Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/crypto/caam/caamalg.c
15109 views
1
/*
2
* caam - Freescale FSL CAAM support for crypto API
3
*
4
* Copyright 2008-2011 Freescale Semiconductor, Inc.
5
*
6
* Based on talitos crypto API driver.
7
*
8
* relationship of job descriptors to shared descriptors (SteveC Dec 10 2008):
9
*
10
* --------------- ---------------
11
* | JobDesc #1 |-------------------->| ShareDesc |
12
* | *(packet 1) | | (PDB) |
13
* --------------- |------------->| (hashKey) |
14
* . | | (cipherKey) |
15
* . | |-------->| (operation) |
16
* --------------- | | ---------------
17
* | JobDesc #2 |------| |
18
* | *(packet 2) | |
19
* --------------- |
20
* . |
21
* . |
22
* --------------- |
23
* | JobDesc #3 |------------
24
* | *(packet 3) |
25
* ---------------
26
*
27
* The SharedDesc never changes for a connection unless rekeyed, but
28
* each packet will likely be in a different place. So all we need
29
* to know to process the packet is where the input is, where the
30
* output goes, and what context we want to process with. Context is
31
* in the SharedDesc, packet references in the JobDesc.
32
*
33
* So, a job desc looks like:
34
*
35
* ---------------------
36
* | Header |
37
* | ShareDesc Pointer |
38
* | SEQ_OUT_PTR |
39
* | (output buffer) |
40
* | SEQ_IN_PTR |
41
* | (input buffer) |
42
* | LOAD (to DECO) |
43
* ---------------------
44
*/
45
46
#include "compat.h"
47
48
#include "regs.h"
49
#include "intern.h"
50
#include "desc_constr.h"
51
#include "jr.h"
52
#include "error.h"
53
54
/*
55
* crypto alg
56
*/
57
#define CAAM_CRA_PRIORITY 3000
58
/* max key is sum of AES_MAX_KEY_SIZE, max split key size */
59
#define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + \
60
SHA512_DIGEST_SIZE * 2)
61
/* max IV is max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */
62
#define CAAM_MAX_IV_LENGTH 16
63
64
/* length of descriptors text */
65
#define DESC_AEAD_SHARED_TEXT_LEN 4
66
#define DESC_AEAD_ENCRYPT_TEXT_LEN 21
67
#define DESC_AEAD_DECRYPT_TEXT_LEN 24
68
#define DESC_AEAD_GIVENCRYPT_TEXT_LEN 27
69
70
#ifdef DEBUG
71
/* for print_hex_dumps with line references */
72
#define xstr(s) str(s)
73
#define str(s) #s
74
#define debug(format, arg...) printk(format, arg)
75
#else
76
#define debug(format, arg...)
77
#endif
78
79
/*
80
* per-session context
81
*/
82
struct caam_ctx {
83
struct device *jrdev;
84
u32 *sh_desc;
85
dma_addr_t shared_desc_phys;
86
u32 class1_alg_type;
87
u32 class2_alg_type;
88
u32 alg_op;
89
u8 *key;
90
dma_addr_t key_phys;
91
unsigned int enckeylen;
92
unsigned int split_key_len;
93
unsigned int split_key_pad_len;
94
unsigned int authsize;
95
};
96
97
static int aead_authenc_setauthsize(struct crypto_aead *authenc,
98
unsigned int authsize)
99
{
100
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
101
102
ctx->authsize = authsize;
103
104
return 0;
105
}
106
107
struct split_key_result {
108
struct completion completion;
109
int err;
110
};
111
112
static void split_key_done(struct device *dev, u32 *desc, u32 err,
113
void *context)
114
{
115
struct split_key_result *res = context;
116
117
#ifdef DEBUG
118
dev_err(dev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
119
#endif
120
if (err) {
121
char tmp[CAAM_ERROR_STR_MAX];
122
123
dev_err(dev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
124
}
125
126
res->err = err;
127
128
complete(&res->completion);
129
}
130
131
/*
132
get a split ipad/opad key
133
134
Split key generation-----------------------------------------------
135
136
[00] 0xb0810008 jobdesc: stidx=1 share=never len=8
137
[01] 0x04000014 key: class2->keyreg len=20
138
@0xffe01000
139
[03] 0x84410014 operation: cls2-op sha1 hmac init dec
140
[04] 0x24940000 fifold: class2 msgdata-last2 len=0 imm
141
[05] 0xa4000001 jump: class2 local all ->1 [06]
142
[06] 0x64260028 fifostr: class2 mdsplit-jdk len=40
143
@0xffe04000
144
*/
145
static u32 gen_split_key(struct caam_ctx *ctx, const u8 *key_in, u32 authkeylen)
146
{
147
struct device *jrdev = ctx->jrdev;
148
u32 *desc;
149
struct split_key_result result;
150
dma_addr_t dma_addr_in, dma_addr_out;
151
int ret = 0;
152
153
desc = kmalloc(CAAM_CMD_SZ * 6 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
154
155
init_job_desc(desc, 0);
156
157
dma_addr_in = dma_map_single(jrdev, (void *)key_in, authkeylen,
158
DMA_TO_DEVICE);
159
if (dma_mapping_error(jrdev, dma_addr_in)) {
160
dev_err(jrdev, "unable to map key input memory\n");
161
kfree(desc);
162
return -ENOMEM;
163
}
164
append_key(desc, dma_addr_in, authkeylen, CLASS_2 |
165
KEY_DEST_CLASS_REG);
166
167
/* Sets MDHA up into an HMAC-INIT */
168
append_operation(desc, ctx->alg_op | OP_ALG_DECRYPT |
169
OP_ALG_AS_INIT);
170
171
/*
172
* do a FIFO_LOAD of zero, this will trigger the internal key expansion
173
into both pads inside MDHA
174
*/
175
append_fifo_load_as_imm(desc, NULL, 0, LDST_CLASS_2_CCB |
176
FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2);
177
178
/*
179
* FIFO_STORE with the explicit split-key content store
180
* (0x26 output type)
181
*/
182
dma_addr_out = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len,
183
DMA_FROM_DEVICE);
184
if (dma_mapping_error(jrdev, dma_addr_out)) {
185
dev_err(jrdev, "unable to map key output memory\n");
186
kfree(desc);
187
return -ENOMEM;
188
}
189
append_fifo_store(desc, dma_addr_out, ctx->split_key_len,
190
LDST_CLASS_2_CCB | FIFOST_TYPE_SPLIT_KEK);
191
192
#ifdef DEBUG
193
print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
194
DUMP_PREFIX_ADDRESS, 16, 4, key_in, authkeylen, 1);
195
print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
196
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
197
#endif
198
199
result.err = 0;
200
init_completion(&result.completion);
201
202
ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
203
if (!ret) {
204
/* in progress */
205
wait_for_completion_interruptible(&result.completion);
206
ret = result.err;
207
#ifdef DEBUG
208
print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
209
DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
210
ctx->split_key_pad_len, 1);
211
#endif
212
}
213
214
dma_unmap_single(jrdev, dma_addr_out, ctx->split_key_pad_len,
215
DMA_FROM_DEVICE);
216
dma_unmap_single(jrdev, dma_addr_in, authkeylen, DMA_TO_DEVICE);
217
218
kfree(desc);
219
220
return ret;
221
}
222
223
static int build_sh_desc_ipsec(struct caam_ctx *ctx)
224
{
225
struct device *jrdev = ctx->jrdev;
226
u32 *sh_desc;
227
u32 *jump_cmd;
228
bool keys_fit_inline = 0;
229
230
/*
231
* largest Job Descriptor and its Shared Descriptor
232
* must both fit into the 64-word Descriptor h/w Buffer
233
*/
234
if ((DESC_AEAD_GIVENCRYPT_TEXT_LEN +
235
DESC_AEAD_SHARED_TEXT_LEN) * CAAM_CMD_SZ +
236
ctx->split_key_pad_len + ctx->enckeylen <= CAAM_DESC_BYTES_MAX)
237
keys_fit_inline = 1;
238
239
/* build shared descriptor for this session */
240
sh_desc = kmalloc(CAAM_CMD_SZ * DESC_AEAD_SHARED_TEXT_LEN +
241
(keys_fit_inline ?
242
ctx->split_key_pad_len + ctx->enckeylen :
243
CAAM_PTR_SZ * 2), GFP_DMA | GFP_KERNEL);
244
if (!sh_desc) {
245
dev_err(jrdev, "could not allocate shared descriptor\n");
246
return -ENOMEM;
247
}
248
249
init_sh_desc(sh_desc, HDR_SAVECTX | HDR_SHARE_SERIAL);
250
251
jump_cmd = append_jump(sh_desc, CLASS_BOTH | JUMP_TEST_ALL |
252
JUMP_COND_SHRD | JUMP_COND_SELF);
253
254
/*
255
* process keys, starting with class 2/authentication.
256
*/
257
if (keys_fit_inline) {
258
append_key_as_imm(sh_desc, ctx->key, ctx->split_key_pad_len,
259
ctx->split_key_len,
260
CLASS_2 | KEY_DEST_MDHA_SPLIT | KEY_ENC);
261
262
append_key_as_imm(sh_desc, (void *)ctx->key +
263
ctx->split_key_pad_len, ctx->enckeylen,
264
ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
265
} else {
266
append_key(sh_desc, ctx->key_phys, ctx->split_key_len, CLASS_2 |
267
KEY_DEST_MDHA_SPLIT | KEY_ENC);
268
append_key(sh_desc, ctx->key_phys + ctx->split_key_pad_len,
269
ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
270
}
271
272
/* update jump cmd now that we are at the jump target */
273
set_jump_tgt_here(sh_desc, jump_cmd);
274
275
ctx->shared_desc_phys = dma_map_single(jrdev, sh_desc,
276
desc_bytes(sh_desc),
277
DMA_TO_DEVICE);
278
if (dma_mapping_error(jrdev, ctx->shared_desc_phys)) {
279
dev_err(jrdev, "unable to map shared descriptor\n");
280
kfree(sh_desc);
281
return -ENOMEM;
282
}
283
284
ctx->sh_desc = sh_desc;
285
286
return 0;
287
}
288
289
static int aead_authenc_setkey(struct crypto_aead *aead,
290
const u8 *key, unsigned int keylen)
291
{
292
/* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
293
static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
294
struct caam_ctx *ctx = crypto_aead_ctx(aead);
295
struct device *jrdev = ctx->jrdev;
296
struct rtattr *rta = (void *)key;
297
struct crypto_authenc_key_param *param;
298
unsigned int authkeylen;
299
unsigned int enckeylen;
300
int ret = 0;
301
302
param = RTA_DATA(rta);
303
enckeylen = be32_to_cpu(param->enckeylen);
304
305
key += RTA_ALIGN(rta->rta_len);
306
keylen -= RTA_ALIGN(rta->rta_len);
307
308
if (keylen < enckeylen)
309
goto badkey;
310
311
authkeylen = keylen - enckeylen;
312
313
if (keylen > CAAM_MAX_KEY_SIZE)
314
goto badkey;
315
316
/* Pick class 2 key length from algorithm submask */
317
ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
318
OP_ALG_ALGSEL_SHIFT] * 2;
319
ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
320
321
#ifdef DEBUG
322
printk(KERN_ERR "keylen %d enckeylen %d authkeylen %d\n",
323
keylen, enckeylen, authkeylen);
324
printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
325
ctx->split_key_len, ctx->split_key_pad_len);
326
print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ",
327
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
328
#endif
329
ctx->key = kmalloc(ctx->split_key_pad_len + enckeylen,
330
GFP_KERNEL | GFP_DMA);
331
if (!ctx->key) {
332
dev_err(jrdev, "could not allocate key output memory\n");
333
return -ENOMEM;
334
}
335
336
ret = gen_split_key(ctx, key, authkeylen);
337
if (ret) {
338
kfree(ctx->key);
339
goto badkey;
340
}
341
342
/* postpend encryption key to auth split key */
343
memcpy(ctx->key + ctx->split_key_pad_len, key + authkeylen, enckeylen);
344
345
ctx->key_phys = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len +
346
enckeylen, DMA_TO_DEVICE);
347
if (dma_mapping_error(jrdev, ctx->key_phys)) {
348
dev_err(jrdev, "unable to map key i/o memory\n");
349
kfree(ctx->key);
350
return -ENOMEM;
351
}
352
#ifdef DEBUG
353
print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
354
DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
355
ctx->split_key_pad_len + enckeylen, 1);
356
#endif
357
358
ctx->enckeylen = enckeylen;
359
360
ret = build_sh_desc_ipsec(ctx);
361
if (ret) {
362
dma_unmap_single(jrdev, ctx->key_phys, ctx->split_key_pad_len +
363
enckeylen, DMA_TO_DEVICE);
364
kfree(ctx->key);
365
}
366
367
return ret;
368
badkey:
369
crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
370
return -EINVAL;
371
}
372
373
struct link_tbl_entry {
374
u64 ptr;
375
u32 len;
376
u8 reserved;
377
u8 buf_pool_id;
378
u16 offset;
379
};
380
381
/*
382
* ipsec_esp_edesc - s/w-extended ipsec_esp descriptor
383
* @src_nents: number of segments in input scatterlist
384
* @dst_nents: number of segments in output scatterlist
385
* @assoc_nents: number of segments in associated data (SPI+Seq) scatterlist
386
* @desc: h/w descriptor (variable length; must not exceed MAX_CAAM_DESCSIZE)
387
* @link_tbl_bytes: length of dma mapped link_tbl space
388
* @link_tbl_dma: bus physical mapped address of h/w link table
389
* @hw_desc: the h/w job descriptor followed by any referenced link tables
390
*/
391
struct ipsec_esp_edesc {
392
int assoc_nents;
393
int src_nents;
394
int dst_nents;
395
int link_tbl_bytes;
396
dma_addr_t link_tbl_dma;
397
struct link_tbl_entry *link_tbl;
398
u32 hw_desc[0];
399
};
400
401
static void ipsec_esp_unmap(struct device *dev,
402
struct ipsec_esp_edesc *edesc,
403
struct aead_request *areq)
404
{
405
dma_unmap_sg(dev, areq->assoc, edesc->assoc_nents, DMA_TO_DEVICE);
406
407
if (unlikely(areq->dst != areq->src)) {
408
dma_unmap_sg(dev, areq->src, edesc->src_nents,
409
DMA_TO_DEVICE);
410
dma_unmap_sg(dev, areq->dst, edesc->dst_nents,
411
DMA_FROM_DEVICE);
412
} else {
413
dma_unmap_sg(dev, areq->src, edesc->src_nents,
414
DMA_BIDIRECTIONAL);
415
}
416
417
if (edesc->link_tbl_bytes)
418
dma_unmap_single(dev, edesc->link_tbl_dma,
419
edesc->link_tbl_bytes,
420
DMA_TO_DEVICE);
421
}
422
423
/*
424
* ipsec_esp descriptor callbacks
425
*/
426
static void ipsec_esp_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
427
void *context)
428
{
429
struct aead_request *areq = context;
430
struct ipsec_esp_edesc *edesc;
431
#ifdef DEBUG
432
struct crypto_aead *aead = crypto_aead_reqtfm(areq);
433
int ivsize = crypto_aead_ivsize(aead);
434
struct caam_ctx *ctx = crypto_aead_ctx(aead);
435
436
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
437
#endif
438
edesc = (struct ipsec_esp_edesc *)((char *)desc -
439
offsetof(struct ipsec_esp_edesc, hw_desc));
440
441
if (err) {
442
char tmp[CAAM_ERROR_STR_MAX];
443
444
dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
445
}
446
447
ipsec_esp_unmap(jrdev, edesc, areq);
448
449
#ifdef DEBUG
450
print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ",
451
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->assoc),
452
areq->assoclen , 1);
453
print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ",
454
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src) - ivsize,
455
edesc->src_nents ? 100 : ivsize, 1);
456
print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ",
457
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src),
458
edesc->src_nents ? 100 : areq->cryptlen +
459
ctx->authsize + 4, 1);
460
#endif
461
462
kfree(edesc);
463
464
aead_request_complete(areq, err);
465
}
466
467
static void ipsec_esp_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
468
void *context)
469
{
470
struct aead_request *areq = context;
471
struct ipsec_esp_edesc *edesc;
472
#ifdef DEBUG
473
struct crypto_aead *aead = crypto_aead_reqtfm(areq);
474
struct caam_ctx *ctx = crypto_aead_ctx(aead);
475
476
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
477
#endif
478
edesc = (struct ipsec_esp_edesc *)((char *)desc -
479
offsetof(struct ipsec_esp_edesc, hw_desc));
480
481
if (err) {
482
char tmp[CAAM_ERROR_STR_MAX];
483
484
dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
485
}
486
487
ipsec_esp_unmap(jrdev, edesc, areq);
488
489
/*
490
* verify hw auth check passed else return -EBADMSG
491
*/
492
if ((err & JRSTA_CCBERR_ERRID_MASK) == JRSTA_CCBERR_ERRID_ICVCHK)
493
err = -EBADMSG;
494
495
#ifdef DEBUG
496
print_hex_dump(KERN_ERR, "iphdrout@"xstr(__LINE__)": ",
497
DUMP_PREFIX_ADDRESS, 16, 4,
498
((char *)sg_virt(areq->assoc) - sizeof(struct iphdr)),
499
sizeof(struct iphdr) + areq->assoclen +
500
((areq->cryptlen > 1500) ? 1500 : areq->cryptlen) +
501
ctx->authsize + 36, 1);
502
if (!err && edesc->link_tbl_bytes) {
503
struct scatterlist *sg = sg_last(areq->src, edesc->src_nents);
504
print_hex_dump(KERN_ERR, "sglastout@"xstr(__LINE__)": ",
505
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(sg),
506
sg->length + ctx->authsize + 16, 1);
507
}
508
#endif
509
kfree(edesc);
510
511
aead_request_complete(areq, err);
512
}
513
514
/*
515
* convert scatterlist to h/w link table format
516
* scatterlist must have been previously dma mapped
517
*/
518
static void sg_to_link_tbl(struct scatterlist *sg, int sg_count,
519
struct link_tbl_entry *link_tbl_ptr, u32 offset)
520
{
521
while (sg_count) {
522
link_tbl_ptr->ptr = sg_dma_address(sg);
523
link_tbl_ptr->len = sg_dma_len(sg);
524
link_tbl_ptr->reserved = 0;
525
link_tbl_ptr->buf_pool_id = 0;
526
link_tbl_ptr->offset = offset;
527
link_tbl_ptr++;
528
sg = sg_next(sg);
529
sg_count--;
530
}
531
532
/* set Final bit (marks end of link table) */
533
link_tbl_ptr--;
534
link_tbl_ptr->len |= 0x40000000;
535
}
536
537
/*
538
* fill in and submit ipsec_esp job descriptor
539
*/
540
static int ipsec_esp(struct ipsec_esp_edesc *edesc, struct aead_request *areq,
541
u32 encrypt,
542
void (*callback) (struct device *dev, u32 *desc,
543
u32 err, void *context))
544
{
545
struct crypto_aead *aead = crypto_aead_reqtfm(areq);
546
struct caam_ctx *ctx = crypto_aead_ctx(aead);
547
struct device *jrdev = ctx->jrdev;
548
u32 *desc = edesc->hw_desc, options;
549
int ret, sg_count, assoc_sg_count;
550
int ivsize = crypto_aead_ivsize(aead);
551
int authsize = ctx->authsize;
552
dma_addr_t ptr, dst_dma, src_dma;
553
#ifdef DEBUG
554
u32 *sh_desc = ctx->sh_desc;
555
556
debug("assoclen %d cryptlen %d authsize %d\n",
557
areq->assoclen, areq->cryptlen, authsize);
558
print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ",
559
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->assoc),
560
areq->assoclen , 1);
561
print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ",
562
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src) - ivsize,
563
edesc->src_nents ? 100 : ivsize, 1);
564
print_hex_dump(KERN_ERR, "src @"xstr(__LINE__)": ",
565
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src),
566
edesc->src_nents ? 100 : areq->cryptlen + authsize, 1);
567
print_hex_dump(KERN_ERR, "shrdesc@"xstr(__LINE__)": ",
568
DUMP_PREFIX_ADDRESS, 16, 4, sh_desc,
569
desc_bytes(sh_desc), 1);
570
#endif
571
assoc_sg_count = dma_map_sg(jrdev, areq->assoc, edesc->assoc_nents ?: 1,
572
DMA_TO_DEVICE);
573
if (areq->src == areq->dst)
574
sg_count = dma_map_sg(jrdev, areq->src, edesc->src_nents ? : 1,
575
DMA_BIDIRECTIONAL);
576
else
577
sg_count = dma_map_sg(jrdev, areq->src, edesc->src_nents ? : 1,
578
DMA_TO_DEVICE);
579
580
/* start auth operation */
581
append_operation(desc, ctx->class2_alg_type | OP_ALG_AS_INITFINAL |
582
(encrypt ? : OP_ALG_ICV_ON));
583
584
/* Load FIFO with data for Class 2 CHA */
585
options = FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG;
586
if (!edesc->assoc_nents) {
587
ptr = sg_dma_address(areq->assoc);
588
} else {
589
sg_to_link_tbl(areq->assoc, edesc->assoc_nents,
590
edesc->link_tbl, 0);
591
ptr = edesc->link_tbl_dma;
592
options |= LDST_SGF;
593
}
594
append_fifo_load(desc, ptr, areq->assoclen, options);
595
596
/* copy iv from cipher/class1 input context to class2 infifo */
597
append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_CLASS2INFIFO | ivsize);
598
599
if (!encrypt) {
600
u32 *jump_cmd, *uncond_jump_cmd;
601
602
/* JUMP if shared */
603
jump_cmd = append_jump(desc, JUMP_TEST_ALL | JUMP_COND_SHRD);
604
605
/* start class 1 (cipher) operation, non-shared version */
606
append_operation(desc, ctx->class1_alg_type |
607
OP_ALG_AS_INITFINAL);
608
609
uncond_jump_cmd = append_jump(desc, 0);
610
611
set_jump_tgt_here(desc, jump_cmd);
612
613
/* start class 1 (cipher) operation, shared version */
614
append_operation(desc, ctx->class1_alg_type |
615
OP_ALG_AS_INITFINAL | OP_ALG_AAI_DK);
616
set_jump_tgt_here(desc, uncond_jump_cmd);
617
} else
618
append_operation(desc, ctx->class1_alg_type |
619
OP_ALG_AS_INITFINAL | encrypt);
620
621
/* load payload & instruct to class2 to snoop class 1 if encrypting */
622
options = 0;
623
if (!edesc->src_nents) {
624
src_dma = sg_dma_address(areq->src);
625
} else {
626
sg_to_link_tbl(areq->src, edesc->src_nents, edesc->link_tbl +
627
edesc->assoc_nents, 0);
628
src_dma = edesc->link_tbl_dma + edesc->assoc_nents *
629
sizeof(struct link_tbl_entry);
630
options |= LDST_SGF;
631
}
632
append_seq_in_ptr(desc, src_dma, areq->cryptlen + authsize, options);
633
append_seq_fifo_load(desc, areq->cryptlen, FIFOLD_CLASS_BOTH |
634
FIFOLD_TYPE_LASTBOTH |
635
(encrypt ? FIFOLD_TYPE_MSG1OUT2
636
: FIFOLD_TYPE_MSG));
637
638
/* specify destination */
639
if (areq->src == areq->dst) {
640
dst_dma = src_dma;
641
} else {
642
sg_count = dma_map_sg(jrdev, areq->dst, edesc->dst_nents ? : 1,
643
DMA_FROM_DEVICE);
644
if (!edesc->dst_nents) {
645
dst_dma = sg_dma_address(areq->dst);
646
options = 0;
647
} else {
648
sg_to_link_tbl(areq->dst, edesc->dst_nents,
649
edesc->link_tbl + edesc->assoc_nents +
650
edesc->src_nents, 0);
651
dst_dma = edesc->link_tbl_dma + (edesc->assoc_nents +
652
edesc->src_nents) *
653
sizeof(struct link_tbl_entry);
654
options = LDST_SGF;
655
}
656
}
657
append_seq_out_ptr(desc, dst_dma, areq->cryptlen + authsize, options);
658
append_seq_fifo_store(desc, areq->cryptlen, FIFOST_TYPE_MESSAGE_DATA);
659
660
/* ICV */
661
if (encrypt)
662
append_seq_store(desc, authsize, LDST_CLASS_2_CCB |
663
LDST_SRCDST_BYTE_CONTEXT);
664
else
665
append_seq_fifo_load(desc, authsize, FIFOLD_CLASS_CLASS2 |
666
FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_ICV);
667
668
#ifdef DEBUG
669
debug("job_desc_len %d\n", desc_len(desc));
670
print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
671
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc) , 1);
672
print_hex_dump(KERN_ERR, "jdlinkt@"xstr(__LINE__)": ",
673
DUMP_PREFIX_ADDRESS, 16, 4, edesc->link_tbl,
674
edesc->link_tbl_bytes, 1);
675
#endif
676
677
ret = caam_jr_enqueue(jrdev, desc, callback, areq);
678
if (!ret)
679
ret = -EINPROGRESS;
680
else {
681
ipsec_esp_unmap(jrdev, edesc, areq);
682
kfree(edesc);
683
}
684
685
return ret;
686
}
687
688
/*
689
* derive number of elements in scatterlist
690
*/
691
static int sg_count(struct scatterlist *sg_list, int nbytes, int *chained)
692
{
693
struct scatterlist *sg = sg_list;
694
int sg_nents = 0;
695
696
*chained = 0;
697
while (nbytes > 0) {
698
sg_nents++;
699
nbytes -= sg->length;
700
if (!sg_is_last(sg) && (sg + 1)->length == 0)
701
*chained = 1;
702
sg = scatterwalk_sg_next(sg);
703
}
704
705
return sg_nents;
706
}
707
708
/*
709
* allocate and map the ipsec_esp extended descriptor
710
*/
711
static struct ipsec_esp_edesc *ipsec_esp_edesc_alloc(struct aead_request *areq,
712
int desc_bytes)
713
{
714
struct crypto_aead *aead = crypto_aead_reqtfm(areq);
715
struct caam_ctx *ctx = crypto_aead_ctx(aead);
716
struct device *jrdev = ctx->jrdev;
717
gfp_t flags = areq->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
718
GFP_ATOMIC;
719
int assoc_nents, src_nents, dst_nents = 0, chained, link_tbl_bytes;
720
struct ipsec_esp_edesc *edesc;
721
722
assoc_nents = sg_count(areq->assoc, areq->assoclen, &chained);
723
BUG_ON(chained);
724
if (likely(assoc_nents == 1))
725
assoc_nents = 0;
726
727
src_nents = sg_count(areq->src, areq->cryptlen + ctx->authsize,
728
&chained);
729
BUG_ON(chained);
730
if (src_nents == 1)
731
src_nents = 0;
732
733
if (unlikely(areq->dst != areq->src)) {
734
dst_nents = sg_count(areq->dst, areq->cryptlen + ctx->authsize,
735
&chained);
736
BUG_ON(chained);
737
if (dst_nents == 1)
738
dst_nents = 0;
739
}
740
741
link_tbl_bytes = (assoc_nents + src_nents + dst_nents) *
742
sizeof(struct link_tbl_entry);
743
debug("link_tbl_bytes %d\n", link_tbl_bytes);
744
745
/* allocate space for base edesc and hw desc commands, link tables */
746
edesc = kmalloc(sizeof(struct ipsec_esp_edesc) + desc_bytes +
747
link_tbl_bytes, GFP_DMA | flags);
748
if (!edesc) {
749
dev_err(jrdev, "could not allocate extended descriptor\n");
750
return ERR_PTR(-ENOMEM);
751
}
752
753
edesc->assoc_nents = assoc_nents;
754
edesc->src_nents = src_nents;
755
edesc->dst_nents = dst_nents;
756
edesc->link_tbl = (void *)edesc + sizeof(struct ipsec_esp_edesc) +
757
desc_bytes;
758
edesc->link_tbl_dma = dma_map_single(jrdev, edesc->link_tbl,
759
link_tbl_bytes, DMA_TO_DEVICE);
760
edesc->link_tbl_bytes = link_tbl_bytes;
761
762
return edesc;
763
}
764
765
static int aead_authenc_encrypt(struct aead_request *areq)
766
{
767
struct ipsec_esp_edesc *edesc;
768
struct crypto_aead *aead = crypto_aead_reqtfm(areq);
769
struct caam_ctx *ctx = crypto_aead_ctx(aead);
770
struct device *jrdev = ctx->jrdev;
771
int ivsize = crypto_aead_ivsize(aead);
772
u32 *desc;
773
dma_addr_t iv_dma;
774
775
/* allocate extended descriptor */
776
edesc = ipsec_esp_edesc_alloc(areq, DESC_AEAD_ENCRYPT_TEXT_LEN *
777
CAAM_CMD_SZ);
778
if (IS_ERR(edesc))
779
return PTR_ERR(edesc);
780
781
desc = edesc->hw_desc;
782
783
/* insert shared descriptor pointer */
784
init_job_desc_shared(desc, ctx->shared_desc_phys,
785
desc_len(ctx->sh_desc), HDR_SHARE_DEFER);
786
787
iv_dma = dma_map_single(jrdev, areq->iv, ivsize, DMA_TO_DEVICE);
788
/* check dma error */
789
790
append_load(desc, iv_dma, ivsize,
791
LDST_CLASS_1_CCB | LDST_SRCDST_BYTE_CONTEXT);
792
793
return ipsec_esp(edesc, areq, OP_ALG_ENCRYPT, ipsec_esp_encrypt_done);
794
}
795
796
static int aead_authenc_decrypt(struct aead_request *req)
797
{
798
struct crypto_aead *aead = crypto_aead_reqtfm(req);
799
int ivsize = crypto_aead_ivsize(aead);
800
struct caam_ctx *ctx = crypto_aead_ctx(aead);
801
struct device *jrdev = ctx->jrdev;
802
struct ipsec_esp_edesc *edesc;
803
u32 *desc;
804
dma_addr_t iv_dma;
805
806
req->cryptlen -= ctx->authsize;
807
808
/* allocate extended descriptor */
809
edesc = ipsec_esp_edesc_alloc(req, DESC_AEAD_DECRYPT_TEXT_LEN *
810
CAAM_CMD_SZ);
811
if (IS_ERR(edesc))
812
return PTR_ERR(edesc);
813
814
desc = edesc->hw_desc;
815
816
/* insert shared descriptor pointer */
817
init_job_desc_shared(desc, ctx->shared_desc_phys,
818
desc_len(ctx->sh_desc), HDR_SHARE_DEFER);
819
820
iv_dma = dma_map_single(jrdev, req->iv, ivsize, DMA_TO_DEVICE);
821
/* check dma error */
822
823
append_load(desc, iv_dma, ivsize,
824
LDST_CLASS_1_CCB | LDST_SRCDST_BYTE_CONTEXT);
825
826
return ipsec_esp(edesc, req, !OP_ALG_ENCRYPT, ipsec_esp_decrypt_done);
827
}
828
829
static int aead_authenc_givencrypt(struct aead_givcrypt_request *req)
830
{
831
struct aead_request *areq = &req->areq;
832
struct ipsec_esp_edesc *edesc;
833
struct crypto_aead *aead = crypto_aead_reqtfm(areq);
834
struct caam_ctx *ctx = crypto_aead_ctx(aead);
835
struct device *jrdev = ctx->jrdev;
836
int ivsize = crypto_aead_ivsize(aead);
837
dma_addr_t iv_dma;
838
u32 *desc;
839
840
iv_dma = dma_map_single(jrdev, req->giv, ivsize, DMA_FROM_DEVICE);
841
842
debug("%s: giv %p\n", __func__, req->giv);
843
844
/* allocate extended descriptor */
845
edesc = ipsec_esp_edesc_alloc(areq, DESC_AEAD_GIVENCRYPT_TEXT_LEN *
846
CAAM_CMD_SZ);
847
if (IS_ERR(edesc))
848
return PTR_ERR(edesc);
849
850
desc = edesc->hw_desc;
851
852
/* insert shared descriptor pointer */
853
init_job_desc_shared(desc, ctx->shared_desc_phys,
854
desc_len(ctx->sh_desc), HDR_SHARE_DEFER);
855
856
/*
857
* LOAD IMM Info FIFO
858
* to DECO, Last, Padding, Random, Message, 16 bytes
859
*/
860
append_load_imm_u32(desc, NFIFOENTRY_DEST_DECO | NFIFOENTRY_LC1 |
861
NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DTYPE_MSG |
862
NFIFOENTRY_PTYPE_RND | ivsize,
863
LDST_SRCDST_WORD_INFO_FIFO);
864
865
/*
866
* disable info fifo entries since the above serves as the entry
867
* this way, the MOVE command won't generate an entry.
868
* Note that this isn't required in more recent versions of
869
* SEC as a MOVE that doesn't do info FIFO entries is available.
870
*/
871
append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO);
872
873
/* MOVE DECO Alignment -> C1 Context 16 bytes */
874
append_move(desc, MOVE_SRC_INFIFO | MOVE_DEST_CLASS1CTX | ivsize);
875
876
/* re-enable info fifo entries */
877
append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO);
878
879
/* MOVE C1 Context -> OFIFO 16 bytes */
880
append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_OUTFIFO | ivsize);
881
882
append_fifo_store(desc, iv_dma, ivsize, FIFOST_TYPE_MESSAGE_DATA);
883
884
return ipsec_esp(edesc, areq, OP_ALG_ENCRYPT, ipsec_esp_encrypt_done);
885
}
886
887
struct caam_alg_template {
888
char name[CRYPTO_MAX_ALG_NAME];
889
char driver_name[CRYPTO_MAX_ALG_NAME];
890
unsigned int blocksize;
891
struct aead_alg aead;
892
u32 class1_alg_type;
893
u32 class2_alg_type;
894
u32 alg_op;
895
};
896
897
static struct caam_alg_template driver_algs[] = {
898
/* single-pass ipsec_esp descriptor */
899
{
900
.name = "authenc(hmac(sha1),cbc(aes))",
901
.driver_name = "authenc-hmac-sha1-cbc-aes-caam",
902
.blocksize = AES_BLOCK_SIZE,
903
.aead = {
904
.setkey = aead_authenc_setkey,
905
.setauthsize = aead_authenc_setauthsize,
906
.encrypt = aead_authenc_encrypt,
907
.decrypt = aead_authenc_decrypt,
908
.givencrypt = aead_authenc_givencrypt,
909
.geniv = "<built-in>",
910
.ivsize = AES_BLOCK_SIZE,
911
.maxauthsize = SHA1_DIGEST_SIZE,
912
},
913
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
914
.class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
915
.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
916
},
917
{
918
.name = "authenc(hmac(sha256),cbc(aes))",
919
.driver_name = "authenc-hmac-sha256-cbc-aes-caam",
920
.blocksize = AES_BLOCK_SIZE,
921
.aead = {
922
.setkey = aead_authenc_setkey,
923
.setauthsize = aead_authenc_setauthsize,
924
.encrypt = aead_authenc_encrypt,
925
.decrypt = aead_authenc_decrypt,
926
.givencrypt = aead_authenc_givencrypt,
927
.geniv = "<built-in>",
928
.ivsize = AES_BLOCK_SIZE,
929
.maxauthsize = SHA256_DIGEST_SIZE,
930
},
931
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
932
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
933
OP_ALG_AAI_HMAC_PRECOMP,
934
.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
935
},
936
{
937
.name = "authenc(hmac(sha512),cbc(aes))",
938
.driver_name = "authenc-hmac-sha512-cbc-aes-caam",
939
.blocksize = AES_BLOCK_SIZE,
940
.aead = {
941
.setkey = aead_authenc_setkey,
942
.setauthsize = aead_authenc_setauthsize,
943
.encrypt = aead_authenc_encrypt,
944
.decrypt = aead_authenc_decrypt,
945
.givencrypt = aead_authenc_givencrypt,
946
.geniv = "<built-in>",
947
.ivsize = AES_BLOCK_SIZE,
948
.maxauthsize = SHA512_DIGEST_SIZE,
949
},
950
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
951
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
952
OP_ALG_AAI_HMAC_PRECOMP,
953
.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
954
},
955
{
956
.name = "authenc(hmac(sha1),cbc(des3_ede))",
957
.driver_name = "authenc-hmac-sha1-cbc-des3_ede-caam",
958
.blocksize = DES3_EDE_BLOCK_SIZE,
959
.aead = {
960
.setkey = aead_authenc_setkey,
961
.setauthsize = aead_authenc_setauthsize,
962
.encrypt = aead_authenc_encrypt,
963
.decrypt = aead_authenc_decrypt,
964
.givencrypt = aead_authenc_givencrypt,
965
.geniv = "<built-in>",
966
.ivsize = DES3_EDE_BLOCK_SIZE,
967
.maxauthsize = SHA1_DIGEST_SIZE,
968
},
969
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
970
.class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
971
.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
972
},
973
{
974
.name = "authenc(hmac(sha256),cbc(des3_ede))",
975
.driver_name = "authenc-hmac-sha256-cbc-des3_ede-caam",
976
.blocksize = DES3_EDE_BLOCK_SIZE,
977
.aead = {
978
.setkey = aead_authenc_setkey,
979
.setauthsize = aead_authenc_setauthsize,
980
.encrypt = aead_authenc_encrypt,
981
.decrypt = aead_authenc_decrypt,
982
.givencrypt = aead_authenc_givencrypt,
983
.geniv = "<built-in>",
984
.ivsize = DES3_EDE_BLOCK_SIZE,
985
.maxauthsize = SHA256_DIGEST_SIZE,
986
},
987
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
988
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
989
OP_ALG_AAI_HMAC_PRECOMP,
990
.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
991
},
992
{
993
.name = "authenc(hmac(sha512),cbc(des3_ede))",
994
.driver_name = "authenc-hmac-sha512-cbc-des3_ede-caam",
995
.blocksize = DES3_EDE_BLOCK_SIZE,
996
.aead = {
997
.setkey = aead_authenc_setkey,
998
.setauthsize = aead_authenc_setauthsize,
999
.encrypt = aead_authenc_encrypt,
1000
.decrypt = aead_authenc_decrypt,
1001
.givencrypt = aead_authenc_givencrypt,
1002
.geniv = "<built-in>",
1003
.ivsize = DES3_EDE_BLOCK_SIZE,
1004
.maxauthsize = SHA512_DIGEST_SIZE,
1005
},
1006
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
1007
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
1008
OP_ALG_AAI_HMAC_PRECOMP,
1009
.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
1010
},
1011
{
1012
.name = "authenc(hmac(sha1),cbc(des))",
1013
.driver_name = "authenc-hmac-sha1-cbc-des-caam",
1014
.blocksize = DES_BLOCK_SIZE,
1015
.aead = {
1016
.setkey = aead_authenc_setkey,
1017
.setauthsize = aead_authenc_setauthsize,
1018
.encrypt = aead_authenc_encrypt,
1019
.decrypt = aead_authenc_decrypt,
1020
.givencrypt = aead_authenc_givencrypt,
1021
.geniv = "<built-in>",
1022
.ivsize = DES_BLOCK_SIZE,
1023
.maxauthsize = SHA1_DIGEST_SIZE,
1024
},
1025
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
1026
.class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
1027
.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
1028
},
1029
{
1030
.name = "authenc(hmac(sha256),cbc(des))",
1031
.driver_name = "authenc-hmac-sha256-cbc-des-caam",
1032
.blocksize = DES_BLOCK_SIZE,
1033
.aead = {
1034
.setkey = aead_authenc_setkey,
1035
.setauthsize = aead_authenc_setauthsize,
1036
.encrypt = aead_authenc_encrypt,
1037
.decrypt = aead_authenc_decrypt,
1038
.givencrypt = aead_authenc_givencrypt,
1039
.geniv = "<built-in>",
1040
.ivsize = DES_BLOCK_SIZE,
1041
.maxauthsize = SHA256_DIGEST_SIZE,
1042
},
1043
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
1044
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
1045
OP_ALG_AAI_HMAC_PRECOMP,
1046
.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
1047
},
1048
{
1049
.name = "authenc(hmac(sha512),cbc(des))",
1050
.driver_name = "authenc-hmac-sha512-cbc-des-caam",
1051
.blocksize = DES_BLOCK_SIZE,
1052
.aead = {
1053
.setkey = aead_authenc_setkey,
1054
.setauthsize = aead_authenc_setauthsize,
1055
.encrypt = aead_authenc_encrypt,
1056
.decrypt = aead_authenc_decrypt,
1057
.givencrypt = aead_authenc_givencrypt,
1058
.geniv = "<built-in>",
1059
.ivsize = DES_BLOCK_SIZE,
1060
.maxauthsize = SHA512_DIGEST_SIZE,
1061
},
1062
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
1063
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
1064
OP_ALG_AAI_HMAC_PRECOMP,
1065
.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
1066
},
1067
};
1068
1069
struct caam_crypto_alg {
1070
struct list_head entry;
1071
struct device *ctrldev;
1072
int class1_alg_type;
1073
int class2_alg_type;
1074
int alg_op;
1075
struct crypto_alg crypto_alg;
1076
};
1077
1078
static int caam_cra_init(struct crypto_tfm *tfm)
1079
{
1080
struct crypto_alg *alg = tfm->__crt_alg;
1081
struct caam_crypto_alg *caam_alg =
1082
container_of(alg, struct caam_crypto_alg, crypto_alg);
1083
struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
1084
struct caam_drv_private *priv = dev_get_drvdata(caam_alg->ctrldev);
1085
int tgt_jr = atomic_inc_return(&priv->tfm_count);
1086
1087
/*
1088
* distribute tfms across job rings to ensure in-order
1089
* crypto request processing per tfm
1090
*/
1091
ctx->jrdev = priv->algapi_jr[(tgt_jr / 2) % priv->num_jrs_for_algapi];
1092
1093
/* copy descriptor header template value */
1094
ctx->class1_alg_type = OP_TYPE_CLASS1_ALG | caam_alg->class1_alg_type;
1095
ctx->class2_alg_type = OP_TYPE_CLASS2_ALG | caam_alg->class2_alg_type;
1096
ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_alg->alg_op;
1097
1098
return 0;
1099
}
1100
1101
static void caam_cra_exit(struct crypto_tfm *tfm)
1102
{
1103
struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
1104
1105
if (!dma_mapping_error(ctx->jrdev, ctx->shared_desc_phys))
1106
dma_unmap_single(ctx->jrdev, ctx->shared_desc_phys,
1107
desc_bytes(ctx->sh_desc), DMA_TO_DEVICE);
1108
kfree(ctx->sh_desc);
1109
1110
if (!dma_mapping_error(ctx->jrdev, ctx->key_phys))
1111
dma_unmap_single(ctx->jrdev, ctx->key_phys,
1112
ctx->split_key_pad_len + ctx->enckeylen,
1113
DMA_TO_DEVICE);
1114
kfree(ctx->key);
1115
}
1116
1117
static void __exit caam_algapi_exit(void)
1118
{
1119
1120
struct device_node *dev_node;
1121
struct platform_device *pdev;
1122
struct device *ctrldev;
1123
struct caam_drv_private *priv;
1124
struct caam_crypto_alg *t_alg, *n;
1125
int i, err;
1126
1127
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
1128
if (!dev_node)
1129
return;
1130
1131
pdev = of_find_device_by_node(dev_node);
1132
if (!pdev)
1133
return;
1134
1135
ctrldev = &pdev->dev;
1136
of_node_put(dev_node);
1137
priv = dev_get_drvdata(ctrldev);
1138
1139
if (!priv->alg_list.next)
1140
return;
1141
1142
list_for_each_entry_safe(t_alg, n, &priv->alg_list, entry) {
1143
crypto_unregister_alg(&t_alg->crypto_alg);
1144
list_del(&t_alg->entry);
1145
kfree(t_alg);
1146
}
1147
1148
for (i = 0; i < priv->total_jobrs; i++) {
1149
err = caam_jr_deregister(priv->algapi_jr[i]);
1150
if (err < 0)
1151
break;
1152
}
1153
kfree(priv->algapi_jr);
1154
}
1155
1156
static struct caam_crypto_alg *caam_alg_alloc(struct device *ctrldev,
1157
struct caam_alg_template
1158
*template)
1159
{
1160
struct caam_crypto_alg *t_alg;
1161
struct crypto_alg *alg;
1162
1163
t_alg = kzalloc(sizeof(struct caam_crypto_alg), GFP_KERNEL);
1164
if (!t_alg) {
1165
dev_err(ctrldev, "failed to allocate t_alg\n");
1166
return ERR_PTR(-ENOMEM);
1167
}
1168
1169
alg = &t_alg->crypto_alg;
1170
1171
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name);
1172
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
1173
template->driver_name);
1174
alg->cra_module = THIS_MODULE;
1175
alg->cra_init = caam_cra_init;
1176
alg->cra_exit = caam_cra_exit;
1177
alg->cra_priority = CAAM_CRA_PRIORITY;
1178
alg->cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC;
1179
alg->cra_blocksize = template->blocksize;
1180
alg->cra_alignmask = 0;
1181
alg->cra_type = &crypto_aead_type;
1182
alg->cra_ctxsize = sizeof(struct caam_ctx);
1183
alg->cra_u.aead = template->aead;
1184
1185
t_alg->class1_alg_type = template->class1_alg_type;
1186
t_alg->class2_alg_type = template->class2_alg_type;
1187
t_alg->alg_op = template->alg_op;
1188
t_alg->ctrldev = ctrldev;
1189
1190
return t_alg;
1191
}
1192
1193
static int __init caam_algapi_init(void)
1194
{
1195
struct device_node *dev_node;
1196
struct platform_device *pdev;
1197
struct device *ctrldev, **jrdev;
1198
struct caam_drv_private *priv;
1199
int i = 0, err = 0;
1200
1201
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
1202
if (!dev_node)
1203
return -ENODEV;
1204
1205
pdev = of_find_device_by_node(dev_node);
1206
if (!pdev)
1207
return -ENODEV;
1208
1209
ctrldev = &pdev->dev;
1210
priv = dev_get_drvdata(ctrldev);
1211
of_node_put(dev_node);
1212
1213
INIT_LIST_HEAD(&priv->alg_list);
1214
1215
jrdev = kmalloc(sizeof(*jrdev) * priv->total_jobrs, GFP_KERNEL);
1216
if (!jrdev)
1217
return -ENOMEM;
1218
1219
for (i = 0; i < priv->total_jobrs; i++) {
1220
err = caam_jr_register(ctrldev, &jrdev[i]);
1221
if (err < 0)
1222
break;
1223
}
1224
if (err < 0 && i == 0) {
1225
dev_err(ctrldev, "algapi error in job ring registration: %d\n",
1226
err);
1227
kfree(jrdev);
1228
return err;
1229
}
1230
1231
priv->num_jrs_for_algapi = i;
1232
priv->algapi_jr = jrdev;
1233
atomic_set(&priv->tfm_count, -1);
1234
1235
/* register crypto algorithms the device supports */
1236
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
1237
/* TODO: check if h/w supports alg */
1238
struct caam_crypto_alg *t_alg;
1239
1240
t_alg = caam_alg_alloc(ctrldev, &driver_algs[i]);
1241
if (IS_ERR(t_alg)) {
1242
err = PTR_ERR(t_alg);
1243
dev_warn(ctrldev, "%s alg allocation failed\n",
1244
driver_algs[i].driver_name);
1245
continue;
1246
}
1247
1248
err = crypto_register_alg(&t_alg->crypto_alg);
1249
if (err) {
1250
dev_warn(ctrldev, "%s alg registration failed\n",
1251
t_alg->crypto_alg.cra_driver_name);
1252
kfree(t_alg);
1253
} else {
1254
list_add_tail(&t_alg->entry, &priv->alg_list);
1255
dev_info(ctrldev, "%s\n",
1256
t_alg->crypto_alg.cra_driver_name);
1257
}
1258
}
1259
1260
return err;
1261
}
1262
1263
module_init(caam_algapi_init);
1264
module_exit(caam_algapi_exit);
1265
1266
MODULE_LICENSE("GPL");
1267
MODULE_DESCRIPTION("FSL CAAM support for crypto API");
1268
MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");
1269
1270