Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/dma/imx-sdma.c
15109 views
1
/*
2
* drivers/dma/imx-sdma.c
3
*
4
* This file contains a driver for the Freescale Smart DMA engine
5
*
6
* Copyright 2010 Sascha Hauer, Pengutronix <[email protected]>
7
*
8
* Based on code from Freescale:
9
*
10
* Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11
*
12
* The code contained herein is licensed under the GNU General Public
13
* License. You may obtain a copy of the GNU General Public License
14
* Version 2 or later at the following locations:
15
*
16
* http://www.opensource.org/licenses/gpl-license.html
17
* http://www.gnu.org/copyleft/gpl.html
18
*/
19
20
#include <linux/init.h>
21
#include <linux/types.h>
22
#include <linux/mm.h>
23
#include <linux/interrupt.h>
24
#include <linux/clk.h>
25
#include <linux/wait.h>
26
#include <linux/sched.h>
27
#include <linux/semaphore.h>
28
#include <linux/spinlock.h>
29
#include <linux/device.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/firmware.h>
32
#include <linux/slab.h>
33
#include <linux/platform_device.h>
34
#include <linux/dmaengine.h>
35
36
#include <asm/irq.h>
37
#include <mach/sdma.h>
38
#include <mach/dma.h>
39
#include <mach/hardware.h>
40
41
/* SDMA registers */
42
#define SDMA_H_C0PTR 0x000
43
#define SDMA_H_INTR 0x004
44
#define SDMA_H_STATSTOP 0x008
45
#define SDMA_H_START 0x00c
46
#define SDMA_H_EVTOVR 0x010
47
#define SDMA_H_DSPOVR 0x014
48
#define SDMA_H_HOSTOVR 0x018
49
#define SDMA_H_EVTPEND 0x01c
50
#define SDMA_H_DSPENBL 0x020
51
#define SDMA_H_RESET 0x024
52
#define SDMA_H_EVTERR 0x028
53
#define SDMA_H_INTRMSK 0x02c
54
#define SDMA_H_PSW 0x030
55
#define SDMA_H_EVTERRDBG 0x034
56
#define SDMA_H_CONFIG 0x038
57
#define SDMA_ONCE_ENB 0x040
58
#define SDMA_ONCE_DATA 0x044
59
#define SDMA_ONCE_INSTR 0x048
60
#define SDMA_ONCE_STAT 0x04c
61
#define SDMA_ONCE_CMD 0x050
62
#define SDMA_EVT_MIRROR 0x054
63
#define SDMA_ILLINSTADDR 0x058
64
#define SDMA_CHN0ADDR 0x05c
65
#define SDMA_ONCE_RTB 0x060
66
#define SDMA_XTRIG_CONF1 0x070
67
#define SDMA_XTRIG_CONF2 0x074
68
#define SDMA_CHNENBL0_V2 0x200
69
#define SDMA_CHNENBL0_V1 0x080
70
#define SDMA_CHNPRI_0 0x100
71
72
/*
73
* Buffer descriptor status values.
74
*/
75
#define BD_DONE 0x01
76
#define BD_WRAP 0x02
77
#define BD_CONT 0x04
78
#define BD_INTR 0x08
79
#define BD_RROR 0x10
80
#define BD_LAST 0x20
81
#define BD_EXTD 0x80
82
83
/*
84
* Data Node descriptor status values.
85
*/
86
#define DND_END_OF_FRAME 0x80
87
#define DND_END_OF_XFER 0x40
88
#define DND_DONE 0x20
89
#define DND_UNUSED 0x01
90
91
/*
92
* IPCV2 descriptor status values.
93
*/
94
#define BD_IPCV2_END_OF_FRAME 0x40
95
96
#define IPCV2_MAX_NODES 50
97
/*
98
* Error bit set in the CCB status field by the SDMA,
99
* in setbd routine, in case of a transfer error
100
*/
101
#define DATA_ERROR 0x10000000
102
103
/*
104
* Buffer descriptor commands.
105
*/
106
#define C0_ADDR 0x01
107
#define C0_LOAD 0x02
108
#define C0_DUMP 0x03
109
#define C0_SETCTX 0x07
110
#define C0_GETCTX 0x03
111
#define C0_SETDM 0x01
112
#define C0_SETPM 0x04
113
#define C0_GETDM 0x02
114
#define C0_GETPM 0x08
115
/*
116
* Change endianness indicator in the BD command field
117
*/
118
#define CHANGE_ENDIANNESS 0x80
119
120
/*
121
* Mode/Count of data node descriptors - IPCv2
122
*/
123
struct sdma_mode_count {
124
u32 count : 16; /* size of the buffer pointed by this BD */
125
u32 status : 8; /* E,R,I,C,W,D status bits stored here */
126
u32 command : 8; /* command mostlky used for channel 0 */
127
};
128
129
/*
130
* Buffer descriptor
131
*/
132
struct sdma_buffer_descriptor {
133
struct sdma_mode_count mode;
134
u32 buffer_addr; /* address of the buffer described */
135
u32 ext_buffer_addr; /* extended buffer address */
136
} __attribute__ ((packed));
137
138
/**
139
* struct sdma_channel_control - Channel control Block
140
*
141
* @current_bd_ptr current buffer descriptor processed
142
* @base_bd_ptr first element of buffer descriptor array
143
* @unused padding. The SDMA engine expects an array of 128 byte
144
* control blocks
145
*/
146
struct sdma_channel_control {
147
u32 current_bd_ptr;
148
u32 base_bd_ptr;
149
u32 unused[2];
150
} __attribute__ ((packed));
151
152
/**
153
* struct sdma_state_registers - SDMA context for a channel
154
*
155
* @pc: program counter
156
* @t: test bit: status of arithmetic & test instruction
157
* @rpc: return program counter
158
* @sf: source fault while loading data
159
* @spc: loop start program counter
160
* @df: destination fault while storing data
161
* @epc: loop end program counter
162
* @lm: loop mode
163
*/
164
struct sdma_state_registers {
165
u32 pc :14;
166
u32 unused1: 1;
167
u32 t : 1;
168
u32 rpc :14;
169
u32 unused0: 1;
170
u32 sf : 1;
171
u32 spc :14;
172
u32 unused2: 1;
173
u32 df : 1;
174
u32 epc :14;
175
u32 lm : 2;
176
} __attribute__ ((packed));
177
178
/**
179
* struct sdma_context_data - sdma context specific to a channel
180
*
181
* @channel_state: channel state bits
182
* @gReg: general registers
183
* @mda: burst dma destination address register
184
* @msa: burst dma source address register
185
* @ms: burst dma status register
186
* @md: burst dma data register
187
* @pda: peripheral dma destination address register
188
* @psa: peripheral dma source address register
189
* @ps: peripheral dma status register
190
* @pd: peripheral dma data register
191
* @ca: CRC polynomial register
192
* @cs: CRC accumulator register
193
* @dda: dedicated core destination address register
194
* @dsa: dedicated core source address register
195
* @ds: dedicated core status register
196
* @dd: dedicated core data register
197
*/
198
struct sdma_context_data {
199
struct sdma_state_registers channel_state;
200
u32 gReg[8];
201
u32 mda;
202
u32 msa;
203
u32 ms;
204
u32 md;
205
u32 pda;
206
u32 psa;
207
u32 ps;
208
u32 pd;
209
u32 ca;
210
u32 cs;
211
u32 dda;
212
u32 dsa;
213
u32 ds;
214
u32 dd;
215
u32 scratch0;
216
u32 scratch1;
217
u32 scratch2;
218
u32 scratch3;
219
u32 scratch4;
220
u32 scratch5;
221
u32 scratch6;
222
u32 scratch7;
223
} __attribute__ ((packed));
224
225
#define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
226
227
struct sdma_engine;
228
229
/**
230
* struct sdma_channel - housekeeping for a SDMA channel
231
*
232
* @sdma pointer to the SDMA engine for this channel
233
* @channel the channel number, matches dmaengine chan_id + 1
234
* @direction transfer type. Needed for setting SDMA script
235
* @peripheral_type Peripheral type. Needed for setting SDMA script
236
* @event_id0 aka dma request line
237
* @event_id1 for channels that use 2 events
238
* @word_size peripheral access size
239
* @buf_tail ID of the buffer that was processed
240
* @done channel completion
241
* @num_bd max NUM_BD. number of descriptors currently handling
242
*/
243
struct sdma_channel {
244
struct sdma_engine *sdma;
245
unsigned int channel;
246
enum dma_data_direction direction;
247
enum sdma_peripheral_type peripheral_type;
248
unsigned int event_id0;
249
unsigned int event_id1;
250
enum dma_slave_buswidth word_size;
251
unsigned int buf_tail;
252
struct completion done;
253
unsigned int num_bd;
254
struct sdma_buffer_descriptor *bd;
255
dma_addr_t bd_phys;
256
unsigned int pc_from_device, pc_to_device;
257
unsigned long flags;
258
dma_addr_t per_address;
259
u32 event_mask0, event_mask1;
260
u32 watermark_level;
261
u32 shp_addr, per_addr;
262
struct dma_chan chan;
263
spinlock_t lock;
264
struct dma_async_tx_descriptor desc;
265
dma_cookie_t last_completed;
266
enum dma_status status;
267
};
268
269
#define IMX_DMA_SG_LOOP (1 << 0)
270
271
#define MAX_DMA_CHANNELS 32
272
#define MXC_SDMA_DEFAULT_PRIORITY 1
273
#define MXC_SDMA_MIN_PRIORITY 1
274
#define MXC_SDMA_MAX_PRIORITY 7
275
276
#define SDMA_FIRMWARE_MAGIC 0x414d4453
277
278
/**
279
* struct sdma_firmware_header - Layout of the firmware image
280
*
281
* @magic "SDMA"
282
* @version_major increased whenever layout of struct sdma_script_start_addrs
283
* changes.
284
* @version_minor firmware minor version (for binary compatible changes)
285
* @script_addrs_start offset of struct sdma_script_start_addrs in this image
286
* @num_script_addrs Number of script addresses in this image
287
* @ram_code_start offset of SDMA ram image in this firmware image
288
* @ram_code_size size of SDMA ram image
289
* @script_addrs Stores the start address of the SDMA scripts
290
* (in SDMA memory space)
291
*/
292
struct sdma_firmware_header {
293
u32 magic;
294
u32 version_major;
295
u32 version_minor;
296
u32 script_addrs_start;
297
u32 num_script_addrs;
298
u32 ram_code_start;
299
u32 ram_code_size;
300
};
301
302
struct sdma_engine {
303
struct device *dev;
304
struct device_dma_parameters dma_parms;
305
struct sdma_channel channel[MAX_DMA_CHANNELS];
306
struct sdma_channel_control *channel_control;
307
void __iomem *regs;
308
unsigned int version;
309
unsigned int num_events;
310
struct sdma_context_data *context;
311
dma_addr_t context_phys;
312
struct dma_device dma_device;
313
struct clk *clk;
314
struct sdma_script_start_addrs *script_addrs;
315
};
316
317
#define SDMA_H_CONFIG_DSPDMA (1 << 12) /* indicates if the DSPDMA is used */
318
#define SDMA_H_CONFIG_RTD_PINS (1 << 11) /* indicates if Real-Time Debug pins are enabled */
319
#define SDMA_H_CONFIG_ACR (1 << 4) /* indicates if AHB freq /core freq = 2 or 1 */
320
#define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
321
322
static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
323
{
324
u32 chnenbl0 = (sdma->version == 2 ? SDMA_CHNENBL0_V2 : SDMA_CHNENBL0_V1);
325
326
return chnenbl0 + event * 4;
327
}
328
329
static int sdma_config_ownership(struct sdma_channel *sdmac,
330
bool event_override, bool mcu_override, bool dsp_override)
331
{
332
struct sdma_engine *sdma = sdmac->sdma;
333
int channel = sdmac->channel;
334
u32 evt, mcu, dsp;
335
336
if (event_override && mcu_override && dsp_override)
337
return -EINVAL;
338
339
evt = __raw_readl(sdma->regs + SDMA_H_EVTOVR);
340
mcu = __raw_readl(sdma->regs + SDMA_H_HOSTOVR);
341
dsp = __raw_readl(sdma->regs + SDMA_H_DSPOVR);
342
343
if (dsp_override)
344
dsp &= ~(1 << channel);
345
else
346
dsp |= (1 << channel);
347
348
if (event_override)
349
evt &= ~(1 << channel);
350
else
351
evt |= (1 << channel);
352
353
if (mcu_override)
354
mcu &= ~(1 << channel);
355
else
356
mcu |= (1 << channel);
357
358
__raw_writel(evt, sdma->regs + SDMA_H_EVTOVR);
359
__raw_writel(mcu, sdma->regs + SDMA_H_HOSTOVR);
360
__raw_writel(dsp, sdma->regs + SDMA_H_DSPOVR);
361
362
return 0;
363
}
364
365
/*
366
* sdma_run_channel - run a channel and wait till it's done
367
*/
368
static int sdma_run_channel(struct sdma_channel *sdmac)
369
{
370
struct sdma_engine *sdma = sdmac->sdma;
371
int channel = sdmac->channel;
372
int ret;
373
374
init_completion(&sdmac->done);
375
376
__raw_writel(1 << channel, sdma->regs + SDMA_H_START);
377
378
ret = wait_for_completion_timeout(&sdmac->done, HZ);
379
380
return ret ? 0 : -ETIMEDOUT;
381
}
382
383
static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
384
u32 address)
385
{
386
struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
387
void *buf_virt;
388
dma_addr_t buf_phys;
389
int ret;
390
391
buf_virt = dma_alloc_coherent(NULL,
392
size,
393
&buf_phys, GFP_KERNEL);
394
if (!buf_virt)
395
return -ENOMEM;
396
397
bd0->mode.command = C0_SETPM;
398
bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
399
bd0->mode.count = size / 2;
400
bd0->buffer_addr = buf_phys;
401
bd0->ext_buffer_addr = address;
402
403
memcpy(buf_virt, buf, size);
404
405
ret = sdma_run_channel(&sdma->channel[0]);
406
407
dma_free_coherent(NULL, size, buf_virt, buf_phys);
408
409
return ret;
410
}
411
412
static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
413
{
414
struct sdma_engine *sdma = sdmac->sdma;
415
int channel = sdmac->channel;
416
u32 val;
417
u32 chnenbl = chnenbl_ofs(sdma, event);
418
419
val = __raw_readl(sdma->regs + chnenbl);
420
val |= (1 << channel);
421
__raw_writel(val, sdma->regs + chnenbl);
422
}
423
424
static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
425
{
426
struct sdma_engine *sdma = sdmac->sdma;
427
int channel = sdmac->channel;
428
u32 chnenbl = chnenbl_ofs(sdma, event);
429
u32 val;
430
431
val = __raw_readl(sdma->regs + chnenbl);
432
val &= ~(1 << channel);
433
__raw_writel(val, sdma->regs + chnenbl);
434
}
435
436
static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
437
{
438
struct sdma_buffer_descriptor *bd;
439
440
/*
441
* loop mode. Iterate over descriptors, re-setup them and
442
* call callback function.
443
*/
444
while (1) {
445
bd = &sdmac->bd[sdmac->buf_tail];
446
447
if (bd->mode.status & BD_DONE)
448
break;
449
450
if (bd->mode.status & BD_RROR)
451
sdmac->status = DMA_ERROR;
452
else
453
sdmac->status = DMA_IN_PROGRESS;
454
455
bd->mode.status |= BD_DONE;
456
sdmac->buf_tail++;
457
sdmac->buf_tail %= sdmac->num_bd;
458
459
if (sdmac->desc.callback)
460
sdmac->desc.callback(sdmac->desc.callback_param);
461
}
462
}
463
464
static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
465
{
466
struct sdma_buffer_descriptor *bd;
467
int i, error = 0;
468
469
/*
470
* non loop mode. Iterate over all descriptors, collect
471
* errors and call callback function
472
*/
473
for (i = 0; i < sdmac->num_bd; i++) {
474
bd = &sdmac->bd[i];
475
476
if (bd->mode.status & (BD_DONE | BD_RROR))
477
error = -EIO;
478
}
479
480
if (error)
481
sdmac->status = DMA_ERROR;
482
else
483
sdmac->status = DMA_SUCCESS;
484
485
if (sdmac->desc.callback)
486
sdmac->desc.callback(sdmac->desc.callback_param);
487
sdmac->last_completed = sdmac->desc.cookie;
488
}
489
490
static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
491
{
492
complete(&sdmac->done);
493
494
/* not interested in channel 0 interrupts */
495
if (sdmac->channel == 0)
496
return;
497
498
if (sdmac->flags & IMX_DMA_SG_LOOP)
499
sdma_handle_channel_loop(sdmac);
500
else
501
mxc_sdma_handle_channel_normal(sdmac);
502
}
503
504
static irqreturn_t sdma_int_handler(int irq, void *dev_id)
505
{
506
struct sdma_engine *sdma = dev_id;
507
u32 stat;
508
509
stat = __raw_readl(sdma->regs + SDMA_H_INTR);
510
__raw_writel(stat, sdma->regs + SDMA_H_INTR);
511
512
while (stat) {
513
int channel = fls(stat) - 1;
514
struct sdma_channel *sdmac = &sdma->channel[channel];
515
516
mxc_sdma_handle_channel(sdmac);
517
518
stat &= ~(1 << channel);
519
}
520
521
return IRQ_HANDLED;
522
}
523
524
/*
525
* sets the pc of SDMA script according to the peripheral type
526
*/
527
static void sdma_get_pc(struct sdma_channel *sdmac,
528
enum sdma_peripheral_type peripheral_type)
529
{
530
struct sdma_engine *sdma = sdmac->sdma;
531
int per_2_emi = 0, emi_2_per = 0;
532
/*
533
* These are needed once we start to support transfers between
534
* two peripherals or memory-to-memory transfers
535
*/
536
int per_2_per = 0, emi_2_emi = 0;
537
538
sdmac->pc_from_device = 0;
539
sdmac->pc_to_device = 0;
540
541
switch (peripheral_type) {
542
case IMX_DMATYPE_MEMORY:
543
emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
544
break;
545
case IMX_DMATYPE_DSP:
546
emi_2_per = sdma->script_addrs->bp_2_ap_addr;
547
per_2_emi = sdma->script_addrs->ap_2_bp_addr;
548
break;
549
case IMX_DMATYPE_FIRI:
550
per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
551
emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
552
break;
553
case IMX_DMATYPE_UART:
554
per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
555
emi_2_per = sdma->script_addrs->mcu_2_app_addr;
556
break;
557
case IMX_DMATYPE_UART_SP:
558
per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
559
emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
560
break;
561
case IMX_DMATYPE_ATA:
562
per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
563
emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
564
break;
565
case IMX_DMATYPE_CSPI:
566
case IMX_DMATYPE_EXT:
567
case IMX_DMATYPE_SSI:
568
per_2_emi = sdma->script_addrs->app_2_mcu_addr;
569
emi_2_per = sdma->script_addrs->mcu_2_app_addr;
570
break;
571
case IMX_DMATYPE_SSI_SP:
572
case IMX_DMATYPE_MMC:
573
case IMX_DMATYPE_SDHC:
574
case IMX_DMATYPE_CSPI_SP:
575
case IMX_DMATYPE_ESAI:
576
case IMX_DMATYPE_MSHC_SP:
577
per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
578
emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
579
break;
580
case IMX_DMATYPE_ASRC:
581
per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
582
emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
583
per_2_per = sdma->script_addrs->per_2_per_addr;
584
break;
585
case IMX_DMATYPE_MSHC:
586
per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
587
emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
588
break;
589
case IMX_DMATYPE_CCM:
590
per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
591
break;
592
case IMX_DMATYPE_SPDIF:
593
per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
594
emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
595
break;
596
case IMX_DMATYPE_IPU_MEMORY:
597
emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
598
break;
599
default:
600
break;
601
}
602
603
sdmac->pc_from_device = per_2_emi;
604
sdmac->pc_to_device = emi_2_per;
605
}
606
607
static int sdma_load_context(struct sdma_channel *sdmac)
608
{
609
struct sdma_engine *sdma = sdmac->sdma;
610
int channel = sdmac->channel;
611
int load_address;
612
struct sdma_context_data *context = sdma->context;
613
struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
614
int ret;
615
616
if (sdmac->direction == DMA_FROM_DEVICE) {
617
load_address = sdmac->pc_from_device;
618
} else {
619
load_address = sdmac->pc_to_device;
620
}
621
622
if (load_address < 0)
623
return load_address;
624
625
dev_dbg(sdma->dev, "load_address = %d\n", load_address);
626
dev_dbg(sdma->dev, "wml = 0x%08x\n", sdmac->watermark_level);
627
dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
628
dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
629
dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", sdmac->event_mask0);
630
dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", sdmac->event_mask1);
631
632
memset(context, 0, sizeof(*context));
633
context->channel_state.pc = load_address;
634
635
/* Send by context the event mask,base address for peripheral
636
* and watermark level
637
*/
638
context->gReg[0] = sdmac->event_mask1;
639
context->gReg[1] = sdmac->event_mask0;
640
context->gReg[2] = sdmac->per_addr;
641
context->gReg[6] = sdmac->shp_addr;
642
context->gReg[7] = sdmac->watermark_level;
643
644
bd0->mode.command = C0_SETDM;
645
bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
646
bd0->mode.count = sizeof(*context) / 4;
647
bd0->buffer_addr = sdma->context_phys;
648
bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
649
650
ret = sdma_run_channel(&sdma->channel[0]);
651
652
return ret;
653
}
654
655
static void sdma_disable_channel(struct sdma_channel *sdmac)
656
{
657
struct sdma_engine *sdma = sdmac->sdma;
658
int channel = sdmac->channel;
659
660
__raw_writel(1 << channel, sdma->regs + SDMA_H_STATSTOP);
661
sdmac->status = DMA_ERROR;
662
}
663
664
static int sdma_config_channel(struct sdma_channel *sdmac)
665
{
666
int ret;
667
668
sdma_disable_channel(sdmac);
669
670
sdmac->event_mask0 = 0;
671
sdmac->event_mask1 = 0;
672
sdmac->shp_addr = 0;
673
sdmac->per_addr = 0;
674
675
if (sdmac->event_id0) {
676
if (sdmac->event_id0 > 32)
677
return -EINVAL;
678
sdma_event_enable(sdmac, sdmac->event_id0);
679
}
680
681
switch (sdmac->peripheral_type) {
682
case IMX_DMATYPE_DSP:
683
sdma_config_ownership(sdmac, false, true, true);
684
break;
685
case IMX_DMATYPE_MEMORY:
686
sdma_config_ownership(sdmac, false, true, false);
687
break;
688
default:
689
sdma_config_ownership(sdmac, true, true, false);
690
break;
691
}
692
693
sdma_get_pc(sdmac, sdmac->peripheral_type);
694
695
if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
696
(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
697
/* Handle multiple event channels differently */
698
if (sdmac->event_id1) {
699
sdmac->event_mask1 = 1 << (sdmac->event_id1 % 32);
700
if (sdmac->event_id1 > 31)
701
sdmac->watermark_level |= 1 << 31;
702
sdmac->event_mask0 = 1 << (sdmac->event_id0 % 32);
703
if (sdmac->event_id0 > 31)
704
sdmac->watermark_level |= 1 << 30;
705
} else {
706
sdmac->event_mask0 = 1 << sdmac->event_id0;
707
sdmac->event_mask1 = 1 << (sdmac->event_id0 - 32);
708
}
709
/* Watermark Level */
710
sdmac->watermark_level |= sdmac->watermark_level;
711
/* Address */
712
sdmac->shp_addr = sdmac->per_address;
713
} else {
714
sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
715
}
716
717
ret = sdma_load_context(sdmac);
718
719
return ret;
720
}
721
722
static int sdma_set_channel_priority(struct sdma_channel *sdmac,
723
unsigned int priority)
724
{
725
struct sdma_engine *sdma = sdmac->sdma;
726
int channel = sdmac->channel;
727
728
if (priority < MXC_SDMA_MIN_PRIORITY
729
|| priority > MXC_SDMA_MAX_PRIORITY) {
730
return -EINVAL;
731
}
732
733
__raw_writel(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
734
735
return 0;
736
}
737
738
static int sdma_request_channel(struct sdma_channel *sdmac)
739
{
740
struct sdma_engine *sdma = sdmac->sdma;
741
int channel = sdmac->channel;
742
int ret = -EBUSY;
743
744
sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
745
if (!sdmac->bd) {
746
ret = -ENOMEM;
747
goto out;
748
}
749
750
memset(sdmac->bd, 0, PAGE_SIZE);
751
752
sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
753
sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
754
755
clk_enable(sdma->clk);
756
757
sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
758
759
init_completion(&sdmac->done);
760
761
sdmac->buf_tail = 0;
762
763
return 0;
764
out:
765
766
return ret;
767
}
768
769
static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
770
{
771
__raw_writel(1 << channel, sdma->regs + SDMA_H_START);
772
}
773
774
static dma_cookie_t sdma_assign_cookie(struct sdma_channel *sdmac)
775
{
776
dma_cookie_t cookie = sdmac->chan.cookie;
777
778
if (++cookie < 0)
779
cookie = 1;
780
781
sdmac->chan.cookie = cookie;
782
sdmac->desc.cookie = cookie;
783
784
return cookie;
785
}
786
787
static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
788
{
789
return container_of(chan, struct sdma_channel, chan);
790
}
791
792
static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
793
{
794
struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
795
struct sdma_engine *sdma = sdmac->sdma;
796
dma_cookie_t cookie;
797
798
spin_lock_irq(&sdmac->lock);
799
800
cookie = sdma_assign_cookie(sdmac);
801
802
sdma_enable_channel(sdma, sdmac->channel);
803
804
spin_unlock_irq(&sdmac->lock);
805
806
return cookie;
807
}
808
809
static int sdma_alloc_chan_resources(struct dma_chan *chan)
810
{
811
struct sdma_channel *sdmac = to_sdma_chan(chan);
812
struct imx_dma_data *data = chan->private;
813
int prio, ret;
814
815
if (!data)
816
return -EINVAL;
817
818
switch (data->priority) {
819
case DMA_PRIO_HIGH:
820
prio = 3;
821
break;
822
case DMA_PRIO_MEDIUM:
823
prio = 2;
824
break;
825
case DMA_PRIO_LOW:
826
default:
827
prio = 1;
828
break;
829
}
830
831
sdmac->peripheral_type = data->peripheral_type;
832
sdmac->event_id0 = data->dma_request;
833
ret = sdma_set_channel_priority(sdmac, prio);
834
if (ret)
835
return ret;
836
837
ret = sdma_request_channel(sdmac);
838
if (ret)
839
return ret;
840
841
dma_async_tx_descriptor_init(&sdmac->desc, chan);
842
sdmac->desc.tx_submit = sdma_tx_submit;
843
/* txd.flags will be overwritten in prep funcs */
844
sdmac->desc.flags = DMA_CTRL_ACK;
845
846
return 0;
847
}
848
849
static void sdma_free_chan_resources(struct dma_chan *chan)
850
{
851
struct sdma_channel *sdmac = to_sdma_chan(chan);
852
struct sdma_engine *sdma = sdmac->sdma;
853
854
sdma_disable_channel(sdmac);
855
856
if (sdmac->event_id0)
857
sdma_event_disable(sdmac, sdmac->event_id0);
858
if (sdmac->event_id1)
859
sdma_event_disable(sdmac, sdmac->event_id1);
860
861
sdmac->event_id0 = 0;
862
sdmac->event_id1 = 0;
863
864
sdma_set_channel_priority(sdmac, 0);
865
866
dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
867
868
clk_disable(sdma->clk);
869
}
870
871
static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
872
struct dma_chan *chan, struct scatterlist *sgl,
873
unsigned int sg_len, enum dma_data_direction direction,
874
unsigned long flags)
875
{
876
struct sdma_channel *sdmac = to_sdma_chan(chan);
877
struct sdma_engine *sdma = sdmac->sdma;
878
int ret, i, count;
879
int channel = sdmac->channel;
880
struct scatterlist *sg;
881
882
if (sdmac->status == DMA_IN_PROGRESS)
883
return NULL;
884
sdmac->status = DMA_IN_PROGRESS;
885
886
sdmac->flags = 0;
887
888
dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
889
sg_len, channel);
890
891
sdmac->direction = direction;
892
ret = sdma_load_context(sdmac);
893
if (ret)
894
goto err_out;
895
896
if (sg_len > NUM_BD) {
897
dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
898
channel, sg_len, NUM_BD);
899
ret = -EINVAL;
900
goto err_out;
901
}
902
903
for_each_sg(sgl, sg, sg_len, i) {
904
struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
905
int param;
906
907
bd->buffer_addr = sg->dma_address;
908
909
count = sg->length;
910
911
if (count > 0xffff) {
912
dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
913
channel, count, 0xffff);
914
ret = -EINVAL;
915
goto err_out;
916
}
917
918
bd->mode.count = count;
919
920
if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
921
ret = -EINVAL;
922
goto err_out;
923
}
924
925
switch (sdmac->word_size) {
926
case DMA_SLAVE_BUSWIDTH_4_BYTES:
927
bd->mode.command = 0;
928
if (count & 3 || sg->dma_address & 3)
929
return NULL;
930
break;
931
case DMA_SLAVE_BUSWIDTH_2_BYTES:
932
bd->mode.command = 2;
933
if (count & 1 || sg->dma_address & 1)
934
return NULL;
935
break;
936
case DMA_SLAVE_BUSWIDTH_1_BYTE:
937
bd->mode.command = 1;
938
break;
939
default:
940
return NULL;
941
}
942
943
param = BD_DONE | BD_EXTD | BD_CONT;
944
945
if (i + 1 == sg_len) {
946
param |= BD_INTR;
947
param |= BD_LAST;
948
param &= ~BD_CONT;
949
}
950
951
dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
952
i, count, sg->dma_address,
953
param & BD_WRAP ? "wrap" : "",
954
param & BD_INTR ? " intr" : "");
955
956
bd->mode.status = param;
957
}
958
959
sdmac->num_bd = sg_len;
960
sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
961
962
return &sdmac->desc;
963
err_out:
964
sdmac->status = DMA_ERROR;
965
return NULL;
966
}
967
968
static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
969
struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
970
size_t period_len, enum dma_data_direction direction)
971
{
972
struct sdma_channel *sdmac = to_sdma_chan(chan);
973
struct sdma_engine *sdma = sdmac->sdma;
974
int num_periods = buf_len / period_len;
975
int channel = sdmac->channel;
976
int ret, i = 0, buf = 0;
977
978
dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
979
980
if (sdmac->status == DMA_IN_PROGRESS)
981
return NULL;
982
983
sdmac->status = DMA_IN_PROGRESS;
984
985
sdmac->flags |= IMX_DMA_SG_LOOP;
986
sdmac->direction = direction;
987
ret = sdma_load_context(sdmac);
988
if (ret)
989
goto err_out;
990
991
if (num_periods > NUM_BD) {
992
dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
993
channel, num_periods, NUM_BD);
994
goto err_out;
995
}
996
997
if (period_len > 0xffff) {
998
dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
999
channel, period_len, 0xffff);
1000
goto err_out;
1001
}
1002
1003
while (buf < buf_len) {
1004
struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1005
int param;
1006
1007
bd->buffer_addr = dma_addr;
1008
1009
bd->mode.count = period_len;
1010
1011
if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1012
goto err_out;
1013
if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1014
bd->mode.command = 0;
1015
else
1016
bd->mode.command = sdmac->word_size;
1017
1018
param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1019
if (i + 1 == num_periods)
1020
param |= BD_WRAP;
1021
1022
dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1023
i, period_len, dma_addr,
1024
param & BD_WRAP ? "wrap" : "",
1025
param & BD_INTR ? " intr" : "");
1026
1027
bd->mode.status = param;
1028
1029
dma_addr += period_len;
1030
buf += period_len;
1031
1032
i++;
1033
}
1034
1035
sdmac->num_bd = num_periods;
1036
sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1037
1038
return &sdmac->desc;
1039
err_out:
1040
sdmac->status = DMA_ERROR;
1041
return NULL;
1042
}
1043
1044
static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1045
unsigned long arg)
1046
{
1047
struct sdma_channel *sdmac = to_sdma_chan(chan);
1048
struct dma_slave_config *dmaengine_cfg = (void *)arg;
1049
1050
switch (cmd) {
1051
case DMA_TERMINATE_ALL:
1052
sdma_disable_channel(sdmac);
1053
return 0;
1054
case DMA_SLAVE_CONFIG:
1055
if (dmaengine_cfg->direction == DMA_FROM_DEVICE) {
1056
sdmac->per_address = dmaengine_cfg->src_addr;
1057
sdmac->watermark_level = dmaengine_cfg->src_maxburst;
1058
sdmac->word_size = dmaengine_cfg->src_addr_width;
1059
} else {
1060
sdmac->per_address = dmaengine_cfg->dst_addr;
1061
sdmac->watermark_level = dmaengine_cfg->dst_maxburst;
1062
sdmac->word_size = dmaengine_cfg->dst_addr_width;
1063
}
1064
return sdma_config_channel(sdmac);
1065
default:
1066
return -ENOSYS;
1067
}
1068
1069
return -EINVAL;
1070
}
1071
1072
static enum dma_status sdma_tx_status(struct dma_chan *chan,
1073
dma_cookie_t cookie,
1074
struct dma_tx_state *txstate)
1075
{
1076
struct sdma_channel *sdmac = to_sdma_chan(chan);
1077
dma_cookie_t last_used;
1078
1079
last_used = chan->cookie;
1080
1081
dma_set_tx_state(txstate, sdmac->last_completed, last_used, 0);
1082
1083
return sdmac->status;
1084
}
1085
1086
static void sdma_issue_pending(struct dma_chan *chan)
1087
{
1088
/*
1089
* Nothing to do. We only have a single descriptor
1090
*/
1091
}
1092
1093
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1094
1095
static void sdma_add_scripts(struct sdma_engine *sdma,
1096
const struct sdma_script_start_addrs *addr)
1097
{
1098
s32 *addr_arr = (u32 *)addr;
1099
s32 *saddr_arr = (u32 *)sdma->script_addrs;
1100
int i;
1101
1102
for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1103
if (addr_arr[i] > 0)
1104
saddr_arr[i] = addr_arr[i];
1105
}
1106
1107
static int __init sdma_get_firmware(struct sdma_engine *sdma,
1108
const char *cpu_name, int to_version)
1109
{
1110
const struct firmware *fw;
1111
char *fwname;
1112
const struct sdma_firmware_header *header;
1113
int ret;
1114
const struct sdma_script_start_addrs *addr;
1115
unsigned short *ram_code;
1116
1117
fwname = kasprintf(GFP_KERNEL, "sdma-%s-to%d.bin", cpu_name, to_version);
1118
if (!fwname)
1119
return -ENOMEM;
1120
1121
ret = request_firmware(&fw, fwname, sdma->dev);
1122
if (ret) {
1123
kfree(fwname);
1124
return ret;
1125
}
1126
kfree(fwname);
1127
1128
if (fw->size < sizeof(*header))
1129
goto err_firmware;
1130
1131
header = (struct sdma_firmware_header *)fw->data;
1132
1133
if (header->magic != SDMA_FIRMWARE_MAGIC)
1134
goto err_firmware;
1135
if (header->ram_code_start + header->ram_code_size > fw->size)
1136
goto err_firmware;
1137
1138
addr = (void *)header + header->script_addrs_start;
1139
ram_code = (void *)header + header->ram_code_start;
1140
1141
clk_enable(sdma->clk);
1142
/* download the RAM image for SDMA */
1143
sdma_load_script(sdma, ram_code,
1144
header->ram_code_size,
1145
addr->ram_code_start_addr);
1146
clk_disable(sdma->clk);
1147
1148
sdma_add_scripts(sdma, addr);
1149
1150
dev_info(sdma->dev, "loaded firmware %d.%d\n",
1151
header->version_major,
1152
header->version_minor);
1153
1154
err_firmware:
1155
release_firmware(fw);
1156
1157
return ret;
1158
}
1159
1160
static int __init sdma_init(struct sdma_engine *sdma)
1161
{
1162
int i, ret;
1163
dma_addr_t ccb_phys;
1164
1165
switch (sdma->version) {
1166
case 1:
1167
sdma->num_events = 32;
1168
break;
1169
case 2:
1170
sdma->num_events = 48;
1171
break;
1172
default:
1173
dev_err(sdma->dev, "Unknown version %d. aborting\n", sdma->version);
1174
return -ENODEV;
1175
}
1176
1177
clk_enable(sdma->clk);
1178
1179
/* Be sure SDMA has not started yet */
1180
__raw_writel(0, sdma->regs + SDMA_H_C0PTR);
1181
1182
sdma->channel_control = dma_alloc_coherent(NULL,
1183
MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1184
sizeof(struct sdma_context_data),
1185
&ccb_phys, GFP_KERNEL);
1186
1187
if (!sdma->channel_control) {
1188
ret = -ENOMEM;
1189
goto err_dma_alloc;
1190
}
1191
1192
sdma->context = (void *)sdma->channel_control +
1193
MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1194
sdma->context_phys = ccb_phys +
1195
MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1196
1197
/* Zero-out the CCB structures array just allocated */
1198
memset(sdma->channel_control, 0,
1199
MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1200
1201
/* disable all channels */
1202
for (i = 0; i < sdma->num_events; i++)
1203
__raw_writel(0, sdma->regs + chnenbl_ofs(sdma, i));
1204
1205
/* All channels have priority 0 */
1206
for (i = 0; i < MAX_DMA_CHANNELS; i++)
1207
__raw_writel(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1208
1209
ret = sdma_request_channel(&sdma->channel[0]);
1210
if (ret)
1211
goto err_dma_alloc;
1212
1213
sdma_config_ownership(&sdma->channel[0], false, true, false);
1214
1215
/* Set Command Channel (Channel Zero) */
1216
__raw_writel(0x4050, sdma->regs + SDMA_CHN0ADDR);
1217
1218
/* Set bits of CONFIG register but with static context switching */
1219
/* FIXME: Check whether to set ACR bit depending on clock ratios */
1220
__raw_writel(0, sdma->regs + SDMA_H_CONFIG);
1221
1222
__raw_writel(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1223
1224
/* Set bits of CONFIG register with given context switching mode */
1225
__raw_writel(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1226
1227
/* Initializes channel's priorities */
1228
sdma_set_channel_priority(&sdma->channel[0], 7);
1229
1230
clk_disable(sdma->clk);
1231
1232
return 0;
1233
1234
err_dma_alloc:
1235
clk_disable(sdma->clk);
1236
dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1237
return ret;
1238
}
1239
1240
static int __init sdma_probe(struct platform_device *pdev)
1241
{
1242
int ret;
1243
int irq;
1244
struct resource *iores;
1245
struct sdma_platform_data *pdata = pdev->dev.platform_data;
1246
int i;
1247
struct sdma_engine *sdma;
1248
1249
sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1250
if (!sdma)
1251
return -ENOMEM;
1252
1253
sdma->dev = &pdev->dev;
1254
1255
iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1256
irq = platform_get_irq(pdev, 0);
1257
if (!iores || irq < 0 || !pdata) {
1258
ret = -EINVAL;
1259
goto err_irq;
1260
}
1261
1262
if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1263
ret = -EBUSY;
1264
goto err_request_region;
1265
}
1266
1267
sdma->clk = clk_get(&pdev->dev, NULL);
1268
if (IS_ERR(sdma->clk)) {
1269
ret = PTR_ERR(sdma->clk);
1270
goto err_clk;
1271
}
1272
1273
sdma->regs = ioremap(iores->start, resource_size(iores));
1274
if (!sdma->regs) {
1275
ret = -ENOMEM;
1276
goto err_ioremap;
1277
}
1278
1279
ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1280
if (ret)
1281
goto err_request_irq;
1282
1283
sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1284
if (!sdma->script_addrs)
1285
goto err_alloc;
1286
1287
sdma->version = pdata->sdma_version;
1288
1289
dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1290
dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1291
1292
INIT_LIST_HEAD(&sdma->dma_device.channels);
1293
/* Initialize channel parameters */
1294
for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1295
struct sdma_channel *sdmac = &sdma->channel[i];
1296
1297
sdmac->sdma = sdma;
1298
spin_lock_init(&sdmac->lock);
1299
1300
sdmac->chan.device = &sdma->dma_device;
1301
sdmac->channel = i;
1302
1303
/*
1304
* Add the channel to the DMAC list. Do not add channel 0 though
1305
* because we need it internally in the SDMA driver. This also means
1306
* that channel 0 in dmaengine counting matches sdma channel 1.
1307
*/
1308
if (i)
1309
list_add_tail(&sdmac->chan.device_node,
1310
&sdma->dma_device.channels);
1311
}
1312
1313
ret = sdma_init(sdma);
1314
if (ret)
1315
goto err_init;
1316
1317
if (pdata->script_addrs)
1318
sdma_add_scripts(sdma, pdata->script_addrs);
1319
1320
sdma_get_firmware(sdma, pdata->cpu_name, pdata->to_version);
1321
1322
sdma->dma_device.dev = &pdev->dev;
1323
1324
sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1325
sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1326
sdma->dma_device.device_tx_status = sdma_tx_status;
1327
sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1328
sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1329
sdma->dma_device.device_control = sdma_control;
1330
sdma->dma_device.device_issue_pending = sdma_issue_pending;
1331
sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1332
dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1333
1334
ret = dma_async_device_register(&sdma->dma_device);
1335
if (ret) {
1336
dev_err(&pdev->dev, "unable to register\n");
1337
goto err_init;
1338
}
1339
1340
dev_info(sdma->dev, "initialized\n");
1341
1342
return 0;
1343
1344
err_init:
1345
kfree(sdma->script_addrs);
1346
err_alloc:
1347
free_irq(irq, sdma);
1348
err_request_irq:
1349
iounmap(sdma->regs);
1350
err_ioremap:
1351
clk_put(sdma->clk);
1352
err_clk:
1353
release_mem_region(iores->start, resource_size(iores));
1354
err_request_region:
1355
err_irq:
1356
kfree(sdma);
1357
return ret;
1358
}
1359
1360
static int __exit sdma_remove(struct platform_device *pdev)
1361
{
1362
return -EBUSY;
1363
}
1364
1365
static struct platform_driver sdma_driver = {
1366
.driver = {
1367
.name = "imx-sdma",
1368
},
1369
.remove = __exit_p(sdma_remove),
1370
};
1371
1372
static int __init sdma_module_init(void)
1373
{
1374
return platform_driver_probe(&sdma_driver, sdma_probe);
1375
}
1376
module_init(sdma_module_init);
1377
1378
MODULE_AUTHOR("Sascha Hauer, Pengutronix <[email protected]>");
1379
MODULE_DESCRIPTION("i.MX SDMA driver");
1380
MODULE_LICENSE("GPL");
1381
1382