_pending_wait(data);
1386
}
1387
1388
static unsigned int powernowk8_get(unsigned int cpu)
1389
{
1390
struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1391
unsigned int khz = 0;
1392
int err;
1393
1394
if (!data)
1395
return 0;
1396
1397
smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1398
if (err)
1399
goto out;
1400
1401
if (cpu_family == CPU_HW_PSTATE)
1402
khz = find_khz_freq_from_pstate(data->powernow_table,
1403
data->currpstate);
1404
else
1405
khz = find_khz_freq_from_fid(data->currfid);
1406
1407
1408
out:
1409
return khz;
1410
}
1411
1412
static void _cpb_toggle_msrs(bool t)
1413
{
1414
int cpu;
1415
1416
get_online_cpus();
1417
1418
rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1419
1420
for_each_cpu(cpu, cpu_online_mask) {
1421
struct msr *reg = per_cpu_ptr(msrs, cpu);
1422
if (t)
1423
reg->l &= ~BIT(25);
1424
else
1425
reg->l |= BIT(25);
1426
}
1427
wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1428
1429
put_online_cpus();
1430
}
1431
1432
/*
1433
* Switch on/off core performance boosting.
1434
*
1435
* 0=disable
1436
* 1=enable.
1437
*/
1438
static void cpb_toggle(bool t)
1439
{
1440
if (!cpb_capable)
1441
return;
1442
1443
if (t && !cpb_enabled) {
1444
cpb_enabled = true;
1445
_cpb_toggle_msrs(t);
1446
printk(KERN_INFO PFX "Core Boosting enabled.\n");
1447
} else if (!t && cpb_enabled) {
1448
cpb_enabled = false;
1449
_cpb_toggle_msrs(t);
1450
printk(KERN_INFO PFX "Core Boosting disabled.\n");
1451
}
1452
}
1453
1454
static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1455
size_t count)
1456
{
1457
int ret = -EINVAL;
1458
unsigned long val = 0;
1459
1460
ret = strict_strtoul(buf, 10, &val);
1461
if (!ret && (val == 0 || val == 1) && cpb_capable)
1462
cpb_toggle(val);
1463
else
1464
return -EINVAL;
1465
1466
return count;
1467
}
1468
1469
static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1470
{
1471
return sprintf(buf, "%u\n", cpb_enabled);
1472
}
1473
1474
#define define_one_rw(_name) \
1475
static struct freq_attr _name = \
1476
__ATTR(_name, 0644, show_##_name, store_##_name)
1477
1478
define_one_rw(cpb);
1479
1480
static struct freq_attr *powernow_k8_attr[] = {
1481
&cpufreq_freq_attr_scaling_available_freqs,
1482
&cpb,
1483
NULL,
1484
};
1485
1486
static struct cpufreq_driver cpufreq_amd64_driver = {
1487
.verify = powernowk8_verify,
1488
.target = powernowk8_target,
1489
.bios_limit = acpi_processor_get_bios_limit,
1490
.init = powernowk8_cpu_init,
1491
.exit = __devexit_p(powernowk8_cpu_exit),
1492
.get = powernowk8_get,
1493
.name = "powernow-k8",
1494
.owner = THIS_MODULE,
1495
.attr = powernow_k8_attr,
1496
};
1497
1498
/*
1499
* Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1500
* cannot block the remaining ones from boosting. On the CPU_UP path we
1501
* simply keep the boost-disable flag in sync with the current global
1502
* state.
1503
*/
1504
static int cpb_notify(struct notifier_block *nb, unsigned long action,
1505
void *hcpu)
1506
{
1507
unsigned cpu = (long)hcpu;
1508
u32 lo, hi;
1509
1510
switch (action) {
1511
case CPU_UP_PREPARE:
1512
case CPU_UP_PREPARE_FROZEN:
1513
1514
if (!cpb_enabled) {
1515
rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1516
lo |= BIT(25);
1517
wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1518
}
1519
break;
1520
1521
case CPU_DOWN_PREPARE:
1522
case CPU_DOWN_PREPARE_FROZEN:
1523
rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1524
lo &= ~BIT(25);
1525
wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1526
break;
1527
1528
default:
1529
break;
1530
}
1531
1532
return NOTIFY_OK;
1533
}
1534
1535
static struct notifier_block cpb_nb = {
1536
.notifier_call = cpb_notify,
1537
};
1538
1539
/* driver entry point for init */
1540
static int __cpuinit powernowk8_init(void)
1541
{
1542
unsigned int i, supported_cpus = 0, cpu;
1543
int rv;
1544
1545
for_each_online_cpu(i) {
1546
int rc;
1547
smp_call_function_single(i, check_supported_cpu, &rc, 1);
1548
if (rc == 0)
1549
supported_cpus++;
1550
}
1551
1552
if (supported_cpus != num_online_cpus())
1553
return -ENODEV;
1554
1555
printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1556
num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1557
1558
if (boot_cpu_has(X86_FEATURE_CPB)) {
1559
1560
cpb_capable = true;
1561
1562
msrs = msrs_alloc();
1563
if (!msrs) {
1564
printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1565
return -ENOMEM;
1566
}
1567
1568
register_cpu_notifier(&cpb_nb);
1569
1570
rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1571
1572
for_each_cpu(cpu, cpu_online_mask) {
1573
struct msr *reg = per_cpu_ptr(msrs, cpu);
1574
cpb_enabled |= !(!!(reg->l & BIT(25)));
1575
}
1576
1577
printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1578
(cpb_enabled ? "on" : "off"));
1579
}
1580
1581
rv = cpufreq_register_driver(&cpufreq_amd64_driver);
1582
if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) {
1583
unregister_cpu_notifier(&cpb_nb);
1584
msrs_free(msrs);
1585
msrs = NULL;
1586
}
1587
return rv;
1588
}
1589
1590
/* driver entry point for term */
1591
static void __exit powernowk8_exit(void)
1592
{
1593
pr_debug("exit\n");
1594
1595
if (boot_cpu_has(X86_FEATURE_CPB)) {
1596
msrs_free(msrs);
1597
msrs = NULL;
1598
1599
unregister_cpu_notifier(&cpb_nb);
1600
}
1601
1602
cpufreq_unregister_driver(&cpufreq_amd64_driver);
1603
}
1604
1605
MODULE_AUTHOR("Paul Devriendt <[email protected]> and "
1606
"Mark Langsdorf <[email protected]>");
1607
MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1608
MODULE_LICENSE("GPL");
1609
1610
late_initcall(powernowk8_init);
1611
module_exit(powernowk8_exit);
1612
1613