Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/dma/intel_mid_dma.c
15109 views
1
/*
2
* intel_mid_dma.c - Intel Langwell DMA Drivers
3
*
4
* Copyright (C) 2008-10 Intel Corp
5
* Author: Vinod Koul <[email protected]>
6
* The driver design is based on dw_dmac driver
7
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8
*
9
* This program is free software; you can redistribute it and/or modify
10
* it under the terms of the GNU General Public License as published by
11
* the Free Software Foundation; version 2 of the License.
12
*
13
* This program is distributed in the hope that it will be useful, but
14
* WITHOUT ANY WARRANTY; without even the implied warranty of
15
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16
* General Public License for more details.
17
*
18
* You should have received a copy of the GNU General Public License along
19
* with this program; if not, write to the Free Software Foundation, Inc.,
20
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
21
*
22
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23
*
24
*
25
*/
26
#include <linux/pci.h>
27
#include <linux/interrupt.h>
28
#include <linux/pm_runtime.h>
29
#include <linux/intel_mid_dma.h>
30
31
#define MAX_CHAN 4 /*max ch across controllers*/
32
#include "intel_mid_dma_regs.h"
33
34
#define INTEL_MID_DMAC1_ID 0x0814
35
#define INTEL_MID_DMAC2_ID 0x0813
36
#define INTEL_MID_GP_DMAC2_ID 0x0827
37
#define INTEL_MFLD_DMAC1_ID 0x0830
38
#define LNW_PERIPHRAL_MASK_BASE 0xFFAE8008
39
#define LNW_PERIPHRAL_MASK_SIZE 0x10
40
#define LNW_PERIPHRAL_STATUS 0x0
41
#define LNW_PERIPHRAL_MASK 0x8
42
43
struct intel_mid_dma_probe_info {
44
u8 max_chan;
45
u8 ch_base;
46
u16 block_size;
47
u32 pimr_mask;
48
};
49
50
#define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
51
((kernel_ulong_t)&(struct intel_mid_dma_probe_info) { \
52
.max_chan = (_max_chan), \
53
.ch_base = (_ch_base), \
54
.block_size = (_block_size), \
55
.pimr_mask = (_pimr_mask), \
56
})
57
58
/*****************************************************************************
59
Utility Functions*/
60
/**
61
* get_ch_index - convert status to channel
62
* @status: status mask
63
* @base: dma ch base value
64
*
65
* Modify the status mask and return the channel index needing
66
* attention (or -1 if neither)
67
*/
68
static int get_ch_index(int *status, unsigned int base)
69
{
70
int i;
71
for (i = 0; i < MAX_CHAN; i++) {
72
if (*status & (1 << (i + base))) {
73
*status = *status & ~(1 << (i + base));
74
pr_debug("MDMA: index %d New status %x\n", i, *status);
75
return i;
76
}
77
}
78
return -1;
79
}
80
81
/**
82
* get_block_ts - calculates dma transaction length
83
* @len: dma transfer length
84
* @tx_width: dma transfer src width
85
* @block_size: dma controller max block size
86
*
87
* Based on src width calculate the DMA trsaction length in data items
88
* return data items or FFFF if exceeds max length for block
89
*/
90
static int get_block_ts(int len, int tx_width, int block_size)
91
{
92
int byte_width = 0, block_ts = 0;
93
94
switch (tx_width) {
95
case DMA_SLAVE_BUSWIDTH_1_BYTE:
96
byte_width = 1;
97
break;
98
case DMA_SLAVE_BUSWIDTH_2_BYTES:
99
byte_width = 2;
100
break;
101
case DMA_SLAVE_BUSWIDTH_4_BYTES:
102
default:
103
byte_width = 4;
104
break;
105
}
106
107
block_ts = len/byte_width;
108
if (block_ts > block_size)
109
block_ts = 0xFFFF;
110
return block_ts;
111
}
112
113
/*****************************************************************************
114
DMAC1 interrupt Functions*/
115
116
/**
117
* dmac1_mask_periphral_intr - mask the periphral interrupt
118
* @midc: dma channel for which masking is required
119
*
120
* Masks the DMA periphral interrupt
121
* this is valid for DMAC1 family controllers only
122
* This controller should have periphral mask registers already mapped
123
*/
124
static void dmac1_mask_periphral_intr(struct intel_mid_dma_chan *midc)
125
{
126
u32 pimr;
127
struct middma_device *mid = to_middma_device(midc->chan.device);
128
129
if (mid->pimr_mask) {
130
pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
131
pimr |= mid->pimr_mask;
132
writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
133
}
134
return;
135
}
136
137
/**
138
* dmac1_unmask_periphral_intr - unmask the periphral interrupt
139
* @midc: dma channel for which masking is required
140
*
141
* UnMasks the DMA periphral interrupt,
142
* this is valid for DMAC1 family controllers only
143
* This controller should have periphral mask registers already mapped
144
*/
145
static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
146
{
147
u32 pimr;
148
struct middma_device *mid = to_middma_device(midc->chan.device);
149
150
if (mid->pimr_mask) {
151
pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
152
pimr &= ~mid->pimr_mask;
153
writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
154
}
155
return;
156
}
157
158
/**
159
* enable_dma_interrupt - enable the periphral interrupt
160
* @midc: dma channel for which enable interrupt is required
161
*
162
* Enable the DMA periphral interrupt,
163
* this is valid for DMAC1 family controllers only
164
* This controller should have periphral mask registers already mapped
165
*/
166
static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
167
{
168
dmac1_unmask_periphral_intr(midc);
169
170
/*en ch interrupts*/
171
iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
172
iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
173
return;
174
}
175
176
/**
177
* disable_dma_interrupt - disable the periphral interrupt
178
* @midc: dma channel for which disable interrupt is required
179
*
180
* Disable the DMA periphral interrupt,
181
* this is valid for DMAC1 family controllers only
182
* This controller should have periphral mask registers already mapped
183
*/
184
static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
185
{
186
/*Check LPE PISR, make sure fwd is disabled*/
187
dmac1_mask_periphral_intr(midc);
188
iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
189
iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
190
iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
191
return;
192
}
193
194
/*****************************************************************************
195
DMA channel helper Functions*/
196
/**
197
* mid_desc_get - get a descriptor
198
* @midc: dma channel for which descriptor is required
199
*
200
* Obtain a descriptor for the channel. Returns NULL if none are free.
201
* Once the descriptor is returned it is private until put on another
202
* list or freed
203
*/
204
static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
205
{
206
struct intel_mid_dma_desc *desc, *_desc;
207
struct intel_mid_dma_desc *ret = NULL;
208
209
spin_lock_bh(&midc->lock);
210
list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
211
if (async_tx_test_ack(&desc->txd)) {
212
list_del(&desc->desc_node);
213
ret = desc;
214
break;
215
}
216
}
217
spin_unlock_bh(&midc->lock);
218
return ret;
219
}
220
221
/**
222
* mid_desc_put - put a descriptor
223
* @midc: dma channel for which descriptor is required
224
* @desc: descriptor to put
225
*
226
* Return a descriptor from lwn_desc_get back to the free pool
227
*/
228
static void midc_desc_put(struct intel_mid_dma_chan *midc,
229
struct intel_mid_dma_desc *desc)
230
{
231
if (desc) {
232
spin_lock_bh(&midc->lock);
233
list_add_tail(&desc->desc_node, &midc->free_list);
234
spin_unlock_bh(&midc->lock);
235
}
236
}
237
/**
238
* midc_dostart - begin a DMA transaction
239
* @midc: channel for which txn is to be started
240
* @first: first descriptor of series
241
*
242
* Load a transaction into the engine. This must be called with midc->lock
243
* held and bh disabled.
244
*/
245
static void midc_dostart(struct intel_mid_dma_chan *midc,
246
struct intel_mid_dma_desc *first)
247
{
248
struct middma_device *mid = to_middma_device(midc->chan.device);
249
250
/* channel is idle */
251
if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
252
/*error*/
253
pr_err("ERR_MDMA: channel is busy in start\n");
254
/* The tasklet will hopefully advance the queue... */
255
return;
256
}
257
midc->busy = true;
258
/*write registers and en*/
259
iowrite32(first->sar, midc->ch_regs + SAR);
260
iowrite32(first->dar, midc->ch_regs + DAR);
261
iowrite32(first->lli_phys, midc->ch_regs + LLP);
262
iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
263
iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
264
iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
265
iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
266
pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
267
(int)first->sar, (int)first->dar, first->cfg_hi,
268
first->cfg_lo, first->ctl_hi, first->ctl_lo);
269
first->status = DMA_IN_PROGRESS;
270
271
iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
272
}
273
274
/**
275
* midc_descriptor_complete - process completed descriptor
276
* @midc: channel owning the descriptor
277
* @desc: the descriptor itself
278
*
279
* Process a completed descriptor and perform any callbacks upon
280
* the completion. The completion handling drops the lock during the
281
* callbacks but must be called with the lock held.
282
*/
283
static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
284
struct intel_mid_dma_desc *desc)
285
{
286
struct dma_async_tx_descriptor *txd = &desc->txd;
287
dma_async_tx_callback callback_txd = NULL;
288
struct intel_mid_dma_lli *llitem;
289
void *param_txd = NULL;
290
291
midc->completed = txd->cookie;
292
callback_txd = txd->callback;
293
param_txd = txd->callback_param;
294
295
if (desc->lli != NULL) {
296
/*clear the DONE bit of completed LLI in memory*/
297
llitem = desc->lli + desc->current_lli;
298
llitem->ctl_hi &= CLEAR_DONE;
299
if (desc->current_lli < desc->lli_length-1)
300
(desc->current_lli)++;
301
else
302
desc->current_lli = 0;
303
}
304
spin_unlock_bh(&midc->lock);
305
if (callback_txd) {
306
pr_debug("MDMA: TXD callback set ... calling\n");
307
callback_txd(param_txd);
308
}
309
if (midc->raw_tfr) {
310
desc->status = DMA_SUCCESS;
311
if (desc->lli != NULL) {
312
pci_pool_free(desc->lli_pool, desc->lli,
313
desc->lli_phys);
314
pci_pool_destroy(desc->lli_pool);
315
}
316
list_move(&desc->desc_node, &midc->free_list);
317
midc->busy = false;
318
}
319
spin_lock_bh(&midc->lock);
320
321
}
322
/**
323
* midc_scan_descriptors - check the descriptors in channel
324
* mark completed when tx is completete
325
* @mid: device
326
* @midc: channel to scan
327
*
328
* Walk the descriptor chain for the device and process any entries
329
* that are complete.
330
*/
331
static void midc_scan_descriptors(struct middma_device *mid,
332
struct intel_mid_dma_chan *midc)
333
{
334
struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
335
336
/*tx is complete*/
337
list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
338
if (desc->status == DMA_IN_PROGRESS)
339
midc_descriptor_complete(midc, desc);
340
}
341
return;
342
}
343
/**
344
* midc_lli_fill_sg - Helper function to convert
345
* SG list to Linked List Items.
346
*@midc: Channel
347
*@desc: DMA descriptor
348
*@sglist: Pointer to SG list
349
*@sglen: SG list length
350
*@flags: DMA transaction flags
351
*
352
* Walk through the SG list and convert the SG list into Linked
353
* List Items (LLI).
354
*/
355
static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
356
struct intel_mid_dma_desc *desc,
357
struct scatterlist *sglist,
358
unsigned int sglen,
359
unsigned int flags)
360
{
361
struct intel_mid_dma_slave *mids;
362
struct scatterlist *sg;
363
dma_addr_t lli_next, sg_phy_addr;
364
struct intel_mid_dma_lli *lli_bloc_desc;
365
union intel_mid_dma_ctl_lo ctl_lo;
366
union intel_mid_dma_ctl_hi ctl_hi;
367
int i;
368
369
pr_debug("MDMA: Entered midc_lli_fill_sg\n");
370
mids = midc->mid_slave;
371
372
lli_bloc_desc = desc->lli;
373
lli_next = desc->lli_phys;
374
375
ctl_lo.ctl_lo = desc->ctl_lo;
376
ctl_hi.ctl_hi = desc->ctl_hi;
377
for_each_sg(sglist, sg, sglen, i) {
378
/*Populate CTL_LOW and LLI values*/
379
if (i != sglen - 1) {
380
lli_next = lli_next +
381
sizeof(struct intel_mid_dma_lli);
382
} else {
383
/*Check for circular list, otherwise terminate LLI to ZERO*/
384
if (flags & DMA_PREP_CIRCULAR_LIST) {
385
pr_debug("MDMA: LLI is configured in circular mode\n");
386
lli_next = desc->lli_phys;
387
} else {
388
lli_next = 0;
389
ctl_lo.ctlx.llp_dst_en = 0;
390
ctl_lo.ctlx.llp_src_en = 0;
391
}
392
}
393
/*Populate CTL_HI values*/
394
ctl_hi.ctlx.block_ts = get_block_ts(sg->length,
395
desc->width,
396
midc->dma->block_size);
397
/*Populate SAR and DAR values*/
398
sg_phy_addr = sg_phys(sg);
399
if (desc->dirn == DMA_TO_DEVICE) {
400
lli_bloc_desc->sar = sg_phy_addr;
401
lli_bloc_desc->dar = mids->dma_slave.dst_addr;
402
} else if (desc->dirn == DMA_FROM_DEVICE) {
403
lli_bloc_desc->sar = mids->dma_slave.src_addr;
404
lli_bloc_desc->dar = sg_phy_addr;
405
}
406
/*Copy values into block descriptor in system memroy*/
407
lli_bloc_desc->llp = lli_next;
408
lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
409
lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi;
410
411
lli_bloc_desc++;
412
}
413
/*Copy very first LLI values to descriptor*/
414
desc->ctl_lo = desc->lli->ctl_lo;
415
desc->ctl_hi = desc->lli->ctl_hi;
416
desc->sar = desc->lli->sar;
417
desc->dar = desc->lli->dar;
418
419
return 0;
420
}
421
/*****************************************************************************
422
DMA engine callback Functions*/
423
/**
424
* intel_mid_dma_tx_submit - callback to submit DMA transaction
425
* @tx: dma engine descriptor
426
*
427
* Submit the DMA trasaction for this descriptor, start if ch idle
428
*/
429
static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
430
{
431
struct intel_mid_dma_desc *desc = to_intel_mid_dma_desc(tx);
432
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(tx->chan);
433
dma_cookie_t cookie;
434
435
spin_lock_bh(&midc->lock);
436
cookie = midc->chan.cookie;
437
438
if (++cookie < 0)
439
cookie = 1;
440
441
midc->chan.cookie = cookie;
442
desc->txd.cookie = cookie;
443
444
445
if (list_empty(&midc->active_list))
446
list_add_tail(&desc->desc_node, &midc->active_list);
447
else
448
list_add_tail(&desc->desc_node, &midc->queue);
449
450
midc_dostart(midc, desc);
451
spin_unlock_bh(&midc->lock);
452
453
return cookie;
454
}
455
456
/**
457
* intel_mid_dma_issue_pending - callback to issue pending txn
458
* @chan: chan where pending trascation needs to be checked and submitted
459
*
460
* Call for scan to issue pending descriptors
461
*/
462
static void intel_mid_dma_issue_pending(struct dma_chan *chan)
463
{
464
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
465
466
spin_lock_bh(&midc->lock);
467
if (!list_empty(&midc->queue))
468
midc_scan_descriptors(to_middma_device(chan->device), midc);
469
spin_unlock_bh(&midc->lock);
470
}
471
472
/**
473
* intel_mid_dma_tx_status - Return status of txn
474
* @chan: chan for where status needs to be checked
475
* @cookie: cookie for txn
476
* @txstate: DMA txn state
477
*
478
* Return status of DMA txn
479
*/
480
static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
481
dma_cookie_t cookie,
482
struct dma_tx_state *txstate)
483
{
484
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
485
dma_cookie_t last_used;
486
dma_cookie_t last_complete;
487
int ret;
488
489
last_complete = midc->completed;
490
last_used = chan->cookie;
491
492
ret = dma_async_is_complete(cookie, last_complete, last_used);
493
if (ret != DMA_SUCCESS) {
494
midc_scan_descriptors(to_middma_device(chan->device), midc);
495
496
last_complete = midc->completed;
497
last_used = chan->cookie;
498
499
ret = dma_async_is_complete(cookie, last_complete, last_used);
500
}
501
502
if (txstate) {
503
txstate->last = last_complete;
504
txstate->used = last_used;
505
txstate->residue = 0;
506
}
507
return ret;
508
}
509
510
static int dma_slave_control(struct dma_chan *chan, unsigned long arg)
511
{
512
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
513
struct dma_slave_config *slave = (struct dma_slave_config *)arg;
514
struct intel_mid_dma_slave *mid_slave;
515
516
BUG_ON(!midc);
517
BUG_ON(!slave);
518
pr_debug("MDMA: slave control called\n");
519
520
mid_slave = to_intel_mid_dma_slave(slave);
521
522
BUG_ON(!mid_slave);
523
524
midc->mid_slave = mid_slave;
525
return 0;
526
}
527
/**
528
* intel_mid_dma_device_control - DMA device control
529
* @chan: chan for DMA control
530
* @cmd: control cmd
531
* @arg: cmd arg value
532
*
533
* Perform DMA control command
534
*/
535
static int intel_mid_dma_device_control(struct dma_chan *chan,
536
enum dma_ctrl_cmd cmd, unsigned long arg)
537
{
538
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
539
struct middma_device *mid = to_middma_device(chan->device);
540
struct intel_mid_dma_desc *desc, *_desc;
541
union intel_mid_dma_cfg_lo cfg_lo;
542
543
if (cmd == DMA_SLAVE_CONFIG)
544
return dma_slave_control(chan, arg);
545
546
if (cmd != DMA_TERMINATE_ALL)
547
return -ENXIO;
548
549
spin_lock_bh(&midc->lock);
550
if (midc->busy == false) {
551
spin_unlock_bh(&midc->lock);
552
return 0;
553
}
554
/*Suspend and disable the channel*/
555
cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
556
cfg_lo.cfgx.ch_susp = 1;
557
iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
558
iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
559
midc->busy = false;
560
/* Disable interrupts */
561
disable_dma_interrupt(midc);
562
midc->descs_allocated = 0;
563
564
spin_unlock_bh(&midc->lock);
565
list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
566
if (desc->lli != NULL) {
567
pci_pool_free(desc->lli_pool, desc->lli,
568
desc->lli_phys);
569
pci_pool_destroy(desc->lli_pool);
570
}
571
list_move(&desc->desc_node, &midc->free_list);
572
}
573
return 0;
574
}
575
576
577
/**
578
* intel_mid_dma_prep_memcpy - Prep memcpy txn
579
* @chan: chan for DMA transfer
580
* @dest: destn address
581
* @src: src address
582
* @len: DMA transfer len
583
* @flags: DMA flags
584
*
585
* Perform a DMA memcpy. Note we support slave periphral DMA transfers only
586
* The periphral txn details should be filled in slave structure properly
587
* Returns the descriptor for this txn
588
*/
589
static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
590
struct dma_chan *chan, dma_addr_t dest,
591
dma_addr_t src, size_t len, unsigned long flags)
592
{
593
struct intel_mid_dma_chan *midc;
594
struct intel_mid_dma_desc *desc = NULL;
595
struct intel_mid_dma_slave *mids;
596
union intel_mid_dma_ctl_lo ctl_lo;
597
union intel_mid_dma_ctl_hi ctl_hi;
598
union intel_mid_dma_cfg_lo cfg_lo;
599
union intel_mid_dma_cfg_hi cfg_hi;
600
enum dma_slave_buswidth width;
601
602
pr_debug("MDMA: Prep for memcpy\n");
603
BUG_ON(!chan);
604
if (!len)
605
return NULL;
606
607
midc = to_intel_mid_dma_chan(chan);
608
BUG_ON(!midc);
609
610
mids = midc->mid_slave;
611
BUG_ON(!mids);
612
613
pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
614
midc->dma->pci_id, midc->ch_id, len);
615
pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
616
mids->cfg_mode, mids->dma_slave.direction,
617
mids->hs_mode, mids->dma_slave.src_addr_width);
618
619
/*calculate CFG_LO*/
620
if (mids->hs_mode == LNW_DMA_SW_HS) {
621
cfg_lo.cfg_lo = 0;
622
cfg_lo.cfgx.hs_sel_dst = 1;
623
cfg_lo.cfgx.hs_sel_src = 1;
624
} else if (mids->hs_mode == LNW_DMA_HW_HS)
625
cfg_lo.cfg_lo = 0x00000;
626
627
/*calculate CFG_HI*/
628
if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
629
/*SW HS only*/
630
cfg_hi.cfg_hi = 0;
631
} else {
632
cfg_hi.cfg_hi = 0;
633
if (midc->dma->pimr_mask) {
634
cfg_hi.cfgx.protctl = 0x0; /*default value*/
635
cfg_hi.cfgx.fifo_mode = 1;
636
if (mids->dma_slave.direction == DMA_TO_DEVICE) {
637
cfg_hi.cfgx.src_per = 0;
638
if (mids->device_instance == 0)
639
cfg_hi.cfgx.dst_per = 3;
640
if (mids->device_instance == 1)
641
cfg_hi.cfgx.dst_per = 1;
642
} else if (mids->dma_slave.direction == DMA_FROM_DEVICE) {
643
if (mids->device_instance == 0)
644
cfg_hi.cfgx.src_per = 2;
645
if (mids->device_instance == 1)
646
cfg_hi.cfgx.src_per = 0;
647
cfg_hi.cfgx.dst_per = 0;
648
}
649
} else {
650
cfg_hi.cfgx.protctl = 0x1; /*default value*/
651
cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
652
midc->ch_id - midc->dma->chan_base;
653
}
654
}
655
656
/*calculate CTL_HI*/
657
ctl_hi.ctlx.reser = 0;
658
ctl_hi.ctlx.done = 0;
659
width = mids->dma_slave.src_addr_width;
660
661
ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
662
pr_debug("MDMA:calc len %d for block size %d\n",
663
ctl_hi.ctlx.block_ts, midc->dma->block_size);
664
/*calculate CTL_LO*/
665
ctl_lo.ctl_lo = 0;
666
ctl_lo.ctlx.int_en = 1;
667
ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
668
ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
669
670
/*
671
* Here we need some translation from "enum dma_slave_buswidth"
672
* to the format for our dma controller
673
* standard intel_mid_dmac's format
674
* 1 Byte 0b000
675
* 2 Bytes 0b001
676
* 4 Bytes 0b010
677
*/
678
ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2;
679
ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2;
680
681
if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
682
ctl_lo.ctlx.tt_fc = 0;
683
ctl_lo.ctlx.sinc = 0;
684
ctl_lo.ctlx.dinc = 0;
685
} else {
686
if (mids->dma_slave.direction == DMA_TO_DEVICE) {
687
ctl_lo.ctlx.sinc = 0;
688
ctl_lo.ctlx.dinc = 2;
689
ctl_lo.ctlx.tt_fc = 1;
690
} else if (mids->dma_slave.direction == DMA_FROM_DEVICE) {
691
ctl_lo.ctlx.sinc = 2;
692
ctl_lo.ctlx.dinc = 0;
693
ctl_lo.ctlx.tt_fc = 2;
694
}
695
}
696
697
pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
698
ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
699
700
enable_dma_interrupt(midc);
701
702
desc = midc_desc_get(midc);
703
if (desc == NULL)
704
goto err_desc_get;
705
desc->sar = src;
706
desc->dar = dest ;
707
desc->len = len;
708
desc->cfg_hi = cfg_hi.cfg_hi;
709
desc->cfg_lo = cfg_lo.cfg_lo;
710
desc->ctl_lo = ctl_lo.ctl_lo;
711
desc->ctl_hi = ctl_hi.ctl_hi;
712
desc->width = width;
713
desc->dirn = mids->dma_slave.direction;
714
desc->lli_phys = 0;
715
desc->lli = NULL;
716
desc->lli_pool = NULL;
717
return &desc->txd;
718
719
err_desc_get:
720
pr_err("ERR_MDMA: Failed to get desc\n");
721
midc_desc_put(midc, desc);
722
return NULL;
723
}
724
/**
725
* intel_mid_dma_prep_slave_sg - Prep slave sg txn
726
* @chan: chan for DMA transfer
727
* @sgl: scatter gather list
728
* @sg_len: length of sg txn
729
* @direction: DMA transfer dirtn
730
* @flags: DMA flags
731
*
732
* Prepares LLI based periphral transfer
733
*/
734
static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
735
struct dma_chan *chan, struct scatterlist *sgl,
736
unsigned int sg_len, enum dma_data_direction direction,
737
unsigned long flags)
738
{
739
struct intel_mid_dma_chan *midc = NULL;
740
struct intel_mid_dma_slave *mids = NULL;
741
struct intel_mid_dma_desc *desc = NULL;
742
struct dma_async_tx_descriptor *txd = NULL;
743
union intel_mid_dma_ctl_lo ctl_lo;
744
745
pr_debug("MDMA: Prep for slave SG\n");
746
747
if (!sg_len) {
748
pr_err("MDMA: Invalid SG length\n");
749
return NULL;
750
}
751
midc = to_intel_mid_dma_chan(chan);
752
BUG_ON(!midc);
753
754
mids = midc->mid_slave;
755
BUG_ON(!mids);
756
757
if (!midc->dma->pimr_mask) {
758
/* We can still handle sg list with only one item */
759
if (sg_len == 1) {
760
txd = intel_mid_dma_prep_memcpy(chan,
761
mids->dma_slave.dst_addr,
762
mids->dma_slave.src_addr,
763
sgl->length,
764
flags);
765
return txd;
766
} else {
767
pr_warn("MDMA: SG list is not supported by this controller\n");
768
return NULL;
769
}
770
}
771
772
pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
773
sg_len, direction, flags);
774
775
txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sgl->length, flags);
776
if (NULL == txd) {
777
pr_err("MDMA: Prep memcpy failed\n");
778
return NULL;
779
}
780
781
desc = to_intel_mid_dma_desc(txd);
782
desc->dirn = direction;
783
ctl_lo.ctl_lo = desc->ctl_lo;
784
ctl_lo.ctlx.llp_dst_en = 1;
785
ctl_lo.ctlx.llp_src_en = 1;
786
desc->ctl_lo = ctl_lo.ctl_lo;
787
desc->lli_length = sg_len;
788
desc->current_lli = 0;
789
/* DMA coherent memory pool for LLI descriptors*/
790
desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool",
791
midc->dma->pdev,
792
(sizeof(struct intel_mid_dma_lli)*sg_len),
793
32, 0);
794
if (NULL == desc->lli_pool) {
795
pr_err("MID_DMA:LLI pool create failed\n");
796
return NULL;
797
}
798
799
desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
800
if (!desc->lli) {
801
pr_err("MID_DMA: LLI alloc failed\n");
802
pci_pool_destroy(desc->lli_pool);
803
return NULL;
804
}
805
806
midc_lli_fill_sg(midc, desc, sgl, sg_len, flags);
807
if (flags & DMA_PREP_INTERRUPT) {
808
iowrite32(UNMASK_INTR_REG(midc->ch_id),
809
midc->dma_base + MASK_BLOCK);
810
pr_debug("MDMA:Enabled Block interrupt\n");
811
}
812
return &desc->txd;
813
}
814
815
/**
816
* intel_mid_dma_free_chan_resources - Frees dma resources
817
* @chan: chan requiring attention
818
*
819
* Frees the allocated resources on this DMA chan
820
*/
821
static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
822
{
823
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
824
struct middma_device *mid = to_middma_device(chan->device);
825
struct intel_mid_dma_desc *desc, *_desc;
826
827
if (true == midc->busy) {
828
/*trying to free ch in use!!!!!*/
829
pr_err("ERR_MDMA: trying to free ch in use\n");
830
}
831
pm_runtime_put(&mid->pdev->dev);
832
spin_lock_bh(&midc->lock);
833
midc->descs_allocated = 0;
834
list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
835
list_del(&desc->desc_node);
836
pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
837
}
838
list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
839
list_del(&desc->desc_node);
840
pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
841
}
842
list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
843
list_del(&desc->desc_node);
844
pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
845
}
846
spin_unlock_bh(&midc->lock);
847
midc->in_use = false;
848
midc->busy = false;
849
/* Disable CH interrupts */
850
iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
851
iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
852
}
853
854
/**
855
* intel_mid_dma_alloc_chan_resources - Allocate dma resources
856
* @chan: chan requiring attention
857
*
858
* Allocates DMA resources on this chan
859
* Return the descriptors allocated
860
*/
861
static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
862
{
863
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
864
struct middma_device *mid = to_middma_device(chan->device);
865
struct intel_mid_dma_desc *desc;
866
dma_addr_t phys;
867
int i = 0;
868
869
pm_runtime_get_sync(&mid->pdev->dev);
870
871
if (mid->state == SUSPENDED) {
872
if (dma_resume(mid->pdev)) {
873
pr_err("ERR_MDMA: resume failed");
874
return -EFAULT;
875
}
876
}
877
878
/* ASSERT: channel is idle */
879
if (test_ch_en(mid->dma_base, midc->ch_id)) {
880
/*ch is not idle*/
881
pr_err("ERR_MDMA: ch not idle\n");
882
pm_runtime_put(&mid->pdev->dev);
883
return -EIO;
884
}
885
midc->completed = chan->cookie = 1;
886
887
spin_lock_bh(&midc->lock);
888
while (midc->descs_allocated < DESCS_PER_CHANNEL) {
889
spin_unlock_bh(&midc->lock);
890
desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
891
if (!desc) {
892
pr_err("ERR_MDMA: desc failed\n");
893
pm_runtime_put(&mid->pdev->dev);
894
return -ENOMEM;
895
/*check*/
896
}
897
dma_async_tx_descriptor_init(&desc->txd, chan);
898
desc->txd.tx_submit = intel_mid_dma_tx_submit;
899
desc->txd.flags = DMA_CTRL_ACK;
900
desc->txd.phys = phys;
901
spin_lock_bh(&midc->lock);
902
i = ++midc->descs_allocated;
903
list_add_tail(&desc->desc_node, &midc->free_list);
904
}
905
spin_unlock_bh(&midc->lock);
906
midc->in_use = true;
907
midc->busy = false;
908
pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
909
return i;
910
}
911
912
/**
913
* midc_handle_error - Handle DMA txn error
914
* @mid: controller where error occurred
915
* @midc: chan where error occurred
916
*
917
* Scan the descriptor for error
918
*/
919
static void midc_handle_error(struct middma_device *mid,
920
struct intel_mid_dma_chan *midc)
921
{
922
midc_scan_descriptors(mid, midc);
923
}
924
925
/**
926
* dma_tasklet - DMA interrupt tasklet
927
* @data: tasklet arg (the controller structure)
928
*
929
* Scan the controller for interrupts for completion/error
930
* Clear the interrupt and call for handling completion/error
931
*/
932
static void dma_tasklet(unsigned long data)
933
{
934
struct middma_device *mid = NULL;
935
struct intel_mid_dma_chan *midc = NULL;
936
u32 status, raw_tfr, raw_block;
937
int i;
938
939
mid = (struct middma_device *)data;
940
if (mid == NULL) {
941
pr_err("ERR_MDMA: tasklet Null param\n");
942
return;
943
}
944
pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
945
raw_tfr = ioread32(mid->dma_base + RAW_TFR);
946
raw_block = ioread32(mid->dma_base + RAW_BLOCK);
947
status = raw_tfr | raw_block;
948
status &= mid->intr_mask;
949
while (status) {
950
/*txn interrupt*/
951
i = get_ch_index(&status, mid->chan_base);
952
if (i < 0) {
953
pr_err("ERR_MDMA:Invalid ch index %x\n", i);
954
return;
955
}
956
midc = &mid->ch[i];
957
if (midc == NULL) {
958
pr_err("ERR_MDMA:Null param midc\n");
959
return;
960
}
961
pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
962
status, midc->ch_id, i);
963
midc->raw_tfr = raw_tfr;
964
midc->raw_block = raw_block;
965
spin_lock_bh(&midc->lock);
966
/*clearing this interrupts first*/
967
iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
968
if (raw_block) {
969
iowrite32((1 << midc->ch_id),
970
mid->dma_base + CLEAR_BLOCK);
971
}
972
midc_scan_descriptors(mid, midc);
973
pr_debug("MDMA:Scan of desc... complete, unmasking\n");
974
iowrite32(UNMASK_INTR_REG(midc->ch_id),
975
mid->dma_base + MASK_TFR);
976
if (raw_block) {
977
iowrite32(UNMASK_INTR_REG(midc->ch_id),
978
mid->dma_base + MASK_BLOCK);
979
}
980
spin_unlock_bh(&midc->lock);
981
}
982
983
status = ioread32(mid->dma_base + RAW_ERR);
984
status &= mid->intr_mask;
985
while (status) {
986
/*err interrupt*/
987
i = get_ch_index(&status, mid->chan_base);
988
if (i < 0) {
989
pr_err("ERR_MDMA:Invalid ch index %x\n", i);
990
return;
991
}
992
midc = &mid->ch[i];
993
if (midc == NULL) {
994
pr_err("ERR_MDMA:Null param midc\n");
995
return;
996
}
997
pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
998
status, midc->ch_id, i);
999
1000
iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
1001
spin_lock_bh(&midc->lock);
1002
midc_handle_error(mid, midc);
1003
iowrite32(UNMASK_INTR_REG(midc->ch_id),
1004
mid->dma_base + MASK_ERR);
1005
spin_unlock_bh(&midc->lock);
1006
}
1007
pr_debug("MDMA:Exiting takslet...\n");
1008
return;
1009
}
1010
1011
static void dma_tasklet1(unsigned long data)
1012
{
1013
pr_debug("MDMA:in takslet1...\n");
1014
return dma_tasklet(data);
1015
}
1016
1017
static void dma_tasklet2(unsigned long data)
1018
{
1019
pr_debug("MDMA:in takslet2...\n");
1020
return dma_tasklet(data);
1021
}
1022
1023
/**
1024
* intel_mid_dma_interrupt - DMA ISR
1025
* @irq: IRQ where interrupt occurred
1026
* @data: ISR cllback data (the controller structure)
1027
*
1028
* See if this is our interrupt if so then schedule the tasklet
1029
* otherwise ignore
1030
*/
1031
static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
1032
{
1033
struct middma_device *mid = data;
1034
u32 tfr_status, err_status;
1035
int call_tasklet = 0;
1036
1037
tfr_status = ioread32(mid->dma_base + RAW_TFR);
1038
err_status = ioread32(mid->dma_base + RAW_ERR);
1039
if (!tfr_status && !err_status)
1040
return IRQ_NONE;
1041
1042
/*DMA Interrupt*/
1043
pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
1044
pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
1045
tfr_status &= mid->intr_mask;
1046
if (tfr_status) {
1047
/*need to disable intr*/
1048
iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR);
1049
iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK);
1050
pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
1051
call_tasklet = 1;
1052
}
1053
err_status &= mid->intr_mask;
1054
if (err_status) {
1055
iowrite32(MASK_INTR_REG(err_status), mid->dma_base + MASK_ERR);
1056
call_tasklet = 1;
1057
}
1058
if (call_tasklet)
1059
tasklet_schedule(&mid->tasklet);
1060
1061
return IRQ_HANDLED;
1062
}
1063
1064
static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
1065
{
1066
return intel_mid_dma_interrupt(irq, data);
1067
}
1068
1069
static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
1070
{
1071
return intel_mid_dma_interrupt(irq, data);
1072
}
1073
1074
/**
1075
* mid_setup_dma - Setup the DMA controller
1076
* @pdev: Controller PCI device structure
1077
*
1078
* Initialize the DMA controller, channels, registers with DMA engine,
1079
* ISR. Initialize DMA controller channels.
1080
*/
1081
static int mid_setup_dma(struct pci_dev *pdev)
1082
{
1083
struct middma_device *dma = pci_get_drvdata(pdev);
1084
int err, i;
1085
1086
/* DMA coherent memory pool for DMA descriptor allocations */
1087
dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
1088
sizeof(struct intel_mid_dma_desc),
1089
32, 0);
1090
if (NULL == dma->dma_pool) {
1091
pr_err("ERR_MDMA:pci_pool_create failed\n");
1092
err = -ENOMEM;
1093
goto err_dma_pool;
1094
}
1095
1096
INIT_LIST_HEAD(&dma->common.channels);
1097
dma->pci_id = pdev->device;
1098
if (dma->pimr_mask) {
1099
dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE,
1100
LNW_PERIPHRAL_MASK_SIZE);
1101
if (dma->mask_reg == NULL) {
1102
pr_err("ERR_MDMA:Can't map periphral intr space !!\n");
1103
return -ENOMEM;
1104
}
1105
} else
1106
dma->mask_reg = NULL;
1107
1108
pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
1109
/*init CH structures*/
1110
dma->intr_mask = 0;
1111
dma->state = RUNNING;
1112
for (i = 0; i < dma->max_chan; i++) {
1113
struct intel_mid_dma_chan *midch = &dma->ch[i];
1114
1115
midch->chan.device = &dma->common;
1116
midch->chan.cookie = 1;
1117
midch->chan.chan_id = i;
1118
midch->ch_id = dma->chan_base + i;
1119
pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
1120
1121
midch->dma_base = dma->dma_base;
1122
midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
1123
midch->dma = dma;
1124
dma->intr_mask |= 1 << (dma->chan_base + i);
1125
spin_lock_init(&midch->lock);
1126
1127
INIT_LIST_HEAD(&midch->active_list);
1128
INIT_LIST_HEAD(&midch->queue);
1129
INIT_LIST_HEAD(&midch->free_list);
1130
/*mask interrupts*/
1131
iowrite32(MASK_INTR_REG(midch->ch_id),
1132
dma->dma_base + MASK_BLOCK);
1133
iowrite32(MASK_INTR_REG(midch->ch_id),
1134
dma->dma_base + MASK_SRC_TRAN);
1135
iowrite32(MASK_INTR_REG(midch->ch_id),
1136
dma->dma_base + MASK_DST_TRAN);
1137
iowrite32(MASK_INTR_REG(midch->ch_id),
1138
dma->dma_base + MASK_ERR);
1139
iowrite32(MASK_INTR_REG(midch->ch_id),
1140
dma->dma_base + MASK_TFR);
1141
1142
disable_dma_interrupt(midch);
1143
list_add_tail(&midch->chan.device_node, &dma->common.channels);
1144
}
1145
pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
1146
1147
/*init dma structure*/
1148
dma_cap_zero(dma->common.cap_mask);
1149
dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
1150
dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
1151
dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
1152
dma->common.dev = &pdev->dev;
1153
dma->common.chancnt = dma->max_chan;
1154
1155
dma->common.device_alloc_chan_resources =
1156
intel_mid_dma_alloc_chan_resources;
1157
dma->common.device_free_chan_resources =
1158
intel_mid_dma_free_chan_resources;
1159
1160
dma->common.device_tx_status = intel_mid_dma_tx_status;
1161
dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
1162
dma->common.device_issue_pending = intel_mid_dma_issue_pending;
1163
dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
1164
dma->common.device_control = intel_mid_dma_device_control;
1165
1166
/*enable dma cntrl*/
1167
iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
1168
1169
/*register irq */
1170
if (dma->pimr_mask) {
1171
pr_debug("MDMA:Requesting irq shared for DMAC1\n");
1172
err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
1173
IRQF_SHARED, "INTEL_MID_DMAC1", dma);
1174
if (0 != err)
1175
goto err_irq;
1176
} else {
1177
dma->intr_mask = 0x03;
1178
pr_debug("MDMA:Requesting irq for DMAC2\n");
1179
err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
1180
IRQF_SHARED, "INTEL_MID_DMAC2", dma);
1181
if (0 != err)
1182
goto err_irq;
1183
}
1184
/*register device w/ engine*/
1185
err = dma_async_device_register(&dma->common);
1186
if (0 != err) {
1187
pr_err("ERR_MDMA:device_register failed: %d\n", err);
1188
goto err_engine;
1189
}
1190
if (dma->pimr_mask) {
1191
pr_debug("setting up tasklet1 for DMAC1\n");
1192
tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
1193
} else {
1194
pr_debug("setting up tasklet2 for DMAC2\n");
1195
tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
1196
}
1197
return 0;
1198
1199
err_engine:
1200
free_irq(pdev->irq, dma);
1201
err_irq:
1202
pci_pool_destroy(dma->dma_pool);
1203
err_dma_pool:
1204
pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
1205
return err;
1206
1207
}
1208
1209
/**
1210
* middma_shutdown - Shutdown the DMA controller
1211
* @pdev: Controller PCI device structure
1212
*
1213
* Called by remove
1214
* Unregister DMa controller, clear all structures and free interrupt
1215
*/
1216
static void middma_shutdown(struct pci_dev *pdev)
1217
{
1218
struct middma_device *device = pci_get_drvdata(pdev);
1219
1220
dma_async_device_unregister(&device->common);
1221
pci_pool_destroy(device->dma_pool);
1222
if (device->mask_reg)
1223
iounmap(device->mask_reg);
1224
if (device->dma_base)
1225
iounmap(device->dma_base);
1226
free_irq(pdev->irq, device);
1227
return;
1228
}
1229
1230
/**
1231
* intel_mid_dma_probe - PCI Probe
1232
* @pdev: Controller PCI device structure
1233
* @id: pci device id structure
1234
*
1235
* Initialize the PCI device, map BARs, query driver data.
1236
* Call setup_dma to complete contoller and chan initilzation
1237
*/
1238
static int __devinit intel_mid_dma_probe(struct pci_dev *pdev,
1239
const struct pci_device_id *id)
1240
{
1241
struct middma_device *device;
1242
u32 base_addr, bar_size;
1243
struct intel_mid_dma_probe_info *info;
1244
int err;
1245
1246
pr_debug("MDMA: probe for %x\n", pdev->device);
1247
info = (void *)id->driver_data;
1248
pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
1249
info->max_chan, info->ch_base,
1250
info->block_size, info->pimr_mask);
1251
1252
err = pci_enable_device(pdev);
1253
if (err)
1254
goto err_enable_device;
1255
1256
err = pci_request_regions(pdev, "intel_mid_dmac");
1257
if (err)
1258
goto err_request_regions;
1259
1260
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1261
if (err)
1262
goto err_set_dma_mask;
1263
1264
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1265
if (err)
1266
goto err_set_dma_mask;
1267
1268
device = kzalloc(sizeof(*device), GFP_KERNEL);
1269
if (!device) {
1270
pr_err("ERR_MDMA:kzalloc failed probe\n");
1271
err = -ENOMEM;
1272
goto err_kzalloc;
1273
}
1274
device->pdev = pci_dev_get(pdev);
1275
1276
base_addr = pci_resource_start(pdev, 0);
1277
bar_size = pci_resource_len(pdev, 0);
1278
device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
1279
if (!device->dma_base) {
1280
pr_err("ERR_MDMA:ioremap failed\n");
1281
err = -ENOMEM;
1282
goto err_ioremap;
1283
}
1284
pci_set_drvdata(pdev, device);
1285
pci_set_master(pdev);
1286
device->max_chan = info->max_chan;
1287
device->chan_base = info->ch_base;
1288
device->block_size = info->block_size;
1289
device->pimr_mask = info->pimr_mask;
1290
1291
err = mid_setup_dma(pdev);
1292
if (err)
1293
goto err_dma;
1294
1295
pm_runtime_put_noidle(&pdev->dev);
1296
pm_runtime_allow(&pdev->dev);
1297
return 0;
1298
1299
err_dma:
1300
iounmap(device->dma_base);
1301
err_ioremap:
1302
pci_dev_put(pdev);
1303
kfree(device);
1304
err_kzalloc:
1305
err_set_dma_mask:
1306
pci_release_regions(pdev);
1307
pci_disable_device(pdev);
1308
err_request_regions:
1309
err_enable_device:
1310
pr_err("ERR_MDMA:Probe failed %d\n", err);
1311
return err;
1312
}
1313
1314
/**
1315
* intel_mid_dma_remove - PCI remove
1316
* @pdev: Controller PCI device structure
1317
*
1318
* Free up all resources and data
1319
* Call shutdown_dma to complete contoller and chan cleanup
1320
*/
1321
static void __devexit intel_mid_dma_remove(struct pci_dev *pdev)
1322
{
1323
struct middma_device *device = pci_get_drvdata(pdev);
1324
1325
pm_runtime_get_noresume(&pdev->dev);
1326
pm_runtime_forbid(&pdev->dev);
1327
middma_shutdown(pdev);
1328
pci_dev_put(pdev);
1329
kfree(device);
1330
pci_release_regions(pdev);
1331
pci_disable_device(pdev);
1332
}
1333
1334
/* Power Management */
1335
/*
1336
* dma_suspend - PCI suspend function
1337
*
1338
* @pci: PCI device structure
1339
* @state: PM message
1340
*
1341
* This function is called by OS when a power event occurs
1342
*/
1343
int dma_suspend(struct pci_dev *pci, pm_message_t state)
1344
{
1345
int i;
1346
struct middma_device *device = pci_get_drvdata(pci);
1347
pr_debug("MDMA: dma_suspend called\n");
1348
1349
for (i = 0; i < device->max_chan; i++) {
1350
if (device->ch[i].in_use)
1351
return -EAGAIN;
1352
}
1353
device->state = SUSPENDED;
1354
pci_set_drvdata(pci, device);
1355
pci_save_state(pci);
1356
pci_disable_device(pci);
1357
pci_set_power_state(pci, PCI_D3hot);
1358
return 0;
1359
}
1360
1361
/**
1362
* dma_resume - PCI resume function
1363
*
1364
* @pci: PCI device structure
1365
*
1366
* This function is called by OS when a power event occurs
1367
*/
1368
int dma_resume(struct pci_dev *pci)
1369
{
1370
int ret;
1371
struct middma_device *device = pci_get_drvdata(pci);
1372
1373
pr_debug("MDMA: dma_resume called\n");
1374
pci_set_power_state(pci, PCI_D0);
1375
pci_restore_state(pci);
1376
ret = pci_enable_device(pci);
1377
if (ret) {
1378
pr_err("MDMA: device can't be enabled for %x\n", pci->device);
1379
return ret;
1380
}
1381
device->state = RUNNING;
1382
iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1383
pci_set_drvdata(pci, device);
1384
return 0;
1385
}
1386
1387
static int dma_runtime_suspend(struct device *dev)
1388
{
1389
struct pci_dev *pci_dev = to_pci_dev(dev);
1390
struct middma_device *device = pci_get_drvdata(pci_dev);
1391
1392
device->state = SUSPENDED;
1393
return 0;
1394
}
1395
1396
static int dma_runtime_resume(struct device *dev)
1397
{
1398
struct pci_dev *pci_dev = to_pci_dev(dev);
1399
struct middma_device *device = pci_get_drvdata(pci_dev);
1400
1401
device->state = RUNNING;
1402
iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1403
return 0;
1404
}
1405
1406
static int dma_runtime_idle(struct device *dev)
1407
{
1408
struct pci_dev *pdev = to_pci_dev(dev);
1409
struct middma_device *device = pci_get_drvdata(pdev);
1410
int i;
1411
1412
for (i = 0; i < device->max_chan; i++) {
1413
if (device->ch[i].in_use)
1414
return -EAGAIN;
1415
}
1416
1417
return pm_schedule_suspend(dev, 0);
1418
}
1419
1420
/******************************************************************************
1421
* PCI stuff
1422
*/
1423
static struct pci_device_id intel_mid_dma_ids[] = {
1424
{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID), INFO(2, 6, 4095, 0x200020)},
1425
{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID), INFO(2, 0, 2047, 0)},
1426
{ PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID), INFO(2, 0, 2047, 0)},
1427
{ PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID), INFO(4, 0, 4095, 0x400040)},
1428
{ 0, }
1429
};
1430
MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
1431
1432
static const struct dev_pm_ops intel_mid_dma_pm = {
1433
.runtime_suspend = dma_runtime_suspend,
1434
.runtime_resume = dma_runtime_resume,
1435
.runtime_idle = dma_runtime_idle,
1436
};
1437
1438
static struct pci_driver intel_mid_dma_pci_driver = {
1439
.name = "Intel MID DMA",
1440
.id_table = intel_mid_dma_ids,
1441
.probe = intel_mid_dma_probe,
1442
.remove = __devexit_p(intel_mid_dma_remove),
1443
#ifdef CONFIG_PM
1444
.suspend = dma_suspend,
1445
.resume = dma_resume,
1446
.driver = {
1447
.pm = &intel_mid_dma_pm,
1448
},
1449
#endif
1450
};
1451
1452
static int __init intel_mid_dma_init(void)
1453
{
1454
pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
1455
INTEL_MID_DMA_DRIVER_VERSION);
1456
return pci_register_driver(&intel_mid_dma_pci_driver);
1457
}
1458
fs_initcall(intel_mid_dma_init);
1459
1460
static void __exit intel_mid_dma_exit(void)
1461
{
1462
pci_unregister_driver(&intel_mid_dma_pci_driver);
1463
}
1464
module_exit(intel_mid_dma_exit);
1465
1466
MODULE_AUTHOR("Vinod Koul <[email protected]>");
1467
MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
1468
MODULE_LICENSE("GPL v2");
1469
MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);
1470
1471