Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/dma/amba-pl08x.c
15112 views
1
/*
2
* Copyright (c) 2006 ARM Ltd.
3
* Copyright (c) 2010 ST-Ericsson SA
4
*
5
* Author: Peter Pearse <[email protected]>
6
* Author: Linus Walleij <[email protected]>
7
*
8
* This program is free software; you can redistribute it and/or modify it
9
* under the terms of the GNU General Public License as published by the Free
10
* Software Foundation; either version 2 of the License, or (at your option)
11
* any later version.
12
*
13
* This program is distributed in the hope that it will be useful, but WITHOUT
14
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16
* more details.
17
*
18
* You should have received a copy of the GNU General Public License along with
19
* this program; if not, write to the Free Software Foundation, Inc., 59
20
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
*
22
* The full GNU General Public License is in this distribution in the file
23
* called COPYING.
24
*
25
* Documentation: ARM DDI 0196G == PL080
26
* Documentation: ARM DDI 0218E == PL081
27
*
28
* PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29
* channel.
30
*
31
* The PL080 has 8 channels available for simultaneous use, and the PL081
32
* has only two channels. So on these DMA controllers the number of channels
33
* and the number of incoming DMA signals are two totally different things.
34
* It is usually not possible to theoretically handle all physical signals,
35
* so a multiplexing scheme with possible denial of use is necessary.
36
*
37
* The PL080 has a dual bus master, PL081 has a single master.
38
*
39
* Memory to peripheral transfer may be visualized as
40
* Get data from memory to DMAC
41
* Until no data left
42
* On burst request from peripheral
43
* Destination burst from DMAC to peripheral
44
* Clear burst request
45
* Raise terminal count interrupt
46
*
47
* For peripherals with a FIFO:
48
* Source burst size == half the depth of the peripheral FIFO
49
* Destination burst size == the depth of the peripheral FIFO
50
*
51
* (Bursts are irrelevant for mem to mem transfers - there are no burst
52
* signals, the DMA controller will simply facilitate its AHB master.)
53
*
54
* ASSUMES default (little) endianness for DMA transfers
55
*
56
* The PL08x has two flow control settings:
57
* - DMAC flow control: the transfer size defines the number of transfers
58
* which occur for the current LLI entry, and the DMAC raises TC at the
59
* end of every LLI entry. Observed behaviour shows the DMAC listening
60
* to both the BREQ and SREQ signals (contrary to documented),
61
* transferring data if either is active. The LBREQ and LSREQ signals
62
* are ignored.
63
*
64
* - Peripheral flow control: the transfer size is ignored (and should be
65
* zero). The data is transferred from the current LLI entry, until
66
* after the final transfer signalled by LBREQ or LSREQ. The DMAC
67
* will then move to the next LLI entry.
68
*
69
* Only the former works sanely with scatter lists, so we only implement
70
* the DMAC flow control method. However, peripherals which use the LBREQ
71
* and LSREQ signals (eg, MMCI) are unable to use this mode, which through
72
* these hardware restrictions prevents them from using scatter DMA.
73
*
74
* Global TODO:
75
* - Break out common code from arch/arm/mach-s3c64xx and share
76
*/
77
#include <linux/device.h>
78
#include <linux/init.h>
79
#include <linux/module.h>
80
#include <linux/interrupt.h>
81
#include <linux/slab.h>
82
#include <linux/delay.h>
83
#include <linux/dmapool.h>
84
#include <linux/dmaengine.h>
85
#include <linux/amba/bus.h>
86
#include <linux/amba/pl08x.h>
87
#include <linux/debugfs.h>
88
#include <linux/seq_file.h>
89
90
#include <asm/hardware/pl080.h>
91
92
#define DRIVER_NAME "pl08xdmac"
93
94
/**
95
* struct vendor_data - vendor-specific config parameters for PL08x derivatives
96
* @channels: the number of channels available in this variant
97
* @dualmaster: whether this version supports dual AHB masters or not.
98
*/
99
struct vendor_data {
100
u8 channels;
101
bool dualmaster;
102
};
103
104
/*
105
* PL08X private data structures
106
* An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
107
* start & end do not - their bus bit info is in cctl. Also note that these
108
* are fixed 32-bit quantities.
109
*/
110
struct pl08x_lli {
111
u32 src;
112
u32 dst;
113
u32 lli;
114
u32 cctl;
115
};
116
117
/**
118
* struct pl08x_driver_data - the local state holder for the PL08x
119
* @slave: slave engine for this instance
120
* @memcpy: memcpy engine for this instance
121
* @base: virtual memory base (remapped) for the PL08x
122
* @adev: the corresponding AMBA (PrimeCell) bus entry
123
* @vd: vendor data for this PL08x variant
124
* @pd: platform data passed in from the platform/machine
125
* @phy_chans: array of data for the physical channels
126
* @pool: a pool for the LLI descriptors
127
* @pool_ctr: counter of LLIs in the pool
128
* @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
129
* @mem_buses: set to indicate memory transfers on AHB2.
130
* @lock: a spinlock for this struct
131
*/
132
struct pl08x_driver_data {
133
struct dma_device slave;
134
struct dma_device memcpy;
135
void __iomem *base;
136
struct amba_device *adev;
137
const struct vendor_data *vd;
138
struct pl08x_platform_data *pd;
139
struct pl08x_phy_chan *phy_chans;
140
struct dma_pool *pool;
141
int pool_ctr;
142
u8 lli_buses;
143
u8 mem_buses;
144
spinlock_t lock;
145
};
146
147
/*
148
* PL08X specific defines
149
*/
150
151
/*
152
* Memory boundaries: the manual for PL08x says that the controller
153
* cannot read past a 1KiB boundary, so these defines are used to
154
* create transfer LLIs that do not cross such boundaries.
155
*/
156
#define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
157
#define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
158
159
/* Minimum period between work queue runs */
160
#define PL08X_WQ_PERIODMIN 20
161
162
/* Size (bytes) of each LLI buffer allocated for one transfer */
163
# define PL08X_LLI_TSFR_SIZE 0x2000
164
165
/* Maximum times we call dma_pool_alloc on this pool without freeing */
166
#define PL08X_MAX_ALLOCS 0x40
167
#define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
168
#define PL08X_ALIGN 8
169
170
static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
171
{
172
return container_of(chan, struct pl08x_dma_chan, chan);
173
}
174
175
static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
176
{
177
return container_of(tx, struct pl08x_txd, tx);
178
}
179
180
/*
181
* Physical channel handling
182
*/
183
184
/* Whether a certain channel is busy or not */
185
static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
186
{
187
unsigned int val;
188
189
val = readl(ch->base + PL080_CH_CONFIG);
190
return val & PL080_CONFIG_ACTIVE;
191
}
192
193
/*
194
* Set the initial DMA register values i.e. those for the first LLI
195
* The next LLI pointer and the configuration interrupt bit have
196
* been set when the LLIs were constructed. Poke them into the hardware
197
* and start the transfer.
198
*/
199
static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
200
struct pl08x_txd *txd)
201
{
202
struct pl08x_driver_data *pl08x = plchan->host;
203
struct pl08x_phy_chan *phychan = plchan->phychan;
204
struct pl08x_lli *lli = &txd->llis_va[0];
205
u32 val;
206
207
plchan->at = txd;
208
209
/* Wait for channel inactive */
210
while (pl08x_phy_channel_busy(phychan))
211
cpu_relax();
212
213
dev_vdbg(&pl08x->adev->dev,
214
"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
215
"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
216
phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
217
txd->ccfg);
218
219
writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
220
writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
221
writel(lli->lli, phychan->base + PL080_CH_LLI);
222
writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
223
writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
224
225
/* Enable the DMA channel */
226
/* Do not access config register until channel shows as disabled */
227
while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
228
cpu_relax();
229
230
/* Do not access config register until channel shows as inactive */
231
val = readl(phychan->base + PL080_CH_CONFIG);
232
while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
233
val = readl(phychan->base + PL080_CH_CONFIG);
234
235
writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
236
}
237
238
/*
239
* Pause the channel by setting the HALT bit.
240
*
241
* For M->P transfers, pause the DMAC first and then stop the peripheral -
242
* the FIFO can only drain if the peripheral is still requesting data.
243
* (note: this can still timeout if the DMAC FIFO never drains of data.)
244
*
245
* For P->M transfers, disable the peripheral first to stop it filling
246
* the DMAC FIFO, and then pause the DMAC.
247
*/
248
static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
249
{
250
u32 val;
251
int timeout;
252
253
/* Set the HALT bit and wait for the FIFO to drain */
254
val = readl(ch->base + PL080_CH_CONFIG);
255
val |= PL080_CONFIG_HALT;
256
writel(val, ch->base + PL080_CH_CONFIG);
257
258
/* Wait for channel inactive */
259
for (timeout = 1000; timeout; timeout--) {
260
if (!pl08x_phy_channel_busy(ch))
261
break;
262
udelay(1);
263
}
264
if (pl08x_phy_channel_busy(ch))
265
pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
266
}
267
268
static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
269
{
270
u32 val;
271
272
/* Clear the HALT bit */
273
val = readl(ch->base + PL080_CH_CONFIG);
274
val &= ~PL080_CONFIG_HALT;
275
writel(val, ch->base + PL080_CH_CONFIG);
276
}
277
278
279
/*
280
* pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
281
* clears any pending interrupt status. This should not be used for
282
* an on-going transfer, but as a method of shutting down a channel
283
* (eg, when it's no longer used) or terminating a transfer.
284
*/
285
static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
286
struct pl08x_phy_chan *ch)
287
{
288
u32 val = readl(ch->base + PL080_CH_CONFIG);
289
290
val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
291
PL080_CONFIG_TC_IRQ_MASK);
292
293
writel(val, ch->base + PL080_CH_CONFIG);
294
295
writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
296
writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
297
}
298
299
static inline u32 get_bytes_in_cctl(u32 cctl)
300
{
301
/* The source width defines the number of bytes */
302
u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
303
304
switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
305
case PL080_WIDTH_8BIT:
306
break;
307
case PL080_WIDTH_16BIT:
308
bytes *= 2;
309
break;
310
case PL080_WIDTH_32BIT:
311
bytes *= 4;
312
break;
313
}
314
return bytes;
315
}
316
317
/* The channel should be paused when calling this */
318
static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
319
{
320
struct pl08x_phy_chan *ch;
321
struct pl08x_txd *txd;
322
unsigned long flags;
323
size_t bytes = 0;
324
325
spin_lock_irqsave(&plchan->lock, flags);
326
ch = plchan->phychan;
327
txd = plchan->at;
328
329
/*
330
* Follow the LLIs to get the number of remaining
331
* bytes in the currently active transaction.
332
*/
333
if (ch && txd) {
334
u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
335
336
/* First get the remaining bytes in the active transfer */
337
bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
338
339
if (clli) {
340
struct pl08x_lli *llis_va = txd->llis_va;
341
dma_addr_t llis_bus = txd->llis_bus;
342
int index;
343
344
BUG_ON(clli < llis_bus || clli >= llis_bus +
345
sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
346
347
/*
348
* Locate the next LLI - as this is an array,
349
* it's simple maths to find.
350
*/
351
index = (clli - llis_bus) / sizeof(struct pl08x_lli);
352
353
for (; index < MAX_NUM_TSFR_LLIS; index++) {
354
bytes += get_bytes_in_cctl(llis_va[index].cctl);
355
356
/*
357
* A LLI pointer of 0 terminates the LLI list
358
*/
359
if (!llis_va[index].lli)
360
break;
361
}
362
}
363
}
364
365
/* Sum up all queued transactions */
366
if (!list_empty(&plchan->pend_list)) {
367
struct pl08x_txd *txdi;
368
list_for_each_entry(txdi, &plchan->pend_list, node) {
369
bytes += txdi->len;
370
}
371
}
372
373
spin_unlock_irqrestore(&plchan->lock, flags);
374
375
return bytes;
376
}
377
378
/*
379
* Allocate a physical channel for a virtual channel
380
*
381
* Try to locate a physical channel to be used for this transfer. If all
382
* are taken return NULL and the requester will have to cope by using
383
* some fallback PIO mode or retrying later.
384
*/
385
static struct pl08x_phy_chan *
386
pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
387
struct pl08x_dma_chan *virt_chan)
388
{
389
struct pl08x_phy_chan *ch = NULL;
390
unsigned long flags;
391
int i;
392
393
for (i = 0; i < pl08x->vd->channels; i++) {
394
ch = &pl08x->phy_chans[i];
395
396
spin_lock_irqsave(&ch->lock, flags);
397
398
if (!ch->serving) {
399
ch->serving = virt_chan;
400
ch->signal = -1;
401
spin_unlock_irqrestore(&ch->lock, flags);
402
break;
403
}
404
405
spin_unlock_irqrestore(&ch->lock, flags);
406
}
407
408
if (i == pl08x->vd->channels) {
409
/* No physical channel available, cope with it */
410
return NULL;
411
}
412
413
return ch;
414
}
415
416
static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
417
struct pl08x_phy_chan *ch)
418
{
419
unsigned long flags;
420
421
spin_lock_irqsave(&ch->lock, flags);
422
423
/* Stop the channel and clear its interrupts */
424
pl08x_terminate_phy_chan(pl08x, ch);
425
426
/* Mark it as free */
427
ch->serving = NULL;
428
spin_unlock_irqrestore(&ch->lock, flags);
429
}
430
431
/*
432
* LLI handling
433
*/
434
435
static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
436
{
437
switch (coded) {
438
case PL080_WIDTH_8BIT:
439
return 1;
440
case PL080_WIDTH_16BIT:
441
return 2;
442
case PL080_WIDTH_32BIT:
443
return 4;
444
default:
445
break;
446
}
447
BUG();
448
return 0;
449
}
450
451
static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
452
size_t tsize)
453
{
454
u32 retbits = cctl;
455
456
/* Remove all src, dst and transfer size bits */
457
retbits &= ~PL080_CONTROL_DWIDTH_MASK;
458
retbits &= ~PL080_CONTROL_SWIDTH_MASK;
459
retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
460
461
/* Then set the bits according to the parameters */
462
switch (srcwidth) {
463
case 1:
464
retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
465
break;
466
case 2:
467
retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
468
break;
469
case 4:
470
retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
471
break;
472
default:
473
BUG();
474
break;
475
}
476
477
switch (dstwidth) {
478
case 1:
479
retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
480
break;
481
case 2:
482
retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
483
break;
484
case 4:
485
retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
486
break;
487
default:
488
BUG();
489
break;
490
}
491
492
retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
493
return retbits;
494
}
495
496
struct pl08x_lli_build_data {
497
struct pl08x_txd *txd;
498
struct pl08x_driver_data *pl08x;
499
struct pl08x_bus_data srcbus;
500
struct pl08x_bus_data dstbus;
501
size_t remainder;
502
};
503
504
/*
505
* Autoselect a master bus to use for the transfer this prefers the
506
* destination bus if both available if fixed address on one bus the
507
* other will be chosen
508
*/
509
static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
510
struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
511
{
512
if (!(cctl & PL080_CONTROL_DST_INCR)) {
513
*mbus = &bd->srcbus;
514
*sbus = &bd->dstbus;
515
} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
516
*mbus = &bd->dstbus;
517
*sbus = &bd->srcbus;
518
} else {
519
if (bd->dstbus.buswidth == 4) {
520
*mbus = &bd->dstbus;
521
*sbus = &bd->srcbus;
522
} else if (bd->srcbus.buswidth == 4) {
523
*mbus = &bd->srcbus;
524
*sbus = &bd->dstbus;
525
} else if (bd->dstbus.buswidth == 2) {
526
*mbus = &bd->dstbus;
527
*sbus = &bd->srcbus;
528
} else if (bd->srcbus.buswidth == 2) {
529
*mbus = &bd->srcbus;
530
*sbus = &bd->dstbus;
531
} else {
532
/* bd->srcbus.buswidth == 1 */
533
*mbus = &bd->dstbus;
534
*sbus = &bd->srcbus;
535
}
536
}
537
}
538
539
/*
540
* Fills in one LLI for a certain transfer descriptor and advance the counter
541
*/
542
static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
543
int num_llis, int len, u32 cctl)
544
{
545
struct pl08x_lli *llis_va = bd->txd->llis_va;
546
dma_addr_t llis_bus = bd->txd->llis_bus;
547
548
BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
549
550
llis_va[num_llis].cctl = cctl;
551
llis_va[num_llis].src = bd->srcbus.addr;
552
llis_va[num_llis].dst = bd->dstbus.addr;
553
llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
554
if (bd->pl08x->lli_buses & PL08X_AHB2)
555
llis_va[num_llis].lli |= PL080_LLI_LM_AHB2;
556
557
if (cctl & PL080_CONTROL_SRC_INCR)
558
bd->srcbus.addr += len;
559
if (cctl & PL080_CONTROL_DST_INCR)
560
bd->dstbus.addr += len;
561
562
BUG_ON(bd->remainder < len);
563
564
bd->remainder -= len;
565
}
566
567
/*
568
* Return number of bytes to fill to boundary, or len.
569
* This calculation works for any value of addr.
570
*/
571
static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
572
{
573
size_t boundary_len = PL08X_BOUNDARY_SIZE -
574
(addr & (PL08X_BOUNDARY_SIZE - 1));
575
576
return min(boundary_len, len);
577
}
578
579
/*
580
* This fills in the table of LLIs for the transfer descriptor
581
* Note that we assume we never have to change the burst sizes
582
* Return 0 for error
583
*/
584
static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
585
struct pl08x_txd *txd)
586
{
587
struct pl08x_bus_data *mbus, *sbus;
588
struct pl08x_lli_build_data bd;
589
int num_llis = 0;
590
u32 cctl;
591
size_t max_bytes_per_lli;
592
size_t total_bytes = 0;
593
struct pl08x_lli *llis_va;
594
595
txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
596
&txd->llis_bus);
597
if (!txd->llis_va) {
598
dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
599
return 0;
600
}
601
602
pl08x->pool_ctr++;
603
604
/* Get the default CCTL */
605
cctl = txd->cctl;
606
607
bd.txd = txd;
608
bd.pl08x = pl08x;
609
bd.srcbus.addr = txd->src_addr;
610
bd.dstbus.addr = txd->dst_addr;
611
612
/* Find maximum width of the source bus */
613
bd.srcbus.maxwidth =
614
pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
615
PL080_CONTROL_SWIDTH_SHIFT);
616
617
/* Find maximum width of the destination bus */
618
bd.dstbus.maxwidth =
619
pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
620
PL080_CONTROL_DWIDTH_SHIFT);
621
622
/* Set up the bus widths to the maximum */
623
bd.srcbus.buswidth = bd.srcbus.maxwidth;
624
bd.dstbus.buswidth = bd.dstbus.maxwidth;
625
dev_vdbg(&pl08x->adev->dev,
626
"%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
627
__func__, bd.srcbus.buswidth, bd.dstbus.buswidth);
628
629
630
/*
631
* Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
632
*/
633
max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
634
PL080_CONTROL_TRANSFER_SIZE_MASK;
635
dev_vdbg(&pl08x->adev->dev,
636
"%s max bytes per lli = %zu\n",
637
__func__, max_bytes_per_lli);
638
639
/* We need to count this down to zero */
640
bd.remainder = txd->len;
641
dev_vdbg(&pl08x->adev->dev,
642
"%s remainder = %zu\n",
643
__func__, bd.remainder);
644
645
/*
646
* Choose bus to align to
647
* - prefers destination bus if both available
648
* - if fixed address on one bus chooses other
649
*/
650
pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
651
652
if (txd->len < mbus->buswidth) {
653
/* Less than a bus width available - send as single bytes */
654
while (bd.remainder) {
655
dev_vdbg(&pl08x->adev->dev,
656
"%s single byte LLIs for a transfer of "
657
"less than a bus width (remain 0x%08x)\n",
658
__func__, bd.remainder);
659
cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
660
pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
661
total_bytes++;
662
}
663
} else {
664
/* Make one byte LLIs until master bus is aligned */
665
while ((mbus->addr) % (mbus->buswidth)) {
666
dev_vdbg(&pl08x->adev->dev,
667
"%s adjustment lli for less than bus width "
668
"(remain 0x%08x)\n",
669
__func__, bd.remainder);
670
cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
671
pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
672
total_bytes++;
673
}
674
675
/*
676
* Master now aligned
677
* - if slave is not then we must set its width down
678
*/
679
if (sbus->addr % sbus->buswidth) {
680
dev_dbg(&pl08x->adev->dev,
681
"%s set down bus width to one byte\n",
682
__func__);
683
684
sbus->buswidth = 1;
685
}
686
687
/*
688
* Make largest possible LLIs until less than one bus
689
* width left
690
*/
691
while (bd.remainder > (mbus->buswidth - 1)) {
692
size_t lli_len, target_len, tsize, odd_bytes;
693
694
/*
695
* If enough left try to send max possible,
696
* otherwise try to send the remainder
697
*/
698
target_len = min(bd.remainder, max_bytes_per_lli);
699
700
/*
701
* Set bus lengths for incrementing buses to the
702
* number of bytes which fill to next memory boundary,
703
* limiting on the target length calculated above.
704
*/
705
if (cctl & PL080_CONTROL_SRC_INCR)
706
bd.srcbus.fill_bytes =
707
pl08x_pre_boundary(bd.srcbus.addr,
708
target_len);
709
else
710
bd.srcbus.fill_bytes = target_len;
711
712
if (cctl & PL080_CONTROL_DST_INCR)
713
bd.dstbus.fill_bytes =
714
pl08x_pre_boundary(bd.dstbus.addr,
715
target_len);
716
else
717
bd.dstbus.fill_bytes = target_len;
718
719
/* Find the nearest */
720
lli_len = min(bd.srcbus.fill_bytes,
721
bd.dstbus.fill_bytes);
722
723
BUG_ON(lli_len > bd.remainder);
724
725
if (lli_len <= 0) {
726
dev_err(&pl08x->adev->dev,
727
"%s lli_len is %zu, <= 0\n",
728
__func__, lli_len);
729
return 0;
730
}
731
732
if (lli_len == target_len) {
733
/*
734
* Can send what we wanted.
735
* Maintain alignment
736
*/
737
lli_len = (lli_len/mbus->buswidth) *
738
mbus->buswidth;
739
odd_bytes = 0;
740
} else {
741
/*
742
* So now we know how many bytes to transfer
743
* to get to the nearest boundary. The next
744
* LLI will past the boundary. However, we
745
* may be working to a boundary on the slave
746
* bus. We need to ensure the master stays
747
* aligned, and that we are working in
748
* multiples of the bus widths.
749
*/
750
odd_bytes = lli_len % mbus->buswidth;
751
lli_len -= odd_bytes;
752
753
}
754
755
if (lli_len) {
756
/*
757
* Check against minimum bus alignment:
758
* Calculate actual transfer size in relation
759
* to bus width an get a maximum remainder of
760
* the smallest bus width - 1
761
*/
762
/* FIXME: use round_down()? */
763
tsize = lli_len / min(mbus->buswidth,
764
sbus->buswidth);
765
lli_len = tsize * min(mbus->buswidth,
766
sbus->buswidth);
767
768
if (target_len != lli_len) {
769
dev_vdbg(&pl08x->adev->dev,
770
"%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
771
__func__, target_len, lli_len, txd->len);
772
}
773
774
cctl = pl08x_cctl_bits(cctl,
775
bd.srcbus.buswidth,
776
bd.dstbus.buswidth,
777
tsize);
778
779
dev_vdbg(&pl08x->adev->dev,
780
"%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
781
__func__, lli_len, bd.remainder);
782
pl08x_fill_lli_for_desc(&bd, num_llis++,
783
lli_len, cctl);
784
total_bytes += lli_len;
785
}
786
787
788
if (odd_bytes) {
789
/*
790
* Creep past the boundary, maintaining
791
* master alignment
792
*/
793
int j;
794
for (j = 0; (j < mbus->buswidth)
795
&& (bd.remainder); j++) {
796
cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
797
dev_vdbg(&pl08x->adev->dev,
798
"%s align with boundary, single byte (remain 0x%08zx)\n",
799
__func__, bd.remainder);
800
pl08x_fill_lli_for_desc(&bd,
801
num_llis++, 1, cctl);
802
total_bytes++;
803
}
804
}
805
}
806
807
/*
808
* Send any odd bytes
809
*/
810
while (bd.remainder) {
811
cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
812
dev_vdbg(&pl08x->adev->dev,
813
"%s align with boundary, single odd byte (remain %zu)\n",
814
__func__, bd.remainder);
815
pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
816
total_bytes++;
817
}
818
}
819
if (total_bytes != txd->len) {
820
dev_err(&pl08x->adev->dev,
821
"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
822
__func__, total_bytes, txd->len);
823
return 0;
824
}
825
826
if (num_llis >= MAX_NUM_TSFR_LLIS) {
827
dev_err(&pl08x->adev->dev,
828
"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
829
__func__, (u32) MAX_NUM_TSFR_LLIS);
830
return 0;
831
}
832
833
llis_va = txd->llis_va;
834
/* The final LLI terminates the LLI. */
835
llis_va[num_llis - 1].lli = 0;
836
/* The final LLI element shall also fire an interrupt. */
837
llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
838
839
#ifdef VERBOSE_DEBUG
840
{
841
int i;
842
843
for (i = 0; i < num_llis; i++) {
844
dev_vdbg(&pl08x->adev->dev,
845
"lli %d @%p: csrc=0x%08x, cdst=0x%08x, cctl=0x%08x, clli=0x%08x\n",
846
i,
847
&llis_va[i],
848
llis_va[i].src,
849
llis_va[i].dst,
850
llis_va[i].cctl,
851
llis_va[i].lli
852
);
853
}
854
}
855
#endif
856
857
return num_llis;
858
}
859
860
/* You should call this with the struct pl08x lock held */
861
static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
862
struct pl08x_txd *txd)
863
{
864
/* Free the LLI */
865
dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
866
867
pl08x->pool_ctr--;
868
869
kfree(txd);
870
}
871
872
static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
873
struct pl08x_dma_chan *plchan)
874
{
875
struct pl08x_txd *txdi = NULL;
876
struct pl08x_txd *next;
877
878
if (!list_empty(&plchan->pend_list)) {
879
list_for_each_entry_safe(txdi,
880
next, &plchan->pend_list, node) {
881
list_del(&txdi->node);
882
pl08x_free_txd(pl08x, txdi);
883
}
884
}
885
}
886
887
/*
888
* The DMA ENGINE API
889
*/
890
static int pl08x_alloc_chan_resources(struct dma_chan *chan)
891
{
892
return 0;
893
}
894
895
static void pl08x_free_chan_resources(struct dma_chan *chan)
896
{
897
}
898
899
/*
900
* This should be called with the channel plchan->lock held
901
*/
902
static int prep_phy_channel(struct pl08x_dma_chan *plchan,
903
struct pl08x_txd *txd)
904
{
905
struct pl08x_driver_data *pl08x = plchan->host;
906
struct pl08x_phy_chan *ch;
907
int ret;
908
909
/* Check if we already have a channel */
910
if (plchan->phychan)
911
return 0;
912
913
ch = pl08x_get_phy_channel(pl08x, plchan);
914
if (!ch) {
915
/* No physical channel available, cope with it */
916
dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
917
return -EBUSY;
918
}
919
920
/*
921
* OK we have a physical channel: for memcpy() this is all we
922
* need, but for slaves the physical signals may be muxed!
923
* Can the platform allow us to use this channel?
924
*/
925
if (plchan->slave &&
926
ch->signal < 0 &&
927
pl08x->pd->get_signal) {
928
ret = pl08x->pd->get_signal(plchan);
929
if (ret < 0) {
930
dev_dbg(&pl08x->adev->dev,
931
"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
932
ch->id, plchan->name);
933
/* Release physical channel & return */
934
pl08x_put_phy_channel(pl08x, ch);
935
return -EBUSY;
936
}
937
ch->signal = ret;
938
939
/* Assign the flow control signal to this channel */
940
if (txd->direction == DMA_TO_DEVICE)
941
txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
942
else if (txd->direction == DMA_FROM_DEVICE)
943
txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
944
}
945
946
dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
947
ch->id,
948
ch->signal,
949
plchan->name);
950
951
plchan->phychan_hold++;
952
plchan->phychan = ch;
953
954
return 0;
955
}
956
957
static void release_phy_channel(struct pl08x_dma_chan *plchan)
958
{
959
struct pl08x_driver_data *pl08x = plchan->host;
960
961
if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
962
pl08x->pd->put_signal(plchan);
963
plchan->phychan->signal = -1;
964
}
965
pl08x_put_phy_channel(pl08x, plchan->phychan);
966
plchan->phychan = NULL;
967
}
968
969
static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
970
{
971
struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
972
struct pl08x_txd *txd = to_pl08x_txd(tx);
973
unsigned long flags;
974
975
spin_lock_irqsave(&plchan->lock, flags);
976
977
plchan->chan.cookie += 1;
978
if (plchan->chan.cookie < 0)
979
plchan->chan.cookie = 1;
980
tx->cookie = plchan->chan.cookie;
981
982
/* Put this onto the pending list */
983
list_add_tail(&txd->node, &plchan->pend_list);
984
985
/*
986
* If there was no physical channel available for this memcpy,
987
* stack the request up and indicate that the channel is waiting
988
* for a free physical channel.
989
*/
990
if (!plchan->slave && !plchan->phychan) {
991
/* Do this memcpy whenever there is a channel ready */
992
plchan->state = PL08X_CHAN_WAITING;
993
plchan->waiting = txd;
994
} else {
995
plchan->phychan_hold--;
996
}
997
998
spin_unlock_irqrestore(&plchan->lock, flags);
999
1000
return tx->cookie;
1001
}
1002
1003
static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1004
struct dma_chan *chan, unsigned long flags)
1005
{
1006
struct dma_async_tx_descriptor *retval = NULL;
1007
1008
return retval;
1009
}
1010
1011
/*
1012
* Code accessing dma_async_is_complete() in a tight loop may give problems.
1013
* If slaves are relying on interrupts to signal completion this function
1014
* must not be called with interrupts disabled.
1015
*/
1016
static enum dma_status
1017
pl08x_dma_tx_status(struct dma_chan *chan,
1018
dma_cookie_t cookie,
1019
struct dma_tx_state *txstate)
1020
{
1021
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1022
dma_cookie_t last_used;
1023
dma_cookie_t last_complete;
1024
enum dma_status ret;
1025
u32 bytesleft = 0;
1026
1027
last_used = plchan->chan.cookie;
1028
last_complete = plchan->lc;
1029
1030
ret = dma_async_is_complete(cookie, last_complete, last_used);
1031
if (ret == DMA_SUCCESS) {
1032
dma_set_tx_state(txstate, last_complete, last_used, 0);
1033
return ret;
1034
}
1035
1036
/*
1037
* This cookie not complete yet
1038
*/
1039
last_used = plchan->chan.cookie;
1040
last_complete = plchan->lc;
1041
1042
/* Get number of bytes left in the active transactions and queue */
1043
bytesleft = pl08x_getbytes_chan(plchan);
1044
1045
dma_set_tx_state(txstate, last_complete, last_used,
1046
bytesleft);
1047
1048
if (plchan->state == PL08X_CHAN_PAUSED)
1049
return DMA_PAUSED;
1050
1051
/* Whether waiting or running, we're in progress */
1052
return DMA_IN_PROGRESS;
1053
}
1054
1055
/* PrimeCell DMA extension */
1056
struct burst_table {
1057
int burstwords;
1058
u32 reg;
1059
};
1060
1061
static const struct burst_table burst_sizes[] = {
1062
{
1063
.burstwords = 256,
1064
.reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
1065
(PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
1066
},
1067
{
1068
.burstwords = 128,
1069
.reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
1070
(PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
1071
},
1072
{
1073
.burstwords = 64,
1074
.reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
1075
(PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
1076
},
1077
{
1078
.burstwords = 32,
1079
.reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
1080
(PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
1081
},
1082
{
1083
.burstwords = 16,
1084
.reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
1085
(PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
1086
},
1087
{
1088
.burstwords = 8,
1089
.reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
1090
(PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
1091
},
1092
{
1093
.burstwords = 4,
1094
.reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
1095
(PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
1096
},
1097
{
1098
.burstwords = 1,
1099
.reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1100
(PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
1101
},
1102
};
1103
1104
static int dma_set_runtime_config(struct dma_chan *chan,
1105
struct dma_slave_config *config)
1106
{
1107
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1108
struct pl08x_driver_data *pl08x = plchan->host;
1109
struct pl08x_channel_data *cd = plchan->cd;
1110
enum dma_slave_buswidth addr_width;
1111
dma_addr_t addr;
1112
u32 maxburst;
1113
u32 cctl = 0;
1114
int i;
1115
1116
if (!plchan->slave)
1117
return -EINVAL;
1118
1119
/* Transfer direction */
1120
plchan->runtime_direction = config->direction;
1121
if (config->direction == DMA_TO_DEVICE) {
1122
addr = config->dst_addr;
1123
addr_width = config->dst_addr_width;
1124
maxburst = config->dst_maxburst;
1125
} else if (config->direction == DMA_FROM_DEVICE) {
1126
addr = config->src_addr;
1127
addr_width = config->src_addr_width;
1128
maxburst = config->src_maxburst;
1129
} else {
1130
dev_err(&pl08x->adev->dev,
1131
"bad runtime_config: alien transfer direction\n");
1132
return -EINVAL;
1133
}
1134
1135
switch (addr_width) {
1136
case DMA_SLAVE_BUSWIDTH_1_BYTE:
1137
cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1138
(PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
1139
break;
1140
case DMA_SLAVE_BUSWIDTH_2_BYTES:
1141
cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1142
(PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
1143
break;
1144
case DMA_SLAVE_BUSWIDTH_4_BYTES:
1145
cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1146
(PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
1147
break;
1148
default:
1149
dev_err(&pl08x->adev->dev,
1150
"bad runtime_config: alien address width\n");
1151
return -EINVAL;
1152
}
1153
1154
/*
1155
* Now decide on a maxburst:
1156
* If this channel will only request single transfers, set this
1157
* down to ONE element. Also select one element if no maxburst
1158
* is specified.
1159
*/
1160
if (plchan->cd->single || maxburst == 0) {
1161
cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1162
(PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
1163
} else {
1164
for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1165
if (burst_sizes[i].burstwords <= maxburst)
1166
break;
1167
cctl |= burst_sizes[i].reg;
1168
}
1169
1170
plchan->runtime_addr = addr;
1171
1172
/* Modify the default channel data to fit PrimeCell request */
1173
cd->cctl = cctl;
1174
1175
dev_dbg(&pl08x->adev->dev,
1176
"configured channel %s (%s) for %s, data width %d, "
1177
"maxburst %d words, LE, CCTL=0x%08x\n",
1178
dma_chan_name(chan), plchan->name,
1179
(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1180
addr_width,
1181
maxburst,
1182
cctl);
1183
1184
return 0;
1185
}
1186
1187
/*
1188
* Slave transactions callback to the slave device to allow
1189
* synchronization of slave DMA signals with the DMAC enable
1190
*/
1191
static void pl08x_issue_pending(struct dma_chan *chan)
1192
{
1193
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1194
unsigned long flags;
1195
1196
spin_lock_irqsave(&plchan->lock, flags);
1197
/* Something is already active, or we're waiting for a channel... */
1198
if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1199
spin_unlock_irqrestore(&plchan->lock, flags);
1200
return;
1201
}
1202
1203
/* Take the first element in the queue and execute it */
1204
if (!list_empty(&plchan->pend_list)) {
1205
struct pl08x_txd *next;
1206
1207
next = list_first_entry(&plchan->pend_list,
1208
struct pl08x_txd,
1209
node);
1210
list_del(&next->node);
1211
plchan->state = PL08X_CHAN_RUNNING;
1212
1213
pl08x_start_txd(plchan, next);
1214
}
1215
1216
spin_unlock_irqrestore(&plchan->lock, flags);
1217
}
1218
1219
static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1220
struct pl08x_txd *txd)
1221
{
1222
struct pl08x_driver_data *pl08x = plchan->host;
1223
unsigned long flags;
1224
int num_llis, ret;
1225
1226
num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1227
if (!num_llis) {
1228
kfree(txd);
1229
return -EINVAL;
1230
}
1231
1232
spin_lock_irqsave(&plchan->lock, flags);
1233
1234
/*
1235
* See if we already have a physical channel allocated,
1236
* else this is the time to try to get one.
1237
*/
1238
ret = prep_phy_channel(plchan, txd);
1239
if (ret) {
1240
/*
1241
* No physical channel was available.
1242
*
1243
* memcpy transfers can be sorted out at submission time.
1244
*
1245
* Slave transfers may have been denied due to platform
1246
* channel muxing restrictions. Since there is no guarantee
1247
* that this will ever be resolved, and the signal must be
1248
* acquired AFTER acquiring the physical channel, we will let
1249
* them be NACK:ed with -EBUSY here. The drivers can retry
1250
* the prep() call if they are eager on doing this using DMA.
1251
*/
1252
if (plchan->slave) {
1253
pl08x_free_txd_list(pl08x, plchan);
1254
pl08x_free_txd(pl08x, txd);
1255
spin_unlock_irqrestore(&plchan->lock, flags);
1256
return -EBUSY;
1257
}
1258
} else
1259
/*
1260
* Else we're all set, paused and ready to roll, status
1261
* will switch to PL08X_CHAN_RUNNING when we call
1262
* issue_pending(). If there is something running on the
1263
* channel already we don't change its state.
1264
*/
1265
if (plchan->state == PL08X_CHAN_IDLE)
1266
plchan->state = PL08X_CHAN_PAUSED;
1267
1268
spin_unlock_irqrestore(&plchan->lock, flags);
1269
1270
return 0;
1271
}
1272
1273
/*
1274
* Given the source and destination available bus masks, select which
1275
* will be routed to each port. We try to have source and destination
1276
* on separate ports, but always respect the allowable settings.
1277
*/
1278
static u32 pl08x_select_bus(struct pl08x_driver_data *pl08x, u8 src, u8 dst)
1279
{
1280
u32 cctl = 0;
1281
1282
if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1283
cctl |= PL080_CONTROL_DST_AHB2;
1284
if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1285
cctl |= PL080_CONTROL_SRC_AHB2;
1286
1287
return cctl;
1288
}
1289
1290
static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1291
unsigned long flags)
1292
{
1293
struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1294
1295
if (txd) {
1296
dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1297
txd->tx.flags = flags;
1298
txd->tx.tx_submit = pl08x_tx_submit;
1299
INIT_LIST_HEAD(&txd->node);
1300
1301
/* Always enable error and terminal interrupts */
1302
txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1303
PL080_CONFIG_TC_IRQ_MASK;
1304
}
1305
return txd;
1306
}
1307
1308
/*
1309
* Initialize a descriptor to be used by memcpy submit
1310
*/
1311
static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1312
struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1313
size_t len, unsigned long flags)
1314
{
1315
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1316
struct pl08x_driver_data *pl08x = plchan->host;
1317
struct pl08x_txd *txd;
1318
int ret;
1319
1320
txd = pl08x_get_txd(plchan, flags);
1321
if (!txd) {
1322
dev_err(&pl08x->adev->dev,
1323
"%s no memory for descriptor\n", __func__);
1324
return NULL;
1325
}
1326
1327
txd->direction = DMA_NONE;
1328
txd->src_addr = src;
1329
txd->dst_addr = dest;
1330
txd->len = len;
1331
1332
/* Set platform data for m2m */
1333
txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1334
txd->cctl = pl08x->pd->memcpy_channel.cctl &
1335
~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1336
1337
/* Both to be incremented or the code will break */
1338
txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1339
1340
if (pl08x->vd->dualmaster)
1341
txd->cctl |= pl08x_select_bus(pl08x,
1342
pl08x->mem_buses, pl08x->mem_buses);
1343
1344
ret = pl08x_prep_channel_resources(plchan, txd);
1345
if (ret)
1346
return NULL;
1347
1348
return &txd->tx;
1349
}
1350
1351
static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1352
struct dma_chan *chan, struct scatterlist *sgl,
1353
unsigned int sg_len, enum dma_data_direction direction,
1354
unsigned long flags)
1355
{
1356
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1357
struct pl08x_driver_data *pl08x = plchan->host;
1358
struct pl08x_txd *txd;
1359
u8 src_buses, dst_buses;
1360
int ret;
1361
1362
/*
1363
* Current implementation ASSUMES only one sg
1364
*/
1365
if (sg_len != 1) {
1366
dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1367
__func__);
1368
BUG();
1369
}
1370
1371
dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1372
__func__, sgl->length, plchan->name);
1373
1374
txd = pl08x_get_txd(plchan, flags);
1375
if (!txd) {
1376
dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1377
return NULL;
1378
}
1379
1380
if (direction != plchan->runtime_direction)
1381
dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1382
"the direction configured for the PrimeCell\n",
1383
__func__);
1384
1385
/*
1386
* Set up addresses, the PrimeCell configured address
1387
* will take precedence since this may configure the
1388
* channel target address dynamically at runtime.
1389
*/
1390
txd->direction = direction;
1391
txd->len = sgl->length;
1392
1393
txd->cctl = plchan->cd->cctl &
1394
~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1395
PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1396
PL080_CONTROL_PROT_MASK);
1397
1398
/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1399
txd->cctl |= PL080_CONTROL_PROT_SYS;
1400
1401
if (direction == DMA_TO_DEVICE) {
1402
txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1403
txd->cctl |= PL080_CONTROL_SRC_INCR;
1404
txd->src_addr = sgl->dma_address;
1405
if (plchan->runtime_addr)
1406
txd->dst_addr = plchan->runtime_addr;
1407
else
1408
txd->dst_addr = plchan->cd->addr;
1409
src_buses = pl08x->mem_buses;
1410
dst_buses = plchan->cd->periph_buses;
1411
} else if (direction == DMA_FROM_DEVICE) {
1412
txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1413
txd->cctl |= PL080_CONTROL_DST_INCR;
1414
if (plchan->runtime_addr)
1415
txd->src_addr = plchan->runtime_addr;
1416
else
1417
txd->src_addr = plchan->cd->addr;
1418
txd->dst_addr = sgl->dma_address;
1419
src_buses = plchan->cd->periph_buses;
1420
dst_buses = pl08x->mem_buses;
1421
} else {
1422
dev_err(&pl08x->adev->dev,
1423
"%s direction unsupported\n", __func__);
1424
return NULL;
1425
}
1426
1427
txd->cctl |= pl08x_select_bus(pl08x, src_buses, dst_buses);
1428
1429
ret = pl08x_prep_channel_resources(plchan, txd);
1430
if (ret)
1431
return NULL;
1432
1433
return &txd->tx;
1434
}
1435
1436
static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1437
unsigned long arg)
1438
{
1439
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1440
struct pl08x_driver_data *pl08x = plchan->host;
1441
unsigned long flags;
1442
int ret = 0;
1443
1444
/* Controls applicable to inactive channels */
1445
if (cmd == DMA_SLAVE_CONFIG) {
1446
return dma_set_runtime_config(chan,
1447
(struct dma_slave_config *)arg);
1448
}
1449
1450
/*
1451
* Anything succeeds on channels with no physical allocation and
1452
* no queued transfers.
1453
*/
1454
spin_lock_irqsave(&plchan->lock, flags);
1455
if (!plchan->phychan && !plchan->at) {
1456
spin_unlock_irqrestore(&plchan->lock, flags);
1457
return 0;
1458
}
1459
1460
switch (cmd) {
1461
case DMA_TERMINATE_ALL:
1462
plchan->state = PL08X_CHAN_IDLE;
1463
1464
if (plchan->phychan) {
1465
pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1466
1467
/*
1468
* Mark physical channel as free and free any slave
1469
* signal
1470
*/
1471
release_phy_channel(plchan);
1472
}
1473
/* Dequeue jobs and free LLIs */
1474
if (plchan->at) {
1475
pl08x_free_txd(pl08x, plchan->at);
1476
plchan->at = NULL;
1477
}
1478
/* Dequeue jobs not yet fired as well */
1479
pl08x_free_txd_list(pl08x, plchan);
1480
break;
1481
case DMA_PAUSE:
1482
pl08x_pause_phy_chan(plchan->phychan);
1483
plchan->state = PL08X_CHAN_PAUSED;
1484
break;
1485
case DMA_RESUME:
1486
pl08x_resume_phy_chan(plchan->phychan);
1487
plchan->state = PL08X_CHAN_RUNNING;
1488
break;
1489
default:
1490
/* Unknown command */
1491
ret = -ENXIO;
1492
break;
1493
}
1494
1495
spin_unlock_irqrestore(&plchan->lock, flags);
1496
1497
return ret;
1498
}
1499
1500
bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1501
{
1502
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1503
char *name = chan_id;
1504
1505
/* Check that the channel is not taken! */
1506
if (!strcmp(plchan->name, name))
1507
return true;
1508
1509
return false;
1510
}
1511
1512
/*
1513
* Just check that the device is there and active
1514
* TODO: turn this bit on/off depending on the number of physical channels
1515
* actually used, if it is zero... well shut it off. That will save some
1516
* power. Cut the clock at the same time.
1517
*/
1518
static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1519
{
1520
u32 val;
1521
1522
val = readl(pl08x->base + PL080_CONFIG);
1523
val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1524
/* We implicitly clear bit 1 and that means little-endian mode */
1525
val |= PL080_CONFIG_ENABLE;
1526
writel(val, pl08x->base + PL080_CONFIG);
1527
}
1528
1529
static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1530
{
1531
struct device *dev = txd->tx.chan->device->dev;
1532
1533
if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1534
if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1535
dma_unmap_single(dev, txd->src_addr, txd->len,
1536
DMA_TO_DEVICE);
1537
else
1538
dma_unmap_page(dev, txd->src_addr, txd->len,
1539
DMA_TO_DEVICE);
1540
}
1541
if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1542
if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1543
dma_unmap_single(dev, txd->dst_addr, txd->len,
1544
DMA_FROM_DEVICE);
1545
else
1546
dma_unmap_page(dev, txd->dst_addr, txd->len,
1547
DMA_FROM_DEVICE);
1548
}
1549
}
1550
1551
static void pl08x_tasklet(unsigned long data)
1552
{
1553
struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1554
struct pl08x_driver_data *pl08x = plchan->host;
1555
struct pl08x_txd *txd;
1556
unsigned long flags;
1557
1558
spin_lock_irqsave(&plchan->lock, flags);
1559
1560
txd = plchan->at;
1561
plchan->at = NULL;
1562
1563
if (txd) {
1564
/* Update last completed */
1565
plchan->lc = txd->tx.cookie;
1566
}
1567
1568
/* If a new descriptor is queued, set it up plchan->at is NULL here */
1569
if (!list_empty(&plchan->pend_list)) {
1570
struct pl08x_txd *next;
1571
1572
next = list_first_entry(&plchan->pend_list,
1573
struct pl08x_txd,
1574
node);
1575
list_del(&next->node);
1576
1577
pl08x_start_txd(plchan, next);
1578
} else if (plchan->phychan_hold) {
1579
/*
1580
* This channel is still in use - we have a new txd being
1581
* prepared and will soon be queued. Don't give up the
1582
* physical channel.
1583
*/
1584
} else {
1585
struct pl08x_dma_chan *waiting = NULL;
1586
1587
/*
1588
* No more jobs, so free up the physical channel
1589
* Free any allocated signal on slave transfers too
1590
*/
1591
release_phy_channel(plchan);
1592
plchan->state = PL08X_CHAN_IDLE;
1593
1594
/*
1595
* And NOW before anyone else can grab that free:d up
1596
* physical channel, see if there is some memcpy pending
1597
* that seriously needs to start because of being stacked
1598
* up while we were choking the physical channels with data.
1599
*/
1600
list_for_each_entry(waiting, &pl08x->memcpy.channels,
1601
chan.device_node) {
1602
if (waiting->state == PL08X_CHAN_WAITING &&
1603
waiting->waiting != NULL) {
1604
int ret;
1605
1606
/* This should REALLY not fail now */
1607
ret = prep_phy_channel(waiting,
1608
waiting->waiting);
1609
BUG_ON(ret);
1610
waiting->phychan_hold--;
1611
waiting->state = PL08X_CHAN_RUNNING;
1612
waiting->waiting = NULL;
1613
pl08x_issue_pending(&waiting->chan);
1614
break;
1615
}
1616
}
1617
}
1618
1619
spin_unlock_irqrestore(&plchan->lock, flags);
1620
1621
if (txd) {
1622
dma_async_tx_callback callback = txd->tx.callback;
1623
void *callback_param = txd->tx.callback_param;
1624
1625
/* Don't try to unmap buffers on slave channels */
1626
if (!plchan->slave)
1627
pl08x_unmap_buffers(txd);
1628
1629
/* Free the descriptor */
1630
spin_lock_irqsave(&plchan->lock, flags);
1631
pl08x_free_txd(pl08x, txd);
1632
spin_unlock_irqrestore(&plchan->lock, flags);
1633
1634
/* Callback to signal completion */
1635
if (callback)
1636
callback(callback_param);
1637
}
1638
}
1639
1640
static irqreturn_t pl08x_irq(int irq, void *dev)
1641
{
1642
struct pl08x_driver_data *pl08x = dev;
1643
u32 mask = 0;
1644
u32 val;
1645
int i;
1646
1647
val = readl(pl08x->base + PL080_ERR_STATUS);
1648
if (val) {
1649
/* An error interrupt (on one or more channels) */
1650
dev_err(&pl08x->adev->dev,
1651
"%s error interrupt, register value 0x%08x\n",
1652
__func__, val);
1653
/*
1654
* Simply clear ALL PL08X error interrupts,
1655
* regardless of channel and cause
1656
* FIXME: should be 0x00000003 on PL081 really.
1657
*/
1658
writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1659
}
1660
val = readl(pl08x->base + PL080_INT_STATUS);
1661
for (i = 0; i < pl08x->vd->channels; i++) {
1662
if ((1 << i) & val) {
1663
/* Locate physical channel */
1664
struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1665
struct pl08x_dma_chan *plchan = phychan->serving;
1666
1667
/* Schedule tasklet on this channel */
1668
tasklet_schedule(&plchan->tasklet);
1669
1670
mask |= (1 << i);
1671
}
1672
}
1673
/* Clear only the terminal interrupts on channels we processed */
1674
writel(mask, pl08x->base + PL080_TC_CLEAR);
1675
1676
return mask ? IRQ_HANDLED : IRQ_NONE;
1677
}
1678
1679
/*
1680
* Initialise the DMAC memcpy/slave channels.
1681
* Make a local wrapper to hold required data
1682
*/
1683
static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1684
struct dma_device *dmadev,
1685
unsigned int channels,
1686
bool slave)
1687
{
1688
struct pl08x_dma_chan *chan;
1689
int i;
1690
1691
INIT_LIST_HEAD(&dmadev->channels);
1692
1693
/*
1694
* Register as many many memcpy as we have physical channels,
1695
* we won't always be able to use all but the code will have
1696
* to cope with that situation.
1697
*/
1698
for (i = 0; i < channels; i++) {
1699
chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1700
if (!chan) {
1701
dev_err(&pl08x->adev->dev,
1702
"%s no memory for channel\n", __func__);
1703
return -ENOMEM;
1704
}
1705
1706
chan->host = pl08x;
1707
chan->state = PL08X_CHAN_IDLE;
1708
1709
if (slave) {
1710
chan->slave = true;
1711
chan->name = pl08x->pd->slave_channels[i].bus_id;
1712
chan->cd = &pl08x->pd->slave_channels[i];
1713
} else {
1714
chan->cd = &pl08x->pd->memcpy_channel;
1715
chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1716
if (!chan->name) {
1717
kfree(chan);
1718
return -ENOMEM;
1719
}
1720
}
1721
if (chan->cd->circular_buffer) {
1722
dev_err(&pl08x->adev->dev,
1723
"channel %s: circular buffers not supported\n",
1724
chan->name);
1725
kfree(chan);
1726
continue;
1727
}
1728
dev_info(&pl08x->adev->dev,
1729
"initialize virtual channel \"%s\"\n",
1730
chan->name);
1731
1732
chan->chan.device = dmadev;
1733
chan->chan.cookie = 0;
1734
chan->lc = 0;
1735
1736
spin_lock_init(&chan->lock);
1737
INIT_LIST_HEAD(&chan->pend_list);
1738
tasklet_init(&chan->tasklet, pl08x_tasklet,
1739
(unsigned long) chan);
1740
1741
list_add_tail(&chan->chan.device_node, &dmadev->channels);
1742
}
1743
dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1744
i, slave ? "slave" : "memcpy");
1745
return i;
1746
}
1747
1748
static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1749
{
1750
struct pl08x_dma_chan *chan = NULL;
1751
struct pl08x_dma_chan *next;
1752
1753
list_for_each_entry_safe(chan,
1754
next, &dmadev->channels, chan.device_node) {
1755
list_del(&chan->chan.device_node);
1756
kfree(chan);
1757
}
1758
}
1759
1760
#ifdef CONFIG_DEBUG_FS
1761
static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1762
{
1763
switch (state) {
1764
case PL08X_CHAN_IDLE:
1765
return "idle";
1766
case PL08X_CHAN_RUNNING:
1767
return "running";
1768
case PL08X_CHAN_PAUSED:
1769
return "paused";
1770
case PL08X_CHAN_WAITING:
1771
return "waiting";
1772
default:
1773
break;
1774
}
1775
return "UNKNOWN STATE";
1776
}
1777
1778
static int pl08x_debugfs_show(struct seq_file *s, void *data)
1779
{
1780
struct pl08x_driver_data *pl08x = s->private;
1781
struct pl08x_dma_chan *chan;
1782
struct pl08x_phy_chan *ch;
1783
unsigned long flags;
1784
int i;
1785
1786
seq_printf(s, "PL08x physical channels:\n");
1787
seq_printf(s, "CHANNEL:\tUSER:\n");
1788
seq_printf(s, "--------\t-----\n");
1789
for (i = 0; i < pl08x->vd->channels; i++) {
1790
struct pl08x_dma_chan *virt_chan;
1791
1792
ch = &pl08x->phy_chans[i];
1793
1794
spin_lock_irqsave(&ch->lock, flags);
1795
virt_chan = ch->serving;
1796
1797
seq_printf(s, "%d\t\t%s\n",
1798
ch->id, virt_chan ? virt_chan->name : "(none)");
1799
1800
spin_unlock_irqrestore(&ch->lock, flags);
1801
}
1802
1803
seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1804
seq_printf(s, "CHANNEL:\tSTATE:\n");
1805
seq_printf(s, "--------\t------\n");
1806
list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1807
seq_printf(s, "%s\t\t%s\n", chan->name,
1808
pl08x_state_str(chan->state));
1809
}
1810
1811
seq_printf(s, "\nPL08x virtual slave channels:\n");
1812
seq_printf(s, "CHANNEL:\tSTATE:\n");
1813
seq_printf(s, "--------\t------\n");
1814
list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1815
seq_printf(s, "%s\t\t%s\n", chan->name,
1816
pl08x_state_str(chan->state));
1817
}
1818
1819
return 0;
1820
}
1821
1822
static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1823
{
1824
return single_open(file, pl08x_debugfs_show, inode->i_private);
1825
}
1826
1827
static const struct file_operations pl08x_debugfs_operations = {
1828
.open = pl08x_debugfs_open,
1829
.read = seq_read,
1830
.llseek = seq_lseek,
1831
.release = single_release,
1832
};
1833
1834
static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1835
{
1836
/* Expose a simple debugfs interface to view all clocks */
1837
(void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1838
NULL, pl08x,
1839
&pl08x_debugfs_operations);
1840
}
1841
1842
#else
1843
static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1844
{
1845
}
1846
#endif
1847
1848
static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1849
{
1850
struct pl08x_driver_data *pl08x;
1851
const struct vendor_data *vd = id->data;
1852
int ret = 0;
1853
int i;
1854
1855
ret = amba_request_regions(adev, NULL);
1856
if (ret)
1857
return ret;
1858
1859
/* Create the driver state holder */
1860
pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1861
if (!pl08x) {
1862
ret = -ENOMEM;
1863
goto out_no_pl08x;
1864
}
1865
1866
/* Initialize memcpy engine */
1867
dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1868
pl08x->memcpy.dev = &adev->dev;
1869
pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1870
pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1871
pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1872
pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1873
pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1874
pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1875
pl08x->memcpy.device_control = pl08x_control;
1876
1877
/* Initialize slave engine */
1878
dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1879
pl08x->slave.dev = &adev->dev;
1880
pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1881
pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1882
pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1883
pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1884
pl08x->slave.device_issue_pending = pl08x_issue_pending;
1885
pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1886
pl08x->slave.device_control = pl08x_control;
1887
1888
/* Get the platform data */
1889
pl08x->pd = dev_get_platdata(&adev->dev);
1890
if (!pl08x->pd) {
1891
dev_err(&adev->dev, "no platform data supplied\n");
1892
goto out_no_platdata;
1893
}
1894
1895
/* Assign useful pointers to the driver state */
1896
pl08x->adev = adev;
1897
pl08x->vd = vd;
1898
1899
/* By default, AHB1 only. If dualmaster, from platform */
1900
pl08x->lli_buses = PL08X_AHB1;
1901
pl08x->mem_buses = PL08X_AHB1;
1902
if (pl08x->vd->dualmaster) {
1903
pl08x->lli_buses = pl08x->pd->lli_buses;
1904
pl08x->mem_buses = pl08x->pd->mem_buses;
1905
}
1906
1907
/* A DMA memory pool for LLIs, align on 1-byte boundary */
1908
pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1909
PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1910
if (!pl08x->pool) {
1911
ret = -ENOMEM;
1912
goto out_no_lli_pool;
1913
}
1914
1915
spin_lock_init(&pl08x->lock);
1916
1917
pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1918
if (!pl08x->base) {
1919
ret = -ENOMEM;
1920
goto out_no_ioremap;
1921
}
1922
1923
/* Turn on the PL08x */
1924
pl08x_ensure_on(pl08x);
1925
1926
/* Attach the interrupt handler */
1927
writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1928
writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1929
1930
ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1931
DRIVER_NAME, pl08x);
1932
if (ret) {
1933
dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1934
__func__, adev->irq[0]);
1935
goto out_no_irq;
1936
}
1937
1938
/* Initialize physical channels */
1939
pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
1940
GFP_KERNEL);
1941
if (!pl08x->phy_chans) {
1942
dev_err(&adev->dev, "%s failed to allocate "
1943
"physical channel holders\n",
1944
__func__);
1945
goto out_no_phychans;
1946
}
1947
1948
for (i = 0; i < vd->channels; i++) {
1949
struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1950
1951
ch->id = i;
1952
ch->base = pl08x->base + PL080_Cx_BASE(i);
1953
spin_lock_init(&ch->lock);
1954
ch->serving = NULL;
1955
ch->signal = -1;
1956
dev_info(&adev->dev,
1957
"physical channel %d is %s\n", i,
1958
pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1959
}
1960
1961
/* Register as many memcpy channels as there are physical channels */
1962
ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1963
pl08x->vd->channels, false);
1964
if (ret <= 0) {
1965
dev_warn(&pl08x->adev->dev,
1966
"%s failed to enumerate memcpy channels - %d\n",
1967
__func__, ret);
1968
goto out_no_memcpy;
1969
}
1970
pl08x->memcpy.chancnt = ret;
1971
1972
/* Register slave channels */
1973
ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1974
pl08x->pd->num_slave_channels,
1975
true);
1976
if (ret <= 0) {
1977
dev_warn(&pl08x->adev->dev,
1978
"%s failed to enumerate slave channels - %d\n",
1979
__func__, ret);
1980
goto out_no_slave;
1981
}
1982
pl08x->slave.chancnt = ret;
1983
1984
ret = dma_async_device_register(&pl08x->memcpy);
1985
if (ret) {
1986
dev_warn(&pl08x->adev->dev,
1987
"%s failed to register memcpy as an async device - %d\n",
1988
__func__, ret);
1989
goto out_no_memcpy_reg;
1990
}
1991
1992
ret = dma_async_device_register(&pl08x->slave);
1993
if (ret) {
1994
dev_warn(&pl08x->adev->dev,
1995
"%s failed to register slave as an async device - %d\n",
1996
__func__, ret);
1997
goto out_no_slave_reg;
1998
}
1999
2000
amba_set_drvdata(adev, pl08x);
2001
init_pl08x_debugfs(pl08x);
2002
dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2003
amba_part(adev), amba_rev(adev),
2004
(unsigned long long)adev->res.start, adev->irq[0]);
2005
return 0;
2006
2007
out_no_slave_reg:
2008
dma_async_device_unregister(&pl08x->memcpy);
2009
out_no_memcpy_reg:
2010
pl08x_free_virtual_channels(&pl08x->slave);
2011
out_no_slave:
2012
pl08x_free_virtual_channels(&pl08x->memcpy);
2013
out_no_memcpy:
2014
kfree(pl08x->phy_chans);
2015
out_no_phychans:
2016
free_irq(adev->irq[0], pl08x);
2017
out_no_irq:
2018
iounmap(pl08x->base);
2019
out_no_ioremap:
2020
dma_pool_destroy(pl08x->pool);
2021
out_no_lli_pool:
2022
out_no_platdata:
2023
kfree(pl08x);
2024
out_no_pl08x:
2025
amba_release_regions(adev);
2026
return ret;
2027
}
2028
2029
/* PL080 has 8 channels and the PL080 have just 2 */
2030
static struct vendor_data vendor_pl080 = {
2031
.channels = 8,
2032
.dualmaster = true,
2033
};
2034
2035
static struct vendor_data vendor_pl081 = {
2036
.channels = 2,
2037
.dualmaster = false,
2038
};
2039
2040
static struct amba_id pl08x_ids[] = {
2041
/* PL080 */
2042
{
2043
.id = 0x00041080,
2044
.mask = 0x000fffff,
2045
.data = &vendor_pl080,
2046
},
2047
/* PL081 */
2048
{
2049
.id = 0x00041081,
2050
.mask = 0x000fffff,
2051
.data = &vendor_pl081,
2052
},
2053
/* Nomadik 8815 PL080 variant */
2054
{
2055
.id = 0x00280880,
2056
.mask = 0x00ffffff,
2057
.data = &vendor_pl080,
2058
},
2059
{ 0, 0 },
2060
};
2061
2062
static struct amba_driver pl08x_amba_driver = {
2063
.drv.name = DRIVER_NAME,
2064
.id_table = pl08x_ids,
2065
.probe = pl08x_probe,
2066
};
2067
2068
static int __init pl08x_init(void)
2069
{
2070
int retval;
2071
retval = amba_driver_register(&pl08x_amba_driver);
2072
if (retval)
2073
printk(KERN_WARNING DRIVER_NAME
2074
"failed to register as an AMBA device (%d)\n",
2075
retval);
2076
return retval;
2077
}
2078
subsys_initcall(pl08x_init);
2079
2080