Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/dma/ste_dma40.c
15111 views
1
/*
2
* Copyright (C) Ericsson AB 2007-2008
3
* Copyright (C) ST-Ericsson SA 2008-2010
4
* Author: Per Forlin <[email protected]> for ST-Ericsson
5
* Author: Jonas Aaberg <[email protected]> for ST-Ericsson
6
* License terms: GNU General Public License (GPL) version 2
7
*/
8
9
#include <linux/kernel.h>
10
#include <linux/slab.h>
11
#include <linux/dmaengine.h>
12
#include <linux/platform_device.h>
13
#include <linux/clk.h>
14
#include <linux/delay.h>
15
#include <linux/err.h>
16
17
#include <plat/ste_dma40.h>
18
19
#include "ste_dma40_ll.h"
20
21
#define D40_NAME "dma40"
22
23
#define D40_PHY_CHAN -1
24
25
/* For masking out/in 2 bit channel positions */
26
#define D40_CHAN_POS(chan) (2 * (chan / 2))
27
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
28
29
/* Maximum iterations taken before giving up suspending a channel */
30
#define D40_SUSPEND_MAX_IT 500
31
32
/* Hardware requirement on LCLA alignment */
33
#define LCLA_ALIGNMENT 0x40000
34
35
/* Max number of links per event group */
36
#define D40_LCLA_LINK_PER_EVENT_GRP 128
37
#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
38
39
/* Attempts before giving up to trying to get pages that are aligned */
40
#define MAX_LCLA_ALLOC_ATTEMPTS 256
41
42
/* Bit markings for allocation map */
43
#define D40_ALLOC_FREE (1 << 31)
44
#define D40_ALLOC_PHY (1 << 30)
45
#define D40_ALLOC_LOG_FREE 0
46
47
/* Hardware designer of the block */
48
#define D40_HW_DESIGNER 0x8
49
50
/**
51
* enum 40_command - The different commands and/or statuses.
52
*
53
* @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
54
* @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
55
* @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
56
* @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
57
*/
58
enum d40_command {
59
D40_DMA_STOP = 0,
60
D40_DMA_RUN = 1,
61
D40_DMA_SUSPEND_REQ = 2,
62
D40_DMA_SUSPENDED = 3
63
};
64
65
/**
66
* struct d40_lli_pool - Structure for keeping LLIs in memory
67
*
68
* @base: Pointer to memory area when the pre_alloc_lli's are not large
69
* enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
70
* pre_alloc_lli is used.
71
* @dma_addr: DMA address, if mapped
72
* @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
73
* @pre_alloc_lli: Pre allocated area for the most common case of transfers,
74
* one buffer to one buffer.
75
*/
76
struct d40_lli_pool {
77
void *base;
78
int size;
79
dma_addr_t dma_addr;
80
/* Space for dst and src, plus an extra for padding */
81
u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
82
};
83
84
/**
85
* struct d40_desc - A descriptor is one DMA job.
86
*
87
* @lli_phy: LLI settings for physical channel. Both src and dst=
88
* points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
89
* lli_len equals one.
90
* @lli_log: Same as above but for logical channels.
91
* @lli_pool: The pool with two entries pre-allocated.
92
* @lli_len: Number of llis of current descriptor.
93
* @lli_current: Number of transferred llis.
94
* @lcla_alloc: Number of LCLA entries allocated.
95
* @txd: DMA engine struct. Used for among other things for communication
96
* during a transfer.
97
* @node: List entry.
98
* @is_in_client_list: true if the client owns this descriptor.
99
* the previous one.
100
*
101
* This descriptor is used for both logical and physical transfers.
102
*/
103
struct d40_desc {
104
/* LLI physical */
105
struct d40_phy_lli_bidir lli_phy;
106
/* LLI logical */
107
struct d40_log_lli_bidir lli_log;
108
109
struct d40_lli_pool lli_pool;
110
int lli_len;
111
int lli_current;
112
int lcla_alloc;
113
114
struct dma_async_tx_descriptor txd;
115
struct list_head node;
116
117
bool is_in_client_list;
118
bool cyclic;
119
};
120
121
/**
122
* struct d40_lcla_pool - LCLA pool settings and data.
123
*
124
* @base: The virtual address of LCLA. 18 bit aligned.
125
* @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
126
* This pointer is only there for clean-up on error.
127
* @pages: The number of pages needed for all physical channels.
128
* Only used later for clean-up on error
129
* @lock: Lock to protect the content in this struct.
130
* @alloc_map: big map over which LCLA entry is own by which job.
131
*/
132
struct d40_lcla_pool {
133
void *base;
134
dma_addr_t dma_addr;
135
void *base_unaligned;
136
int pages;
137
spinlock_t lock;
138
struct d40_desc **alloc_map;
139
};
140
141
/**
142
* struct d40_phy_res - struct for handling eventlines mapped to physical
143
* channels.
144
*
145
* @lock: A lock protection this entity.
146
* @num: The physical channel number of this entity.
147
* @allocated_src: Bit mapped to show which src event line's are mapped to
148
* this physical channel. Can also be free or physically allocated.
149
* @allocated_dst: Same as for src but is dst.
150
* allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
151
* event line number.
152
*/
153
struct d40_phy_res {
154
spinlock_t lock;
155
int num;
156
u32 allocated_src;
157
u32 allocated_dst;
158
};
159
160
struct d40_base;
161
162
/**
163
* struct d40_chan - Struct that describes a channel.
164
*
165
* @lock: A spinlock to protect this struct.
166
* @log_num: The logical number, if any of this channel.
167
* @completed: Starts with 1, after first interrupt it is set to dma engine's
168
* current cookie.
169
* @pending_tx: The number of pending transfers. Used between interrupt handler
170
* and tasklet.
171
* @busy: Set to true when transfer is ongoing on this channel.
172
* @phy_chan: Pointer to physical channel which this instance runs on. If this
173
* point is NULL, then the channel is not allocated.
174
* @chan: DMA engine handle.
175
* @tasklet: Tasklet that gets scheduled from interrupt context to complete a
176
* transfer and call client callback.
177
* @client: Cliented owned descriptor list.
178
* @active: Active descriptor.
179
* @queue: Queued jobs.
180
* @dma_cfg: The client configuration of this dma channel.
181
* @configured: whether the dma_cfg configuration is valid
182
* @base: Pointer to the device instance struct.
183
* @src_def_cfg: Default cfg register setting for src.
184
* @dst_def_cfg: Default cfg register setting for dst.
185
* @log_def: Default logical channel settings.
186
* @lcla: Space for one dst src pair for logical channel transfers.
187
* @lcpa: Pointer to dst and src lcpa settings.
188
*
189
* This struct can either "be" a logical or a physical channel.
190
*/
191
struct d40_chan {
192
spinlock_t lock;
193
int log_num;
194
/* ID of the most recent completed transfer */
195
int completed;
196
int pending_tx;
197
bool busy;
198
struct d40_phy_res *phy_chan;
199
struct dma_chan chan;
200
struct tasklet_struct tasklet;
201
struct list_head client;
202
struct list_head active;
203
struct list_head queue;
204
struct stedma40_chan_cfg dma_cfg;
205
bool configured;
206
struct d40_base *base;
207
/* Default register configurations */
208
u32 src_def_cfg;
209
u32 dst_def_cfg;
210
struct d40_def_lcsp log_def;
211
struct d40_log_lli_full *lcpa;
212
/* Runtime reconfiguration */
213
dma_addr_t runtime_addr;
214
enum dma_data_direction runtime_direction;
215
};
216
217
/**
218
* struct d40_base - The big global struct, one for each probe'd instance.
219
*
220
* @interrupt_lock: Lock used to make sure one interrupt is handle a time.
221
* @execmd_lock: Lock for execute command usage since several channels share
222
* the same physical register.
223
* @dev: The device structure.
224
* @virtbase: The virtual base address of the DMA's register.
225
* @rev: silicon revision detected.
226
* @clk: Pointer to the DMA clock structure.
227
* @phy_start: Physical memory start of the DMA registers.
228
* @phy_size: Size of the DMA register map.
229
* @irq: The IRQ number.
230
* @num_phy_chans: The number of physical channels. Read from HW. This
231
* is the number of available channels for this driver, not counting "Secure
232
* mode" allocated physical channels.
233
* @num_log_chans: The number of logical channels. Calculated from
234
* num_phy_chans.
235
* @dma_both: dma_device channels that can do both memcpy and slave transfers.
236
* @dma_slave: dma_device channels that can do only do slave transfers.
237
* @dma_memcpy: dma_device channels that can do only do memcpy transfers.
238
* @log_chans: Room for all possible logical channels in system.
239
* @lookup_log_chans: Used to map interrupt number to logical channel. Points
240
* to log_chans entries.
241
* @lookup_phy_chans: Used to map interrupt number to physical channel. Points
242
* to phy_chans entries.
243
* @plat_data: Pointer to provided platform_data which is the driver
244
* configuration.
245
* @phy_res: Vector containing all physical channels.
246
* @lcla_pool: lcla pool settings and data.
247
* @lcpa_base: The virtual mapped address of LCPA.
248
* @phy_lcpa: The physical address of the LCPA.
249
* @lcpa_size: The size of the LCPA area.
250
* @desc_slab: cache for descriptors.
251
*/
252
struct d40_base {
253
spinlock_t interrupt_lock;
254
spinlock_t execmd_lock;
255
struct device *dev;
256
void __iomem *virtbase;
257
u8 rev:4;
258
struct clk *clk;
259
phys_addr_t phy_start;
260
resource_size_t phy_size;
261
int irq;
262
int num_phy_chans;
263
int num_log_chans;
264
struct dma_device dma_both;
265
struct dma_device dma_slave;
266
struct dma_device dma_memcpy;
267
struct d40_chan *phy_chans;
268
struct d40_chan *log_chans;
269
struct d40_chan **lookup_log_chans;
270
struct d40_chan **lookup_phy_chans;
271
struct stedma40_platform_data *plat_data;
272
/* Physical half channels */
273
struct d40_phy_res *phy_res;
274
struct d40_lcla_pool lcla_pool;
275
void *lcpa_base;
276
dma_addr_t phy_lcpa;
277
resource_size_t lcpa_size;
278
struct kmem_cache *desc_slab;
279
};
280
281
/**
282
* struct d40_interrupt_lookup - lookup table for interrupt handler
283
*
284
* @src: Interrupt mask register.
285
* @clr: Interrupt clear register.
286
* @is_error: true if this is an error interrupt.
287
* @offset: start delta in the lookup_log_chans in d40_base. If equals to
288
* D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
289
*/
290
struct d40_interrupt_lookup {
291
u32 src;
292
u32 clr;
293
bool is_error;
294
int offset;
295
};
296
297
/**
298
* struct d40_reg_val - simple lookup struct
299
*
300
* @reg: The register.
301
* @val: The value that belongs to the register in reg.
302
*/
303
struct d40_reg_val {
304
unsigned int reg;
305
unsigned int val;
306
};
307
308
static struct device *chan2dev(struct d40_chan *d40c)
309
{
310
return &d40c->chan.dev->device;
311
}
312
313
static bool chan_is_physical(struct d40_chan *chan)
314
{
315
return chan->log_num == D40_PHY_CHAN;
316
}
317
318
static bool chan_is_logical(struct d40_chan *chan)
319
{
320
return !chan_is_physical(chan);
321
}
322
323
static void __iomem *chan_base(struct d40_chan *chan)
324
{
325
return chan->base->virtbase + D40_DREG_PCBASE +
326
chan->phy_chan->num * D40_DREG_PCDELTA;
327
}
328
329
#define d40_err(dev, format, arg...) \
330
dev_err(dev, "[%s] " format, __func__, ## arg)
331
332
#define chan_err(d40c, format, arg...) \
333
d40_err(chan2dev(d40c), format, ## arg)
334
335
static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
336
int lli_len)
337
{
338
bool is_log = chan_is_logical(d40c);
339
u32 align;
340
void *base;
341
342
if (is_log)
343
align = sizeof(struct d40_log_lli);
344
else
345
align = sizeof(struct d40_phy_lli);
346
347
if (lli_len == 1) {
348
base = d40d->lli_pool.pre_alloc_lli;
349
d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
350
d40d->lli_pool.base = NULL;
351
} else {
352
d40d->lli_pool.size = lli_len * 2 * align;
353
354
base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
355
d40d->lli_pool.base = base;
356
357
if (d40d->lli_pool.base == NULL)
358
return -ENOMEM;
359
}
360
361
if (is_log) {
362
d40d->lli_log.src = PTR_ALIGN(base, align);
363
d40d->lli_log.dst = d40d->lli_log.src + lli_len;
364
365
d40d->lli_pool.dma_addr = 0;
366
} else {
367
d40d->lli_phy.src = PTR_ALIGN(base, align);
368
d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
369
370
d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
371
d40d->lli_phy.src,
372
d40d->lli_pool.size,
373
DMA_TO_DEVICE);
374
375
if (dma_mapping_error(d40c->base->dev,
376
d40d->lli_pool.dma_addr)) {
377
kfree(d40d->lli_pool.base);
378
d40d->lli_pool.base = NULL;
379
d40d->lli_pool.dma_addr = 0;
380
return -ENOMEM;
381
}
382
}
383
384
return 0;
385
}
386
387
static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
388
{
389
if (d40d->lli_pool.dma_addr)
390
dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
391
d40d->lli_pool.size, DMA_TO_DEVICE);
392
393
kfree(d40d->lli_pool.base);
394
d40d->lli_pool.base = NULL;
395
d40d->lli_pool.size = 0;
396
d40d->lli_log.src = NULL;
397
d40d->lli_log.dst = NULL;
398
d40d->lli_phy.src = NULL;
399
d40d->lli_phy.dst = NULL;
400
}
401
402
static int d40_lcla_alloc_one(struct d40_chan *d40c,
403
struct d40_desc *d40d)
404
{
405
unsigned long flags;
406
int i;
407
int ret = -EINVAL;
408
int p;
409
410
spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
411
412
p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
413
414
/*
415
* Allocate both src and dst at the same time, therefore the half
416
* start on 1 since 0 can't be used since zero is used as end marker.
417
*/
418
for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
419
if (!d40c->base->lcla_pool.alloc_map[p + i]) {
420
d40c->base->lcla_pool.alloc_map[p + i] = d40d;
421
d40d->lcla_alloc++;
422
ret = i;
423
break;
424
}
425
}
426
427
spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
428
429
return ret;
430
}
431
432
static int d40_lcla_free_all(struct d40_chan *d40c,
433
struct d40_desc *d40d)
434
{
435
unsigned long flags;
436
int i;
437
int ret = -EINVAL;
438
439
if (chan_is_physical(d40c))
440
return 0;
441
442
spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
443
444
for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
445
if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
446
D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
447
d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
448
D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
449
d40d->lcla_alloc--;
450
if (d40d->lcla_alloc == 0) {
451
ret = 0;
452
break;
453
}
454
}
455
}
456
457
spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
458
459
return ret;
460
461
}
462
463
static void d40_desc_remove(struct d40_desc *d40d)
464
{
465
list_del(&d40d->node);
466
}
467
468
static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
469
{
470
struct d40_desc *desc = NULL;
471
472
if (!list_empty(&d40c->client)) {
473
struct d40_desc *d;
474
struct d40_desc *_d;
475
476
list_for_each_entry_safe(d, _d, &d40c->client, node)
477
if (async_tx_test_ack(&d->txd)) {
478
d40_pool_lli_free(d40c, d);
479
d40_desc_remove(d);
480
desc = d;
481
memset(desc, 0, sizeof(*desc));
482
break;
483
}
484
}
485
486
if (!desc)
487
desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
488
489
if (desc)
490
INIT_LIST_HEAD(&desc->node);
491
492
return desc;
493
}
494
495
static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
496
{
497
498
d40_pool_lli_free(d40c, d40d);
499
d40_lcla_free_all(d40c, d40d);
500
kmem_cache_free(d40c->base->desc_slab, d40d);
501
}
502
503
static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
504
{
505
list_add_tail(&desc->node, &d40c->active);
506
}
507
508
static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
509
{
510
struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
511
struct d40_phy_lli *lli_src = desc->lli_phy.src;
512
void __iomem *base = chan_base(chan);
513
514
writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
515
writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
516
writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
517
writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
518
519
writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
520
writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
521
writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
522
writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
523
}
524
525
static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
526
{
527
struct d40_lcla_pool *pool = &chan->base->lcla_pool;
528
struct d40_log_lli_bidir *lli = &desc->lli_log;
529
int lli_current = desc->lli_current;
530
int lli_len = desc->lli_len;
531
bool cyclic = desc->cyclic;
532
int curr_lcla = -EINVAL;
533
int first_lcla = 0;
534
bool linkback;
535
536
/*
537
* We may have partially running cyclic transfers, in case we did't get
538
* enough LCLA entries.
539
*/
540
linkback = cyclic && lli_current == 0;
541
542
/*
543
* For linkback, we need one LCLA even with only one link, because we
544
* can't link back to the one in LCPA space
545
*/
546
if (linkback || (lli_len - lli_current > 1)) {
547
curr_lcla = d40_lcla_alloc_one(chan, desc);
548
first_lcla = curr_lcla;
549
}
550
551
/*
552
* For linkback, we normally load the LCPA in the loop since we need to
553
* link it to the second LCLA and not the first. However, if we
554
* couldn't even get a first LCLA, then we have to run in LCPA and
555
* reload manually.
556
*/
557
if (!linkback || curr_lcla == -EINVAL) {
558
unsigned int flags = 0;
559
560
if (curr_lcla == -EINVAL)
561
flags |= LLI_TERM_INT;
562
563
d40_log_lli_lcpa_write(chan->lcpa,
564
&lli->dst[lli_current],
565
&lli->src[lli_current],
566
curr_lcla,
567
flags);
568
lli_current++;
569
}
570
571
if (curr_lcla < 0)
572
goto out;
573
574
for (; lli_current < lli_len; lli_current++) {
575
unsigned int lcla_offset = chan->phy_chan->num * 1024 +
576
8 * curr_lcla * 2;
577
struct d40_log_lli *lcla = pool->base + lcla_offset;
578
unsigned int flags = 0;
579
int next_lcla;
580
581
if (lli_current + 1 < lli_len)
582
next_lcla = d40_lcla_alloc_one(chan, desc);
583
else
584
next_lcla = linkback ? first_lcla : -EINVAL;
585
586
if (cyclic || next_lcla == -EINVAL)
587
flags |= LLI_TERM_INT;
588
589
if (linkback && curr_lcla == first_lcla) {
590
/* First link goes in both LCPA and LCLA */
591
d40_log_lli_lcpa_write(chan->lcpa,
592
&lli->dst[lli_current],
593
&lli->src[lli_current],
594
next_lcla, flags);
595
}
596
597
/*
598
* One unused LCLA in the cyclic case if the very first
599
* next_lcla fails...
600
*/
601
d40_log_lli_lcla_write(lcla,
602
&lli->dst[lli_current],
603
&lli->src[lli_current],
604
next_lcla, flags);
605
606
dma_sync_single_range_for_device(chan->base->dev,
607
pool->dma_addr, lcla_offset,
608
2 * sizeof(struct d40_log_lli),
609
DMA_TO_DEVICE);
610
611
curr_lcla = next_lcla;
612
613
if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
614
lli_current++;
615
break;
616
}
617
}
618
619
out:
620
desc->lli_current = lli_current;
621
}
622
623
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
624
{
625
if (chan_is_physical(d40c)) {
626
d40_phy_lli_load(d40c, d40d);
627
d40d->lli_current = d40d->lli_len;
628
} else
629
d40_log_lli_to_lcxa(d40c, d40d);
630
}
631
632
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
633
{
634
struct d40_desc *d;
635
636
if (list_empty(&d40c->active))
637
return NULL;
638
639
d = list_first_entry(&d40c->active,
640
struct d40_desc,
641
node);
642
return d;
643
}
644
645
static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
646
{
647
list_add_tail(&desc->node, &d40c->queue);
648
}
649
650
static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
651
{
652
struct d40_desc *d;
653
654
if (list_empty(&d40c->queue))
655
return NULL;
656
657
d = list_first_entry(&d40c->queue,
658
struct d40_desc,
659
node);
660
return d;
661
}
662
663
static int d40_psize_2_burst_size(bool is_log, int psize)
664
{
665
if (is_log) {
666
if (psize == STEDMA40_PSIZE_LOG_1)
667
return 1;
668
} else {
669
if (psize == STEDMA40_PSIZE_PHY_1)
670
return 1;
671
}
672
673
return 2 << psize;
674
}
675
676
/*
677
* The dma only supports transmitting packages up to
678
* STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
679
* dma elements required to send the entire sg list
680
*/
681
static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
682
{
683
int dmalen;
684
u32 max_w = max(data_width1, data_width2);
685
u32 min_w = min(data_width1, data_width2);
686
u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
687
688
if (seg_max > STEDMA40_MAX_SEG_SIZE)
689
seg_max -= (1 << max_w);
690
691
if (!IS_ALIGNED(size, 1 << max_w))
692
return -EINVAL;
693
694
if (size <= seg_max)
695
dmalen = 1;
696
else {
697
dmalen = size / seg_max;
698
if (dmalen * seg_max < size)
699
dmalen++;
700
}
701
return dmalen;
702
}
703
704
static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
705
u32 data_width1, u32 data_width2)
706
{
707
struct scatterlist *sg;
708
int i;
709
int len = 0;
710
int ret;
711
712
for_each_sg(sgl, sg, sg_len, i) {
713
ret = d40_size_2_dmalen(sg_dma_len(sg),
714
data_width1, data_width2);
715
if (ret < 0)
716
return ret;
717
len += ret;
718
}
719
return len;
720
}
721
722
/* Support functions for logical channels */
723
724
static int d40_channel_execute_command(struct d40_chan *d40c,
725
enum d40_command command)
726
{
727
u32 status;
728
int i;
729
void __iomem *active_reg;
730
int ret = 0;
731
unsigned long flags;
732
u32 wmask;
733
734
spin_lock_irqsave(&d40c->base->execmd_lock, flags);
735
736
if (d40c->phy_chan->num % 2 == 0)
737
active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
738
else
739
active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
740
741
if (command == D40_DMA_SUSPEND_REQ) {
742
status = (readl(active_reg) &
743
D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
744
D40_CHAN_POS(d40c->phy_chan->num);
745
746
if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
747
goto done;
748
}
749
750
wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
751
writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
752
active_reg);
753
754
if (command == D40_DMA_SUSPEND_REQ) {
755
756
for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
757
status = (readl(active_reg) &
758
D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
759
D40_CHAN_POS(d40c->phy_chan->num);
760
761
cpu_relax();
762
/*
763
* Reduce the number of bus accesses while
764
* waiting for the DMA to suspend.
765
*/
766
udelay(3);
767
768
if (status == D40_DMA_STOP ||
769
status == D40_DMA_SUSPENDED)
770
break;
771
}
772
773
if (i == D40_SUSPEND_MAX_IT) {
774
chan_err(d40c,
775
"unable to suspend the chl %d (log: %d) status %x\n",
776
d40c->phy_chan->num, d40c->log_num,
777
status);
778
dump_stack();
779
ret = -EBUSY;
780
}
781
782
}
783
done:
784
spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
785
return ret;
786
}
787
788
static void d40_term_all(struct d40_chan *d40c)
789
{
790
struct d40_desc *d40d;
791
792
/* Release active descriptors */
793
while ((d40d = d40_first_active_get(d40c))) {
794
d40_desc_remove(d40d);
795
d40_desc_free(d40c, d40d);
796
}
797
798
/* Release queued descriptors waiting for transfer */
799
while ((d40d = d40_first_queued(d40c))) {
800
d40_desc_remove(d40d);
801
d40_desc_free(d40c, d40d);
802
}
803
804
805
d40c->pending_tx = 0;
806
d40c->busy = false;
807
}
808
809
static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
810
u32 event, int reg)
811
{
812
void __iomem *addr = chan_base(d40c) + reg;
813
int tries;
814
815
if (!enable) {
816
writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
817
| ~D40_EVENTLINE_MASK(event), addr);
818
return;
819
}
820
821
/*
822
* The hardware sometimes doesn't register the enable when src and dst
823
* event lines are active on the same logical channel. Retry to ensure
824
* it does. Usually only one retry is sufficient.
825
*/
826
tries = 100;
827
while (--tries) {
828
writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
829
| ~D40_EVENTLINE_MASK(event), addr);
830
831
if (readl(addr) & D40_EVENTLINE_MASK(event))
832
break;
833
}
834
835
if (tries != 99)
836
dev_dbg(chan2dev(d40c),
837
"[%s] workaround enable S%cLNK (%d tries)\n",
838
__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
839
100 - tries);
840
841
WARN_ON(!tries);
842
}
843
844
static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
845
{
846
unsigned long flags;
847
848
spin_lock_irqsave(&d40c->phy_chan->lock, flags);
849
850
/* Enable event line connected to device (or memcpy) */
851
if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
852
(d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
853
u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
854
855
__d40_config_set_event(d40c, do_enable, event,
856
D40_CHAN_REG_SSLNK);
857
}
858
859
if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
860
u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
861
862
__d40_config_set_event(d40c, do_enable, event,
863
D40_CHAN_REG_SDLNK);
864
}
865
866
spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
867
}
868
869
static u32 d40_chan_has_events(struct d40_chan *d40c)
870
{
871
void __iomem *chanbase = chan_base(d40c);
872
u32 val;
873
874
val = readl(chanbase + D40_CHAN_REG_SSLNK);
875
val |= readl(chanbase + D40_CHAN_REG_SDLNK);
876
877
return val;
878
}
879
880
static u32 d40_get_prmo(struct d40_chan *d40c)
881
{
882
static const unsigned int phy_map[] = {
883
[STEDMA40_PCHAN_BASIC_MODE]
884
= D40_DREG_PRMO_PCHAN_BASIC,
885
[STEDMA40_PCHAN_MODULO_MODE]
886
= D40_DREG_PRMO_PCHAN_MODULO,
887
[STEDMA40_PCHAN_DOUBLE_DST_MODE]
888
= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
889
};
890
static const unsigned int log_map[] = {
891
[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
892
= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
893
[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
894
= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
895
[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
896
= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
897
};
898
899
if (chan_is_physical(d40c))
900
return phy_map[d40c->dma_cfg.mode_opt];
901
else
902
return log_map[d40c->dma_cfg.mode_opt];
903
}
904
905
static void d40_config_write(struct d40_chan *d40c)
906
{
907
u32 addr_base;
908
u32 var;
909
910
/* Odd addresses are even addresses + 4 */
911
addr_base = (d40c->phy_chan->num % 2) * 4;
912
/* Setup channel mode to logical or physical */
913
var = ((u32)(chan_is_logical(d40c)) + 1) <<
914
D40_CHAN_POS(d40c->phy_chan->num);
915
writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
916
917
/* Setup operational mode option register */
918
var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
919
920
writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
921
922
if (chan_is_logical(d40c)) {
923
int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
924
& D40_SREG_ELEM_LOG_LIDX_MASK;
925
void __iomem *chanbase = chan_base(d40c);
926
927
/* Set default config for CFG reg */
928
writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
929
writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
930
931
/* Set LIDX for lcla */
932
writel(lidx, chanbase + D40_CHAN_REG_SSELT);
933
writel(lidx, chanbase + D40_CHAN_REG_SDELT);
934
}
935
}
936
937
static u32 d40_residue(struct d40_chan *d40c)
938
{
939
u32 num_elt;
940
941
if (chan_is_logical(d40c))
942
num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
943
>> D40_MEM_LCSP2_ECNT_POS;
944
else {
945
u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
946
num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
947
>> D40_SREG_ELEM_PHY_ECNT_POS;
948
}
949
950
return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
951
}
952
953
static bool d40_tx_is_linked(struct d40_chan *d40c)
954
{
955
bool is_link;
956
957
if (chan_is_logical(d40c))
958
is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
959
else
960
is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
961
& D40_SREG_LNK_PHYS_LNK_MASK;
962
963
return is_link;
964
}
965
966
static int d40_pause(struct d40_chan *d40c)
967
{
968
int res = 0;
969
unsigned long flags;
970
971
if (!d40c->busy)
972
return 0;
973
974
spin_lock_irqsave(&d40c->lock, flags);
975
976
res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
977
if (res == 0) {
978
if (chan_is_logical(d40c)) {
979
d40_config_set_event(d40c, false);
980
/* Resume the other logical channels if any */
981
if (d40_chan_has_events(d40c))
982
res = d40_channel_execute_command(d40c,
983
D40_DMA_RUN);
984
}
985
}
986
987
spin_unlock_irqrestore(&d40c->lock, flags);
988
return res;
989
}
990
991
static int d40_resume(struct d40_chan *d40c)
992
{
993
int res = 0;
994
unsigned long flags;
995
996
if (!d40c->busy)
997
return 0;
998
999
spin_lock_irqsave(&d40c->lock, flags);
1000
1001
if (d40c->base->rev == 0)
1002
if (chan_is_logical(d40c)) {
1003
res = d40_channel_execute_command(d40c,
1004
D40_DMA_SUSPEND_REQ);
1005
goto no_suspend;
1006
}
1007
1008
/* If bytes left to transfer or linked tx resume job */
1009
if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1010
1011
if (chan_is_logical(d40c))
1012
d40_config_set_event(d40c, true);
1013
1014
res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1015
}
1016
1017
no_suspend:
1018
spin_unlock_irqrestore(&d40c->lock, flags);
1019
return res;
1020
}
1021
1022
static int d40_terminate_all(struct d40_chan *chan)
1023
{
1024
unsigned long flags;
1025
int ret = 0;
1026
1027
ret = d40_pause(chan);
1028
if (!ret && chan_is_physical(chan))
1029
ret = d40_channel_execute_command(chan, D40_DMA_STOP);
1030
1031
spin_lock_irqsave(&chan->lock, flags);
1032
d40_term_all(chan);
1033
spin_unlock_irqrestore(&chan->lock, flags);
1034
1035
return ret;
1036
}
1037
1038
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1039
{
1040
struct d40_chan *d40c = container_of(tx->chan,
1041
struct d40_chan,
1042
chan);
1043
struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1044
unsigned long flags;
1045
1046
spin_lock_irqsave(&d40c->lock, flags);
1047
1048
d40c->chan.cookie++;
1049
1050
if (d40c->chan.cookie < 0)
1051
d40c->chan.cookie = 1;
1052
1053
d40d->txd.cookie = d40c->chan.cookie;
1054
1055
d40_desc_queue(d40c, d40d);
1056
1057
spin_unlock_irqrestore(&d40c->lock, flags);
1058
1059
return tx->cookie;
1060
}
1061
1062
static int d40_start(struct d40_chan *d40c)
1063
{
1064
if (d40c->base->rev == 0) {
1065
int err;
1066
1067
if (chan_is_logical(d40c)) {
1068
err = d40_channel_execute_command(d40c,
1069
D40_DMA_SUSPEND_REQ);
1070
if (err)
1071
return err;
1072
}
1073
}
1074
1075
if (chan_is_logical(d40c))
1076
d40_config_set_event(d40c, true);
1077
1078
return d40_channel_execute_command(d40c, D40_DMA_RUN);
1079
}
1080
1081
static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1082
{
1083
struct d40_desc *d40d;
1084
int err;
1085
1086
/* Start queued jobs, if any */
1087
d40d = d40_first_queued(d40c);
1088
1089
if (d40d != NULL) {
1090
d40c->busy = true;
1091
1092
/* Remove from queue */
1093
d40_desc_remove(d40d);
1094
1095
/* Add to active queue */
1096
d40_desc_submit(d40c, d40d);
1097
1098
/* Initiate DMA job */
1099
d40_desc_load(d40c, d40d);
1100
1101
/* Start dma job */
1102
err = d40_start(d40c);
1103
1104
if (err)
1105
return NULL;
1106
}
1107
1108
return d40d;
1109
}
1110
1111
/* called from interrupt context */
1112
static void dma_tc_handle(struct d40_chan *d40c)
1113
{
1114
struct d40_desc *d40d;
1115
1116
/* Get first active entry from list */
1117
d40d = d40_first_active_get(d40c);
1118
1119
if (d40d == NULL)
1120
return;
1121
1122
if (d40d->cyclic) {
1123
/*
1124
* If this was a paritially loaded list, we need to reloaded
1125
* it, and only when the list is completed. We need to check
1126
* for done because the interrupt will hit for every link, and
1127
* not just the last one.
1128
*/
1129
if (d40d->lli_current < d40d->lli_len
1130
&& !d40_tx_is_linked(d40c)
1131
&& !d40_residue(d40c)) {
1132
d40_lcla_free_all(d40c, d40d);
1133
d40_desc_load(d40c, d40d);
1134
(void) d40_start(d40c);
1135
1136
if (d40d->lli_current == d40d->lli_len)
1137
d40d->lli_current = 0;
1138
}
1139
} else {
1140
d40_lcla_free_all(d40c, d40d);
1141
1142
if (d40d->lli_current < d40d->lli_len) {
1143
d40_desc_load(d40c, d40d);
1144
/* Start dma job */
1145
(void) d40_start(d40c);
1146
return;
1147
}
1148
1149
if (d40_queue_start(d40c) == NULL)
1150
d40c->busy = false;
1151
}
1152
1153
d40c->pending_tx++;
1154
tasklet_schedule(&d40c->tasklet);
1155
1156
}
1157
1158
static void dma_tasklet(unsigned long data)
1159
{
1160
struct d40_chan *d40c = (struct d40_chan *) data;
1161
struct d40_desc *d40d;
1162
unsigned long flags;
1163
dma_async_tx_callback callback;
1164
void *callback_param;
1165
1166
spin_lock_irqsave(&d40c->lock, flags);
1167
1168
/* Get first active entry from list */
1169
d40d = d40_first_active_get(d40c);
1170
if (d40d == NULL)
1171
goto err;
1172
1173
if (!d40d->cyclic)
1174
d40c->completed = d40d->txd.cookie;
1175
1176
/*
1177
* If terminating a channel pending_tx is set to zero.
1178
* This prevents any finished active jobs to return to the client.
1179
*/
1180
if (d40c->pending_tx == 0) {
1181
spin_unlock_irqrestore(&d40c->lock, flags);
1182
return;
1183
}
1184
1185
/* Callback to client */
1186
callback = d40d->txd.callback;
1187
callback_param = d40d->txd.callback_param;
1188
1189
if (!d40d->cyclic) {
1190
if (async_tx_test_ack(&d40d->txd)) {
1191
d40_pool_lli_free(d40c, d40d);
1192
d40_desc_remove(d40d);
1193
d40_desc_free(d40c, d40d);
1194
} else {
1195
if (!d40d->is_in_client_list) {
1196
d40_desc_remove(d40d);
1197
d40_lcla_free_all(d40c, d40d);
1198
list_add_tail(&d40d->node, &d40c->client);
1199
d40d->is_in_client_list = true;
1200
}
1201
}
1202
}
1203
1204
d40c->pending_tx--;
1205
1206
if (d40c->pending_tx)
1207
tasklet_schedule(&d40c->tasklet);
1208
1209
spin_unlock_irqrestore(&d40c->lock, flags);
1210
1211
if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1212
callback(callback_param);
1213
1214
return;
1215
1216
err:
1217
/* Rescue manoeuvre if receiving double interrupts */
1218
if (d40c->pending_tx > 0)
1219
d40c->pending_tx--;
1220
spin_unlock_irqrestore(&d40c->lock, flags);
1221
}
1222
1223
static irqreturn_t d40_handle_interrupt(int irq, void *data)
1224
{
1225
static const struct d40_interrupt_lookup il[] = {
1226
{D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
1227
{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1228
{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1229
{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1230
{D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
1231
{D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
1232
{D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
1233
{D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
1234
{D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
1235
{D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
1236
};
1237
1238
int i;
1239
u32 regs[ARRAY_SIZE(il)];
1240
u32 idx;
1241
u32 row;
1242
long chan = -1;
1243
struct d40_chan *d40c;
1244
unsigned long flags;
1245
struct d40_base *base = data;
1246
1247
spin_lock_irqsave(&base->interrupt_lock, flags);
1248
1249
/* Read interrupt status of both logical and physical channels */
1250
for (i = 0; i < ARRAY_SIZE(il); i++)
1251
regs[i] = readl(base->virtbase + il[i].src);
1252
1253
for (;;) {
1254
1255
chan = find_next_bit((unsigned long *)regs,
1256
BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1257
1258
/* No more set bits found? */
1259
if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1260
break;
1261
1262
row = chan / BITS_PER_LONG;
1263
idx = chan & (BITS_PER_LONG - 1);
1264
1265
/* ACK interrupt */
1266
writel(1 << idx, base->virtbase + il[row].clr);
1267
1268
if (il[row].offset == D40_PHY_CHAN)
1269
d40c = base->lookup_phy_chans[idx];
1270
else
1271
d40c = base->lookup_log_chans[il[row].offset + idx];
1272
spin_lock(&d40c->lock);
1273
1274
if (!il[row].is_error)
1275
dma_tc_handle(d40c);
1276
else
1277
d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1278
chan, il[row].offset, idx);
1279
1280
spin_unlock(&d40c->lock);
1281
}
1282
1283
spin_unlock_irqrestore(&base->interrupt_lock, flags);
1284
1285
return IRQ_HANDLED;
1286
}
1287
1288
static int d40_validate_conf(struct d40_chan *d40c,
1289
struct stedma40_chan_cfg *conf)
1290
{
1291
int res = 0;
1292
u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1293
u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1294
bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1295
1296
if (!conf->dir) {
1297
chan_err(d40c, "Invalid direction.\n");
1298
res = -EINVAL;
1299
}
1300
1301
if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1302
d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1303
d40c->runtime_addr == 0) {
1304
1305
chan_err(d40c, "Invalid TX channel address (%d)\n",
1306
conf->dst_dev_type);
1307
res = -EINVAL;
1308
}
1309
1310
if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1311
d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1312
d40c->runtime_addr == 0) {
1313
chan_err(d40c, "Invalid RX channel address (%d)\n",
1314
conf->src_dev_type);
1315
res = -EINVAL;
1316
}
1317
1318
if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1319
dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1320
chan_err(d40c, "Invalid dst\n");
1321
res = -EINVAL;
1322
}
1323
1324
if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1325
src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1326
chan_err(d40c, "Invalid src\n");
1327
res = -EINVAL;
1328
}
1329
1330
if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1331
dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1332
chan_err(d40c, "No event line\n");
1333
res = -EINVAL;
1334
}
1335
1336
if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1337
(src_event_group != dst_event_group)) {
1338
chan_err(d40c, "Invalid event group\n");
1339
res = -EINVAL;
1340
}
1341
1342
if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1343
/*
1344
* DMAC HW supports it. Will be added to this driver,
1345
* in case any dma client requires it.
1346
*/
1347
chan_err(d40c, "periph to periph not supported\n");
1348
res = -EINVAL;
1349
}
1350
1351
if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1352
(1 << conf->src_info.data_width) !=
1353
d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1354
(1 << conf->dst_info.data_width)) {
1355
/*
1356
* The DMAC hardware only supports
1357
* src (burst x width) == dst (burst x width)
1358
*/
1359
1360
chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1361
res = -EINVAL;
1362
}
1363
1364
return res;
1365
}
1366
1367
static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1368
int log_event_line, bool is_log)
1369
{
1370
unsigned long flags;
1371
spin_lock_irqsave(&phy->lock, flags);
1372
if (!is_log) {
1373
/* Physical interrupts are masked per physical full channel */
1374
if (phy->allocated_src == D40_ALLOC_FREE &&
1375
phy->allocated_dst == D40_ALLOC_FREE) {
1376
phy->allocated_dst = D40_ALLOC_PHY;
1377
phy->allocated_src = D40_ALLOC_PHY;
1378
goto found;
1379
} else
1380
goto not_found;
1381
}
1382
1383
/* Logical channel */
1384
if (is_src) {
1385
if (phy->allocated_src == D40_ALLOC_PHY)
1386
goto not_found;
1387
1388
if (phy->allocated_src == D40_ALLOC_FREE)
1389
phy->allocated_src = D40_ALLOC_LOG_FREE;
1390
1391
if (!(phy->allocated_src & (1 << log_event_line))) {
1392
phy->allocated_src |= 1 << log_event_line;
1393
goto found;
1394
} else
1395
goto not_found;
1396
} else {
1397
if (phy->allocated_dst == D40_ALLOC_PHY)
1398
goto not_found;
1399
1400
if (phy->allocated_dst == D40_ALLOC_FREE)
1401
phy->allocated_dst = D40_ALLOC_LOG_FREE;
1402
1403
if (!(phy->allocated_dst & (1 << log_event_line))) {
1404
phy->allocated_dst |= 1 << log_event_line;
1405
goto found;
1406
} else
1407
goto not_found;
1408
}
1409
1410
not_found:
1411
spin_unlock_irqrestore(&phy->lock, flags);
1412
return false;
1413
found:
1414
spin_unlock_irqrestore(&phy->lock, flags);
1415
return true;
1416
}
1417
1418
static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1419
int log_event_line)
1420
{
1421
unsigned long flags;
1422
bool is_free = false;
1423
1424
spin_lock_irqsave(&phy->lock, flags);
1425
if (!log_event_line) {
1426
phy->allocated_dst = D40_ALLOC_FREE;
1427
phy->allocated_src = D40_ALLOC_FREE;
1428
is_free = true;
1429
goto out;
1430
}
1431
1432
/* Logical channel */
1433
if (is_src) {
1434
phy->allocated_src &= ~(1 << log_event_line);
1435
if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1436
phy->allocated_src = D40_ALLOC_FREE;
1437
} else {
1438
phy->allocated_dst &= ~(1 << log_event_line);
1439
if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1440
phy->allocated_dst = D40_ALLOC_FREE;
1441
}
1442
1443
is_free = ((phy->allocated_src | phy->allocated_dst) ==
1444
D40_ALLOC_FREE);
1445
1446
out:
1447
spin_unlock_irqrestore(&phy->lock, flags);
1448
1449
return is_free;
1450
}
1451
1452
static int d40_allocate_channel(struct d40_chan *d40c)
1453
{
1454
int dev_type;
1455
int event_group;
1456
int event_line;
1457
struct d40_phy_res *phys;
1458
int i;
1459
int j;
1460
int log_num;
1461
bool is_src;
1462
bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1463
1464
phys = d40c->base->phy_res;
1465
1466
if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1467
dev_type = d40c->dma_cfg.src_dev_type;
1468
log_num = 2 * dev_type;
1469
is_src = true;
1470
} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1471
d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1472
/* dst event lines are used for logical memcpy */
1473
dev_type = d40c->dma_cfg.dst_dev_type;
1474
log_num = 2 * dev_type + 1;
1475
is_src = false;
1476
} else
1477
return -EINVAL;
1478
1479
event_group = D40_TYPE_TO_GROUP(dev_type);
1480
event_line = D40_TYPE_TO_EVENT(dev_type);
1481
1482
if (!is_log) {
1483
if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1484
/* Find physical half channel */
1485
for (i = 0; i < d40c->base->num_phy_chans; i++) {
1486
1487
if (d40_alloc_mask_set(&phys[i], is_src,
1488
0, is_log))
1489
goto found_phy;
1490
}
1491
} else
1492
for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1493
int phy_num = j + event_group * 2;
1494
for (i = phy_num; i < phy_num + 2; i++) {
1495
if (d40_alloc_mask_set(&phys[i],
1496
is_src,
1497
0,
1498
is_log))
1499
goto found_phy;
1500
}
1501
}
1502
return -EINVAL;
1503
found_phy:
1504
d40c->phy_chan = &phys[i];
1505
d40c->log_num = D40_PHY_CHAN;
1506
goto out;
1507
}
1508
if (dev_type == -1)
1509
return -EINVAL;
1510
1511
/* Find logical channel */
1512
for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1513
int phy_num = j + event_group * 2;
1514
/*
1515
* Spread logical channels across all available physical rather
1516
* than pack every logical channel at the first available phy
1517
* channels.
1518
*/
1519
if (is_src) {
1520
for (i = phy_num; i < phy_num + 2; i++) {
1521
if (d40_alloc_mask_set(&phys[i], is_src,
1522
event_line, is_log))
1523
goto found_log;
1524
}
1525
} else {
1526
for (i = phy_num + 1; i >= phy_num; i--) {
1527
if (d40_alloc_mask_set(&phys[i], is_src,
1528
event_line, is_log))
1529
goto found_log;
1530
}
1531
}
1532
}
1533
return -EINVAL;
1534
1535
found_log:
1536
d40c->phy_chan = &phys[i];
1537
d40c->log_num = log_num;
1538
out:
1539
1540
if (is_log)
1541
d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1542
else
1543
d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1544
1545
return 0;
1546
1547
}
1548
1549
static int d40_config_memcpy(struct d40_chan *d40c)
1550
{
1551
dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1552
1553
if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1554
d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1555
d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1556
d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1557
memcpy[d40c->chan.chan_id];
1558
1559
} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1560
dma_has_cap(DMA_SLAVE, cap)) {
1561
d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1562
} else {
1563
chan_err(d40c, "No memcpy\n");
1564
return -EINVAL;
1565
}
1566
1567
return 0;
1568
}
1569
1570
1571
static int d40_free_dma(struct d40_chan *d40c)
1572
{
1573
1574
int res = 0;
1575
u32 event;
1576
struct d40_phy_res *phy = d40c->phy_chan;
1577
bool is_src;
1578
struct d40_desc *d;
1579
struct d40_desc *_d;
1580
1581
1582
/* Terminate all queued and active transfers */
1583
d40_term_all(d40c);
1584
1585
/* Release client owned descriptors */
1586
if (!list_empty(&d40c->client))
1587
list_for_each_entry_safe(d, _d, &d40c->client, node) {
1588
d40_pool_lli_free(d40c, d);
1589
d40_desc_remove(d);
1590
d40_desc_free(d40c, d);
1591
}
1592
1593
if (phy == NULL) {
1594
chan_err(d40c, "phy == null\n");
1595
return -EINVAL;
1596
}
1597
1598
if (phy->allocated_src == D40_ALLOC_FREE &&
1599
phy->allocated_dst == D40_ALLOC_FREE) {
1600
chan_err(d40c, "channel already free\n");
1601
return -EINVAL;
1602
}
1603
1604
if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1605
d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1606
event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1607
is_src = false;
1608
} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1609
event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1610
is_src = true;
1611
} else {
1612
chan_err(d40c, "Unknown direction\n");
1613
return -EINVAL;
1614
}
1615
1616
res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1617
if (res) {
1618
chan_err(d40c, "suspend failed\n");
1619
return res;
1620
}
1621
1622
if (chan_is_logical(d40c)) {
1623
/* Release logical channel, deactivate the event line */
1624
1625
d40_config_set_event(d40c, false);
1626
d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1627
1628
/*
1629
* Check if there are more logical allocation
1630
* on this phy channel.
1631
*/
1632
if (!d40_alloc_mask_free(phy, is_src, event)) {
1633
/* Resume the other logical channels if any */
1634
if (d40_chan_has_events(d40c)) {
1635
res = d40_channel_execute_command(d40c,
1636
D40_DMA_RUN);
1637
if (res) {
1638
chan_err(d40c,
1639
"Executing RUN command\n");
1640
return res;
1641
}
1642
}
1643
return 0;
1644
}
1645
} else {
1646
(void) d40_alloc_mask_free(phy, is_src, 0);
1647
}
1648
1649
/* Release physical channel */
1650
res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1651
if (res) {
1652
chan_err(d40c, "Failed to stop channel\n");
1653
return res;
1654
}
1655
d40c->phy_chan = NULL;
1656
d40c->configured = false;
1657
d40c->base->lookup_phy_chans[phy->num] = NULL;
1658
1659
return 0;
1660
}
1661
1662
static bool d40_is_paused(struct d40_chan *d40c)
1663
{
1664
void __iomem *chanbase = chan_base(d40c);
1665
bool is_paused = false;
1666
unsigned long flags;
1667
void __iomem *active_reg;
1668
u32 status;
1669
u32 event;
1670
1671
spin_lock_irqsave(&d40c->lock, flags);
1672
1673
if (chan_is_physical(d40c)) {
1674
if (d40c->phy_chan->num % 2 == 0)
1675
active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1676
else
1677
active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1678
1679
status = (readl(active_reg) &
1680
D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1681
D40_CHAN_POS(d40c->phy_chan->num);
1682
if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1683
is_paused = true;
1684
1685
goto _exit;
1686
}
1687
1688
if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1689
d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1690
event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1691
status = readl(chanbase + D40_CHAN_REG_SDLNK);
1692
} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1693
event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1694
status = readl(chanbase + D40_CHAN_REG_SSLNK);
1695
} else {
1696
chan_err(d40c, "Unknown direction\n");
1697
goto _exit;
1698
}
1699
1700
status = (status & D40_EVENTLINE_MASK(event)) >>
1701
D40_EVENTLINE_POS(event);
1702
1703
if (status != D40_DMA_RUN)
1704
is_paused = true;
1705
_exit:
1706
spin_unlock_irqrestore(&d40c->lock, flags);
1707
return is_paused;
1708
1709
}
1710
1711
1712
static u32 stedma40_residue(struct dma_chan *chan)
1713
{
1714
struct d40_chan *d40c =
1715
container_of(chan, struct d40_chan, chan);
1716
u32 bytes_left;
1717
unsigned long flags;
1718
1719
spin_lock_irqsave(&d40c->lock, flags);
1720
bytes_left = d40_residue(d40c);
1721
spin_unlock_irqrestore(&d40c->lock, flags);
1722
1723
return bytes_left;
1724
}
1725
1726
static int
1727
d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1728
struct scatterlist *sg_src, struct scatterlist *sg_dst,
1729
unsigned int sg_len, dma_addr_t src_dev_addr,
1730
dma_addr_t dst_dev_addr)
1731
{
1732
struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1733
struct stedma40_half_channel_info *src_info = &cfg->src_info;
1734
struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1735
int ret;
1736
1737
ret = d40_log_sg_to_lli(sg_src, sg_len,
1738
src_dev_addr,
1739
desc->lli_log.src,
1740
chan->log_def.lcsp1,
1741
src_info->data_width,
1742
dst_info->data_width);
1743
1744
ret = d40_log_sg_to_lli(sg_dst, sg_len,
1745
dst_dev_addr,
1746
desc->lli_log.dst,
1747
chan->log_def.lcsp3,
1748
dst_info->data_width,
1749
src_info->data_width);
1750
1751
return ret < 0 ? ret : 0;
1752
}
1753
1754
static int
1755
d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
1756
struct scatterlist *sg_src, struct scatterlist *sg_dst,
1757
unsigned int sg_len, dma_addr_t src_dev_addr,
1758
dma_addr_t dst_dev_addr)
1759
{
1760
struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1761
struct stedma40_half_channel_info *src_info = &cfg->src_info;
1762
struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1763
unsigned long flags = 0;
1764
int ret;
1765
1766
if (desc->cyclic)
1767
flags |= LLI_CYCLIC | LLI_TERM_INT;
1768
1769
ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
1770
desc->lli_phy.src,
1771
virt_to_phys(desc->lli_phy.src),
1772
chan->src_def_cfg,
1773
src_info, dst_info, flags);
1774
1775
ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
1776
desc->lli_phy.dst,
1777
virt_to_phys(desc->lli_phy.dst),
1778
chan->dst_def_cfg,
1779
dst_info, src_info, flags);
1780
1781
dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
1782
desc->lli_pool.size, DMA_TO_DEVICE);
1783
1784
return ret < 0 ? ret : 0;
1785
}
1786
1787
1788
static struct d40_desc *
1789
d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
1790
unsigned int sg_len, unsigned long dma_flags)
1791
{
1792
struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1793
struct d40_desc *desc;
1794
int ret;
1795
1796
desc = d40_desc_get(chan);
1797
if (!desc)
1798
return NULL;
1799
1800
desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
1801
cfg->dst_info.data_width);
1802
if (desc->lli_len < 0) {
1803
chan_err(chan, "Unaligned size\n");
1804
goto err;
1805
}
1806
1807
ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
1808
if (ret < 0) {
1809
chan_err(chan, "Could not allocate lli\n");
1810
goto err;
1811
}
1812
1813
1814
desc->lli_current = 0;
1815
desc->txd.flags = dma_flags;
1816
desc->txd.tx_submit = d40_tx_submit;
1817
1818
dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
1819
1820
return desc;
1821
1822
err:
1823
d40_desc_free(chan, desc);
1824
return NULL;
1825
}
1826
1827
static dma_addr_t
1828
d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
1829
{
1830
struct stedma40_platform_data *plat = chan->base->plat_data;
1831
struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1832
dma_addr_t addr = 0;
1833
1834
if (chan->runtime_addr)
1835
return chan->runtime_addr;
1836
1837
if (direction == DMA_FROM_DEVICE)
1838
addr = plat->dev_rx[cfg->src_dev_type];
1839
else if (direction == DMA_TO_DEVICE)
1840
addr = plat->dev_tx[cfg->dst_dev_type];
1841
1842
return addr;
1843
}
1844
1845
static struct dma_async_tx_descriptor *
1846
d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
1847
struct scatterlist *sg_dst, unsigned int sg_len,
1848
enum dma_data_direction direction, unsigned long dma_flags)
1849
{
1850
struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
1851
dma_addr_t src_dev_addr = 0;
1852
dma_addr_t dst_dev_addr = 0;
1853
struct d40_desc *desc;
1854
unsigned long flags;
1855
int ret;
1856
1857
if (!chan->phy_chan) {
1858
chan_err(chan, "Cannot prepare unallocated channel\n");
1859
return NULL;
1860
}
1861
1862
1863
spin_lock_irqsave(&chan->lock, flags);
1864
1865
desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
1866
if (desc == NULL)
1867
goto err;
1868
1869
if (sg_next(&sg_src[sg_len - 1]) == sg_src)
1870
desc->cyclic = true;
1871
1872
if (direction != DMA_NONE) {
1873
dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
1874
1875
if (direction == DMA_FROM_DEVICE)
1876
src_dev_addr = dev_addr;
1877
else if (direction == DMA_TO_DEVICE)
1878
dst_dev_addr = dev_addr;
1879
}
1880
1881
if (chan_is_logical(chan))
1882
ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
1883
sg_len, src_dev_addr, dst_dev_addr);
1884
else
1885
ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
1886
sg_len, src_dev_addr, dst_dev_addr);
1887
1888
if (ret) {
1889
chan_err(chan, "Failed to prepare %s sg job: %d\n",
1890
chan_is_logical(chan) ? "log" : "phy", ret);
1891
goto err;
1892
}
1893
1894
spin_unlock_irqrestore(&chan->lock, flags);
1895
1896
return &desc->txd;
1897
1898
err:
1899
if (desc)
1900
d40_desc_free(chan, desc);
1901
spin_unlock_irqrestore(&chan->lock, flags);
1902
return NULL;
1903
}
1904
1905
bool stedma40_filter(struct dma_chan *chan, void *data)
1906
{
1907
struct stedma40_chan_cfg *info = data;
1908
struct d40_chan *d40c =
1909
container_of(chan, struct d40_chan, chan);
1910
int err;
1911
1912
if (data) {
1913
err = d40_validate_conf(d40c, info);
1914
if (!err)
1915
d40c->dma_cfg = *info;
1916
} else
1917
err = d40_config_memcpy(d40c);
1918
1919
if (!err)
1920
d40c->configured = true;
1921
1922
return err == 0;
1923
}
1924
EXPORT_SYMBOL(stedma40_filter);
1925
1926
static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
1927
{
1928
bool realtime = d40c->dma_cfg.realtime;
1929
bool highprio = d40c->dma_cfg.high_priority;
1930
u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
1931
u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
1932
u32 event = D40_TYPE_TO_EVENT(dev_type);
1933
u32 group = D40_TYPE_TO_GROUP(dev_type);
1934
u32 bit = 1 << event;
1935
1936
/* Destination event lines are stored in the upper halfword */
1937
if (!src)
1938
bit <<= 16;
1939
1940
writel(bit, d40c->base->virtbase + prioreg + group * 4);
1941
writel(bit, d40c->base->virtbase + rtreg + group * 4);
1942
}
1943
1944
static void d40_set_prio_realtime(struct d40_chan *d40c)
1945
{
1946
if (d40c->base->rev < 3)
1947
return;
1948
1949
if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
1950
(d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1951
__d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
1952
1953
if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
1954
(d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1955
__d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
1956
}
1957
1958
/* DMA ENGINE functions */
1959
static int d40_alloc_chan_resources(struct dma_chan *chan)
1960
{
1961
int err;
1962
unsigned long flags;
1963
struct d40_chan *d40c =
1964
container_of(chan, struct d40_chan, chan);
1965
bool is_free_phy;
1966
spin_lock_irqsave(&d40c->lock, flags);
1967
1968
d40c->completed = chan->cookie = 1;
1969
1970
/* If no dma configuration is set use default configuration (memcpy) */
1971
if (!d40c->configured) {
1972
err = d40_config_memcpy(d40c);
1973
if (err) {
1974
chan_err(d40c, "Failed to configure memcpy channel\n");
1975
goto fail;
1976
}
1977
}
1978
is_free_phy = (d40c->phy_chan == NULL);
1979
1980
err = d40_allocate_channel(d40c);
1981
if (err) {
1982
chan_err(d40c, "Failed to allocate channel\n");
1983
goto fail;
1984
}
1985
1986
/* Fill in basic CFG register values */
1987
d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1988
&d40c->dst_def_cfg, chan_is_logical(d40c));
1989
1990
d40_set_prio_realtime(d40c);
1991
1992
if (chan_is_logical(d40c)) {
1993
d40_log_cfg(&d40c->dma_cfg,
1994
&d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1995
1996
if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1997
d40c->lcpa = d40c->base->lcpa_base +
1998
d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
1999
else
2000
d40c->lcpa = d40c->base->lcpa_base +
2001
d40c->dma_cfg.dst_dev_type *
2002
D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2003
}
2004
2005
/*
2006
* Only write channel configuration to the DMA if the physical
2007
* resource is free. In case of multiple logical channels
2008
* on the same physical resource, only the first write is necessary.
2009
*/
2010
if (is_free_phy)
2011
d40_config_write(d40c);
2012
fail:
2013
spin_unlock_irqrestore(&d40c->lock, flags);
2014
return err;
2015
}
2016
2017
static void d40_free_chan_resources(struct dma_chan *chan)
2018
{
2019
struct d40_chan *d40c =
2020
container_of(chan, struct d40_chan, chan);
2021
int err;
2022
unsigned long flags;
2023
2024
if (d40c->phy_chan == NULL) {
2025
chan_err(d40c, "Cannot free unallocated channel\n");
2026
return;
2027
}
2028
2029
2030
spin_lock_irqsave(&d40c->lock, flags);
2031
2032
err = d40_free_dma(d40c);
2033
2034
if (err)
2035
chan_err(d40c, "Failed to free channel\n");
2036
spin_unlock_irqrestore(&d40c->lock, flags);
2037
}
2038
2039
static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2040
dma_addr_t dst,
2041
dma_addr_t src,
2042
size_t size,
2043
unsigned long dma_flags)
2044
{
2045
struct scatterlist dst_sg;
2046
struct scatterlist src_sg;
2047
2048
sg_init_table(&dst_sg, 1);
2049
sg_init_table(&src_sg, 1);
2050
2051
sg_dma_address(&dst_sg) = dst;
2052
sg_dma_address(&src_sg) = src;
2053
2054
sg_dma_len(&dst_sg) = size;
2055
sg_dma_len(&src_sg) = size;
2056
2057
return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2058
}
2059
2060
static struct dma_async_tx_descriptor *
2061
d40_prep_memcpy_sg(struct dma_chan *chan,
2062
struct scatterlist *dst_sg, unsigned int dst_nents,
2063
struct scatterlist *src_sg, unsigned int src_nents,
2064
unsigned long dma_flags)
2065
{
2066
if (dst_nents != src_nents)
2067
return NULL;
2068
2069
return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2070
}
2071
2072
static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2073
struct scatterlist *sgl,
2074
unsigned int sg_len,
2075
enum dma_data_direction direction,
2076
unsigned long dma_flags)
2077
{
2078
if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
2079
return NULL;
2080
2081
return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2082
}
2083
2084
static struct dma_async_tx_descriptor *
2085
dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2086
size_t buf_len, size_t period_len,
2087
enum dma_data_direction direction)
2088
{
2089
unsigned int periods = buf_len / period_len;
2090
struct dma_async_tx_descriptor *txd;
2091
struct scatterlist *sg;
2092
int i;
2093
2094
sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_KERNEL);
2095
for (i = 0; i < periods; i++) {
2096
sg_dma_address(&sg[i]) = dma_addr;
2097
sg_dma_len(&sg[i]) = period_len;
2098
dma_addr += period_len;
2099
}
2100
2101
sg[periods].offset = 0;
2102
sg[periods].length = 0;
2103
sg[periods].page_link =
2104
((unsigned long)sg | 0x01) & ~0x02;
2105
2106
txd = d40_prep_sg(chan, sg, sg, periods, direction,
2107
DMA_PREP_INTERRUPT);
2108
2109
kfree(sg);
2110
2111
return txd;
2112
}
2113
2114
static enum dma_status d40_tx_status(struct dma_chan *chan,
2115
dma_cookie_t cookie,
2116
struct dma_tx_state *txstate)
2117
{
2118
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2119
dma_cookie_t last_used;
2120
dma_cookie_t last_complete;
2121
int ret;
2122
2123
if (d40c->phy_chan == NULL) {
2124
chan_err(d40c, "Cannot read status of unallocated channel\n");
2125
return -EINVAL;
2126
}
2127
2128
last_complete = d40c->completed;
2129
last_used = chan->cookie;
2130
2131
if (d40_is_paused(d40c))
2132
ret = DMA_PAUSED;
2133
else
2134
ret = dma_async_is_complete(cookie, last_complete, last_used);
2135
2136
dma_set_tx_state(txstate, last_complete, last_used,
2137
stedma40_residue(chan));
2138
2139
return ret;
2140
}
2141
2142
static void d40_issue_pending(struct dma_chan *chan)
2143
{
2144
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2145
unsigned long flags;
2146
2147
if (d40c->phy_chan == NULL) {
2148
chan_err(d40c, "Channel is not allocated!\n");
2149
return;
2150
}
2151
2152
spin_lock_irqsave(&d40c->lock, flags);
2153
2154
/* Busy means that pending jobs are already being processed */
2155
if (!d40c->busy)
2156
(void) d40_queue_start(d40c);
2157
2158
spin_unlock_irqrestore(&d40c->lock, flags);
2159
}
2160
2161
/* Runtime reconfiguration extension */
2162
static void d40_set_runtime_config(struct dma_chan *chan,
2163
struct dma_slave_config *config)
2164
{
2165
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2166
struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2167
enum dma_slave_buswidth config_addr_width;
2168
dma_addr_t config_addr;
2169
u32 config_maxburst;
2170
enum stedma40_periph_data_width addr_width;
2171
int psize;
2172
2173
if (config->direction == DMA_FROM_DEVICE) {
2174
dma_addr_t dev_addr_rx =
2175
d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2176
2177
config_addr = config->src_addr;
2178
if (dev_addr_rx)
2179
dev_dbg(d40c->base->dev,
2180
"channel has a pre-wired RX address %08x "
2181
"overriding with %08x\n",
2182
dev_addr_rx, config_addr);
2183
if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2184
dev_dbg(d40c->base->dev,
2185
"channel was not configured for peripheral "
2186
"to memory transfer (%d) overriding\n",
2187
cfg->dir);
2188
cfg->dir = STEDMA40_PERIPH_TO_MEM;
2189
2190
config_addr_width = config->src_addr_width;
2191
config_maxburst = config->src_maxburst;
2192
2193
} else if (config->direction == DMA_TO_DEVICE) {
2194
dma_addr_t dev_addr_tx =
2195
d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2196
2197
config_addr = config->dst_addr;
2198
if (dev_addr_tx)
2199
dev_dbg(d40c->base->dev,
2200
"channel has a pre-wired TX address %08x "
2201
"overriding with %08x\n",
2202
dev_addr_tx, config_addr);
2203
if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2204
dev_dbg(d40c->base->dev,
2205
"channel was not configured for memory "
2206
"to peripheral transfer (%d) overriding\n",
2207
cfg->dir);
2208
cfg->dir = STEDMA40_MEM_TO_PERIPH;
2209
2210
config_addr_width = config->dst_addr_width;
2211
config_maxburst = config->dst_maxburst;
2212
2213
} else {
2214
dev_err(d40c->base->dev,
2215
"unrecognized channel direction %d\n",
2216
config->direction);
2217
return;
2218
}
2219
2220
switch (config_addr_width) {
2221
case DMA_SLAVE_BUSWIDTH_1_BYTE:
2222
addr_width = STEDMA40_BYTE_WIDTH;
2223
break;
2224
case DMA_SLAVE_BUSWIDTH_2_BYTES:
2225
addr_width = STEDMA40_HALFWORD_WIDTH;
2226
break;
2227
case DMA_SLAVE_BUSWIDTH_4_BYTES:
2228
addr_width = STEDMA40_WORD_WIDTH;
2229
break;
2230
case DMA_SLAVE_BUSWIDTH_8_BYTES:
2231
addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2232
break;
2233
default:
2234
dev_err(d40c->base->dev,
2235
"illegal peripheral address width "
2236
"requested (%d)\n",
2237
config->src_addr_width);
2238
return;
2239
}
2240
2241
if (chan_is_logical(d40c)) {
2242
if (config_maxburst >= 16)
2243
psize = STEDMA40_PSIZE_LOG_16;
2244
else if (config_maxburst >= 8)
2245
psize = STEDMA40_PSIZE_LOG_8;
2246
else if (config_maxburst >= 4)
2247
psize = STEDMA40_PSIZE_LOG_4;
2248
else
2249
psize = STEDMA40_PSIZE_LOG_1;
2250
} else {
2251
if (config_maxburst >= 16)
2252
psize = STEDMA40_PSIZE_PHY_16;
2253
else if (config_maxburst >= 8)
2254
psize = STEDMA40_PSIZE_PHY_8;
2255
else if (config_maxburst >= 4)
2256
psize = STEDMA40_PSIZE_PHY_4;
2257
else if (config_maxburst >= 2)
2258
psize = STEDMA40_PSIZE_PHY_2;
2259
else
2260
psize = STEDMA40_PSIZE_PHY_1;
2261
}
2262
2263
/* Set up all the endpoint configs */
2264
cfg->src_info.data_width = addr_width;
2265
cfg->src_info.psize = psize;
2266
cfg->src_info.big_endian = false;
2267
cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2268
cfg->dst_info.data_width = addr_width;
2269
cfg->dst_info.psize = psize;
2270
cfg->dst_info.big_endian = false;
2271
cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2272
2273
/* Fill in register values */
2274
if (chan_is_logical(d40c))
2275
d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2276
else
2277
d40_phy_cfg(cfg, &d40c->src_def_cfg,
2278
&d40c->dst_def_cfg, false);
2279
2280
/* These settings will take precedence later */
2281
d40c->runtime_addr = config_addr;
2282
d40c->runtime_direction = config->direction;
2283
dev_dbg(d40c->base->dev,
2284
"configured channel %s for %s, data width %d, "
2285
"maxburst %d bytes, LE, no flow control\n",
2286
dma_chan_name(chan),
2287
(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2288
config_addr_width,
2289
config_maxburst);
2290
}
2291
2292
static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2293
unsigned long arg)
2294
{
2295
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2296
2297
if (d40c->phy_chan == NULL) {
2298
chan_err(d40c, "Channel is not allocated!\n");
2299
return -EINVAL;
2300
}
2301
2302
switch (cmd) {
2303
case DMA_TERMINATE_ALL:
2304
return d40_terminate_all(d40c);
2305
case DMA_PAUSE:
2306
return d40_pause(d40c);
2307
case DMA_RESUME:
2308
return d40_resume(d40c);
2309
case DMA_SLAVE_CONFIG:
2310
d40_set_runtime_config(chan,
2311
(struct dma_slave_config *) arg);
2312
return 0;
2313
default:
2314
break;
2315
}
2316
2317
/* Other commands are unimplemented */
2318
return -ENXIO;
2319
}
2320
2321
/* Initialization functions */
2322
2323
static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2324
struct d40_chan *chans, int offset,
2325
int num_chans)
2326
{
2327
int i = 0;
2328
struct d40_chan *d40c;
2329
2330
INIT_LIST_HEAD(&dma->channels);
2331
2332
for (i = offset; i < offset + num_chans; i++) {
2333
d40c = &chans[i];
2334
d40c->base = base;
2335
d40c->chan.device = dma;
2336
2337
spin_lock_init(&d40c->lock);
2338
2339
d40c->log_num = D40_PHY_CHAN;
2340
2341
INIT_LIST_HEAD(&d40c->active);
2342
INIT_LIST_HEAD(&d40c->queue);
2343
INIT_LIST_HEAD(&d40c->client);
2344
2345
tasklet_init(&d40c->tasklet, dma_tasklet,
2346
(unsigned long) d40c);
2347
2348
list_add_tail(&d40c->chan.device_node,
2349
&dma->channels);
2350
}
2351
}
2352
2353
static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2354
{
2355
if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2356
dev->device_prep_slave_sg = d40_prep_slave_sg;
2357
2358
if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2359
dev->device_prep_dma_memcpy = d40_prep_memcpy;
2360
2361
/*
2362
* This controller can only access address at even
2363
* 32bit boundaries, i.e. 2^2
2364
*/
2365
dev->copy_align = 2;
2366
}
2367
2368
if (dma_has_cap(DMA_SG, dev->cap_mask))
2369
dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2370
2371
if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2372
dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2373
2374
dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2375
dev->device_free_chan_resources = d40_free_chan_resources;
2376
dev->device_issue_pending = d40_issue_pending;
2377
dev->device_tx_status = d40_tx_status;
2378
dev->device_control = d40_control;
2379
dev->dev = base->dev;
2380
}
2381
2382
static int __init d40_dmaengine_init(struct d40_base *base,
2383
int num_reserved_chans)
2384
{
2385
int err ;
2386
2387
d40_chan_init(base, &base->dma_slave, base->log_chans,
2388
0, base->num_log_chans);
2389
2390
dma_cap_zero(base->dma_slave.cap_mask);
2391
dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2392
dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2393
2394
d40_ops_init(base, &base->dma_slave);
2395
2396
err = dma_async_device_register(&base->dma_slave);
2397
2398
if (err) {
2399
d40_err(base->dev, "Failed to register slave channels\n");
2400
goto failure1;
2401
}
2402
2403
d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2404
base->num_log_chans, base->plat_data->memcpy_len);
2405
2406
dma_cap_zero(base->dma_memcpy.cap_mask);
2407
dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2408
dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2409
2410
d40_ops_init(base, &base->dma_memcpy);
2411
2412
err = dma_async_device_register(&base->dma_memcpy);
2413
2414
if (err) {
2415
d40_err(base->dev,
2416
"Failed to regsiter memcpy only channels\n");
2417
goto failure2;
2418
}
2419
2420
d40_chan_init(base, &base->dma_both, base->phy_chans,
2421
0, num_reserved_chans);
2422
2423
dma_cap_zero(base->dma_both.cap_mask);
2424
dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2425
dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2426
dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2427
dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2428
2429
d40_ops_init(base, &base->dma_both);
2430
err = dma_async_device_register(&base->dma_both);
2431
2432
if (err) {
2433
d40_err(base->dev,
2434
"Failed to register logical and physical capable channels\n");
2435
goto failure3;
2436
}
2437
return 0;
2438
failure3:
2439
dma_async_device_unregister(&base->dma_memcpy);
2440
failure2:
2441
dma_async_device_unregister(&base->dma_slave);
2442
failure1:
2443
return err;
2444
}
2445
2446
/* Initialization functions. */
2447
2448
static int __init d40_phy_res_init(struct d40_base *base)
2449
{
2450
int i;
2451
int num_phy_chans_avail = 0;
2452
u32 val[2];
2453
int odd_even_bit = -2;
2454
2455
val[0] = readl(base->virtbase + D40_DREG_PRSME);
2456
val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2457
2458
for (i = 0; i < base->num_phy_chans; i++) {
2459
base->phy_res[i].num = i;
2460
odd_even_bit += 2 * ((i % 2) == 0);
2461
if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2462
/* Mark security only channels as occupied */
2463
base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2464
base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2465
} else {
2466
base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2467
base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2468
num_phy_chans_avail++;
2469
}
2470
spin_lock_init(&base->phy_res[i].lock);
2471
}
2472
2473
/* Mark disabled channels as occupied */
2474
for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2475
int chan = base->plat_data->disabled_channels[i];
2476
2477
base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2478
base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2479
num_phy_chans_avail--;
2480
}
2481
2482
dev_info(base->dev, "%d of %d physical DMA channels available\n",
2483
num_phy_chans_avail, base->num_phy_chans);
2484
2485
/* Verify settings extended vs standard */
2486
val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2487
2488
for (i = 0; i < base->num_phy_chans; i++) {
2489
2490
if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2491
(val[0] & 0x3) != 1)
2492
dev_info(base->dev,
2493
"[%s] INFO: channel %d is misconfigured (%d)\n",
2494
__func__, i, val[0] & 0x3);
2495
2496
val[0] = val[0] >> 2;
2497
}
2498
2499
return num_phy_chans_avail;
2500
}
2501
2502
static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2503
{
2504
static const struct d40_reg_val dma_id_regs[] = {
2505
/* Peripheral Id */
2506
{ .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2507
{ .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2508
/*
2509
* D40_DREG_PERIPHID2 Depends on HW revision:
2510
* DB8500ed has 0x0008,
2511
* ? has 0x0018,
2512
* DB8500v1 has 0x0028
2513
* DB8500v2 has 0x0038
2514
*/
2515
{ .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2516
2517
/* PCell Id */
2518
{ .reg = D40_DREG_CELLID0, .val = 0x000d},
2519
{ .reg = D40_DREG_CELLID1, .val = 0x00f0},
2520
{ .reg = D40_DREG_CELLID2, .val = 0x0005},
2521
{ .reg = D40_DREG_CELLID3, .val = 0x00b1}
2522
};
2523
struct stedma40_platform_data *plat_data;
2524
struct clk *clk = NULL;
2525
void __iomem *virtbase = NULL;
2526
struct resource *res = NULL;
2527
struct d40_base *base = NULL;
2528
int num_log_chans = 0;
2529
int num_phy_chans;
2530
int i;
2531
u32 val;
2532
u32 rev;
2533
2534
clk = clk_get(&pdev->dev, NULL);
2535
2536
if (IS_ERR(clk)) {
2537
d40_err(&pdev->dev, "No matching clock found\n");
2538
goto failure;
2539
}
2540
2541
clk_enable(clk);
2542
2543
/* Get IO for DMAC base address */
2544
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2545
if (!res)
2546
goto failure;
2547
2548
if (request_mem_region(res->start, resource_size(res),
2549
D40_NAME " I/O base") == NULL)
2550
goto failure;
2551
2552
virtbase = ioremap(res->start, resource_size(res));
2553
if (!virtbase)
2554
goto failure;
2555
2556
/* HW version check */
2557
for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2558
if (dma_id_regs[i].val !=
2559
readl(virtbase + dma_id_regs[i].reg)) {
2560
d40_err(&pdev->dev,
2561
"Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2562
dma_id_regs[i].val,
2563
dma_id_regs[i].reg,
2564
readl(virtbase + dma_id_regs[i].reg));
2565
goto failure;
2566
}
2567
}
2568
2569
/* Get silicon revision and designer */
2570
val = readl(virtbase + D40_DREG_PERIPHID2);
2571
2572
if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
2573
D40_HW_DESIGNER) {
2574
d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2575
val & D40_DREG_PERIPHID2_DESIGNER_MASK,
2576
D40_HW_DESIGNER);
2577
goto failure;
2578
}
2579
2580
rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
2581
D40_DREG_PERIPHID2_REV_POS;
2582
2583
/* The number of physical channels on this HW */
2584
num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2585
2586
dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2587
rev, res->start);
2588
2589
plat_data = pdev->dev.platform_data;
2590
2591
/* Count the number of logical channels in use */
2592
for (i = 0; i < plat_data->dev_len; i++)
2593
if (plat_data->dev_rx[i] != 0)
2594
num_log_chans++;
2595
2596
for (i = 0; i < plat_data->dev_len; i++)
2597
if (plat_data->dev_tx[i] != 0)
2598
num_log_chans++;
2599
2600
base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2601
(num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2602
sizeof(struct d40_chan), GFP_KERNEL);
2603
2604
if (base == NULL) {
2605
d40_err(&pdev->dev, "Out of memory\n");
2606
goto failure;
2607
}
2608
2609
base->rev = rev;
2610
base->clk = clk;
2611
base->num_phy_chans = num_phy_chans;
2612
base->num_log_chans = num_log_chans;
2613
base->phy_start = res->start;
2614
base->phy_size = resource_size(res);
2615
base->virtbase = virtbase;
2616
base->plat_data = plat_data;
2617
base->dev = &pdev->dev;
2618
base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2619
base->log_chans = &base->phy_chans[num_phy_chans];
2620
2621
base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2622
GFP_KERNEL);
2623
if (!base->phy_res)
2624
goto failure;
2625
2626
base->lookup_phy_chans = kzalloc(num_phy_chans *
2627
sizeof(struct d40_chan *),
2628
GFP_KERNEL);
2629
if (!base->lookup_phy_chans)
2630
goto failure;
2631
2632
if (num_log_chans + plat_data->memcpy_len) {
2633
/*
2634
* The max number of logical channels are event lines for all
2635
* src devices and dst devices
2636
*/
2637
base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2638
sizeof(struct d40_chan *),
2639
GFP_KERNEL);
2640
if (!base->lookup_log_chans)
2641
goto failure;
2642
}
2643
2644
base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2645
sizeof(struct d40_desc *) *
2646
D40_LCLA_LINK_PER_EVENT_GRP,
2647
GFP_KERNEL);
2648
if (!base->lcla_pool.alloc_map)
2649
goto failure;
2650
2651
base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2652
0, SLAB_HWCACHE_ALIGN,
2653
NULL);
2654
if (base->desc_slab == NULL)
2655
goto failure;
2656
2657
return base;
2658
2659
failure:
2660
if (!IS_ERR(clk)) {
2661
clk_disable(clk);
2662
clk_put(clk);
2663
}
2664
if (virtbase)
2665
iounmap(virtbase);
2666
if (res)
2667
release_mem_region(res->start,
2668
resource_size(res));
2669
if (virtbase)
2670
iounmap(virtbase);
2671
2672
if (base) {
2673
kfree(base->lcla_pool.alloc_map);
2674
kfree(base->lookup_log_chans);
2675
kfree(base->lookup_phy_chans);
2676
kfree(base->phy_res);
2677
kfree(base);
2678
}
2679
2680
return NULL;
2681
}
2682
2683
static void __init d40_hw_init(struct d40_base *base)
2684
{
2685
2686
static const struct d40_reg_val dma_init_reg[] = {
2687
/* Clock every part of the DMA block from start */
2688
{ .reg = D40_DREG_GCC, .val = 0x0000ff01},
2689
2690
/* Interrupts on all logical channels */
2691
{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2692
{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2693
{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2694
{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2695
{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2696
{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2697
{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2698
{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2699
{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2700
{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2701
{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2702
{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2703
};
2704
int i;
2705
u32 prmseo[2] = {0, 0};
2706
u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2707
u32 pcmis = 0;
2708
u32 pcicr = 0;
2709
2710
for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2711
writel(dma_init_reg[i].val,
2712
base->virtbase + dma_init_reg[i].reg);
2713
2714
/* Configure all our dma channels to default settings */
2715
for (i = 0; i < base->num_phy_chans; i++) {
2716
2717
activeo[i % 2] = activeo[i % 2] << 2;
2718
2719
if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2720
== D40_ALLOC_PHY) {
2721
activeo[i % 2] |= 3;
2722
continue;
2723
}
2724
2725
/* Enable interrupt # */
2726
pcmis = (pcmis << 1) | 1;
2727
2728
/* Clear interrupt # */
2729
pcicr = (pcicr << 1) | 1;
2730
2731
/* Set channel to physical mode */
2732
prmseo[i % 2] = prmseo[i % 2] << 2;
2733
prmseo[i % 2] |= 1;
2734
2735
}
2736
2737
writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2738
writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2739
writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2740
writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2741
2742
/* Write which interrupt to enable */
2743
writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2744
2745
/* Write which interrupt to clear */
2746
writel(pcicr, base->virtbase + D40_DREG_PCICR);
2747
2748
}
2749
2750
static int __init d40_lcla_allocate(struct d40_base *base)
2751
{
2752
struct d40_lcla_pool *pool = &base->lcla_pool;
2753
unsigned long *page_list;
2754
int i, j;
2755
int ret = 0;
2756
2757
/*
2758
* This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2759
* To full fill this hardware requirement without wasting 256 kb
2760
* we allocate pages until we get an aligned one.
2761
*/
2762
page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2763
GFP_KERNEL);
2764
2765
if (!page_list) {
2766
ret = -ENOMEM;
2767
goto failure;
2768
}
2769
2770
/* Calculating how many pages that are required */
2771
base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2772
2773
for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2774
page_list[i] = __get_free_pages(GFP_KERNEL,
2775
base->lcla_pool.pages);
2776
if (!page_list[i]) {
2777
2778
d40_err(base->dev, "Failed to allocate %d pages.\n",
2779
base->lcla_pool.pages);
2780
2781
for (j = 0; j < i; j++)
2782
free_pages(page_list[j], base->lcla_pool.pages);
2783
goto failure;
2784
}
2785
2786
if ((virt_to_phys((void *)page_list[i]) &
2787
(LCLA_ALIGNMENT - 1)) == 0)
2788
break;
2789
}
2790
2791
for (j = 0; j < i; j++)
2792
free_pages(page_list[j], base->lcla_pool.pages);
2793
2794
if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2795
base->lcla_pool.base = (void *)page_list[i];
2796
} else {
2797
/*
2798
* After many attempts and no succees with finding the correct
2799
* alignment, try with allocating a big buffer.
2800
*/
2801
dev_warn(base->dev,
2802
"[%s] Failed to get %d pages @ 18 bit align.\n",
2803
__func__, base->lcla_pool.pages);
2804
base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2805
base->num_phy_chans +
2806
LCLA_ALIGNMENT,
2807
GFP_KERNEL);
2808
if (!base->lcla_pool.base_unaligned) {
2809
ret = -ENOMEM;
2810
goto failure;
2811
}
2812
2813
base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2814
LCLA_ALIGNMENT);
2815
}
2816
2817
pool->dma_addr = dma_map_single(base->dev, pool->base,
2818
SZ_1K * base->num_phy_chans,
2819
DMA_TO_DEVICE);
2820
if (dma_mapping_error(base->dev, pool->dma_addr)) {
2821
pool->dma_addr = 0;
2822
ret = -ENOMEM;
2823
goto failure;
2824
}
2825
2826
writel(virt_to_phys(base->lcla_pool.base),
2827
base->virtbase + D40_DREG_LCLA);
2828
failure:
2829
kfree(page_list);
2830
return ret;
2831
}
2832
2833
static int __init d40_probe(struct platform_device *pdev)
2834
{
2835
int err;
2836
int ret = -ENOENT;
2837
struct d40_base *base;
2838
struct resource *res = NULL;
2839
int num_reserved_chans;
2840
u32 val;
2841
2842
base = d40_hw_detect_init(pdev);
2843
2844
if (!base)
2845
goto failure;
2846
2847
num_reserved_chans = d40_phy_res_init(base);
2848
2849
platform_set_drvdata(pdev, base);
2850
2851
spin_lock_init(&base->interrupt_lock);
2852
spin_lock_init(&base->execmd_lock);
2853
2854
/* Get IO for logical channel parameter address */
2855
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2856
if (!res) {
2857
ret = -ENOENT;
2858
d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2859
goto failure;
2860
}
2861
base->lcpa_size = resource_size(res);
2862
base->phy_lcpa = res->start;
2863
2864
if (request_mem_region(res->start, resource_size(res),
2865
D40_NAME " I/O lcpa") == NULL) {
2866
ret = -EBUSY;
2867
d40_err(&pdev->dev,
2868
"Failed to request LCPA region 0x%x-0x%x\n",
2869
res->start, res->end);
2870
goto failure;
2871
}
2872
2873
/* We make use of ESRAM memory for this. */
2874
val = readl(base->virtbase + D40_DREG_LCPA);
2875
if (res->start != val && val != 0) {
2876
dev_warn(&pdev->dev,
2877
"[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2878
__func__, val, res->start);
2879
} else
2880
writel(res->start, base->virtbase + D40_DREG_LCPA);
2881
2882
base->lcpa_base = ioremap(res->start, resource_size(res));
2883
if (!base->lcpa_base) {
2884
ret = -ENOMEM;
2885
d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2886
goto failure;
2887
}
2888
2889
ret = d40_lcla_allocate(base);
2890
if (ret) {
2891
d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2892
goto failure;
2893
}
2894
2895
spin_lock_init(&base->lcla_pool.lock);
2896
2897
base->irq = platform_get_irq(pdev, 0);
2898
2899
ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2900
if (ret) {
2901
d40_err(&pdev->dev, "No IRQ defined\n");
2902
goto failure;
2903
}
2904
2905
err = d40_dmaengine_init(base, num_reserved_chans);
2906
if (err)
2907
goto failure;
2908
2909
d40_hw_init(base);
2910
2911
dev_info(base->dev, "initialized\n");
2912
return 0;
2913
2914
failure:
2915
if (base) {
2916
if (base->desc_slab)
2917
kmem_cache_destroy(base->desc_slab);
2918
if (base->virtbase)
2919
iounmap(base->virtbase);
2920
2921
if (base->lcla_pool.dma_addr)
2922
dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
2923
SZ_1K * base->num_phy_chans,
2924
DMA_TO_DEVICE);
2925
2926
if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2927
free_pages((unsigned long)base->lcla_pool.base,
2928
base->lcla_pool.pages);
2929
2930
kfree(base->lcla_pool.base_unaligned);
2931
2932
if (base->phy_lcpa)
2933
release_mem_region(base->phy_lcpa,
2934
base->lcpa_size);
2935
if (base->phy_start)
2936
release_mem_region(base->phy_start,
2937
base->phy_size);
2938
if (base->clk) {
2939
clk_disable(base->clk);
2940
clk_put(base->clk);
2941
}
2942
2943
kfree(base->lcla_pool.alloc_map);
2944
kfree(base->lookup_log_chans);
2945
kfree(base->lookup_phy_chans);
2946
kfree(base->phy_res);
2947
kfree(base);
2948
}
2949
2950
d40_err(&pdev->dev, "probe failed\n");
2951
return ret;
2952
}
2953
2954
static struct platform_driver d40_driver = {
2955
.driver = {
2956
.owner = THIS_MODULE,
2957
.name = D40_NAME,
2958
},
2959
};
2960
2961
static int __init stedma40_init(void)
2962
{
2963
return platform_driver_probe(&d40_driver, d40_probe);
2964
}
2965
subsys_initcall(stedma40_init);
2966
2967