Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/crypto/amcc/crypto4xx_core.c
15111 views
1
/**
2
* AMCC SoC PPC4xx Crypto Driver
3
*
4
* Copyright (c) 2008 Applied Micro Circuits Corporation.
5
* All rights reserved. James Hsiao <[email protected]>
6
*
7
* This program is free software; you can redistribute it and/or modify
8
* it under the terms of the GNU General Public License as published by
9
* the Free Software Foundation; either version 2 of the License, or
10
* (at your option) any later version.
11
*
12
* This program is distributed in the hope that it will be useful,
13
* but WITHOUT ANY WARRANTY; without even the implied warranty of
14
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15
* GNU General Public License for more details.
16
*
17
* This file implements AMCC crypto offload Linux device driver for use with
18
* Linux CryptoAPI.
19
*/
20
21
#include <linux/kernel.h>
22
#include <linux/interrupt.h>
23
#include <linux/spinlock_types.h>
24
#include <linux/random.h>
25
#include <linux/scatterlist.h>
26
#include <linux/crypto.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/platform_device.h>
29
#include <linux/init.h>
30
#include <linux/of_platform.h>
31
#include <linux/slab.h>
32
#include <asm/dcr.h>
33
#include <asm/dcr-regs.h>
34
#include <asm/cacheflush.h>
35
#include <crypto/aes.h>
36
#include <crypto/sha.h>
37
#include "crypto4xx_reg_def.h"
38
#include "crypto4xx_core.h"
39
#include "crypto4xx_sa.h"
40
41
#define PPC4XX_SEC_VERSION_STR "0.5"
42
43
/**
44
* PPC4xx Crypto Engine Initialization Routine
45
*/
46
static void crypto4xx_hw_init(struct crypto4xx_device *dev)
47
{
48
union ce_ring_size ring_size;
49
union ce_ring_contol ring_ctrl;
50
union ce_part_ring_size part_ring_size;
51
union ce_io_threshold io_threshold;
52
u32 rand_num;
53
union ce_pe_dma_cfg pe_dma_cfg;
54
55
writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
56
/* setup pe dma, include reset sg, pdr and pe, then release reset */
57
pe_dma_cfg.w = 0;
58
pe_dma_cfg.bf.bo_sgpd_en = 1;
59
pe_dma_cfg.bf.bo_data_en = 0;
60
pe_dma_cfg.bf.bo_sa_en = 1;
61
pe_dma_cfg.bf.bo_pd_en = 1;
62
pe_dma_cfg.bf.dynamic_sa_en = 1;
63
pe_dma_cfg.bf.reset_sg = 1;
64
pe_dma_cfg.bf.reset_pdr = 1;
65
pe_dma_cfg.bf.reset_pe = 1;
66
writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
67
/* un reset pe,sg and pdr */
68
pe_dma_cfg.bf.pe_mode = 0;
69
pe_dma_cfg.bf.reset_sg = 0;
70
pe_dma_cfg.bf.reset_pdr = 0;
71
pe_dma_cfg.bf.reset_pe = 0;
72
pe_dma_cfg.bf.bo_td_en = 0;
73
writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
74
writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
75
writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
76
writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
77
get_random_bytes(&rand_num, sizeof(rand_num));
78
writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
79
get_random_bytes(&rand_num, sizeof(rand_num));
80
writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
81
ring_size.w = 0;
82
ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
83
ring_size.bf.ring_size = PPC4XX_NUM_PD;
84
writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
85
ring_ctrl.w = 0;
86
writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
87
writel(PPC4XX_DC_3DES_EN, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
88
writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
89
writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
90
part_ring_size.w = 0;
91
part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
92
part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
93
writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
94
writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
95
io_threshold.w = 0;
96
io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
97
io_threshold.bf.input_threshold = PPC4XX_INPUT_THRESHOLD;
98
writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
99
writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
100
writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
101
writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
102
writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
103
writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
104
writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
105
writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
106
/* un reset pe,sg and pdr */
107
pe_dma_cfg.bf.pe_mode = 1;
108
pe_dma_cfg.bf.reset_sg = 0;
109
pe_dma_cfg.bf.reset_pdr = 0;
110
pe_dma_cfg.bf.reset_pe = 0;
111
pe_dma_cfg.bf.bo_td_en = 0;
112
writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
113
/*clear all pending interrupt*/
114
writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
115
writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
116
writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
117
writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
118
writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
119
}
120
121
int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
122
{
123
ctx->sa_in = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
124
&ctx->sa_in_dma_addr, GFP_ATOMIC);
125
if (ctx->sa_in == NULL)
126
return -ENOMEM;
127
128
ctx->sa_out = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
129
&ctx->sa_out_dma_addr, GFP_ATOMIC);
130
if (ctx->sa_out == NULL) {
131
dma_free_coherent(ctx->dev->core_dev->device,
132
ctx->sa_len * 4,
133
ctx->sa_in, ctx->sa_in_dma_addr);
134
return -ENOMEM;
135
}
136
137
memset(ctx->sa_in, 0, size * 4);
138
memset(ctx->sa_out, 0, size * 4);
139
ctx->sa_len = size;
140
141
return 0;
142
}
143
144
void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
145
{
146
if (ctx->sa_in != NULL)
147
dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
148
ctx->sa_in, ctx->sa_in_dma_addr);
149
if (ctx->sa_out != NULL)
150
dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
151
ctx->sa_out, ctx->sa_out_dma_addr);
152
153
ctx->sa_in_dma_addr = 0;
154
ctx->sa_out_dma_addr = 0;
155
ctx->sa_len = 0;
156
}
157
158
u32 crypto4xx_alloc_state_record(struct crypto4xx_ctx *ctx)
159
{
160
ctx->state_record = dma_alloc_coherent(ctx->dev->core_dev->device,
161
sizeof(struct sa_state_record),
162
&ctx->state_record_dma_addr, GFP_ATOMIC);
163
if (!ctx->state_record_dma_addr)
164
return -ENOMEM;
165
memset(ctx->state_record, 0, sizeof(struct sa_state_record));
166
167
return 0;
168
}
169
170
void crypto4xx_free_state_record(struct crypto4xx_ctx *ctx)
171
{
172
if (ctx->state_record != NULL)
173
dma_free_coherent(ctx->dev->core_dev->device,
174
sizeof(struct sa_state_record),
175
ctx->state_record,
176
ctx->state_record_dma_addr);
177
ctx->state_record_dma_addr = 0;
178
}
179
180
/**
181
* alloc memory for the gather ring
182
* no need to alloc buf for the ring
183
* gdr_tail, gdr_head and gdr_count are initialized by this function
184
*/
185
static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
186
{
187
int i;
188
struct pd_uinfo *pd_uinfo;
189
dev->pdr = dma_alloc_coherent(dev->core_dev->device,
190
sizeof(struct ce_pd) * PPC4XX_NUM_PD,
191
&dev->pdr_pa, GFP_ATOMIC);
192
if (!dev->pdr)
193
return -ENOMEM;
194
195
dev->pdr_uinfo = kzalloc(sizeof(struct pd_uinfo) * PPC4XX_NUM_PD,
196
GFP_KERNEL);
197
if (!dev->pdr_uinfo) {
198
dma_free_coherent(dev->core_dev->device,
199
sizeof(struct ce_pd) * PPC4XX_NUM_PD,
200
dev->pdr,
201
dev->pdr_pa);
202
return -ENOMEM;
203
}
204
memset(dev->pdr, 0, sizeof(struct ce_pd) * PPC4XX_NUM_PD);
205
dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
206
256 * PPC4XX_NUM_PD,
207
&dev->shadow_sa_pool_pa,
208
GFP_ATOMIC);
209
if (!dev->shadow_sa_pool)
210
return -ENOMEM;
211
212
dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
213
sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
214
&dev->shadow_sr_pool_pa, GFP_ATOMIC);
215
if (!dev->shadow_sr_pool)
216
return -ENOMEM;
217
for (i = 0; i < PPC4XX_NUM_PD; i++) {
218
pd_uinfo = (struct pd_uinfo *) (dev->pdr_uinfo +
219
sizeof(struct pd_uinfo) * i);
220
221
/* alloc 256 bytes which is enough for any kind of dynamic sa */
222
pd_uinfo->sa_va = dev->shadow_sa_pool + 256 * i;
223
pd_uinfo->sa_pa = dev->shadow_sa_pool_pa + 256 * i;
224
225
/* alloc state record */
226
pd_uinfo->sr_va = dev->shadow_sr_pool +
227
sizeof(struct sa_state_record) * i;
228
pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
229
sizeof(struct sa_state_record) * i;
230
}
231
232
return 0;
233
}
234
235
static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
236
{
237
if (dev->pdr != NULL)
238
dma_free_coherent(dev->core_dev->device,
239
sizeof(struct ce_pd) * PPC4XX_NUM_PD,
240
dev->pdr, dev->pdr_pa);
241
if (dev->shadow_sa_pool)
242
dma_free_coherent(dev->core_dev->device, 256 * PPC4XX_NUM_PD,
243
dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
244
if (dev->shadow_sr_pool)
245
dma_free_coherent(dev->core_dev->device,
246
sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
247
dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
248
249
kfree(dev->pdr_uinfo);
250
}
251
252
static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
253
{
254
u32 retval;
255
u32 tmp;
256
257
retval = dev->pdr_head;
258
tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
259
260
if (tmp == dev->pdr_tail)
261
return ERING_WAS_FULL;
262
263
dev->pdr_head = tmp;
264
265
return retval;
266
}
267
268
static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
269
{
270
struct pd_uinfo *pd_uinfo;
271
unsigned long flags;
272
273
pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
274
sizeof(struct pd_uinfo) * idx);
275
spin_lock_irqsave(&dev->core_dev->lock, flags);
276
if (dev->pdr_tail != PPC4XX_LAST_PD)
277
dev->pdr_tail++;
278
else
279
dev->pdr_tail = 0;
280
pd_uinfo->state = PD_ENTRY_FREE;
281
spin_unlock_irqrestore(&dev->core_dev->lock, flags);
282
283
return 0;
284
}
285
286
static struct ce_pd *crypto4xx_get_pdp(struct crypto4xx_device *dev,
287
dma_addr_t *pd_dma, u32 idx)
288
{
289
*pd_dma = dev->pdr_pa + sizeof(struct ce_pd) * idx;
290
291
return dev->pdr + sizeof(struct ce_pd) * idx;
292
}
293
294
/**
295
* alloc memory for the gather ring
296
* no need to alloc buf for the ring
297
* gdr_tail, gdr_head and gdr_count are initialized by this function
298
*/
299
static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
300
{
301
dev->gdr = dma_alloc_coherent(dev->core_dev->device,
302
sizeof(struct ce_gd) * PPC4XX_NUM_GD,
303
&dev->gdr_pa, GFP_ATOMIC);
304
if (!dev->gdr)
305
return -ENOMEM;
306
307
memset(dev->gdr, 0, sizeof(struct ce_gd) * PPC4XX_NUM_GD);
308
309
return 0;
310
}
311
312
static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
313
{
314
dma_free_coherent(dev->core_dev->device,
315
sizeof(struct ce_gd) * PPC4XX_NUM_GD,
316
dev->gdr, dev->gdr_pa);
317
}
318
319
/*
320
* when this function is called.
321
* preemption or interrupt must be disabled
322
*/
323
u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
324
{
325
u32 retval;
326
u32 tmp;
327
if (n >= PPC4XX_NUM_GD)
328
return ERING_WAS_FULL;
329
330
retval = dev->gdr_head;
331
tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
332
if (dev->gdr_head > dev->gdr_tail) {
333
if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
334
return ERING_WAS_FULL;
335
} else if (dev->gdr_head < dev->gdr_tail) {
336
if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
337
return ERING_WAS_FULL;
338
}
339
dev->gdr_head = tmp;
340
341
return retval;
342
}
343
344
static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
345
{
346
unsigned long flags;
347
348
spin_lock_irqsave(&dev->core_dev->lock, flags);
349
if (dev->gdr_tail == dev->gdr_head) {
350
spin_unlock_irqrestore(&dev->core_dev->lock, flags);
351
return 0;
352
}
353
354
if (dev->gdr_tail != PPC4XX_LAST_GD)
355
dev->gdr_tail++;
356
else
357
dev->gdr_tail = 0;
358
359
spin_unlock_irqrestore(&dev->core_dev->lock, flags);
360
361
return 0;
362
}
363
364
static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
365
dma_addr_t *gd_dma, u32 idx)
366
{
367
*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
368
369
return (struct ce_gd *) (dev->gdr + sizeof(struct ce_gd) * idx);
370
}
371
372
/**
373
* alloc memory for the scatter ring
374
* need to alloc buf for the ring
375
* sdr_tail, sdr_head and sdr_count are initialized by this function
376
*/
377
static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
378
{
379
int i;
380
struct ce_sd *sd_array;
381
382
/* alloc memory for scatter descriptor ring */
383
dev->sdr = dma_alloc_coherent(dev->core_dev->device,
384
sizeof(struct ce_sd) * PPC4XX_NUM_SD,
385
&dev->sdr_pa, GFP_ATOMIC);
386
if (!dev->sdr)
387
return -ENOMEM;
388
389
dev->scatter_buffer_size = PPC4XX_SD_BUFFER_SIZE;
390
dev->scatter_buffer_va =
391
dma_alloc_coherent(dev->core_dev->device,
392
dev->scatter_buffer_size * PPC4XX_NUM_SD,
393
&dev->scatter_buffer_pa, GFP_ATOMIC);
394
if (!dev->scatter_buffer_va) {
395
dma_free_coherent(dev->core_dev->device,
396
sizeof(struct ce_sd) * PPC4XX_NUM_SD,
397
dev->sdr, dev->sdr_pa);
398
return -ENOMEM;
399
}
400
401
sd_array = dev->sdr;
402
403
for (i = 0; i < PPC4XX_NUM_SD; i++) {
404
sd_array[i].ptr = dev->scatter_buffer_pa +
405
dev->scatter_buffer_size * i;
406
}
407
408
return 0;
409
}
410
411
static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
412
{
413
if (dev->sdr != NULL)
414
dma_free_coherent(dev->core_dev->device,
415
sizeof(struct ce_sd) * PPC4XX_NUM_SD,
416
dev->sdr, dev->sdr_pa);
417
418
if (dev->scatter_buffer_va != NULL)
419
dma_free_coherent(dev->core_dev->device,
420
dev->scatter_buffer_size * PPC4XX_NUM_SD,
421
dev->scatter_buffer_va,
422
dev->scatter_buffer_pa);
423
}
424
425
/*
426
* when this function is called.
427
* preemption or interrupt must be disabled
428
*/
429
static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
430
{
431
u32 retval;
432
u32 tmp;
433
434
if (n >= PPC4XX_NUM_SD)
435
return ERING_WAS_FULL;
436
437
retval = dev->sdr_head;
438
tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
439
if (dev->sdr_head > dev->gdr_tail) {
440
if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
441
return ERING_WAS_FULL;
442
} else if (dev->sdr_head < dev->sdr_tail) {
443
if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
444
return ERING_WAS_FULL;
445
} /* the head = tail, or empty case is already take cared */
446
dev->sdr_head = tmp;
447
448
return retval;
449
}
450
451
static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
452
{
453
unsigned long flags;
454
455
spin_lock_irqsave(&dev->core_dev->lock, flags);
456
if (dev->sdr_tail == dev->sdr_head) {
457
spin_unlock_irqrestore(&dev->core_dev->lock, flags);
458
return 0;
459
}
460
if (dev->sdr_tail != PPC4XX_LAST_SD)
461
dev->sdr_tail++;
462
else
463
dev->sdr_tail = 0;
464
spin_unlock_irqrestore(&dev->core_dev->lock, flags);
465
466
return 0;
467
}
468
469
static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
470
dma_addr_t *sd_dma, u32 idx)
471
{
472
*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
473
474
return (struct ce_sd *)(dev->sdr + sizeof(struct ce_sd) * idx);
475
}
476
477
static u32 crypto4xx_fill_one_page(struct crypto4xx_device *dev,
478
dma_addr_t *addr, u32 *length,
479
u32 *idx, u32 *offset, u32 *nbytes)
480
{
481
u32 len;
482
483
if (*length > dev->scatter_buffer_size) {
484
memcpy(phys_to_virt(*addr),
485
dev->scatter_buffer_va +
486
*idx * dev->scatter_buffer_size + *offset,
487
dev->scatter_buffer_size);
488
*offset = 0;
489
*length -= dev->scatter_buffer_size;
490
*nbytes -= dev->scatter_buffer_size;
491
if (*idx == PPC4XX_LAST_SD)
492
*idx = 0;
493
else
494
(*idx)++;
495
*addr = *addr + dev->scatter_buffer_size;
496
return 1;
497
} else if (*length < dev->scatter_buffer_size) {
498
memcpy(phys_to_virt(*addr),
499
dev->scatter_buffer_va +
500
*idx * dev->scatter_buffer_size + *offset, *length);
501
if ((*offset + *length) == dev->scatter_buffer_size) {
502
if (*idx == PPC4XX_LAST_SD)
503
*idx = 0;
504
else
505
(*idx)++;
506
*nbytes -= *length;
507
*offset = 0;
508
} else {
509
*nbytes -= *length;
510
*offset += *length;
511
}
512
513
return 0;
514
} else {
515
len = (*nbytes <= dev->scatter_buffer_size) ?
516
(*nbytes) : dev->scatter_buffer_size;
517
memcpy(phys_to_virt(*addr),
518
dev->scatter_buffer_va +
519
*idx * dev->scatter_buffer_size + *offset,
520
len);
521
*offset = 0;
522
*nbytes -= len;
523
524
if (*idx == PPC4XX_LAST_SD)
525
*idx = 0;
526
else
527
(*idx)++;
528
529
return 0;
530
}
531
}
532
533
static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
534
struct ce_pd *pd,
535
struct pd_uinfo *pd_uinfo,
536
u32 nbytes,
537
struct scatterlist *dst)
538
{
539
dma_addr_t addr;
540
u32 this_sd;
541
u32 offset;
542
u32 len;
543
u32 i;
544
u32 sg_len;
545
struct scatterlist *sg;
546
547
this_sd = pd_uinfo->first_sd;
548
offset = 0;
549
i = 0;
550
551
while (nbytes) {
552
sg = &dst[i];
553
sg_len = sg->length;
554
addr = dma_map_page(dev->core_dev->device, sg_page(sg),
555
sg->offset, sg->length, DMA_TO_DEVICE);
556
557
if (offset == 0) {
558
len = (nbytes <= sg->length) ? nbytes : sg->length;
559
while (crypto4xx_fill_one_page(dev, &addr, &len,
560
&this_sd, &offset, &nbytes))
561
;
562
if (!nbytes)
563
return;
564
i++;
565
} else {
566
len = (nbytes <= (dev->scatter_buffer_size - offset)) ?
567
nbytes : (dev->scatter_buffer_size - offset);
568
len = (sg->length < len) ? sg->length : len;
569
while (crypto4xx_fill_one_page(dev, &addr, &len,
570
&this_sd, &offset, &nbytes))
571
;
572
if (!nbytes)
573
return;
574
sg_len -= len;
575
if (sg_len) {
576
addr += len;
577
while (crypto4xx_fill_one_page(dev, &addr,
578
&sg_len, &this_sd, &offset, &nbytes))
579
;
580
}
581
i++;
582
}
583
}
584
}
585
586
static u32 crypto4xx_copy_digest_to_dst(struct pd_uinfo *pd_uinfo,
587
struct crypto4xx_ctx *ctx)
588
{
589
struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
590
struct sa_state_record *state_record =
591
(struct sa_state_record *) pd_uinfo->sr_va;
592
593
if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
594
memcpy((void *) pd_uinfo->dest_va, state_record->save_digest,
595
SA_HASH_ALG_SHA1_DIGEST_SIZE);
596
}
597
598
return 0;
599
}
600
601
static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
602
struct pd_uinfo *pd_uinfo)
603
{
604
int i;
605
if (pd_uinfo->num_gd) {
606
for (i = 0; i < pd_uinfo->num_gd; i++)
607
crypto4xx_put_gd_to_gdr(dev);
608
pd_uinfo->first_gd = 0xffffffff;
609
pd_uinfo->num_gd = 0;
610
}
611
if (pd_uinfo->num_sd) {
612
for (i = 0; i < pd_uinfo->num_sd; i++)
613
crypto4xx_put_sd_to_sdr(dev);
614
615
pd_uinfo->first_sd = 0xffffffff;
616
pd_uinfo->num_sd = 0;
617
}
618
}
619
620
static u32 crypto4xx_ablkcipher_done(struct crypto4xx_device *dev,
621
struct pd_uinfo *pd_uinfo,
622
struct ce_pd *pd)
623
{
624
struct crypto4xx_ctx *ctx;
625
struct ablkcipher_request *ablk_req;
626
struct scatterlist *dst;
627
dma_addr_t addr;
628
629
ablk_req = ablkcipher_request_cast(pd_uinfo->async_req);
630
ctx = crypto_tfm_ctx(ablk_req->base.tfm);
631
632
if (pd_uinfo->using_sd) {
633
crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, ablk_req->nbytes,
634
ablk_req->dst);
635
} else {
636
dst = pd_uinfo->dest_va;
637
addr = dma_map_page(dev->core_dev->device, sg_page(dst),
638
dst->offset, dst->length, DMA_FROM_DEVICE);
639
}
640
crypto4xx_ret_sg_desc(dev, pd_uinfo);
641
if (ablk_req->base.complete != NULL)
642
ablk_req->base.complete(&ablk_req->base, 0);
643
644
return 0;
645
}
646
647
static u32 crypto4xx_ahash_done(struct crypto4xx_device *dev,
648
struct pd_uinfo *pd_uinfo)
649
{
650
struct crypto4xx_ctx *ctx;
651
struct ahash_request *ahash_req;
652
653
ahash_req = ahash_request_cast(pd_uinfo->async_req);
654
ctx = crypto_tfm_ctx(ahash_req->base.tfm);
655
656
crypto4xx_copy_digest_to_dst(pd_uinfo,
657
crypto_tfm_ctx(ahash_req->base.tfm));
658
crypto4xx_ret_sg_desc(dev, pd_uinfo);
659
/* call user provided callback function x */
660
if (ahash_req->base.complete != NULL)
661
ahash_req->base.complete(&ahash_req->base, 0);
662
663
return 0;
664
}
665
666
static u32 crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
667
{
668
struct ce_pd *pd;
669
struct pd_uinfo *pd_uinfo;
670
671
pd = dev->pdr + sizeof(struct ce_pd)*idx;
672
pd_uinfo = dev->pdr_uinfo + sizeof(struct pd_uinfo)*idx;
673
if (crypto_tfm_alg_type(pd_uinfo->async_req->tfm) ==
674
CRYPTO_ALG_TYPE_ABLKCIPHER)
675
return crypto4xx_ablkcipher_done(dev, pd_uinfo, pd);
676
else
677
return crypto4xx_ahash_done(dev, pd_uinfo);
678
}
679
680
/**
681
* Note: Only use this function to copy items that is word aligned.
682
*/
683
void crypto4xx_memcpy_le(unsigned int *dst,
684
const unsigned char *buf,
685
int len)
686
{
687
u8 *tmp;
688
for (; len >= 4; buf += 4, len -= 4)
689
*dst++ = cpu_to_le32(*(unsigned int *) buf);
690
691
tmp = (u8 *)dst;
692
switch (len) {
693
case 3:
694
*tmp++ = 0;
695
*tmp++ = *(buf+2);
696
*tmp++ = *(buf+1);
697
*tmp++ = *buf;
698
break;
699
case 2:
700
*tmp++ = 0;
701
*tmp++ = 0;
702
*tmp++ = *(buf+1);
703
*tmp++ = *buf;
704
break;
705
case 1:
706
*tmp++ = 0;
707
*tmp++ = 0;
708
*tmp++ = 0;
709
*tmp++ = *buf;
710
break;
711
default:
712
break;
713
}
714
}
715
716
static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
717
{
718
crypto4xx_destroy_pdr(core_dev->dev);
719
crypto4xx_destroy_gdr(core_dev->dev);
720
crypto4xx_destroy_sdr(core_dev->dev);
721
dev_set_drvdata(core_dev->device, NULL);
722
iounmap(core_dev->dev->ce_base);
723
kfree(core_dev->dev);
724
kfree(core_dev);
725
}
726
727
void crypto4xx_return_pd(struct crypto4xx_device *dev,
728
u32 pd_entry, struct ce_pd *pd,
729
struct pd_uinfo *pd_uinfo)
730
{
731
/* irq should be already disabled */
732
dev->pdr_head = pd_entry;
733
pd->pd_ctl.w = 0;
734
pd->pd_ctl_len.w = 0;
735
pd_uinfo->state = PD_ENTRY_FREE;
736
}
737
738
/*
739
* derive number of elements in scatterlist
740
* Shamlessly copy from talitos.c
741
*/
742
static int get_sg_count(struct scatterlist *sg_list, int nbytes)
743
{
744
struct scatterlist *sg = sg_list;
745
int sg_nents = 0;
746
747
while (nbytes) {
748
sg_nents++;
749
if (sg->length > nbytes)
750
break;
751
nbytes -= sg->length;
752
sg = sg_next(sg);
753
}
754
755
return sg_nents;
756
}
757
758
static u32 get_next_gd(u32 current)
759
{
760
if (current != PPC4XX_LAST_GD)
761
return current + 1;
762
else
763
return 0;
764
}
765
766
static u32 get_next_sd(u32 current)
767
{
768
if (current != PPC4XX_LAST_SD)
769
return current + 1;
770
else
771
return 0;
772
}
773
774
u32 crypto4xx_build_pd(struct crypto_async_request *req,
775
struct crypto4xx_ctx *ctx,
776
struct scatterlist *src,
777
struct scatterlist *dst,
778
unsigned int datalen,
779
void *iv, u32 iv_len)
780
{
781
struct crypto4xx_device *dev = ctx->dev;
782
dma_addr_t addr, pd_dma, sd_dma, gd_dma;
783
struct dynamic_sa_ctl *sa;
784
struct scatterlist *sg;
785
struct ce_gd *gd;
786
struct ce_pd *pd;
787
u32 num_gd, num_sd;
788
u32 fst_gd = 0xffffffff;
789
u32 fst_sd = 0xffffffff;
790
u32 pd_entry;
791
unsigned long flags;
792
struct pd_uinfo *pd_uinfo = NULL;
793
unsigned int nbytes = datalen, idx;
794
unsigned int ivlen = 0;
795
u32 gd_idx = 0;
796
797
/* figure how many gd is needed */
798
num_gd = get_sg_count(src, datalen);
799
if (num_gd == 1)
800
num_gd = 0;
801
802
/* figure how many sd is needed */
803
if (sg_is_last(dst) || ctx->is_hash) {
804
num_sd = 0;
805
} else {
806
if (datalen > PPC4XX_SD_BUFFER_SIZE) {
807
num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
808
if (datalen % PPC4XX_SD_BUFFER_SIZE)
809
num_sd++;
810
} else {
811
num_sd = 1;
812
}
813
}
814
815
/*
816
* The follow section of code needs to be protected
817
* The gather ring and scatter ring needs to be consecutive
818
* In case of run out of any kind of descriptor, the descriptor
819
* already got must be return the original place.
820
*/
821
spin_lock_irqsave(&dev->core_dev->lock, flags);
822
if (num_gd) {
823
fst_gd = crypto4xx_get_n_gd(dev, num_gd);
824
if (fst_gd == ERING_WAS_FULL) {
825
spin_unlock_irqrestore(&dev->core_dev->lock, flags);
826
return -EAGAIN;
827
}
828
}
829
if (num_sd) {
830
fst_sd = crypto4xx_get_n_sd(dev, num_sd);
831
if (fst_sd == ERING_WAS_FULL) {
832
if (num_gd)
833
dev->gdr_head = fst_gd;
834
spin_unlock_irqrestore(&dev->core_dev->lock, flags);
835
return -EAGAIN;
836
}
837
}
838
pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
839
if (pd_entry == ERING_WAS_FULL) {
840
if (num_gd)
841
dev->gdr_head = fst_gd;
842
if (num_sd)
843
dev->sdr_head = fst_sd;
844
spin_unlock_irqrestore(&dev->core_dev->lock, flags);
845
return -EAGAIN;
846
}
847
spin_unlock_irqrestore(&dev->core_dev->lock, flags);
848
849
pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
850
sizeof(struct pd_uinfo) * pd_entry);
851
pd = crypto4xx_get_pdp(dev, &pd_dma, pd_entry);
852
pd_uinfo->async_req = req;
853
pd_uinfo->num_gd = num_gd;
854
pd_uinfo->num_sd = num_sd;
855
856
if (iv_len || ctx->is_hash) {
857
ivlen = iv_len;
858
pd->sa = pd_uinfo->sa_pa;
859
sa = (struct dynamic_sa_ctl *) pd_uinfo->sa_va;
860
if (ctx->direction == DIR_INBOUND)
861
memcpy(sa, ctx->sa_in, ctx->sa_len * 4);
862
else
863
memcpy(sa, ctx->sa_out, ctx->sa_len * 4);
864
865
memcpy((void *) sa + ctx->offset_to_sr_ptr,
866
&pd_uinfo->sr_pa, 4);
867
868
if (iv_len)
869
crypto4xx_memcpy_le(pd_uinfo->sr_va, iv, iv_len);
870
} else {
871
if (ctx->direction == DIR_INBOUND) {
872
pd->sa = ctx->sa_in_dma_addr;
873
sa = (struct dynamic_sa_ctl *) ctx->sa_in;
874
} else {
875
pd->sa = ctx->sa_out_dma_addr;
876
sa = (struct dynamic_sa_ctl *) ctx->sa_out;
877
}
878
}
879
pd->sa_len = ctx->sa_len;
880
if (num_gd) {
881
/* get first gd we are going to use */
882
gd_idx = fst_gd;
883
pd_uinfo->first_gd = fst_gd;
884
pd_uinfo->num_gd = num_gd;
885
gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
886
pd->src = gd_dma;
887
/* enable gather */
888
sa->sa_command_0.bf.gather = 1;
889
idx = 0;
890
src = &src[0];
891
/* walk the sg, and setup gather array */
892
while (nbytes) {
893
sg = &src[idx];
894
addr = dma_map_page(dev->core_dev->device, sg_page(sg),
895
sg->offset, sg->length, DMA_TO_DEVICE);
896
gd->ptr = addr;
897
gd->ctl_len.len = sg->length;
898
gd->ctl_len.done = 0;
899
gd->ctl_len.ready = 1;
900
if (sg->length >= nbytes)
901
break;
902
nbytes -= sg->length;
903
gd_idx = get_next_gd(gd_idx);
904
gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
905
idx++;
906
}
907
} else {
908
pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
909
src->offset, src->length, DMA_TO_DEVICE);
910
/*
911
* Disable gather in sa command
912
*/
913
sa->sa_command_0.bf.gather = 0;
914
/*
915
* Indicate gather array is not used
916
*/
917
pd_uinfo->first_gd = 0xffffffff;
918
pd_uinfo->num_gd = 0;
919
}
920
if (ctx->is_hash || sg_is_last(dst)) {
921
/*
922
* we know application give us dst a whole piece of memory
923
* no need to use scatter ring.
924
* In case of is_hash, the icv is always at end of src data.
925
*/
926
pd_uinfo->using_sd = 0;
927
pd_uinfo->first_sd = 0xffffffff;
928
pd_uinfo->num_sd = 0;
929
pd_uinfo->dest_va = dst;
930
sa->sa_command_0.bf.scatter = 0;
931
if (ctx->is_hash)
932
pd->dest = virt_to_phys((void *)dst);
933
else
934
pd->dest = (u32)dma_map_page(dev->core_dev->device,
935
sg_page(dst), dst->offset,
936
dst->length, DMA_TO_DEVICE);
937
} else {
938
struct ce_sd *sd = NULL;
939
u32 sd_idx = fst_sd;
940
nbytes = datalen;
941
sa->sa_command_0.bf.scatter = 1;
942
pd_uinfo->using_sd = 1;
943
pd_uinfo->dest_va = dst;
944
pd_uinfo->first_sd = fst_sd;
945
pd_uinfo->num_sd = num_sd;
946
sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
947
pd->dest = sd_dma;
948
/* setup scatter descriptor */
949
sd->ctl.done = 0;
950
sd->ctl.rdy = 1;
951
/* sd->ptr should be setup by sd_init routine*/
952
idx = 0;
953
if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
954
nbytes -= PPC4XX_SD_BUFFER_SIZE;
955
else
956
nbytes = 0;
957
while (nbytes) {
958
sd_idx = get_next_sd(sd_idx);
959
sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
960
/* setup scatter descriptor */
961
sd->ctl.done = 0;
962
sd->ctl.rdy = 1;
963
if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
964
nbytes -= PPC4XX_SD_BUFFER_SIZE;
965
else
966
/*
967
* SD entry can hold PPC4XX_SD_BUFFER_SIZE,
968
* which is more than nbytes, so done.
969
*/
970
nbytes = 0;
971
}
972
}
973
974
sa->sa_command_1.bf.hash_crypto_offset = 0;
975
pd->pd_ctl.w = ctx->pd_ctl;
976
pd->pd_ctl_len.w = 0x00400000 | (ctx->bypass << 24) | datalen;
977
pd_uinfo->state = PD_ENTRY_INUSE;
978
wmb();
979
/* write any value to push engine to read a pd */
980
writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
981
return -EINPROGRESS;
982
}
983
984
/**
985
* Algorithm Registration Functions
986
*/
987
static int crypto4xx_alg_init(struct crypto_tfm *tfm)
988
{
989
struct crypto_alg *alg = tfm->__crt_alg;
990
struct crypto4xx_alg *amcc_alg = crypto_alg_to_crypto4xx_alg(alg);
991
struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
992
993
ctx->dev = amcc_alg->dev;
994
ctx->sa_in = NULL;
995
ctx->sa_out = NULL;
996
ctx->sa_in_dma_addr = 0;
997
ctx->sa_out_dma_addr = 0;
998
ctx->sa_len = 0;
999
1000
switch (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) {
1001
default:
1002
tfm->crt_ablkcipher.reqsize = sizeof(struct crypto4xx_ctx);
1003
break;
1004
case CRYPTO_ALG_TYPE_AHASH:
1005
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1006
sizeof(struct crypto4xx_ctx));
1007
break;
1008
}
1009
1010
return 0;
1011
}
1012
1013
static void crypto4xx_alg_exit(struct crypto_tfm *tfm)
1014
{
1015
struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
1016
1017
crypto4xx_free_sa(ctx);
1018
crypto4xx_free_state_record(ctx);
1019
}
1020
1021
int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1022
struct crypto4xx_alg_common *crypto_alg,
1023
int array_size)
1024
{
1025
struct crypto4xx_alg *alg;
1026
int i;
1027
int rc = 0;
1028
1029
for (i = 0; i < array_size; i++) {
1030
alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1031
if (!alg)
1032
return -ENOMEM;
1033
1034
alg->alg = crypto_alg[i];
1035
alg->dev = sec_dev;
1036
1037
switch (alg->alg.type) {
1038
case CRYPTO_ALG_TYPE_AHASH:
1039
rc = crypto_register_ahash(&alg->alg.u.hash);
1040
break;
1041
1042
default:
1043
rc = crypto_register_alg(&alg->alg.u.cipher);
1044
break;
1045
}
1046
1047
if (rc) {
1048
list_del(&alg->entry);
1049
kfree(alg);
1050
} else {
1051
list_add_tail(&alg->entry, &sec_dev->alg_list);
1052
}
1053
}
1054
1055
return 0;
1056
}
1057
1058
static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1059
{
1060
struct crypto4xx_alg *alg, *tmp;
1061
1062
list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1063
list_del(&alg->entry);
1064
switch (alg->alg.type) {
1065
case CRYPTO_ALG_TYPE_AHASH:
1066
crypto_unregister_ahash(&alg->alg.u.hash);
1067
break;
1068
1069
default:
1070
crypto_unregister_alg(&alg->alg.u.cipher);
1071
}
1072
kfree(alg);
1073
}
1074
}
1075
1076
static void crypto4xx_bh_tasklet_cb(unsigned long data)
1077
{
1078
struct device *dev = (struct device *)data;
1079
struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1080
struct pd_uinfo *pd_uinfo;
1081
struct ce_pd *pd;
1082
u32 tail;
1083
1084
while (core_dev->dev->pdr_head != core_dev->dev->pdr_tail) {
1085
tail = core_dev->dev->pdr_tail;
1086
pd_uinfo = core_dev->dev->pdr_uinfo +
1087
sizeof(struct pd_uinfo)*tail;
1088
pd = core_dev->dev->pdr + sizeof(struct ce_pd) * tail;
1089
if ((pd_uinfo->state == PD_ENTRY_INUSE) &&
1090
pd->pd_ctl.bf.pe_done &&
1091
!pd->pd_ctl.bf.host_ready) {
1092
pd->pd_ctl.bf.pe_done = 0;
1093
crypto4xx_pd_done(core_dev->dev, tail);
1094
crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1095
pd_uinfo->state = PD_ENTRY_FREE;
1096
} else {
1097
/* if tail not done, break */
1098
break;
1099
}
1100
}
1101
}
1102
1103
/**
1104
* Top Half of isr.
1105
*/
1106
static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1107
{
1108
struct device *dev = (struct device *)data;
1109
struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1110
1111
if (core_dev->dev->ce_base == 0)
1112
return 0;
1113
1114
writel(PPC4XX_INTERRUPT_CLR,
1115
core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1116
tasklet_schedule(&core_dev->tasklet);
1117
1118
return IRQ_HANDLED;
1119
}
1120
1121
/**
1122
* Supported Crypto Algorithms
1123
*/
1124
struct crypto4xx_alg_common crypto4xx_alg[] = {
1125
/* Crypto AES modes */
1126
{ .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = {
1127
.cra_name = "cbc(aes)",
1128
.cra_driver_name = "cbc-aes-ppc4xx",
1129
.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1130
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1131
.cra_blocksize = AES_BLOCK_SIZE,
1132
.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1133
.cra_type = &crypto_ablkcipher_type,
1134
.cra_init = crypto4xx_alg_init,
1135
.cra_exit = crypto4xx_alg_exit,
1136
.cra_module = THIS_MODULE,
1137
.cra_u = {
1138
.ablkcipher = {
1139
.min_keysize = AES_MIN_KEY_SIZE,
1140
.max_keysize = AES_MAX_KEY_SIZE,
1141
.ivsize = AES_IV_SIZE,
1142
.setkey = crypto4xx_setkey_aes_cbc,
1143
.encrypt = crypto4xx_encrypt,
1144
.decrypt = crypto4xx_decrypt,
1145
}
1146
}
1147
}},
1148
};
1149
1150
/**
1151
* Module Initialization Routine
1152
*/
1153
static int __init crypto4xx_probe(struct platform_device *ofdev)
1154
{
1155
int rc;
1156
struct resource res;
1157
struct device *dev = &ofdev->dev;
1158
struct crypto4xx_core_device *core_dev;
1159
1160
rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1161
if (rc)
1162
return -ENODEV;
1163
1164
if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1165
mtdcri(SDR0, PPC460EX_SDR0_SRST,
1166
mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1167
mtdcri(SDR0, PPC460EX_SDR0_SRST,
1168
mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1169
} else if (of_find_compatible_node(NULL, NULL,
1170
"amcc,ppc405ex-crypto")) {
1171
mtdcri(SDR0, PPC405EX_SDR0_SRST,
1172
mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1173
mtdcri(SDR0, PPC405EX_SDR0_SRST,
1174
mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1175
} else if (of_find_compatible_node(NULL, NULL,
1176
"amcc,ppc460sx-crypto")) {
1177
mtdcri(SDR0, PPC460SX_SDR0_SRST,
1178
mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1179
mtdcri(SDR0, PPC460SX_SDR0_SRST,
1180
mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1181
} else {
1182
printk(KERN_ERR "Crypto Function Not supported!\n");
1183
return -EINVAL;
1184
}
1185
1186
core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1187
if (!core_dev)
1188
return -ENOMEM;
1189
1190
dev_set_drvdata(dev, core_dev);
1191
core_dev->ofdev = ofdev;
1192
core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1193
if (!core_dev->dev)
1194
goto err_alloc_dev;
1195
1196
core_dev->dev->core_dev = core_dev;
1197
core_dev->device = dev;
1198
spin_lock_init(&core_dev->lock);
1199
INIT_LIST_HEAD(&core_dev->dev->alg_list);
1200
rc = crypto4xx_build_pdr(core_dev->dev);
1201
if (rc)
1202
goto err_build_pdr;
1203
1204
rc = crypto4xx_build_gdr(core_dev->dev);
1205
if (rc)
1206
goto err_build_gdr;
1207
1208
rc = crypto4xx_build_sdr(core_dev->dev);
1209
if (rc)
1210
goto err_build_sdr;
1211
1212
/* Init tasklet for bottom half processing */
1213
tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1214
(unsigned long) dev);
1215
1216
/* Register for Crypto isr, Crypto Engine IRQ */
1217
core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1218
rc = request_irq(core_dev->irq, crypto4xx_ce_interrupt_handler, 0,
1219
core_dev->dev->name, dev);
1220
if (rc)
1221
goto err_request_irq;
1222
1223
core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1224
if (!core_dev->dev->ce_base) {
1225
dev_err(dev, "failed to of_iomap\n");
1226
goto err_iomap;
1227
}
1228
1229
/* need to setup pdr, rdr, gdr and sdr before this */
1230
crypto4xx_hw_init(core_dev->dev);
1231
1232
/* Register security algorithms with Linux CryptoAPI */
1233
rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1234
ARRAY_SIZE(crypto4xx_alg));
1235
if (rc)
1236
goto err_start_dev;
1237
1238
return 0;
1239
1240
err_start_dev:
1241
iounmap(core_dev->dev->ce_base);
1242
err_iomap:
1243
free_irq(core_dev->irq, dev);
1244
irq_dispose_mapping(core_dev->irq);
1245
tasklet_kill(&core_dev->tasklet);
1246
err_request_irq:
1247
crypto4xx_destroy_sdr(core_dev->dev);
1248
err_build_sdr:
1249
crypto4xx_destroy_gdr(core_dev->dev);
1250
err_build_gdr:
1251
crypto4xx_destroy_pdr(core_dev->dev);
1252
err_build_pdr:
1253
kfree(core_dev->dev);
1254
err_alloc_dev:
1255
kfree(core_dev);
1256
1257
return rc;
1258
}
1259
1260
static int __exit crypto4xx_remove(struct platform_device *ofdev)
1261
{
1262
struct device *dev = &ofdev->dev;
1263
struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1264
1265
free_irq(core_dev->irq, dev);
1266
irq_dispose_mapping(core_dev->irq);
1267
1268
tasklet_kill(&core_dev->tasklet);
1269
/* Un-register with Linux CryptoAPI */
1270
crypto4xx_unregister_alg(core_dev->dev);
1271
/* Free all allocated memory */
1272
crypto4xx_stop_all(core_dev);
1273
1274
return 0;
1275
}
1276
1277
static const struct of_device_id crypto4xx_match[] = {
1278
{ .compatible = "amcc,ppc4xx-crypto",},
1279
{ },
1280
};
1281
1282
static struct platform_driver crypto4xx_driver = {
1283
.driver = {
1284
.name = "crypto4xx",
1285
.owner = THIS_MODULE,
1286
.of_match_table = crypto4xx_match,
1287
},
1288
.probe = crypto4xx_probe,
1289
.remove = crypto4xx_remove,
1290
};
1291
1292
static int __init crypto4xx_init(void)
1293
{
1294
return platform_driver_register(&crypto4xx_driver);
1295
}
1296
1297
static void __exit crypto4xx_exit(void)
1298
{
1299
platform_driver_unregister(&crypto4xx_driver);
1300
}
1301
1302
module_init(crypto4xx_init);
1303
module_exit(crypto4xx_exit);
1304
1305
MODULE_LICENSE("GPL");
1306
MODULE_AUTHOR("James Hsiao <[email protected]>");
1307
MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1308
1309
1310