Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/crypto/mv_cesa.c
15112 views
1
/*
2
* Support for Marvell's crypto engine which can be found on some Orion5X
3
* boards.
4
*
5
* Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
6
* License: GPLv2
7
*
8
*/
9
#include <crypto/aes.h>
10
#include <crypto/algapi.h>
11
#include <linux/crypto.h>
12
#include <linux/interrupt.h>
13
#include <linux/io.h>
14
#include <linux/kthread.h>
15
#include <linux/platform_device.h>
16
#include <linux/scatterlist.h>
17
#include <linux/slab.h>
18
#include <crypto/internal/hash.h>
19
#include <crypto/sha.h>
20
21
#include "mv_cesa.h"
22
23
#define MV_CESA "MV-CESA:"
24
#define MAX_HW_HASH_SIZE 0xFFFF
25
26
/*
27
* STM:
28
* /---------------------------------------\
29
* | | request complete
30
* \./ |
31
* IDLE -> new request -> BUSY -> done -> DEQUEUE
32
* /°\ |
33
* | | more scatter entries
34
* \________________/
35
*/
36
enum engine_status {
37
ENGINE_IDLE,
38
ENGINE_BUSY,
39
ENGINE_W_DEQUEUE,
40
};
41
42
/**
43
* struct req_progress - used for every crypt request
44
* @src_sg_it: sg iterator for src
45
* @dst_sg_it: sg iterator for dst
46
* @sg_src_left: bytes left in src to process (scatter list)
47
* @src_start: offset to add to src start position (scatter list)
48
* @crypt_len: length of current hw crypt/hash process
49
* @hw_nbytes: total bytes to process in hw for this request
50
* @copy_back: whether to copy data back (crypt) or not (hash)
51
* @sg_dst_left: bytes left dst to process in this scatter list
52
* @dst_start: offset to add to dst start position (scatter list)
53
* @hw_processed_bytes: number of bytes processed by hw (request).
54
*
55
* sg helper are used to iterate over the scatterlist. Since the size of the
56
* SRAM may be less than the scatter size, this struct struct is used to keep
57
* track of progress within current scatterlist.
58
*/
59
struct req_progress {
60
struct sg_mapping_iter src_sg_it;
61
struct sg_mapping_iter dst_sg_it;
62
void (*complete) (void);
63
void (*process) (int is_first);
64
65
/* src mostly */
66
int sg_src_left;
67
int src_start;
68
int crypt_len;
69
int hw_nbytes;
70
/* dst mostly */
71
int copy_back;
72
int sg_dst_left;
73
int dst_start;
74
int hw_processed_bytes;
75
};
76
77
struct crypto_priv {
78
void __iomem *reg;
79
void __iomem *sram;
80
int irq;
81
struct task_struct *queue_th;
82
83
/* the lock protects queue and eng_st */
84
spinlock_t lock;
85
struct crypto_queue queue;
86
enum engine_status eng_st;
87
struct crypto_async_request *cur_req;
88
struct req_progress p;
89
int max_req_size;
90
int sram_size;
91
int has_sha1;
92
int has_hmac_sha1;
93
};
94
95
static struct crypto_priv *cpg;
96
97
struct mv_ctx {
98
u8 aes_enc_key[AES_KEY_LEN];
99
u32 aes_dec_key[8];
100
int key_len;
101
u32 need_calc_aes_dkey;
102
};
103
104
enum crypto_op {
105
COP_AES_ECB,
106
COP_AES_CBC,
107
};
108
109
struct mv_req_ctx {
110
enum crypto_op op;
111
int decrypt;
112
};
113
114
enum hash_op {
115
COP_SHA1,
116
COP_HMAC_SHA1
117
};
118
119
struct mv_tfm_hash_ctx {
120
struct crypto_shash *fallback;
121
struct crypto_shash *base_hash;
122
u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
123
int count_add;
124
enum hash_op op;
125
};
126
127
struct mv_req_hash_ctx {
128
u64 count;
129
u32 state[SHA1_DIGEST_SIZE / 4];
130
u8 buffer[SHA1_BLOCK_SIZE];
131
int first_hash; /* marks that we don't have previous state */
132
int last_chunk; /* marks that this is the 'final' request */
133
int extra_bytes; /* unprocessed bytes in buffer */
134
enum hash_op op;
135
int count_add;
136
};
137
138
static void compute_aes_dec_key(struct mv_ctx *ctx)
139
{
140
struct crypto_aes_ctx gen_aes_key;
141
int key_pos;
142
143
if (!ctx->need_calc_aes_dkey)
144
return;
145
146
crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
147
148
key_pos = ctx->key_len + 24;
149
memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
150
switch (ctx->key_len) {
151
case AES_KEYSIZE_256:
152
key_pos -= 2;
153
/* fall */
154
case AES_KEYSIZE_192:
155
key_pos -= 2;
156
memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
157
4 * 4);
158
break;
159
}
160
ctx->need_calc_aes_dkey = 0;
161
}
162
163
static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
164
unsigned int len)
165
{
166
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
167
struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
168
169
switch (len) {
170
case AES_KEYSIZE_128:
171
case AES_KEYSIZE_192:
172
case AES_KEYSIZE_256:
173
break;
174
default:
175
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
176
return -EINVAL;
177
}
178
ctx->key_len = len;
179
ctx->need_calc_aes_dkey = 1;
180
181
memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
182
return 0;
183
}
184
185
static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
186
{
187
int ret;
188
void *sbuf;
189
int copy_len;
190
191
while (len) {
192
if (!p->sg_src_left) {
193
ret = sg_miter_next(&p->src_sg_it);
194
BUG_ON(!ret);
195
p->sg_src_left = p->src_sg_it.length;
196
p->src_start = 0;
197
}
198
199
sbuf = p->src_sg_it.addr + p->src_start;
200
201
copy_len = min(p->sg_src_left, len);
202
memcpy(dbuf, sbuf, copy_len);
203
204
p->src_start += copy_len;
205
p->sg_src_left -= copy_len;
206
207
len -= copy_len;
208
dbuf += copy_len;
209
}
210
}
211
212
static void setup_data_in(void)
213
{
214
struct req_progress *p = &cpg->p;
215
int data_in_sram =
216
min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
217
copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
218
data_in_sram - p->crypt_len);
219
p->crypt_len = data_in_sram;
220
}
221
222
static void mv_process_current_q(int first_block)
223
{
224
struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
225
struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
226
struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
227
struct sec_accel_config op;
228
229
switch (req_ctx->op) {
230
case COP_AES_ECB:
231
op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
232
break;
233
case COP_AES_CBC:
234
default:
235
op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
236
op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
237
ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
238
if (first_block)
239
memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
240
break;
241
}
242
if (req_ctx->decrypt) {
243
op.config |= CFG_DIR_DEC;
244
memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
245
AES_KEY_LEN);
246
} else {
247
op.config |= CFG_DIR_ENC;
248
memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
249
AES_KEY_LEN);
250
}
251
252
switch (ctx->key_len) {
253
case AES_KEYSIZE_128:
254
op.config |= CFG_AES_LEN_128;
255
break;
256
case AES_KEYSIZE_192:
257
op.config |= CFG_AES_LEN_192;
258
break;
259
case AES_KEYSIZE_256:
260
op.config |= CFG_AES_LEN_256;
261
break;
262
}
263
op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
264
ENC_P_DST(SRAM_DATA_OUT_START);
265
op.enc_key_p = SRAM_DATA_KEY_P;
266
267
setup_data_in();
268
op.enc_len = cpg->p.crypt_len;
269
memcpy(cpg->sram + SRAM_CONFIG, &op,
270
sizeof(struct sec_accel_config));
271
272
/* GO */
273
writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
274
275
/*
276
* XXX: add timer if the interrupt does not occur for some mystery
277
* reason
278
*/
279
}
280
281
static void mv_crypto_algo_completion(void)
282
{
283
struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
284
struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
285
286
sg_miter_stop(&cpg->p.src_sg_it);
287
sg_miter_stop(&cpg->p.dst_sg_it);
288
289
if (req_ctx->op != COP_AES_CBC)
290
return ;
291
292
memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
293
}
294
295
static void mv_process_hash_current(int first_block)
296
{
297
struct ahash_request *req = ahash_request_cast(cpg->cur_req);
298
const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
299
struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
300
struct req_progress *p = &cpg->p;
301
struct sec_accel_config op = { 0 };
302
int is_last;
303
304
switch (req_ctx->op) {
305
case COP_SHA1:
306
default:
307
op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
308
break;
309
case COP_HMAC_SHA1:
310
op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
311
memcpy(cpg->sram + SRAM_HMAC_IV_IN,
312
tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
313
break;
314
}
315
316
op.mac_src_p =
317
MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
318
req_ctx->
319
count);
320
321
setup_data_in();
322
323
op.mac_digest =
324
MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
325
op.mac_iv =
326
MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
327
MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
328
329
is_last = req_ctx->last_chunk
330
&& (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
331
&& (req_ctx->count <= MAX_HW_HASH_SIZE);
332
if (req_ctx->first_hash) {
333
if (is_last)
334
op.config |= CFG_NOT_FRAG;
335
else
336
op.config |= CFG_FIRST_FRAG;
337
338
req_ctx->first_hash = 0;
339
} else {
340
if (is_last)
341
op.config |= CFG_LAST_FRAG;
342
else
343
op.config |= CFG_MID_FRAG;
344
345
writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
346
writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
347
writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
348
writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
349
writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
350
}
351
352
memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
353
354
/* GO */
355
writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
356
357
/*
358
* XXX: add timer if the interrupt does not occur for some mystery
359
* reason
360
*/
361
}
362
363
static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
364
struct shash_desc *desc)
365
{
366
int i;
367
struct sha1_state shash_state;
368
369
shash_state.count = ctx->count + ctx->count_add;
370
for (i = 0; i < 5; i++)
371
shash_state.state[i] = ctx->state[i];
372
memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
373
return crypto_shash_import(desc, &shash_state);
374
}
375
376
static int mv_hash_final_fallback(struct ahash_request *req)
377
{
378
const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
379
struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
380
struct {
381
struct shash_desc shash;
382
char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
383
} desc;
384
int rc;
385
386
desc.shash.tfm = tfm_ctx->fallback;
387
desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
388
if (unlikely(req_ctx->first_hash)) {
389
crypto_shash_init(&desc.shash);
390
crypto_shash_update(&desc.shash, req_ctx->buffer,
391
req_ctx->extra_bytes);
392
} else {
393
/* only SHA1 for now....
394
*/
395
rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
396
if (rc)
397
goto out;
398
}
399
rc = crypto_shash_final(&desc.shash, req->result);
400
out:
401
return rc;
402
}
403
404
static void mv_hash_algo_completion(void)
405
{
406
struct ahash_request *req = ahash_request_cast(cpg->cur_req);
407
struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
408
409
if (ctx->extra_bytes)
410
copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
411
sg_miter_stop(&cpg->p.src_sg_it);
412
413
if (likely(ctx->last_chunk)) {
414
if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
415
memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
416
crypto_ahash_digestsize(crypto_ahash_reqtfm
417
(req)));
418
} else
419
mv_hash_final_fallback(req);
420
} else {
421
ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
422
ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
423
ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
424
ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
425
ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
426
}
427
}
428
429
static void dequeue_complete_req(void)
430
{
431
struct crypto_async_request *req = cpg->cur_req;
432
void *buf;
433
int ret;
434
cpg->p.hw_processed_bytes += cpg->p.crypt_len;
435
if (cpg->p.copy_back) {
436
int need_copy_len = cpg->p.crypt_len;
437
int sram_offset = 0;
438
do {
439
int dst_copy;
440
441
if (!cpg->p.sg_dst_left) {
442
ret = sg_miter_next(&cpg->p.dst_sg_it);
443
BUG_ON(!ret);
444
cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
445
cpg->p.dst_start = 0;
446
}
447
448
buf = cpg->p.dst_sg_it.addr;
449
buf += cpg->p.dst_start;
450
451
dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
452
453
memcpy(buf,
454
cpg->sram + SRAM_DATA_OUT_START + sram_offset,
455
dst_copy);
456
sram_offset += dst_copy;
457
cpg->p.sg_dst_left -= dst_copy;
458
need_copy_len -= dst_copy;
459
cpg->p.dst_start += dst_copy;
460
} while (need_copy_len > 0);
461
}
462
463
cpg->p.crypt_len = 0;
464
465
BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
466
if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
467
/* process next scatter list entry */
468
cpg->eng_st = ENGINE_BUSY;
469
cpg->p.process(0);
470
} else {
471
cpg->p.complete();
472
cpg->eng_st = ENGINE_IDLE;
473
local_bh_disable();
474
req->complete(req, 0);
475
local_bh_enable();
476
}
477
}
478
479
static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
480
{
481
int i = 0;
482
size_t cur_len;
483
484
while (sl) {
485
cur_len = sl[i].length;
486
++i;
487
if (total_bytes > cur_len)
488
total_bytes -= cur_len;
489
else
490
break;
491
}
492
493
return i;
494
}
495
496
static void mv_start_new_crypt_req(struct ablkcipher_request *req)
497
{
498
struct req_progress *p = &cpg->p;
499
int num_sgs;
500
501
cpg->cur_req = &req->base;
502
memset(p, 0, sizeof(struct req_progress));
503
p->hw_nbytes = req->nbytes;
504
p->complete = mv_crypto_algo_completion;
505
p->process = mv_process_current_q;
506
p->copy_back = 1;
507
508
num_sgs = count_sgs(req->src, req->nbytes);
509
sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
510
511
num_sgs = count_sgs(req->dst, req->nbytes);
512
sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
513
514
mv_process_current_q(1);
515
}
516
517
static void mv_start_new_hash_req(struct ahash_request *req)
518
{
519
struct req_progress *p = &cpg->p;
520
struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
521
int num_sgs, hw_bytes, old_extra_bytes, rc;
522
cpg->cur_req = &req->base;
523
memset(p, 0, sizeof(struct req_progress));
524
hw_bytes = req->nbytes + ctx->extra_bytes;
525
old_extra_bytes = ctx->extra_bytes;
526
527
ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
528
if (ctx->extra_bytes != 0
529
&& (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
530
hw_bytes -= ctx->extra_bytes;
531
else
532
ctx->extra_bytes = 0;
533
534
num_sgs = count_sgs(req->src, req->nbytes);
535
sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
536
537
if (hw_bytes) {
538
p->hw_nbytes = hw_bytes;
539
p->complete = mv_hash_algo_completion;
540
p->process = mv_process_hash_current;
541
542
if (unlikely(old_extra_bytes)) {
543
memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
544
old_extra_bytes);
545
p->crypt_len = old_extra_bytes;
546
}
547
548
mv_process_hash_current(1);
549
} else {
550
copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
551
ctx->extra_bytes - old_extra_bytes);
552
sg_miter_stop(&p->src_sg_it);
553
if (ctx->last_chunk)
554
rc = mv_hash_final_fallback(req);
555
else
556
rc = 0;
557
cpg->eng_st = ENGINE_IDLE;
558
local_bh_disable();
559
req->base.complete(&req->base, rc);
560
local_bh_enable();
561
}
562
}
563
564
static int queue_manag(void *data)
565
{
566
cpg->eng_st = ENGINE_IDLE;
567
do {
568
struct crypto_async_request *async_req = NULL;
569
struct crypto_async_request *backlog;
570
571
__set_current_state(TASK_INTERRUPTIBLE);
572
573
if (cpg->eng_st == ENGINE_W_DEQUEUE)
574
dequeue_complete_req();
575
576
spin_lock_irq(&cpg->lock);
577
if (cpg->eng_st == ENGINE_IDLE) {
578
backlog = crypto_get_backlog(&cpg->queue);
579
async_req = crypto_dequeue_request(&cpg->queue);
580
if (async_req) {
581
BUG_ON(cpg->eng_st != ENGINE_IDLE);
582
cpg->eng_st = ENGINE_BUSY;
583
}
584
}
585
spin_unlock_irq(&cpg->lock);
586
587
if (backlog) {
588
backlog->complete(backlog, -EINPROGRESS);
589
backlog = NULL;
590
}
591
592
if (async_req) {
593
if (async_req->tfm->__crt_alg->cra_type !=
594
&crypto_ahash_type) {
595
struct ablkcipher_request *req =
596
ablkcipher_request_cast(async_req);
597
mv_start_new_crypt_req(req);
598
} else {
599
struct ahash_request *req =
600
ahash_request_cast(async_req);
601
mv_start_new_hash_req(req);
602
}
603
async_req = NULL;
604
}
605
606
schedule();
607
608
} while (!kthread_should_stop());
609
return 0;
610
}
611
612
static int mv_handle_req(struct crypto_async_request *req)
613
{
614
unsigned long flags;
615
int ret;
616
617
spin_lock_irqsave(&cpg->lock, flags);
618
ret = crypto_enqueue_request(&cpg->queue, req);
619
spin_unlock_irqrestore(&cpg->lock, flags);
620
wake_up_process(cpg->queue_th);
621
return ret;
622
}
623
624
static int mv_enc_aes_ecb(struct ablkcipher_request *req)
625
{
626
struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
627
628
req_ctx->op = COP_AES_ECB;
629
req_ctx->decrypt = 0;
630
631
return mv_handle_req(&req->base);
632
}
633
634
static int mv_dec_aes_ecb(struct ablkcipher_request *req)
635
{
636
struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
637
struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
638
639
req_ctx->op = COP_AES_ECB;
640
req_ctx->decrypt = 1;
641
642
compute_aes_dec_key(ctx);
643
return mv_handle_req(&req->base);
644
}
645
646
static int mv_enc_aes_cbc(struct ablkcipher_request *req)
647
{
648
struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
649
650
req_ctx->op = COP_AES_CBC;
651
req_ctx->decrypt = 0;
652
653
return mv_handle_req(&req->base);
654
}
655
656
static int mv_dec_aes_cbc(struct ablkcipher_request *req)
657
{
658
struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
659
struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
660
661
req_ctx->op = COP_AES_CBC;
662
req_ctx->decrypt = 1;
663
664
compute_aes_dec_key(ctx);
665
return mv_handle_req(&req->base);
666
}
667
668
static int mv_cra_init(struct crypto_tfm *tfm)
669
{
670
tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
671
return 0;
672
}
673
674
static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
675
int is_last, unsigned int req_len,
676
int count_add)
677
{
678
memset(ctx, 0, sizeof(*ctx));
679
ctx->op = op;
680
ctx->count = req_len;
681
ctx->first_hash = 1;
682
ctx->last_chunk = is_last;
683
ctx->count_add = count_add;
684
}
685
686
static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
687
unsigned req_len)
688
{
689
ctx->last_chunk = is_last;
690
ctx->count += req_len;
691
}
692
693
static int mv_hash_init(struct ahash_request *req)
694
{
695
const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
696
mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
697
tfm_ctx->count_add);
698
return 0;
699
}
700
701
static int mv_hash_update(struct ahash_request *req)
702
{
703
if (!req->nbytes)
704
return 0;
705
706
mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
707
return mv_handle_req(&req->base);
708
}
709
710
static int mv_hash_final(struct ahash_request *req)
711
{
712
struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
713
714
mv_update_hash_req_ctx(ctx, 1, 0);
715
return mv_handle_req(&req->base);
716
}
717
718
static int mv_hash_finup(struct ahash_request *req)
719
{
720
mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
721
return mv_handle_req(&req->base);
722
}
723
724
static int mv_hash_digest(struct ahash_request *req)
725
{
726
const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
727
mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
728
req->nbytes, tfm_ctx->count_add);
729
return mv_handle_req(&req->base);
730
}
731
732
static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
733
const void *ostate)
734
{
735
const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
736
int i;
737
for (i = 0; i < 5; i++) {
738
ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
739
ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
740
}
741
}
742
743
static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
744
unsigned int keylen)
745
{
746
int rc;
747
struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
748
int bs, ds, ss;
749
750
if (!ctx->base_hash)
751
return 0;
752
753
rc = crypto_shash_setkey(ctx->fallback, key, keylen);
754
if (rc)
755
return rc;
756
757
/* Can't see a way to extract the ipad/opad from the fallback tfm
758
so I'm basically copying code from the hmac module */
759
bs = crypto_shash_blocksize(ctx->base_hash);
760
ds = crypto_shash_digestsize(ctx->base_hash);
761
ss = crypto_shash_statesize(ctx->base_hash);
762
763
{
764
struct {
765
struct shash_desc shash;
766
char ctx[crypto_shash_descsize(ctx->base_hash)];
767
} desc;
768
unsigned int i;
769
char ipad[ss];
770
char opad[ss];
771
772
desc.shash.tfm = ctx->base_hash;
773
desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
774
CRYPTO_TFM_REQ_MAY_SLEEP;
775
776
if (keylen > bs) {
777
int err;
778
779
err =
780
crypto_shash_digest(&desc.shash, key, keylen, ipad);
781
if (err)
782
return err;
783
784
keylen = ds;
785
} else
786
memcpy(ipad, key, keylen);
787
788
memset(ipad + keylen, 0, bs - keylen);
789
memcpy(opad, ipad, bs);
790
791
for (i = 0; i < bs; i++) {
792
ipad[i] ^= 0x36;
793
opad[i] ^= 0x5c;
794
}
795
796
rc = crypto_shash_init(&desc.shash) ? :
797
crypto_shash_update(&desc.shash, ipad, bs) ? :
798
crypto_shash_export(&desc.shash, ipad) ? :
799
crypto_shash_init(&desc.shash) ? :
800
crypto_shash_update(&desc.shash, opad, bs) ? :
801
crypto_shash_export(&desc.shash, opad);
802
803
if (rc == 0)
804
mv_hash_init_ivs(ctx, ipad, opad);
805
806
return rc;
807
}
808
}
809
810
static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
811
enum hash_op op, int count_add)
812
{
813
const char *fallback_driver_name = tfm->__crt_alg->cra_name;
814
struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
815
struct crypto_shash *fallback_tfm = NULL;
816
struct crypto_shash *base_hash = NULL;
817
int err = -ENOMEM;
818
819
ctx->op = op;
820
ctx->count_add = count_add;
821
822
/* Allocate a fallback and abort if it failed. */
823
fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
824
CRYPTO_ALG_NEED_FALLBACK);
825
if (IS_ERR(fallback_tfm)) {
826
printk(KERN_WARNING MV_CESA
827
"Fallback driver '%s' could not be loaded!\n",
828
fallback_driver_name);
829
err = PTR_ERR(fallback_tfm);
830
goto out;
831
}
832
ctx->fallback = fallback_tfm;
833
834
if (base_hash_name) {
835
/* Allocate a hash to compute the ipad/opad of hmac. */
836
base_hash = crypto_alloc_shash(base_hash_name, 0,
837
CRYPTO_ALG_NEED_FALLBACK);
838
if (IS_ERR(base_hash)) {
839
printk(KERN_WARNING MV_CESA
840
"Base driver '%s' could not be loaded!\n",
841
base_hash_name);
842
err = PTR_ERR(base_hash);
843
goto err_bad_base;
844
}
845
}
846
ctx->base_hash = base_hash;
847
848
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
849
sizeof(struct mv_req_hash_ctx) +
850
crypto_shash_descsize(ctx->fallback));
851
return 0;
852
err_bad_base:
853
crypto_free_shash(fallback_tfm);
854
out:
855
return err;
856
}
857
858
static void mv_cra_hash_exit(struct crypto_tfm *tfm)
859
{
860
struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
861
862
crypto_free_shash(ctx->fallback);
863
if (ctx->base_hash)
864
crypto_free_shash(ctx->base_hash);
865
}
866
867
static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
868
{
869
return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
870
}
871
872
static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
873
{
874
return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
875
}
876
877
irqreturn_t crypto_int(int irq, void *priv)
878
{
879
u32 val;
880
881
val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
882
if (!(val & SEC_INT_ACCEL0_DONE))
883
return IRQ_NONE;
884
885
val &= ~SEC_INT_ACCEL0_DONE;
886
writel(val, cpg->reg + FPGA_INT_STATUS);
887
writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
888
BUG_ON(cpg->eng_st != ENGINE_BUSY);
889
cpg->eng_st = ENGINE_W_DEQUEUE;
890
wake_up_process(cpg->queue_th);
891
return IRQ_HANDLED;
892
}
893
894
struct crypto_alg mv_aes_alg_ecb = {
895
.cra_name = "ecb(aes)",
896
.cra_driver_name = "mv-ecb-aes",
897
.cra_priority = 300,
898
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
899
.cra_blocksize = 16,
900
.cra_ctxsize = sizeof(struct mv_ctx),
901
.cra_alignmask = 0,
902
.cra_type = &crypto_ablkcipher_type,
903
.cra_module = THIS_MODULE,
904
.cra_init = mv_cra_init,
905
.cra_u = {
906
.ablkcipher = {
907
.min_keysize = AES_MIN_KEY_SIZE,
908
.max_keysize = AES_MAX_KEY_SIZE,
909
.setkey = mv_setkey_aes,
910
.encrypt = mv_enc_aes_ecb,
911
.decrypt = mv_dec_aes_ecb,
912
},
913
},
914
};
915
916
struct crypto_alg mv_aes_alg_cbc = {
917
.cra_name = "cbc(aes)",
918
.cra_driver_name = "mv-cbc-aes",
919
.cra_priority = 300,
920
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
921
.cra_blocksize = AES_BLOCK_SIZE,
922
.cra_ctxsize = sizeof(struct mv_ctx),
923
.cra_alignmask = 0,
924
.cra_type = &crypto_ablkcipher_type,
925
.cra_module = THIS_MODULE,
926
.cra_init = mv_cra_init,
927
.cra_u = {
928
.ablkcipher = {
929
.ivsize = AES_BLOCK_SIZE,
930
.min_keysize = AES_MIN_KEY_SIZE,
931
.max_keysize = AES_MAX_KEY_SIZE,
932
.setkey = mv_setkey_aes,
933
.encrypt = mv_enc_aes_cbc,
934
.decrypt = mv_dec_aes_cbc,
935
},
936
},
937
};
938
939
struct ahash_alg mv_sha1_alg = {
940
.init = mv_hash_init,
941
.update = mv_hash_update,
942
.final = mv_hash_final,
943
.finup = mv_hash_finup,
944
.digest = mv_hash_digest,
945
.halg = {
946
.digestsize = SHA1_DIGEST_SIZE,
947
.base = {
948
.cra_name = "sha1",
949
.cra_driver_name = "mv-sha1",
950
.cra_priority = 300,
951
.cra_flags =
952
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
953
.cra_blocksize = SHA1_BLOCK_SIZE,
954
.cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
955
.cra_init = mv_cra_hash_sha1_init,
956
.cra_exit = mv_cra_hash_exit,
957
.cra_module = THIS_MODULE,
958
}
959
}
960
};
961
962
struct ahash_alg mv_hmac_sha1_alg = {
963
.init = mv_hash_init,
964
.update = mv_hash_update,
965
.final = mv_hash_final,
966
.finup = mv_hash_finup,
967
.digest = mv_hash_digest,
968
.setkey = mv_hash_setkey,
969
.halg = {
970
.digestsize = SHA1_DIGEST_SIZE,
971
.base = {
972
.cra_name = "hmac(sha1)",
973
.cra_driver_name = "mv-hmac-sha1",
974
.cra_priority = 300,
975
.cra_flags =
976
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
977
.cra_blocksize = SHA1_BLOCK_SIZE,
978
.cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
979
.cra_init = mv_cra_hash_hmac_sha1_init,
980
.cra_exit = mv_cra_hash_exit,
981
.cra_module = THIS_MODULE,
982
}
983
}
984
};
985
986
static int mv_probe(struct platform_device *pdev)
987
{
988
struct crypto_priv *cp;
989
struct resource *res;
990
int irq;
991
int ret;
992
993
if (cpg) {
994
printk(KERN_ERR MV_CESA "Second crypto dev?\n");
995
return -EEXIST;
996
}
997
998
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
999
if (!res)
1000
return -ENXIO;
1001
1002
cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1003
if (!cp)
1004
return -ENOMEM;
1005
1006
spin_lock_init(&cp->lock);
1007
crypto_init_queue(&cp->queue, 50);
1008
cp->reg = ioremap(res->start, resource_size(res));
1009
if (!cp->reg) {
1010
ret = -ENOMEM;
1011
goto err;
1012
}
1013
1014
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1015
if (!res) {
1016
ret = -ENXIO;
1017
goto err_unmap_reg;
1018
}
1019
cp->sram_size = resource_size(res);
1020
cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1021
cp->sram = ioremap(res->start, cp->sram_size);
1022
if (!cp->sram) {
1023
ret = -ENOMEM;
1024
goto err_unmap_reg;
1025
}
1026
1027
irq = platform_get_irq(pdev, 0);
1028
if (irq < 0 || irq == NO_IRQ) {
1029
ret = irq;
1030
goto err_unmap_sram;
1031
}
1032
cp->irq = irq;
1033
1034
platform_set_drvdata(pdev, cp);
1035
cpg = cp;
1036
1037
cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1038
if (IS_ERR(cp->queue_th)) {
1039
ret = PTR_ERR(cp->queue_th);
1040
goto err_unmap_sram;
1041
}
1042
1043
ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
1044
cp);
1045
if (ret)
1046
goto err_thread;
1047
1048
writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1049
writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1050
writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1051
1052
ret = crypto_register_alg(&mv_aes_alg_ecb);
1053
if (ret) {
1054
printk(KERN_WARNING MV_CESA
1055
"Could not register aes-ecb driver\n");
1056
goto err_irq;
1057
}
1058
1059
ret = crypto_register_alg(&mv_aes_alg_cbc);
1060
if (ret) {
1061
printk(KERN_WARNING MV_CESA
1062
"Could not register aes-cbc driver\n");
1063
goto err_unreg_ecb;
1064
}
1065
1066
ret = crypto_register_ahash(&mv_sha1_alg);
1067
if (ret == 0)
1068
cpg->has_sha1 = 1;
1069
else
1070
printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1071
1072
ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1073
if (ret == 0) {
1074
cpg->has_hmac_sha1 = 1;
1075
} else {
1076
printk(KERN_WARNING MV_CESA
1077
"Could not register hmac-sha1 driver\n");
1078
}
1079
1080
return 0;
1081
err_unreg_ecb:
1082
crypto_unregister_alg(&mv_aes_alg_ecb);
1083
err_irq:
1084
free_irq(irq, cp);
1085
err_thread:
1086
kthread_stop(cp->queue_th);
1087
err_unmap_sram:
1088
iounmap(cp->sram);
1089
err_unmap_reg:
1090
iounmap(cp->reg);
1091
err:
1092
kfree(cp);
1093
cpg = NULL;
1094
platform_set_drvdata(pdev, NULL);
1095
return ret;
1096
}
1097
1098
static int mv_remove(struct platform_device *pdev)
1099
{
1100
struct crypto_priv *cp = platform_get_drvdata(pdev);
1101
1102
crypto_unregister_alg(&mv_aes_alg_ecb);
1103
crypto_unregister_alg(&mv_aes_alg_cbc);
1104
if (cp->has_sha1)
1105
crypto_unregister_ahash(&mv_sha1_alg);
1106
if (cp->has_hmac_sha1)
1107
crypto_unregister_ahash(&mv_hmac_sha1_alg);
1108
kthread_stop(cp->queue_th);
1109
free_irq(cp->irq, cp);
1110
memset(cp->sram, 0, cp->sram_size);
1111
iounmap(cp->sram);
1112
iounmap(cp->reg);
1113
kfree(cp);
1114
cpg = NULL;
1115
return 0;
1116
}
1117
1118
static struct platform_driver marvell_crypto = {
1119
.probe = mv_probe,
1120
.remove = mv_remove,
1121
.driver = {
1122
.owner = THIS_MODULE,
1123
.name = "mv_crypto",
1124
},
1125
};
1126
MODULE_ALIAS("platform:mv_crypto");
1127
1128
static int __init mv_crypto_init(void)
1129
{
1130
return platform_driver_register(&marvell_crypto);
1131
}
1132
module_init(mv_crypto_init);
1133
1134
static void __exit mv_crypto_exit(void)
1135
{
1136
platform_driver_unregister(&marvell_crypto);
1137
}
1138
module_exit(mv_crypto_exit);
1139
1140
MODULE_AUTHOR("Sebastian Andrzej Siewior <[email protected]>");
1141
MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1142
MODULE_LICENSE("GPL");
1143
1144