Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/edac/amd64_edac.c
15109 views
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3
4
static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6
static int report_gart_errors;
7
module_param(report_gart_errors, int, 0644);
8
9
/*
10
* Set by command line parameter. If BIOS has enabled the ECC, this override is
11
* cleared to prevent re-enabling the hardware by this driver.
12
*/
13
static int ecc_enable_override;
14
module_param(ecc_enable_override, int, 0644);
15
16
static struct msr __percpu *msrs;
17
18
/*
19
* count successfully initialized driver instances for setup_pci_device()
20
*/
21
static atomic_t drv_instances = ATOMIC_INIT(0);
22
23
/* Per-node driver instances */
24
static struct mem_ctl_info **mcis;
25
static struct ecc_settings **ecc_stngs;
26
27
/*
28
* Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29
* bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30
* or higher value'.
31
*
32
*FIXME: Produce a better mapping/linearisation.
33
*/
34
struct scrubrate {
35
u32 scrubval; /* bit pattern for scrub rate */
36
u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37
} scrubrates[] = {
38
{ 0x01, 1600000000UL},
39
{ 0x02, 800000000UL},
40
{ 0x03, 400000000UL},
41
{ 0x04, 200000000UL},
42
{ 0x05, 100000000UL},
43
{ 0x06, 50000000UL},
44
{ 0x07, 25000000UL},
45
{ 0x08, 12284069UL},
46
{ 0x09, 6274509UL},
47
{ 0x0A, 3121951UL},
48
{ 0x0B, 1560975UL},
49
{ 0x0C, 781440UL},
50
{ 0x0D, 390720UL},
51
{ 0x0E, 195300UL},
52
{ 0x0F, 97650UL},
53
{ 0x10, 48854UL},
54
{ 0x11, 24427UL},
55
{ 0x12, 12213UL},
56
{ 0x13, 6101UL},
57
{ 0x14, 3051UL},
58
{ 0x15, 1523UL},
59
{ 0x16, 761UL},
60
{ 0x00, 0UL}, /* scrubbing off */
61
};
62
63
static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64
u32 *val, const char *func)
65
{
66
int err = 0;
67
68
err = pci_read_config_dword(pdev, offset, val);
69
if (err)
70
amd64_warn("%s: error reading F%dx%03x.\n",
71
func, PCI_FUNC(pdev->devfn), offset);
72
73
return err;
74
}
75
76
int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77
u32 val, const char *func)
78
{
79
int err = 0;
80
81
err = pci_write_config_dword(pdev, offset, val);
82
if (err)
83
amd64_warn("%s: error writing to F%dx%03x.\n",
84
func, PCI_FUNC(pdev->devfn), offset);
85
86
return err;
87
}
88
89
/*
90
*
91
* Depending on the family, F2 DCT reads need special handling:
92
*
93
* K8: has a single DCT only
94
*
95
* F10h: each DCT has its own set of regs
96
* DCT0 -> F2x040..
97
* DCT1 -> F2x140..
98
*
99
* F15h: we select which DCT we access using F1x10C[DctCfgSel]
100
*
101
*/
102
static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103
const char *func)
104
{
105
if (addr >= 0x100)
106
return -EINVAL;
107
108
return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109
}
110
111
static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112
const char *func)
113
{
114
return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115
}
116
117
static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
118
const char *func)
119
{
120
u32 reg = 0;
121
u8 dct = 0;
122
123
if (addr >= 0x140 && addr <= 0x1a0) {
124
dct = 1;
125
addr -= 0x100;
126
}
127
128
amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
129
reg &= 0xfffffffe;
130
reg |= dct;
131
amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
132
133
return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
134
}
135
136
/*
137
* Memory scrubber control interface. For K8, memory scrubbing is handled by
138
* hardware and can involve L2 cache, dcache as well as the main memory. With
139
* F10, this is extended to L3 cache scrubbing on CPU models sporting that
140
* functionality.
141
*
142
* This causes the "units" for the scrubbing speed to vary from 64 byte blocks
143
* (dram) over to cache lines. This is nasty, so we will use bandwidth in
144
* bytes/sec for the setting.
145
*
146
* Currently, we only do dram scrubbing. If the scrubbing is done in software on
147
* other archs, we might not have access to the caches directly.
148
*/
149
150
/*
151
* scan the scrub rate mapping table for a close or matching bandwidth value to
152
* issue. If requested is too big, then use last maximum value found.
153
*/
154
static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
155
{
156
u32 scrubval;
157
int i;
158
159
/*
160
* map the configured rate (new_bw) to a value specific to the AMD64
161
* memory controller and apply to register. Search for the first
162
* bandwidth entry that is greater or equal than the setting requested
163
* and program that. If at last entry, turn off DRAM scrubbing.
164
*/
165
for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
166
/*
167
* skip scrub rates which aren't recommended
168
* (see F10 BKDG, F3x58)
169
*/
170
if (scrubrates[i].scrubval < min_rate)
171
continue;
172
173
if (scrubrates[i].bandwidth <= new_bw)
174
break;
175
176
/*
177
* if no suitable bandwidth found, turn off DRAM scrubbing
178
* entirely by falling back to the last element in the
179
* scrubrates array.
180
*/
181
}
182
183
scrubval = scrubrates[i].scrubval;
184
185
pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
186
187
if (scrubval)
188
return scrubrates[i].bandwidth;
189
190
return 0;
191
}
192
193
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
194
{
195
struct amd64_pvt *pvt = mci->pvt_info;
196
u32 min_scrubrate = 0x5;
197
198
if (boot_cpu_data.x86 == 0xf)
199
min_scrubrate = 0x0;
200
201
return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
202
}
203
204
static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
205
{
206
struct amd64_pvt *pvt = mci->pvt_info;
207
u32 scrubval = 0;
208
int i, retval = -EINVAL;
209
210
amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
211
212
scrubval = scrubval & 0x001F;
213
214
for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
215
if (scrubrates[i].scrubval == scrubval) {
216
retval = scrubrates[i].bandwidth;
217
break;
218
}
219
}
220
return retval;
221
}
222
223
/*
224
* returns true if the SysAddr given by sys_addr matches the
225
* DRAM base/limit associated with node_id
226
*/
227
static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
228
unsigned nid)
229
{
230
u64 addr;
231
232
/* The K8 treats this as a 40-bit value. However, bits 63-40 will be
233
* all ones if the most significant implemented address bit is 1.
234
* Here we discard bits 63-40. See section 3.4.2 of AMD publication
235
* 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
236
* Application Programming.
237
*/
238
addr = sys_addr & 0x000000ffffffffffull;
239
240
return ((addr >= get_dram_base(pvt, nid)) &&
241
(addr <= get_dram_limit(pvt, nid)));
242
}
243
244
/*
245
* Attempt to map a SysAddr to a node. On success, return a pointer to the
246
* mem_ctl_info structure for the node that the SysAddr maps to.
247
*
248
* On failure, return NULL.
249
*/
250
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
251
u64 sys_addr)
252
{
253
struct amd64_pvt *pvt;
254
unsigned node_id;
255
u32 intlv_en, bits;
256
257
/*
258
* Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
259
* 3.4.4.2) registers to map the SysAddr to a node ID.
260
*/
261
pvt = mci->pvt_info;
262
263
/*
264
* The value of this field should be the same for all DRAM Base
265
* registers. Therefore we arbitrarily choose to read it from the
266
* register for node 0.
267
*/
268
intlv_en = dram_intlv_en(pvt, 0);
269
270
if (intlv_en == 0) {
271
for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
272
if (amd64_base_limit_match(pvt, sys_addr, node_id))
273
goto found;
274
}
275
goto err_no_match;
276
}
277
278
if (unlikely((intlv_en != 0x01) &&
279
(intlv_en != 0x03) &&
280
(intlv_en != 0x07))) {
281
amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
282
return NULL;
283
}
284
285
bits = (((u32) sys_addr) >> 12) & intlv_en;
286
287
for (node_id = 0; ; ) {
288
if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
289
break; /* intlv_sel field matches */
290
291
if (++node_id >= DRAM_RANGES)
292
goto err_no_match;
293
}
294
295
/* sanity test for sys_addr */
296
if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
297
amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
298
"range for node %d with node interleaving enabled.\n",
299
__func__, sys_addr, node_id);
300
return NULL;
301
}
302
303
found:
304
return edac_mc_find((int)node_id);
305
306
err_no_match:
307
debugf2("sys_addr 0x%lx doesn't match any node\n",
308
(unsigned long)sys_addr);
309
310
return NULL;
311
}
312
313
/*
314
* compute the CS base address of the @csrow on the DRAM controller @dct.
315
* For details see F2x[5C:40] in the processor's BKDG
316
*/
317
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
318
u64 *base, u64 *mask)
319
{
320
u64 csbase, csmask, base_bits, mask_bits;
321
u8 addr_shift;
322
323
if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
324
csbase = pvt->csels[dct].csbases[csrow];
325
csmask = pvt->csels[dct].csmasks[csrow];
326
base_bits = GENMASK(21, 31) | GENMASK(9, 15);
327
mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
328
addr_shift = 4;
329
} else {
330
csbase = pvt->csels[dct].csbases[csrow];
331
csmask = pvt->csels[dct].csmasks[csrow >> 1];
332
addr_shift = 8;
333
334
if (boot_cpu_data.x86 == 0x15)
335
base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
336
else
337
base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
338
}
339
340
*base = (csbase & base_bits) << addr_shift;
341
342
*mask = ~0ULL;
343
/* poke holes for the csmask */
344
*mask &= ~(mask_bits << addr_shift);
345
/* OR them in */
346
*mask |= (csmask & mask_bits) << addr_shift;
347
}
348
349
#define for_each_chip_select(i, dct, pvt) \
350
for (i = 0; i < pvt->csels[dct].b_cnt; i++)
351
352
#define chip_select_base(i, dct, pvt) \
353
pvt->csels[dct].csbases[i]
354
355
#define for_each_chip_select_mask(i, dct, pvt) \
356
for (i = 0; i < pvt->csels[dct].m_cnt; i++)
357
358
/*
359
* @input_addr is an InputAddr associated with the node given by mci. Return the
360
* csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
361
*/
362
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
363
{
364
struct amd64_pvt *pvt;
365
int csrow;
366
u64 base, mask;
367
368
pvt = mci->pvt_info;
369
370
for_each_chip_select(csrow, 0, pvt) {
371
if (!csrow_enabled(csrow, 0, pvt))
372
continue;
373
374
get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
375
376
mask = ~mask;
377
378
if ((input_addr & mask) == (base & mask)) {
379
debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
380
(unsigned long)input_addr, csrow,
381
pvt->mc_node_id);
382
383
return csrow;
384
}
385
}
386
debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
387
(unsigned long)input_addr, pvt->mc_node_id);
388
389
return -1;
390
}
391
392
/*
393
* Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
394
* for the node represented by mci. Info is passed back in *hole_base,
395
* *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
396
* info is invalid. Info may be invalid for either of the following reasons:
397
*
398
* - The revision of the node is not E or greater. In this case, the DRAM Hole
399
* Address Register does not exist.
400
*
401
* - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
402
* indicating that its contents are not valid.
403
*
404
* The values passed back in *hole_base, *hole_offset, and *hole_size are
405
* complete 32-bit values despite the fact that the bitfields in the DHAR
406
* only represent bits 31-24 of the base and offset values.
407
*/
408
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
409
u64 *hole_offset, u64 *hole_size)
410
{
411
struct amd64_pvt *pvt = mci->pvt_info;
412
u64 base;
413
414
/* only revE and later have the DRAM Hole Address Register */
415
if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
416
debugf1(" revision %d for node %d does not support DHAR\n",
417
pvt->ext_model, pvt->mc_node_id);
418
return 1;
419
}
420
421
/* valid for Fam10h and above */
422
if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
423
debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
424
return 1;
425
}
426
427
if (!dhar_valid(pvt)) {
428
debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
429
pvt->mc_node_id);
430
return 1;
431
}
432
433
/* This node has Memory Hoisting */
434
435
/* +------------------+--------------------+--------------------+-----
436
* | memory | DRAM hole | relocated |
437
* | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
438
* | | | DRAM hole |
439
* | | | [0x100000000, |
440
* | | | (0x100000000+ |
441
* | | | (0xffffffff-x))] |
442
* +------------------+--------------------+--------------------+-----
443
*
444
* Above is a diagram of physical memory showing the DRAM hole and the
445
* relocated addresses from the DRAM hole. As shown, the DRAM hole
446
* starts at address x (the base address) and extends through address
447
* 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
448
* addresses in the hole so that they start at 0x100000000.
449
*/
450
451
base = dhar_base(pvt);
452
453
*hole_base = base;
454
*hole_size = (0x1ull << 32) - base;
455
456
if (boot_cpu_data.x86 > 0xf)
457
*hole_offset = f10_dhar_offset(pvt);
458
else
459
*hole_offset = k8_dhar_offset(pvt);
460
461
debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
462
pvt->mc_node_id, (unsigned long)*hole_base,
463
(unsigned long)*hole_offset, (unsigned long)*hole_size);
464
465
return 0;
466
}
467
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
468
469
/*
470
* Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
471
* assumed that sys_addr maps to the node given by mci.
472
*
473
* The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
474
* 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
475
* SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
476
* then it is also involved in translating a SysAddr to a DramAddr. Sections
477
* 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
478
* These parts of the documentation are unclear. I interpret them as follows:
479
*
480
* When node n receives a SysAddr, it processes the SysAddr as follows:
481
*
482
* 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
483
* Limit registers for node n. If the SysAddr is not within the range
484
* specified by the base and limit values, then node n ignores the Sysaddr
485
* (since it does not map to node n). Otherwise continue to step 2 below.
486
*
487
* 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
488
* disabled so skip to step 3 below. Otherwise see if the SysAddr is within
489
* the range of relocated addresses (starting at 0x100000000) from the DRAM
490
* hole. If not, skip to step 3 below. Else get the value of the
491
* DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
492
* offset defined by this value from the SysAddr.
493
*
494
* 3. Obtain the base address for node n from the DRAMBase field of the DRAM
495
* Base register for node n. To obtain the DramAddr, subtract the base
496
* address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
497
*/
498
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
499
{
500
struct amd64_pvt *pvt = mci->pvt_info;
501
u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
502
int ret = 0;
503
504
dram_base = get_dram_base(pvt, pvt->mc_node_id);
505
506
ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
507
&hole_size);
508
if (!ret) {
509
if ((sys_addr >= (1ull << 32)) &&
510
(sys_addr < ((1ull << 32) + hole_size))) {
511
/* use DHAR to translate SysAddr to DramAddr */
512
dram_addr = sys_addr - hole_offset;
513
514
debugf2("using DHAR to translate SysAddr 0x%lx to "
515
"DramAddr 0x%lx\n",
516
(unsigned long)sys_addr,
517
(unsigned long)dram_addr);
518
519
return dram_addr;
520
}
521
}
522
523
/*
524
* Translate the SysAddr to a DramAddr as shown near the start of
525
* section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
526
* only deals with 40-bit values. Therefore we discard bits 63-40 of
527
* sys_addr below. If bit 39 of sys_addr is 1 then the bits we
528
* discard are all 1s. Otherwise the bits we discard are all 0s. See
529
* section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
530
* Programmer's Manual Volume 1 Application Programming.
531
*/
532
dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
533
534
debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
535
"DramAddr 0x%lx\n", (unsigned long)sys_addr,
536
(unsigned long)dram_addr);
537
return dram_addr;
538
}
539
540
/*
541
* @intlv_en is the value of the IntlvEn field from a DRAM Base register
542
* (section 3.4.4.1). Return the number of bits from a SysAddr that are used
543
* for node interleaving.
544
*/
545
static int num_node_interleave_bits(unsigned intlv_en)
546
{
547
static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
548
int n;
549
550
BUG_ON(intlv_en > 7);
551
n = intlv_shift_table[intlv_en];
552
return n;
553
}
554
555
/* Translate the DramAddr given by @dram_addr to an InputAddr. */
556
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
557
{
558
struct amd64_pvt *pvt;
559
int intlv_shift;
560
u64 input_addr;
561
562
pvt = mci->pvt_info;
563
564
/*
565
* See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
566
* concerning translating a DramAddr to an InputAddr.
567
*/
568
intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
569
input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
570
(dram_addr & 0xfff);
571
572
debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
573
intlv_shift, (unsigned long)dram_addr,
574
(unsigned long)input_addr);
575
576
return input_addr;
577
}
578
579
/*
580
* Translate the SysAddr represented by @sys_addr to an InputAddr. It is
581
* assumed that @sys_addr maps to the node given by mci.
582
*/
583
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
584
{
585
u64 input_addr;
586
587
input_addr =
588
dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
589
590
debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
591
(unsigned long)sys_addr, (unsigned long)input_addr);
592
593
return input_addr;
594
}
595
596
597
/*
598
* @input_addr is an InputAddr associated with the node represented by mci.
599
* Translate @input_addr to a DramAddr and return the result.
600
*/
601
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
602
{
603
struct amd64_pvt *pvt;
604
unsigned node_id, intlv_shift;
605
u64 bits, dram_addr;
606
u32 intlv_sel;
607
608
/*
609
* Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
610
* shows how to translate a DramAddr to an InputAddr. Here we reverse
611
* this procedure. When translating from a DramAddr to an InputAddr, the
612
* bits used for node interleaving are discarded. Here we recover these
613
* bits from the IntlvSel field of the DRAM Limit register (section
614
* 3.4.4.2) for the node that input_addr is associated with.
615
*/
616
pvt = mci->pvt_info;
617
node_id = pvt->mc_node_id;
618
619
BUG_ON(node_id > 7);
620
621
intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
622
if (intlv_shift == 0) {
623
debugf1(" InputAddr 0x%lx translates to DramAddr of "
624
"same value\n", (unsigned long)input_addr);
625
626
return input_addr;
627
}
628
629
bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
630
(input_addr & 0xfff);
631
632
intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
633
dram_addr = bits + (intlv_sel << 12);
634
635
debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
636
"(%d node interleave bits)\n", (unsigned long)input_addr,
637
(unsigned long)dram_addr, intlv_shift);
638
639
return dram_addr;
640
}
641
642
/*
643
* @dram_addr is a DramAddr that maps to the node represented by mci. Convert
644
* @dram_addr to a SysAddr.
645
*/
646
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
647
{
648
struct amd64_pvt *pvt = mci->pvt_info;
649
u64 hole_base, hole_offset, hole_size, base, sys_addr;
650
int ret = 0;
651
652
ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
653
&hole_size);
654
if (!ret) {
655
if ((dram_addr >= hole_base) &&
656
(dram_addr < (hole_base + hole_size))) {
657
sys_addr = dram_addr + hole_offset;
658
659
debugf1("using DHAR to translate DramAddr 0x%lx to "
660
"SysAddr 0x%lx\n", (unsigned long)dram_addr,
661
(unsigned long)sys_addr);
662
663
return sys_addr;
664
}
665
}
666
667
base = get_dram_base(pvt, pvt->mc_node_id);
668
sys_addr = dram_addr + base;
669
670
/*
671
* The sys_addr we have computed up to this point is a 40-bit value
672
* because the k8 deals with 40-bit values. However, the value we are
673
* supposed to return is a full 64-bit physical address. The AMD
674
* x86-64 architecture specifies that the most significant implemented
675
* address bit through bit 63 of a physical address must be either all
676
* 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
677
* 64-bit value below. See section 3.4.2 of AMD publication 24592:
678
* AMD x86-64 Architecture Programmer's Manual Volume 1 Application
679
* Programming.
680
*/
681
sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
682
683
debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
684
pvt->mc_node_id, (unsigned long)dram_addr,
685
(unsigned long)sys_addr);
686
687
return sys_addr;
688
}
689
690
/*
691
* @input_addr is an InputAddr associated with the node given by mci. Translate
692
* @input_addr to a SysAddr.
693
*/
694
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
695
u64 input_addr)
696
{
697
return dram_addr_to_sys_addr(mci,
698
input_addr_to_dram_addr(mci, input_addr));
699
}
700
701
/*
702
* Find the minimum and maximum InputAddr values that map to the given @csrow.
703
* Pass back these values in *input_addr_min and *input_addr_max.
704
*/
705
static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
706
u64 *input_addr_min, u64 *input_addr_max)
707
{
708
struct amd64_pvt *pvt;
709
u64 base, mask;
710
711
pvt = mci->pvt_info;
712
BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
713
714
get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
715
716
*input_addr_min = base & ~mask;
717
*input_addr_max = base | mask;
718
}
719
720
/* Map the Error address to a PAGE and PAGE OFFSET. */
721
static inline void error_address_to_page_and_offset(u64 error_address,
722
u32 *page, u32 *offset)
723
{
724
*page = (u32) (error_address >> PAGE_SHIFT);
725
*offset = ((u32) error_address) & ~PAGE_MASK;
726
}
727
728
/*
729
* @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
730
* Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
731
* of a node that detected an ECC memory error. mci represents the node that
732
* the error address maps to (possibly different from the node that detected
733
* the error). Return the number of the csrow that sys_addr maps to, or -1 on
734
* error.
735
*/
736
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
737
{
738
int csrow;
739
740
csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
741
742
if (csrow == -1)
743
amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
744
"address 0x%lx\n", (unsigned long)sys_addr);
745
return csrow;
746
}
747
748
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
749
750
/*
751
* Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
752
* are ECC capable.
753
*/
754
static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
755
{
756
u8 bit;
757
enum dev_type edac_cap = EDAC_FLAG_NONE;
758
759
bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
760
? 19
761
: 17;
762
763
if (pvt->dclr0 & BIT(bit))
764
edac_cap = EDAC_FLAG_SECDED;
765
766
return edac_cap;
767
}
768
769
static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
770
771
static void amd64_dump_dramcfg_low(u32 dclr, int chan)
772
{
773
debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
774
775
debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
776
(dclr & BIT(16)) ? "un" : "",
777
(dclr & BIT(19)) ? "yes" : "no");
778
779
debugf1(" PAR/ERR parity: %s\n",
780
(dclr & BIT(8)) ? "enabled" : "disabled");
781
782
if (boot_cpu_data.x86 == 0x10)
783
debugf1(" DCT 128bit mode width: %s\n",
784
(dclr & BIT(11)) ? "128b" : "64b");
785
786
debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
787
(dclr & BIT(12)) ? "yes" : "no",
788
(dclr & BIT(13)) ? "yes" : "no",
789
(dclr & BIT(14)) ? "yes" : "no",
790
(dclr & BIT(15)) ? "yes" : "no");
791
}
792
793
/* Display and decode various NB registers for debug purposes. */
794
static void dump_misc_regs(struct amd64_pvt *pvt)
795
{
796
debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
797
798
debugf1(" NB two channel DRAM capable: %s\n",
799
(pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
800
801
debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
802
(pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
803
(pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
804
805
amd64_dump_dramcfg_low(pvt->dclr0, 0);
806
807
debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
808
809
debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
810
"offset: 0x%08x\n",
811
pvt->dhar, dhar_base(pvt),
812
(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
813
: f10_dhar_offset(pvt));
814
815
debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
816
817
amd64_debug_display_dimm_sizes(pvt, 0);
818
819
/* everything below this point is Fam10h and above */
820
if (boot_cpu_data.x86 == 0xf)
821
return;
822
823
amd64_debug_display_dimm_sizes(pvt, 1);
824
825
amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
826
827
/* Only if NOT ganged does dclr1 have valid info */
828
if (!dct_ganging_enabled(pvt))
829
amd64_dump_dramcfg_low(pvt->dclr1, 1);
830
}
831
832
/*
833
* see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
834
*/
835
static void prep_chip_selects(struct amd64_pvt *pvt)
836
{
837
if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
838
pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
839
pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
840
} else {
841
pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
842
pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
843
}
844
}
845
846
/*
847
* Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
848
*/
849
static void read_dct_base_mask(struct amd64_pvt *pvt)
850
{
851
int cs;
852
853
prep_chip_selects(pvt);
854
855
for_each_chip_select(cs, 0, pvt) {
856
int reg0 = DCSB0 + (cs * 4);
857
int reg1 = DCSB1 + (cs * 4);
858
u32 *base0 = &pvt->csels[0].csbases[cs];
859
u32 *base1 = &pvt->csels[1].csbases[cs];
860
861
if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
862
debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
863
cs, *base0, reg0);
864
865
if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
866
continue;
867
868
if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
869
debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
870
cs, *base1, reg1);
871
}
872
873
for_each_chip_select_mask(cs, 0, pvt) {
874
int reg0 = DCSM0 + (cs * 4);
875
int reg1 = DCSM1 + (cs * 4);
876
u32 *mask0 = &pvt->csels[0].csmasks[cs];
877
u32 *mask1 = &pvt->csels[1].csmasks[cs];
878
879
if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
880
debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
881
cs, *mask0, reg0);
882
883
if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
884
continue;
885
886
if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
887
debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
888
cs, *mask1, reg1);
889
}
890
}
891
892
static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
893
{
894
enum mem_type type;
895
896
/* F15h supports only DDR3 */
897
if (boot_cpu_data.x86 >= 0x15)
898
type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
899
else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
900
if (pvt->dchr0 & DDR3_MODE)
901
type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
902
else
903
type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
904
} else {
905
type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
906
}
907
908
amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
909
910
return type;
911
}
912
913
/* Get the number of DCT channels the memory controller is using. */
914
static int k8_early_channel_count(struct amd64_pvt *pvt)
915
{
916
int flag;
917
918
if (pvt->ext_model >= K8_REV_F)
919
/* RevF (NPT) and later */
920
flag = pvt->dclr0 & WIDTH_128;
921
else
922
/* RevE and earlier */
923
flag = pvt->dclr0 & REVE_WIDTH_128;
924
925
/* not used */
926
pvt->dclr1 = 0;
927
928
return (flag) ? 2 : 1;
929
}
930
931
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
932
static u64 get_error_address(struct mce *m)
933
{
934
struct cpuinfo_x86 *c = &boot_cpu_data;
935
u64 addr;
936
u8 start_bit = 1;
937
u8 end_bit = 47;
938
939
if (c->x86 == 0xf) {
940
start_bit = 3;
941
end_bit = 39;
942
}
943
944
addr = m->addr & GENMASK(start_bit, end_bit);
945
946
/*
947
* Erratum 637 workaround
948
*/
949
if (c->x86 == 0x15) {
950
struct amd64_pvt *pvt;
951
u64 cc6_base, tmp_addr;
952
u32 tmp;
953
u8 mce_nid, intlv_en;
954
955
if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
956
return addr;
957
958
mce_nid = amd_get_nb_id(m->extcpu);
959
pvt = mcis[mce_nid]->pvt_info;
960
961
amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
962
intlv_en = tmp >> 21 & 0x7;
963
964
/* add [47:27] + 3 trailing bits */
965
cc6_base = (tmp & GENMASK(0, 20)) << 3;
966
967
/* reverse and add DramIntlvEn */
968
cc6_base |= intlv_en ^ 0x7;
969
970
/* pin at [47:24] */
971
cc6_base <<= 24;
972
973
if (!intlv_en)
974
return cc6_base | (addr & GENMASK(0, 23));
975
976
amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
977
978
/* faster log2 */
979
tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
980
981
/* OR DramIntlvSel into bits [14:12] */
982
tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
983
984
/* add remaining [11:0] bits from original MC4_ADDR */
985
tmp_addr |= addr & GENMASK(0, 11);
986
987
return cc6_base | tmp_addr;
988
}
989
990
return addr;
991
}
992
993
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
994
{
995
struct cpuinfo_x86 *c = &boot_cpu_data;
996
int off = range << 3;
997
998
amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
999
amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1000
1001
if (c->x86 == 0xf)
1002
return;
1003
1004
if (!dram_rw(pvt, range))
1005
return;
1006
1007
amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1008
amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1009
1010
/* Factor in CC6 save area by reading dst node's limit reg */
1011
if (c->x86 == 0x15) {
1012
struct pci_dev *f1 = NULL;
1013
u8 nid = dram_dst_node(pvt, range);
1014
u32 llim;
1015
1016
f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
1017
if (WARN_ON(!f1))
1018
return;
1019
1020
amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1021
1022
pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1023
1024
/* {[39:27],111b} */
1025
pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1026
1027
pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1028
1029
/* [47:40] */
1030
pvt->ranges[range].lim.hi |= llim >> 13;
1031
1032
pci_dev_put(f1);
1033
}
1034
}
1035
1036
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1037
u16 syndrome)
1038
{
1039
struct mem_ctl_info *src_mci;
1040
struct amd64_pvt *pvt = mci->pvt_info;
1041
int channel, csrow;
1042
u32 page, offset;
1043
1044
/* CHIPKILL enabled */
1045
if (pvt->nbcfg & NBCFG_CHIPKILL) {
1046
channel = get_channel_from_ecc_syndrome(mci, syndrome);
1047
if (channel < 0) {
1048
/*
1049
* Syndrome didn't map, so we don't know which of the
1050
* 2 DIMMs is in error. So we need to ID 'both' of them
1051
* as suspect.
1052
*/
1053
amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1054
"error reporting race\n", syndrome);
1055
edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1056
return;
1057
}
1058
} else {
1059
/*
1060
* non-chipkill ecc mode
1061
*
1062
* The k8 documentation is unclear about how to determine the
1063
* channel number when using non-chipkill memory. This method
1064
* was obtained from email communication with someone at AMD.
1065
* (Wish the email was placed in this comment - norsk)
1066
*/
1067
channel = ((sys_addr & BIT(3)) != 0);
1068
}
1069
1070
/*
1071
* Find out which node the error address belongs to. This may be
1072
* different from the node that detected the error.
1073
*/
1074
src_mci = find_mc_by_sys_addr(mci, sys_addr);
1075
if (!src_mci) {
1076
amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1077
(unsigned long)sys_addr);
1078
edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1079
return;
1080
}
1081
1082
/* Now map the sys_addr to a CSROW */
1083
csrow = sys_addr_to_csrow(src_mci, sys_addr);
1084
if (csrow < 0) {
1085
edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1086
} else {
1087
error_address_to_page_and_offset(sys_addr, &page, &offset);
1088
1089
edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1090
channel, EDAC_MOD_STR);
1091
}
1092
}
1093
1094
static int ddr2_cs_size(unsigned i, bool dct_width)
1095
{
1096
unsigned shift = 0;
1097
1098
if (i <= 2)
1099
shift = i;
1100
else if (!(i & 0x1))
1101
shift = i >> 1;
1102
else
1103
shift = (i + 1) >> 1;
1104
1105
return 128 << (shift + !!dct_width);
1106
}
1107
1108
static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1109
unsigned cs_mode)
1110
{
1111
u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1112
1113
if (pvt->ext_model >= K8_REV_F) {
1114
WARN_ON(cs_mode > 11);
1115
return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1116
}
1117
else if (pvt->ext_model >= K8_REV_D) {
1118
WARN_ON(cs_mode > 10);
1119
1120
if (cs_mode == 3 || cs_mode == 8)
1121
return 32 << (cs_mode - 1);
1122
else
1123
return 32 << cs_mode;
1124
}
1125
else {
1126
WARN_ON(cs_mode > 6);
1127
return 32 << cs_mode;
1128
}
1129
}
1130
1131
/*
1132
* Get the number of DCT channels in use.
1133
*
1134
* Return:
1135
* number of Memory Channels in operation
1136
* Pass back:
1137
* contents of the DCL0_LOW register
1138
*/
1139
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1140
{
1141
int i, j, channels = 0;
1142
1143
/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1144
if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1145
return 2;
1146
1147
/*
1148
* Need to check if in unganged mode: In such, there are 2 channels,
1149
* but they are not in 128 bit mode and thus the above 'dclr0' status
1150
* bit will be OFF.
1151
*
1152
* Need to check DCT0[0] and DCT1[0] to see if only one of them has
1153
* their CSEnable bit on. If so, then SINGLE DIMM case.
1154
*/
1155
debugf0("Data width is not 128 bits - need more decoding\n");
1156
1157
/*
1158
* Check DRAM Bank Address Mapping values for each DIMM to see if there
1159
* is more than just one DIMM present in unganged mode. Need to check
1160
* both controllers since DIMMs can be placed in either one.
1161
*/
1162
for (i = 0; i < 2; i++) {
1163
u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1164
1165
for (j = 0; j < 4; j++) {
1166
if (DBAM_DIMM(j, dbam) > 0) {
1167
channels++;
1168
break;
1169
}
1170
}
1171
}
1172
1173
if (channels > 2)
1174
channels = 2;
1175
1176
amd64_info("MCT channel count: %d\n", channels);
1177
1178
return channels;
1179
}
1180
1181
static int ddr3_cs_size(unsigned i, bool dct_width)
1182
{
1183
unsigned shift = 0;
1184
int cs_size = 0;
1185
1186
if (i == 0 || i == 3 || i == 4)
1187
cs_size = -1;
1188
else if (i <= 2)
1189
shift = i;
1190
else if (i == 12)
1191
shift = 7;
1192
else if (!(i & 0x1))
1193
shift = i >> 1;
1194
else
1195
shift = (i + 1) >> 1;
1196
1197
if (cs_size != -1)
1198
cs_size = (128 * (1 << !!dct_width)) << shift;
1199
1200
return cs_size;
1201
}
1202
1203
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1204
unsigned cs_mode)
1205
{
1206
u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1207
1208
WARN_ON(cs_mode > 11);
1209
1210
if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1211
return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1212
else
1213
return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1214
}
1215
1216
/*
1217
* F15h supports only 64bit DCT interfaces
1218
*/
1219
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1220
unsigned cs_mode)
1221
{
1222
WARN_ON(cs_mode > 12);
1223
1224
return ddr3_cs_size(cs_mode, false);
1225
}
1226
1227
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1228
{
1229
1230
if (boot_cpu_data.x86 == 0xf)
1231
return;
1232
1233
if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1234
debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1235
pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1236
1237
debugf0(" DCTs operate in %s mode.\n",
1238
(dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1239
1240
if (!dct_ganging_enabled(pvt))
1241
debugf0(" Address range split per DCT: %s\n",
1242
(dct_high_range_enabled(pvt) ? "yes" : "no"));
1243
1244
debugf0(" data interleave for ECC: %s, "
1245
"DRAM cleared since last warm reset: %s\n",
1246
(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1247
(dct_memory_cleared(pvt) ? "yes" : "no"));
1248
1249
debugf0(" channel interleave: %s, "
1250
"interleave bits selector: 0x%x\n",
1251
(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1252
dct_sel_interleave_addr(pvt));
1253
}
1254
1255
amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1256
}
1257
1258
/*
1259
* Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1260
* Interleaving Modes.
1261
*/
1262
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1263
bool hi_range_sel, u8 intlv_en)
1264
{
1265
u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1266
1267
if (dct_ganging_enabled(pvt))
1268
return 0;
1269
1270
if (hi_range_sel)
1271
return dct_sel_high;
1272
1273
/*
1274
* see F2x110[DctSelIntLvAddr] - channel interleave mode
1275
*/
1276
if (dct_interleave_enabled(pvt)) {
1277
u8 intlv_addr = dct_sel_interleave_addr(pvt);
1278
1279
/* return DCT select function: 0=DCT0, 1=DCT1 */
1280
if (!intlv_addr)
1281
return sys_addr >> 6 & 1;
1282
1283
if (intlv_addr & 0x2) {
1284
u8 shift = intlv_addr & 0x1 ? 9 : 6;
1285
u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1286
1287
return ((sys_addr >> shift) & 1) ^ temp;
1288
}
1289
1290
return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1291
}
1292
1293
if (dct_high_range_enabled(pvt))
1294
return ~dct_sel_high & 1;
1295
1296
return 0;
1297
}
1298
1299
/* Convert the sys_addr to the normalized DCT address */
1300
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
1301
u64 sys_addr, bool hi_rng,
1302
u32 dct_sel_base_addr)
1303
{
1304
u64 chan_off;
1305
u64 dram_base = get_dram_base(pvt, range);
1306
u64 hole_off = f10_dhar_offset(pvt);
1307
u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1308
1309
if (hi_rng) {
1310
/*
1311
* if
1312
* base address of high range is below 4Gb
1313
* (bits [47:27] at [31:11])
1314
* DRAM address space on this DCT is hoisted above 4Gb &&
1315
* sys_addr > 4Gb
1316
*
1317
* remove hole offset from sys_addr
1318
* else
1319
* remove high range offset from sys_addr
1320
*/
1321
if ((!(dct_sel_base_addr >> 16) ||
1322
dct_sel_base_addr < dhar_base(pvt)) &&
1323
dhar_valid(pvt) &&
1324
(sys_addr >= BIT_64(32)))
1325
chan_off = hole_off;
1326
else
1327
chan_off = dct_sel_base_off;
1328
} else {
1329
/*
1330
* if
1331
* we have a valid hole &&
1332
* sys_addr > 4Gb
1333
*
1334
* remove hole
1335
* else
1336
* remove dram base to normalize to DCT address
1337
*/
1338
if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1339
chan_off = hole_off;
1340
else
1341
chan_off = dram_base;
1342
}
1343
1344
return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1345
}
1346
1347
/*
1348
* checks if the csrow passed in is marked as SPARED, if so returns the new
1349
* spare row
1350
*/
1351
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1352
{
1353
int tmp_cs;
1354
1355
if (online_spare_swap_done(pvt, dct) &&
1356
csrow == online_spare_bad_dramcs(pvt, dct)) {
1357
1358
for_each_chip_select(tmp_cs, dct, pvt) {
1359
if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1360
csrow = tmp_cs;
1361
break;
1362
}
1363
}
1364
}
1365
return csrow;
1366
}
1367
1368
/*
1369
* Iterate over the DRAM DCT "base" and "mask" registers looking for a
1370
* SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1371
*
1372
* Return:
1373
* -EINVAL: NOT FOUND
1374
* 0..csrow = Chip-Select Row
1375
*/
1376
static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1377
{
1378
struct mem_ctl_info *mci;
1379
struct amd64_pvt *pvt;
1380
u64 cs_base, cs_mask;
1381
int cs_found = -EINVAL;
1382
int csrow;
1383
1384
mci = mcis[nid];
1385
if (!mci)
1386
return cs_found;
1387
1388
pvt = mci->pvt_info;
1389
1390
debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1391
1392
for_each_chip_select(csrow, dct, pvt) {
1393
if (!csrow_enabled(csrow, dct, pvt))
1394
continue;
1395
1396
get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1397
1398
debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1399
csrow, cs_base, cs_mask);
1400
1401
cs_mask = ~cs_mask;
1402
1403
debugf1(" (InputAddr & ~CSMask)=0x%llx "
1404
"(CSBase & ~CSMask)=0x%llx\n",
1405
(in_addr & cs_mask), (cs_base & cs_mask));
1406
1407
if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1408
cs_found = f10_process_possible_spare(pvt, dct, csrow);
1409
1410
debugf1(" MATCH csrow=%d\n", cs_found);
1411
break;
1412
}
1413
}
1414
return cs_found;
1415
}
1416
1417
/*
1418
* See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1419
* swapped with a region located at the bottom of memory so that the GPU can use
1420
* the interleaved region and thus two channels.
1421
*/
1422
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1423
{
1424
u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1425
1426
if (boot_cpu_data.x86 == 0x10) {
1427
/* only revC3 and revE have that feature */
1428
if (boot_cpu_data.x86_model < 4 ||
1429
(boot_cpu_data.x86_model < 0xa &&
1430
boot_cpu_data.x86_mask < 3))
1431
return sys_addr;
1432
}
1433
1434
amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1435
1436
if (!(swap_reg & 0x1))
1437
return sys_addr;
1438
1439
swap_base = (swap_reg >> 3) & 0x7f;
1440
swap_limit = (swap_reg >> 11) & 0x7f;
1441
rgn_size = (swap_reg >> 20) & 0x7f;
1442
tmp_addr = sys_addr >> 27;
1443
1444
if (!(sys_addr >> 34) &&
1445
(((tmp_addr >= swap_base) &&
1446
(tmp_addr <= swap_limit)) ||
1447
(tmp_addr < rgn_size)))
1448
return sys_addr ^ (u64)swap_base << 27;
1449
1450
return sys_addr;
1451
}
1452
1453
/* For a given @dram_range, check if @sys_addr falls within it. */
1454
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1455
u64 sys_addr, int *nid, int *chan_sel)
1456
{
1457
int cs_found = -EINVAL;
1458
u64 chan_addr;
1459
u32 dct_sel_base;
1460
u8 channel;
1461
bool high_range = false;
1462
1463
u8 node_id = dram_dst_node(pvt, range);
1464
u8 intlv_en = dram_intlv_en(pvt, range);
1465
u32 intlv_sel = dram_intlv_sel(pvt, range);
1466
1467
debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1468
range, sys_addr, get_dram_limit(pvt, range));
1469
1470
if (dhar_valid(pvt) &&
1471
dhar_base(pvt) <= sys_addr &&
1472
sys_addr < BIT_64(32)) {
1473
amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1474
sys_addr);
1475
return -EINVAL;
1476
}
1477
1478
if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1479
return -EINVAL;
1480
1481
sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1482
1483
dct_sel_base = dct_sel_baseaddr(pvt);
1484
1485
/*
1486
* check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1487
* select between DCT0 and DCT1.
1488
*/
1489
if (dct_high_range_enabled(pvt) &&
1490
!dct_ganging_enabled(pvt) &&
1491
((sys_addr >> 27) >= (dct_sel_base >> 11)))
1492
high_range = true;
1493
1494
channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1495
1496
chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1497
high_range, dct_sel_base);
1498
1499
/* Remove node interleaving, see F1x120 */
1500
if (intlv_en)
1501
chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1502
(chan_addr & 0xfff);
1503
1504
/* remove channel interleave */
1505
if (dct_interleave_enabled(pvt) &&
1506
!dct_high_range_enabled(pvt) &&
1507
!dct_ganging_enabled(pvt)) {
1508
1509
if (dct_sel_interleave_addr(pvt) != 1) {
1510
if (dct_sel_interleave_addr(pvt) == 0x3)
1511
/* hash 9 */
1512
chan_addr = ((chan_addr >> 10) << 9) |
1513
(chan_addr & 0x1ff);
1514
else
1515
/* A[6] or hash 6 */
1516
chan_addr = ((chan_addr >> 7) << 6) |
1517
(chan_addr & 0x3f);
1518
} else
1519
/* A[12] */
1520
chan_addr = ((chan_addr >> 13) << 12) |
1521
(chan_addr & 0xfff);
1522
}
1523
1524
debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
1525
1526
cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1527
1528
if (cs_found >= 0) {
1529
*nid = node_id;
1530
*chan_sel = channel;
1531
}
1532
return cs_found;
1533
}
1534
1535
static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1536
int *node, int *chan_sel)
1537
{
1538
int cs_found = -EINVAL;
1539
unsigned range;
1540
1541
for (range = 0; range < DRAM_RANGES; range++) {
1542
1543
if (!dram_rw(pvt, range))
1544
continue;
1545
1546
if ((get_dram_base(pvt, range) <= sys_addr) &&
1547
(get_dram_limit(pvt, range) >= sys_addr)) {
1548
1549
cs_found = f1x_match_to_this_node(pvt, range,
1550
sys_addr, node,
1551
chan_sel);
1552
if (cs_found >= 0)
1553
break;
1554
}
1555
}
1556
return cs_found;
1557
}
1558
1559
/*
1560
* For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1561
* a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1562
*
1563
* The @sys_addr is usually an error address received from the hardware
1564
* (MCX_ADDR).
1565
*/
1566
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1567
u16 syndrome)
1568
{
1569
struct amd64_pvt *pvt = mci->pvt_info;
1570
u32 page, offset;
1571
int nid, csrow, chan = 0;
1572
1573
csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1574
1575
if (csrow < 0) {
1576
edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1577
return;
1578
}
1579
1580
error_address_to_page_and_offset(sys_addr, &page, &offset);
1581
1582
/*
1583
* We need the syndromes for channel detection only when we're
1584
* ganged. Otherwise @chan should already contain the channel at
1585
* this point.
1586
*/
1587
if (dct_ganging_enabled(pvt))
1588
chan = get_channel_from_ecc_syndrome(mci, syndrome);
1589
1590
if (chan >= 0)
1591
edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1592
EDAC_MOD_STR);
1593
else
1594
/*
1595
* Channel unknown, report all channels on this CSROW as failed.
1596
*/
1597
for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1598
edac_mc_handle_ce(mci, page, offset, syndrome,
1599
csrow, chan, EDAC_MOD_STR);
1600
}
1601
1602
/*
1603
* debug routine to display the memory sizes of all logical DIMMs and its
1604
* CSROWs
1605
*/
1606
static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1607
{
1608
int dimm, size0, size1, factor = 0;
1609
u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1610
u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1611
1612
if (boot_cpu_data.x86 == 0xf) {
1613
if (pvt->dclr0 & WIDTH_128)
1614
factor = 1;
1615
1616
/* K8 families < revF not supported yet */
1617
if (pvt->ext_model < K8_REV_F)
1618
return;
1619
else
1620
WARN_ON(ctrl != 0);
1621
}
1622
1623
dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1624
dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1625
: pvt->csels[0].csbases;
1626
1627
debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1628
1629
edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1630
1631
/* Dump memory sizes for DIMM and its CSROWs */
1632
for (dimm = 0; dimm < 4; dimm++) {
1633
1634
size0 = 0;
1635
if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1636
size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1637
DBAM_DIMM(dimm, dbam));
1638
1639
size1 = 0;
1640
if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1641
size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1642
DBAM_DIMM(dimm, dbam));
1643
1644
amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1645
dimm * 2, size0 << factor,
1646
dimm * 2 + 1, size1 << factor);
1647
}
1648
}
1649
1650
static struct amd64_family_type amd64_family_types[] = {
1651
[K8_CPUS] = {
1652
.ctl_name = "K8",
1653
.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1654
.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1655
.ops = {
1656
.early_channel_count = k8_early_channel_count,
1657
.map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1658
.dbam_to_cs = k8_dbam_to_chip_select,
1659
.read_dct_pci_cfg = k8_read_dct_pci_cfg,
1660
}
1661
},
1662
[F10_CPUS] = {
1663
.ctl_name = "F10h",
1664
.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1665
.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1666
.ops = {
1667
.early_channel_count = f1x_early_channel_count,
1668
.map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1669
.dbam_to_cs = f10_dbam_to_chip_select,
1670
.read_dct_pci_cfg = f10_read_dct_pci_cfg,
1671
}
1672
},
1673
[F15_CPUS] = {
1674
.ctl_name = "F15h",
1675
.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1676
.f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1677
.ops = {
1678
.early_channel_count = f1x_early_channel_count,
1679
.map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1680
.dbam_to_cs = f15_dbam_to_chip_select,
1681
.read_dct_pci_cfg = f15_read_dct_pci_cfg,
1682
}
1683
},
1684
};
1685
1686
static struct pci_dev *pci_get_related_function(unsigned int vendor,
1687
unsigned int device,
1688
struct pci_dev *related)
1689
{
1690
struct pci_dev *dev = NULL;
1691
1692
dev = pci_get_device(vendor, device, dev);
1693
while (dev) {
1694
if ((dev->bus->number == related->bus->number) &&
1695
(PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1696
break;
1697
dev = pci_get_device(vendor, device, dev);
1698
}
1699
1700
return dev;
1701
}
1702
1703
/*
1704
* These are tables of eigenvectors (one per line) which can be used for the
1705
* construction of the syndrome tables. The modified syndrome search algorithm
1706
* uses those to find the symbol in error and thus the DIMM.
1707
*
1708
* Algorithm courtesy of Ross LaFetra from AMD.
1709
*/
1710
static u16 x4_vectors[] = {
1711
0x2f57, 0x1afe, 0x66cc, 0xdd88,
1712
0x11eb, 0x3396, 0x7f4c, 0xeac8,
1713
0x0001, 0x0002, 0x0004, 0x0008,
1714
0x1013, 0x3032, 0x4044, 0x8088,
1715
0x106b, 0x30d6, 0x70fc, 0xe0a8,
1716
0x4857, 0xc4fe, 0x13cc, 0x3288,
1717
0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1718
0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1719
0x15c1, 0x2a42, 0x89ac, 0x4758,
1720
0x2b03, 0x1602, 0x4f0c, 0xca08,
1721
0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1722
0x8ba7, 0x465e, 0x244c, 0x1cc8,
1723
0x2b87, 0x164e, 0x642c, 0xdc18,
1724
0x40b9, 0x80de, 0x1094, 0x20e8,
1725
0x27db, 0x1eb6, 0x9dac, 0x7b58,
1726
0x11c1, 0x2242, 0x84ac, 0x4c58,
1727
0x1be5, 0x2d7a, 0x5e34, 0xa718,
1728
0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1729
0x4c97, 0xc87e, 0x11fc, 0x33a8,
1730
0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1731
0x16b3, 0x3d62, 0x4f34, 0x8518,
1732
0x1e2f, 0x391a, 0x5cac, 0xf858,
1733
0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1734
0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1735
0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1736
0x4397, 0xc27e, 0x17fc, 0x3ea8,
1737
0x1617, 0x3d3e, 0x6464, 0xb8b8,
1738
0x23ff, 0x12aa, 0xab6c, 0x56d8,
1739
0x2dfb, 0x1ba6, 0x913c, 0x7328,
1740
0x185d, 0x2ca6, 0x7914, 0x9e28,
1741
0x171b, 0x3e36, 0x7d7c, 0xebe8,
1742
0x4199, 0x82ee, 0x19f4, 0x2e58,
1743
0x4807, 0xc40e, 0x130c, 0x3208,
1744
0x1905, 0x2e0a, 0x5804, 0xac08,
1745
0x213f, 0x132a, 0xadfc, 0x5ba8,
1746
0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1747
};
1748
1749
static u16 x8_vectors[] = {
1750
0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1751
0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1752
0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1753
0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1754
0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1755
0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1756
0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1757
0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1758
0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1759
0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1760
0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1761
0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1762
0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1763
0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1764
0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1765
0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1766
0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1767
0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1768
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1769
};
1770
1771
static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1772
unsigned v_dim)
1773
{
1774
unsigned int i, err_sym;
1775
1776
for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1777
u16 s = syndrome;
1778
unsigned v_idx = err_sym * v_dim;
1779
unsigned v_end = (err_sym + 1) * v_dim;
1780
1781
/* walk over all 16 bits of the syndrome */
1782
for (i = 1; i < (1U << 16); i <<= 1) {
1783
1784
/* if bit is set in that eigenvector... */
1785
if (v_idx < v_end && vectors[v_idx] & i) {
1786
u16 ev_comp = vectors[v_idx++];
1787
1788
/* ... and bit set in the modified syndrome, */
1789
if (s & i) {
1790
/* remove it. */
1791
s ^= ev_comp;
1792
1793
if (!s)
1794
return err_sym;
1795
}
1796
1797
} else if (s & i)
1798
/* can't get to zero, move to next symbol */
1799
break;
1800
}
1801
}
1802
1803
debugf0("syndrome(%x) not found\n", syndrome);
1804
return -1;
1805
}
1806
1807
static int map_err_sym_to_channel(int err_sym, int sym_size)
1808
{
1809
if (sym_size == 4)
1810
switch (err_sym) {
1811
case 0x20:
1812
case 0x21:
1813
return 0;
1814
break;
1815
case 0x22:
1816
case 0x23:
1817
return 1;
1818
break;
1819
default:
1820
return err_sym >> 4;
1821
break;
1822
}
1823
/* x8 symbols */
1824
else
1825
switch (err_sym) {
1826
/* imaginary bits not in a DIMM */
1827
case 0x10:
1828
WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1829
err_sym);
1830
return -1;
1831
break;
1832
1833
case 0x11:
1834
return 0;
1835
break;
1836
case 0x12:
1837
return 1;
1838
break;
1839
default:
1840
return err_sym >> 3;
1841
break;
1842
}
1843
return -1;
1844
}
1845
1846
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1847
{
1848
struct amd64_pvt *pvt = mci->pvt_info;
1849
int err_sym = -1;
1850
1851
if (pvt->ecc_sym_sz == 8)
1852
err_sym = decode_syndrome(syndrome, x8_vectors,
1853
ARRAY_SIZE(x8_vectors),
1854
pvt->ecc_sym_sz);
1855
else if (pvt->ecc_sym_sz == 4)
1856
err_sym = decode_syndrome(syndrome, x4_vectors,
1857
ARRAY_SIZE(x4_vectors),
1858
pvt->ecc_sym_sz);
1859
else {
1860
amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1861
return err_sym;
1862
}
1863
1864
return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1865
}
1866
1867
/*
1868
* Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1869
* ADDRESS and process.
1870
*/
1871
static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1872
{
1873
struct amd64_pvt *pvt = mci->pvt_info;
1874
u64 sys_addr;
1875
u16 syndrome;
1876
1877
/* Ensure that the Error Address is VALID */
1878
if (!(m->status & MCI_STATUS_ADDRV)) {
1879
amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1880
edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1881
return;
1882
}
1883
1884
sys_addr = get_error_address(m);
1885
syndrome = extract_syndrome(m->status);
1886
1887
amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1888
1889
pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1890
}
1891
1892
/* Handle any Un-correctable Errors (UEs) */
1893
static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1894
{
1895
struct mem_ctl_info *log_mci, *src_mci = NULL;
1896
int csrow;
1897
u64 sys_addr;
1898
u32 page, offset;
1899
1900
log_mci = mci;
1901
1902
if (!(m->status & MCI_STATUS_ADDRV)) {
1903
amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1904
edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1905
return;
1906
}
1907
1908
sys_addr = get_error_address(m);
1909
1910
/*
1911
* Find out which node the error address belongs to. This may be
1912
* different from the node that detected the error.
1913
*/
1914
src_mci = find_mc_by_sys_addr(mci, sys_addr);
1915
if (!src_mci) {
1916
amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1917
(unsigned long)sys_addr);
1918
edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1919
return;
1920
}
1921
1922
log_mci = src_mci;
1923
1924
csrow = sys_addr_to_csrow(log_mci, sys_addr);
1925
if (csrow < 0) {
1926
amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1927
(unsigned long)sys_addr);
1928
edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1929
} else {
1930
error_address_to_page_and_offset(sys_addr, &page, &offset);
1931
edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1932
}
1933
}
1934
1935
static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1936
struct mce *m)
1937
{
1938
u16 ec = EC(m->status);
1939
u8 xec = XEC(m->status, 0x1f);
1940
u8 ecc_type = (m->status >> 45) & 0x3;
1941
1942
/* Bail early out if this was an 'observed' error */
1943
if (PP(ec) == NBSL_PP_OBS)
1944
return;
1945
1946
/* Do only ECC errors */
1947
if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1948
return;
1949
1950
if (ecc_type == 2)
1951
amd64_handle_ce(mci, m);
1952
else if (ecc_type == 1)
1953
amd64_handle_ue(mci, m);
1954
}
1955
1956
void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
1957
{
1958
struct mem_ctl_info *mci = mcis[node_id];
1959
1960
__amd64_decode_bus_error(mci, m);
1961
}
1962
1963
/*
1964
* Use pvt->F2 which contains the F2 CPU PCI device to get the related
1965
* F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1966
*/
1967
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1968
{
1969
/* Reserve the ADDRESS MAP Device */
1970
pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1971
if (!pvt->F1) {
1972
amd64_err("error address map device not found: "
1973
"vendor %x device 0x%x (broken BIOS?)\n",
1974
PCI_VENDOR_ID_AMD, f1_id);
1975
return -ENODEV;
1976
}
1977
1978
/* Reserve the MISC Device */
1979
pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1980
if (!pvt->F3) {
1981
pci_dev_put(pvt->F1);
1982
pvt->F1 = NULL;
1983
1984
amd64_err("error F3 device not found: "
1985
"vendor %x device 0x%x (broken BIOS?)\n",
1986
PCI_VENDOR_ID_AMD, f3_id);
1987
1988
return -ENODEV;
1989
}
1990
debugf1("F1: %s\n", pci_name(pvt->F1));
1991
debugf1("F2: %s\n", pci_name(pvt->F2));
1992
debugf1("F3: %s\n", pci_name(pvt->F3));
1993
1994
return 0;
1995
}
1996
1997
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1998
{
1999
pci_dev_put(pvt->F1);
2000
pci_dev_put(pvt->F3);
2001
}
2002
2003
/*
2004
* Retrieve the hardware registers of the memory controller (this includes the
2005
* 'Address Map' and 'Misc' device regs)
2006
*/
2007
static void read_mc_regs(struct amd64_pvt *pvt)
2008
{
2009
struct cpuinfo_x86 *c = &boot_cpu_data;
2010
u64 msr_val;
2011
u32 tmp;
2012
unsigned range;
2013
2014
/*
2015
* Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2016
* those are Read-As-Zero
2017
*/
2018
rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2019
debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
2020
2021
/* check first whether TOP_MEM2 is enabled */
2022
rdmsrl(MSR_K8_SYSCFG, msr_val);
2023
if (msr_val & (1U << 21)) {
2024
rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2025
debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2026
} else
2027
debugf0(" TOP_MEM2 disabled.\n");
2028
2029
amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2030
2031
read_dram_ctl_register(pvt);
2032
2033
for (range = 0; range < DRAM_RANGES; range++) {
2034
u8 rw;
2035
2036
/* read settings for this DRAM range */
2037
read_dram_base_limit_regs(pvt, range);
2038
2039
rw = dram_rw(pvt, range);
2040
if (!rw)
2041
continue;
2042
2043
debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2044
range,
2045
get_dram_base(pvt, range),
2046
get_dram_limit(pvt, range));
2047
2048
debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2049
dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2050
(rw & 0x1) ? "R" : "-",
2051
(rw & 0x2) ? "W" : "-",
2052
dram_intlv_sel(pvt, range),
2053
dram_dst_node(pvt, range));
2054
}
2055
2056
read_dct_base_mask(pvt);
2057
2058
amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2059
amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2060
2061
amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2062
2063
amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2064
amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2065
2066
if (!dct_ganging_enabled(pvt)) {
2067
amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2068
amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2069
}
2070
2071
pvt->ecc_sym_sz = 4;
2072
2073
if (c->x86 >= 0x10) {
2074
amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2075
amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2076
2077
/* F10h, revD and later can do x8 ECC too */
2078
if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2079
pvt->ecc_sym_sz = 8;
2080
}
2081
dump_misc_regs(pvt);
2082
}
2083
2084
/*
2085
* NOTE: CPU Revision Dependent code
2086
*
2087
* Input:
2088
* @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2089
* k8 private pointer to -->
2090
* DRAM Bank Address mapping register
2091
* node_id
2092
* DCL register where dual_channel_active is
2093
*
2094
* The DBAM register consists of 4 sets of 4 bits each definitions:
2095
*
2096
* Bits: CSROWs
2097
* 0-3 CSROWs 0 and 1
2098
* 4-7 CSROWs 2 and 3
2099
* 8-11 CSROWs 4 and 5
2100
* 12-15 CSROWs 6 and 7
2101
*
2102
* Values range from: 0 to 15
2103
* The meaning of the values depends on CPU revision and dual-channel state,
2104
* see relevant BKDG more info.
2105
*
2106
* The memory controller provides for total of only 8 CSROWs in its current
2107
* architecture. Each "pair" of CSROWs normally represents just one DIMM in
2108
* single channel or two (2) DIMMs in dual channel mode.
2109
*
2110
* The following code logic collapses the various tables for CSROW based on CPU
2111
* revision.
2112
*
2113
* Returns:
2114
* The number of PAGE_SIZE pages on the specified CSROW number it
2115
* encompasses
2116
*
2117
*/
2118
static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2119
{
2120
u32 cs_mode, nr_pages;
2121
2122
/*
2123
* The math on this doesn't look right on the surface because x/2*4 can
2124
* be simplified to x*2 but this expression makes use of the fact that
2125
* it is integral math where 1/2=0. This intermediate value becomes the
2126
* number of bits to shift the DBAM register to extract the proper CSROW
2127
* field.
2128
*/
2129
cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2130
2131
nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2132
2133
/*
2134
* If dual channel then double the memory size of single channel.
2135
* Channel count is 1 or 2
2136
*/
2137
nr_pages <<= (pvt->channel_count - 1);
2138
2139
debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2140
debugf0(" nr_pages= %u channel-count = %d\n",
2141
nr_pages, pvt->channel_count);
2142
2143
return nr_pages;
2144
}
2145
2146
/*
2147
* Initialize the array of csrow attribute instances, based on the values
2148
* from pci config hardware registers.
2149
*/
2150
static int init_csrows(struct mem_ctl_info *mci)
2151
{
2152
struct csrow_info *csrow;
2153
struct amd64_pvt *pvt = mci->pvt_info;
2154
u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2155
u32 val;
2156
int i, empty = 1;
2157
2158
amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2159
2160
pvt->nbcfg = val;
2161
2162
debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2163
pvt->mc_node_id, val,
2164
!!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2165
2166
for_each_chip_select(i, 0, pvt) {
2167
csrow = &mci->csrows[i];
2168
2169
if (!csrow_enabled(i, 0, pvt)) {
2170
debugf1("----CSROW %d EMPTY for node %d\n", i,
2171
pvt->mc_node_id);
2172
continue;
2173
}
2174
2175
debugf1("----CSROW %d VALID for MC node %d\n",
2176
i, pvt->mc_node_id);
2177
2178
empty = 0;
2179
csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2180
find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2181
sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2182
csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2183
sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2184
csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2185
2186
get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2187
csrow->page_mask = ~mask;
2188
/* 8 bytes of resolution */
2189
2190
csrow->mtype = amd64_determine_memory_type(pvt, i);
2191
2192
debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2193
debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2194
(unsigned long)input_addr_min,
2195
(unsigned long)input_addr_max);
2196
debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2197
(unsigned long)sys_addr, csrow->page_mask);
2198
debugf1(" nr_pages: %u first_page: 0x%lx "
2199
"last_page: 0x%lx\n",
2200
(unsigned)csrow->nr_pages,
2201
csrow->first_page, csrow->last_page);
2202
2203
/*
2204
* determine whether CHIPKILL or JUST ECC or NO ECC is operating
2205
*/
2206
if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2207
csrow->edac_mode =
2208
(pvt->nbcfg & NBCFG_CHIPKILL) ?
2209
EDAC_S4ECD4ED : EDAC_SECDED;
2210
else
2211
csrow->edac_mode = EDAC_NONE;
2212
}
2213
2214
return empty;
2215
}
2216
2217
/* get all cores on this DCT */
2218
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2219
{
2220
int cpu;
2221
2222
for_each_online_cpu(cpu)
2223
if (amd_get_nb_id(cpu) == nid)
2224
cpumask_set_cpu(cpu, mask);
2225
}
2226
2227
/* check MCG_CTL on all the cpus on this node */
2228
static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2229
{
2230
cpumask_var_t mask;
2231
int cpu, nbe;
2232
bool ret = false;
2233
2234
if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2235
amd64_warn("%s: Error allocating mask\n", __func__);
2236
return false;
2237
}
2238
2239
get_cpus_on_this_dct_cpumask(mask, nid);
2240
2241
rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2242
2243
for_each_cpu(cpu, mask) {
2244
struct msr *reg = per_cpu_ptr(msrs, cpu);
2245
nbe = reg->l & MSR_MCGCTL_NBE;
2246
2247
debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2248
cpu, reg->q,
2249
(nbe ? "enabled" : "disabled"));
2250
2251
if (!nbe)
2252
goto out;
2253
}
2254
ret = true;
2255
2256
out:
2257
free_cpumask_var(mask);
2258
return ret;
2259
}
2260
2261
static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2262
{
2263
cpumask_var_t cmask;
2264
int cpu;
2265
2266
if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2267
amd64_warn("%s: error allocating mask\n", __func__);
2268
return false;
2269
}
2270
2271
get_cpus_on_this_dct_cpumask(cmask, nid);
2272
2273
rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2274
2275
for_each_cpu(cpu, cmask) {
2276
2277
struct msr *reg = per_cpu_ptr(msrs, cpu);
2278
2279
if (on) {
2280
if (reg->l & MSR_MCGCTL_NBE)
2281
s->flags.nb_mce_enable = 1;
2282
2283
reg->l |= MSR_MCGCTL_NBE;
2284
} else {
2285
/*
2286
* Turn off NB MCE reporting only when it was off before
2287
*/
2288
if (!s->flags.nb_mce_enable)
2289
reg->l &= ~MSR_MCGCTL_NBE;
2290
}
2291
}
2292
wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2293
2294
free_cpumask_var(cmask);
2295
2296
return 0;
2297
}
2298
2299
static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2300
struct pci_dev *F3)
2301
{
2302
bool ret = true;
2303
u32 value, mask = 0x3; /* UECC/CECC enable */
2304
2305
if (toggle_ecc_err_reporting(s, nid, ON)) {
2306
amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2307
return false;
2308
}
2309
2310
amd64_read_pci_cfg(F3, NBCTL, &value);
2311
2312
s->old_nbctl = value & mask;
2313
s->nbctl_valid = true;
2314
2315
value |= mask;
2316
amd64_write_pci_cfg(F3, NBCTL, value);
2317
2318
amd64_read_pci_cfg(F3, NBCFG, &value);
2319
2320
debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2321
nid, value, !!(value & NBCFG_ECC_ENABLE));
2322
2323
if (!(value & NBCFG_ECC_ENABLE)) {
2324
amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2325
2326
s->flags.nb_ecc_prev = 0;
2327
2328
/* Attempt to turn on DRAM ECC Enable */
2329
value |= NBCFG_ECC_ENABLE;
2330
amd64_write_pci_cfg(F3, NBCFG, value);
2331
2332
amd64_read_pci_cfg(F3, NBCFG, &value);
2333
2334
if (!(value & NBCFG_ECC_ENABLE)) {
2335
amd64_warn("Hardware rejected DRAM ECC enable,"
2336
"check memory DIMM configuration.\n");
2337
ret = false;
2338
} else {
2339
amd64_info("Hardware accepted DRAM ECC Enable\n");
2340
}
2341
} else {
2342
s->flags.nb_ecc_prev = 1;
2343
}
2344
2345
debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2346
nid, value, !!(value & NBCFG_ECC_ENABLE));
2347
2348
return ret;
2349
}
2350
2351
static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2352
struct pci_dev *F3)
2353
{
2354
u32 value, mask = 0x3; /* UECC/CECC enable */
2355
2356
2357
if (!s->nbctl_valid)
2358
return;
2359
2360
amd64_read_pci_cfg(F3, NBCTL, &value);
2361
value &= ~mask;
2362
value |= s->old_nbctl;
2363
2364
amd64_write_pci_cfg(F3, NBCTL, value);
2365
2366
/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2367
if (!s->flags.nb_ecc_prev) {
2368
amd64_read_pci_cfg(F3, NBCFG, &value);
2369
value &= ~NBCFG_ECC_ENABLE;
2370
amd64_write_pci_cfg(F3, NBCFG, value);
2371
}
2372
2373
/* restore the NB Enable MCGCTL bit */
2374
if (toggle_ecc_err_reporting(s, nid, OFF))
2375
amd64_warn("Error restoring NB MCGCTL settings!\n");
2376
}
2377
2378
/*
2379
* EDAC requires that the BIOS have ECC enabled before
2380
* taking over the processing of ECC errors. A command line
2381
* option allows to force-enable hardware ECC later in
2382
* enable_ecc_error_reporting().
2383
*/
2384
static const char *ecc_msg =
2385
"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2386
" Either enable ECC checking or force module loading by setting "
2387
"'ecc_enable_override'.\n"
2388
" (Note that use of the override may cause unknown side effects.)\n";
2389
2390
static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2391
{
2392
u32 value;
2393
u8 ecc_en = 0;
2394
bool nb_mce_en = false;
2395
2396
amd64_read_pci_cfg(F3, NBCFG, &value);
2397
2398
ecc_en = !!(value & NBCFG_ECC_ENABLE);
2399
amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2400
2401
nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2402
if (!nb_mce_en)
2403
amd64_notice("NB MCE bank disabled, set MSR "
2404
"0x%08x[4] on node %d to enable.\n",
2405
MSR_IA32_MCG_CTL, nid);
2406
2407
if (!ecc_en || !nb_mce_en) {
2408
amd64_notice("%s", ecc_msg);
2409
return false;
2410
}
2411
return true;
2412
}
2413
2414
struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2415
ARRAY_SIZE(amd64_inj_attrs) +
2416
1];
2417
2418
struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2419
2420
static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2421
{
2422
unsigned int i = 0, j = 0;
2423
2424
for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2425
sysfs_attrs[i] = amd64_dbg_attrs[i];
2426
2427
if (boot_cpu_data.x86 >= 0x10)
2428
for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2429
sysfs_attrs[i] = amd64_inj_attrs[j];
2430
2431
sysfs_attrs[i] = terminator;
2432
2433
mci->mc_driver_sysfs_attributes = sysfs_attrs;
2434
}
2435
2436
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2437
struct amd64_family_type *fam)
2438
{
2439
struct amd64_pvt *pvt = mci->pvt_info;
2440
2441
mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2442
mci->edac_ctl_cap = EDAC_FLAG_NONE;
2443
2444
if (pvt->nbcap & NBCAP_SECDED)
2445
mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2446
2447
if (pvt->nbcap & NBCAP_CHIPKILL)
2448
mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2449
2450
mci->edac_cap = amd64_determine_edac_cap(pvt);
2451
mci->mod_name = EDAC_MOD_STR;
2452
mci->mod_ver = EDAC_AMD64_VERSION;
2453
mci->ctl_name = fam->ctl_name;
2454
mci->dev_name = pci_name(pvt->F2);
2455
mci->ctl_page_to_phys = NULL;
2456
2457
/* memory scrubber interface */
2458
mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2459
mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2460
}
2461
2462
/*
2463
* returns a pointer to the family descriptor on success, NULL otherwise.
2464
*/
2465
static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2466
{
2467
u8 fam = boot_cpu_data.x86;
2468
struct amd64_family_type *fam_type = NULL;
2469
2470
switch (fam) {
2471
case 0xf:
2472
fam_type = &amd64_family_types[K8_CPUS];
2473
pvt->ops = &amd64_family_types[K8_CPUS].ops;
2474
break;
2475
2476
case 0x10:
2477
fam_type = &amd64_family_types[F10_CPUS];
2478
pvt->ops = &amd64_family_types[F10_CPUS].ops;
2479
break;
2480
2481
case 0x15:
2482
fam_type = &amd64_family_types[F15_CPUS];
2483
pvt->ops = &amd64_family_types[F15_CPUS].ops;
2484
break;
2485
2486
default:
2487
amd64_err("Unsupported family!\n");
2488
return NULL;
2489
}
2490
2491
pvt->ext_model = boot_cpu_data.x86_model >> 4;
2492
2493
amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2494
(fam == 0xf ?
2495
(pvt->ext_model >= K8_REV_F ? "revF or later "
2496
: "revE or earlier ")
2497
: ""), pvt->mc_node_id);
2498
return fam_type;
2499
}
2500
2501
static int amd64_init_one_instance(struct pci_dev *F2)
2502
{
2503
struct amd64_pvt *pvt = NULL;
2504
struct amd64_family_type *fam_type = NULL;
2505
struct mem_ctl_info *mci = NULL;
2506
int err = 0, ret;
2507
u8 nid = get_node_id(F2);
2508
2509
ret = -ENOMEM;
2510
pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2511
if (!pvt)
2512
goto err_ret;
2513
2514
pvt->mc_node_id = nid;
2515
pvt->F2 = F2;
2516
2517
ret = -EINVAL;
2518
fam_type = amd64_per_family_init(pvt);
2519
if (!fam_type)
2520
goto err_free;
2521
2522
ret = -ENODEV;
2523
err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2524
if (err)
2525
goto err_free;
2526
2527
read_mc_regs(pvt);
2528
2529
/*
2530
* We need to determine how many memory channels there are. Then use
2531
* that information for calculating the size of the dynamic instance
2532
* tables in the 'mci' structure.
2533
*/
2534
ret = -EINVAL;
2535
pvt->channel_count = pvt->ops->early_channel_count(pvt);
2536
if (pvt->channel_count < 0)
2537
goto err_siblings;
2538
2539
ret = -ENOMEM;
2540
mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2541
if (!mci)
2542
goto err_siblings;
2543
2544
mci->pvt_info = pvt;
2545
mci->dev = &pvt->F2->dev;
2546
2547
setup_mci_misc_attrs(mci, fam_type);
2548
2549
if (init_csrows(mci))
2550
mci->edac_cap = EDAC_FLAG_NONE;
2551
2552
set_mc_sysfs_attrs(mci);
2553
2554
ret = -ENODEV;
2555
if (edac_mc_add_mc(mci)) {
2556
debugf1("failed edac_mc_add_mc()\n");
2557
goto err_add_mc;
2558
}
2559
2560
/* register stuff with EDAC MCE */
2561
if (report_gart_errors)
2562
amd_report_gart_errors(true);
2563
2564
amd_register_ecc_decoder(amd64_decode_bus_error);
2565
2566
mcis[nid] = mci;
2567
2568
atomic_inc(&drv_instances);
2569
2570
return 0;
2571
2572
err_add_mc:
2573
edac_mc_free(mci);
2574
2575
err_siblings:
2576
free_mc_sibling_devs(pvt);
2577
2578
err_free:
2579
kfree(pvt);
2580
2581
err_ret:
2582
return ret;
2583
}
2584
2585
static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2586
const struct pci_device_id *mc_type)
2587
{
2588
u8 nid = get_node_id(pdev);
2589
struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2590
struct ecc_settings *s;
2591
int ret = 0;
2592
2593
ret = pci_enable_device(pdev);
2594
if (ret < 0) {
2595
debugf0("ret=%d\n", ret);
2596
return -EIO;
2597
}
2598
2599
ret = -ENOMEM;
2600
s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2601
if (!s)
2602
goto err_out;
2603
2604
ecc_stngs[nid] = s;
2605
2606
if (!ecc_enabled(F3, nid)) {
2607
ret = -ENODEV;
2608
2609
if (!ecc_enable_override)
2610
goto err_enable;
2611
2612
amd64_warn("Forcing ECC on!\n");
2613
2614
if (!enable_ecc_error_reporting(s, nid, F3))
2615
goto err_enable;
2616
}
2617
2618
ret = amd64_init_one_instance(pdev);
2619
if (ret < 0) {
2620
amd64_err("Error probing instance: %d\n", nid);
2621
restore_ecc_error_reporting(s, nid, F3);
2622
}
2623
2624
return ret;
2625
2626
err_enable:
2627
kfree(s);
2628
ecc_stngs[nid] = NULL;
2629
2630
err_out:
2631
return ret;
2632
}
2633
2634
static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2635
{
2636
struct mem_ctl_info *mci;
2637
struct amd64_pvt *pvt;
2638
u8 nid = get_node_id(pdev);
2639
struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2640
struct ecc_settings *s = ecc_stngs[nid];
2641
2642
/* Remove from EDAC CORE tracking list */
2643
mci = edac_mc_del_mc(&pdev->dev);
2644
if (!mci)
2645
return;
2646
2647
pvt = mci->pvt_info;
2648
2649
restore_ecc_error_reporting(s, nid, F3);
2650
2651
free_mc_sibling_devs(pvt);
2652
2653
/* unregister from EDAC MCE */
2654
amd_report_gart_errors(false);
2655
amd_unregister_ecc_decoder(amd64_decode_bus_error);
2656
2657
kfree(ecc_stngs[nid]);
2658
ecc_stngs[nid] = NULL;
2659
2660
/* Free the EDAC CORE resources */
2661
mci->pvt_info = NULL;
2662
mcis[nid] = NULL;
2663
2664
kfree(pvt);
2665
edac_mc_free(mci);
2666
}
2667
2668
/*
2669
* This table is part of the interface for loading drivers for PCI devices. The
2670
* PCI core identifies what devices are on a system during boot, and then
2671
* inquiry this table to see if this driver is for a given device found.
2672
*/
2673
static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2674
{
2675
.vendor = PCI_VENDOR_ID_AMD,
2676
.device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2677
.subvendor = PCI_ANY_ID,
2678
.subdevice = PCI_ANY_ID,
2679
.class = 0,
2680
.class_mask = 0,
2681
},
2682
{
2683
.vendor = PCI_VENDOR_ID_AMD,
2684
.device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2685
.subvendor = PCI_ANY_ID,
2686
.subdevice = PCI_ANY_ID,
2687
.class = 0,
2688
.class_mask = 0,
2689
},
2690
{
2691
.vendor = PCI_VENDOR_ID_AMD,
2692
.device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2693
.subvendor = PCI_ANY_ID,
2694
.subdevice = PCI_ANY_ID,
2695
.class = 0,
2696
.class_mask = 0,
2697
},
2698
2699
{0, }
2700
};
2701
MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2702
2703
static struct pci_driver amd64_pci_driver = {
2704
.name = EDAC_MOD_STR,
2705
.probe = amd64_probe_one_instance,
2706
.remove = __devexit_p(amd64_remove_one_instance),
2707
.id_table = amd64_pci_table,
2708
};
2709
2710
static void setup_pci_device(void)
2711
{
2712
struct mem_ctl_info *mci;
2713
struct amd64_pvt *pvt;
2714
2715
if (amd64_ctl_pci)
2716
return;
2717
2718
mci = mcis[0];
2719
if (mci) {
2720
2721
pvt = mci->pvt_info;
2722
amd64_ctl_pci =
2723
edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2724
2725
if (!amd64_ctl_pci) {
2726
pr_warning("%s(): Unable to create PCI control\n",
2727
__func__);
2728
2729
pr_warning("%s(): PCI error report via EDAC not set\n",
2730
__func__);
2731
}
2732
}
2733
}
2734
2735
static int __init amd64_edac_init(void)
2736
{
2737
int err = -ENODEV;
2738
2739
printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2740
2741
opstate_init();
2742
2743
if (amd_cache_northbridges() < 0)
2744
goto err_ret;
2745
2746
err = -ENOMEM;
2747
mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2748
ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2749
if (!(mcis && ecc_stngs))
2750
goto err_free;
2751
2752
msrs = msrs_alloc();
2753
if (!msrs)
2754
goto err_free;
2755
2756
err = pci_register_driver(&amd64_pci_driver);
2757
if (err)
2758
goto err_pci;
2759
2760
err = -ENODEV;
2761
if (!atomic_read(&drv_instances))
2762
goto err_no_instances;
2763
2764
setup_pci_device();
2765
return 0;
2766
2767
err_no_instances:
2768
pci_unregister_driver(&amd64_pci_driver);
2769
2770
err_pci:
2771
msrs_free(msrs);
2772
msrs = NULL;
2773
2774
err_free:
2775
kfree(mcis);
2776
mcis = NULL;
2777
2778
kfree(ecc_stngs);
2779
ecc_stngs = NULL;
2780
2781
err_ret:
2782
return err;
2783
}
2784
2785
static void __exit amd64_edac_exit(void)
2786
{
2787
if (amd64_ctl_pci)
2788
edac_pci_release_generic_ctl(amd64_ctl_pci);
2789
2790
pci_unregister_driver(&amd64_pci_driver);
2791
2792
kfree(ecc_stngs);
2793
ecc_stngs = NULL;
2794
2795
kfree(mcis);
2796
mcis = NULL;
2797
2798
msrs_free(msrs);
2799
msrs = NULL;
2800
}
2801
2802
module_init(amd64_edac_init);
2803
module_exit(amd64_edac_exit);
2804
2805
MODULE_LICENSE("GPL");
2806
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2807
"Dave Peterson, Thayne Harbaugh");
2808
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2809
EDAC_AMD64_VERSION);
2810
2811
module_param(edac_op_state, int, 0444);
2812
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2813
2814