Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/edac/i3000_edac.c
15109 views
1
/*
2
* Intel 3000/3010 Memory Controller kernel module
3
* Copyright (C) 2007 Akamai Technologies, Inc.
4
* Shamelessly copied from:
5
* Intel D82875P Memory Controller kernel module
6
* (C) 2003 Linux Networx (http://lnxi.com)
7
*
8
* This file may be distributed under the terms of the
9
* GNU General Public License.
10
*/
11
12
#include <linux/module.h>
13
#include <linux/init.h>
14
#include <linux/pci.h>
15
#include <linux/pci_ids.h>
16
#include <linux/edac.h>
17
#include "edac_core.h"
18
19
#define I3000_REVISION "1.1"
20
21
#define EDAC_MOD_STR "i3000_edac"
22
23
#define I3000_RANKS 8
24
#define I3000_RANKS_PER_CHANNEL 4
25
#define I3000_CHANNELS 2
26
27
/* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
28
29
#define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */
30
#define I3000_MCHBAR_MASK 0xffffc000
31
#define I3000_MMR_WINDOW_SIZE 16384
32
33
#define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b)
34
*
35
* 7:1 reserved
36
* 0 bit 32 of address
37
*/
38
#define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b)
39
*
40
* 31:7 address
41
* 6:1 reserved
42
* 0 Error channel 0/1
43
*/
44
#define I3000_DEAP_GRAIN (1 << 7)
45
46
/*
47
* Helper functions to decode the DEAP/EDEAP hardware registers.
48
*
49
* The type promotion here is deliberate; we're deriving an
50
* unsigned long pfn and offset from hardware regs which are u8/u32.
51
*/
52
53
static inline unsigned long deap_pfn(u8 edeap, u32 deap)
54
{
55
deap >>= PAGE_SHIFT;
56
deap |= (edeap & 1) << (32 - PAGE_SHIFT);
57
return deap;
58
}
59
60
static inline unsigned long deap_offset(u32 deap)
61
{
62
return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
63
}
64
65
static inline int deap_channel(u32 deap)
66
{
67
return deap & 1;
68
}
69
70
#define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b)
71
*
72
* 7:0 DRAM ECC Syndrome
73
*/
74
75
#define I3000_ERRSTS 0xc8 /* Error Status Register (16b)
76
*
77
* 15:12 reserved
78
* 11 MCH Thermal Sensor Event
79
* for SMI/SCI/SERR
80
* 10 reserved
81
* 9 LOCK to non-DRAM Memory Flag (LCKF)
82
* 8 Received Refresh Timeout Flag (RRTOF)
83
* 7:2 reserved
84
* 1 Multi-bit DRAM ECC Error Flag (DMERR)
85
* 0 Single-bit DRAM ECC Error Flag (DSERR)
86
*/
87
#define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */
88
#define I3000_ERRSTS_UE 0x0002
89
#define I3000_ERRSTS_CE 0x0001
90
91
#define I3000_ERRCMD 0xca /* Error Command (16b)
92
*
93
* 15:12 reserved
94
* 11 SERR on MCH Thermal Sensor Event
95
* (TSESERR)
96
* 10 reserved
97
* 9 SERR on LOCK to non-DRAM Memory
98
* (LCKERR)
99
* 8 SERR on DRAM Refresh Timeout
100
* (DRTOERR)
101
* 7:2 reserved
102
* 1 SERR Multi-Bit DRAM ECC Error
103
* (DMERR)
104
* 0 SERR on Single-Bit ECC Error
105
* (DSERR)
106
*/
107
108
/* Intel MMIO register space - device 0 function 0 - MMR space */
109
110
#define I3000_DRB_SHIFT 25 /* 32MiB grain */
111
112
#define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4)
113
*
114
* 7:0 Channel 0 DRAM Rank Boundary Address
115
*/
116
#define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4)
117
*
118
* 7:0 Channel 1 DRAM Rank Boundary Address
119
*/
120
121
#define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2)
122
*
123
* 7 reserved
124
* 6:4 DRAM odd Rank Attribute
125
* 3 reserved
126
* 2:0 DRAM even Rank Attribute
127
*
128
* Each attribute defines the page
129
* size of the corresponding rank:
130
* 000: unpopulated
131
* 001: reserved
132
* 010: 4 KB
133
* 011: 8 KB
134
* 100: 16 KB
135
* Others: reserved
136
*/
137
#define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */
138
139
static inline unsigned char odd_rank_attrib(unsigned char dra)
140
{
141
return (dra & 0x70) >> 4;
142
}
143
144
static inline unsigned char even_rank_attrib(unsigned char dra)
145
{
146
return dra & 0x07;
147
}
148
149
#define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b)
150
*
151
* 31:30 reserved
152
* 29 Initialization Complete (IC)
153
* 28:11 reserved
154
* 10:8 Refresh Mode Select (RMS)
155
* 7 reserved
156
* 6:4 Mode Select (SMS)
157
* 3:2 reserved
158
* 1:0 DRAM Type (DT)
159
*/
160
161
#define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b)
162
*
163
* 31 Enhanced Addressing Enable (ENHADE)
164
* 30:0 reserved
165
*/
166
167
enum i3000p_chips {
168
I3000 = 0,
169
};
170
171
struct i3000_dev_info {
172
const char *ctl_name;
173
};
174
175
struct i3000_error_info {
176
u16 errsts;
177
u8 derrsyn;
178
u8 edeap;
179
u32 deap;
180
u16 errsts2;
181
};
182
183
static const struct i3000_dev_info i3000_devs[] = {
184
[I3000] = {
185
.ctl_name = "i3000"},
186
};
187
188
static struct pci_dev *mci_pdev;
189
static int i3000_registered = 1;
190
static struct edac_pci_ctl_info *i3000_pci;
191
192
static void i3000_get_error_info(struct mem_ctl_info *mci,
193
struct i3000_error_info *info)
194
{
195
struct pci_dev *pdev;
196
197
pdev = to_pci_dev(mci->dev);
198
199
/*
200
* This is a mess because there is no atomic way to read all the
201
* registers at once and the registers can transition from CE being
202
* overwritten by UE.
203
*/
204
pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
205
if (!(info->errsts & I3000_ERRSTS_BITS))
206
return;
207
pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
208
pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
209
pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
210
pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
211
212
/*
213
* If the error is the same for both reads then the first set
214
* of reads is valid. If there is a change then there is a CE
215
* with no info and the second set of reads is valid and
216
* should be UE info.
217
*/
218
if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
219
pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
220
pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
221
pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
222
}
223
224
/*
225
* Clear any error bits.
226
* (Yes, we really clear bits by writing 1 to them.)
227
*/
228
pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
229
I3000_ERRSTS_BITS);
230
}
231
232
static int i3000_process_error_info(struct mem_ctl_info *mci,
233
struct i3000_error_info *info,
234
int handle_errors)
235
{
236
int row, multi_chan, channel;
237
unsigned long pfn, offset;
238
239
multi_chan = mci->csrows[0].nr_channels - 1;
240
241
if (!(info->errsts & I3000_ERRSTS_BITS))
242
return 0;
243
244
if (!handle_errors)
245
return 1;
246
247
if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
248
edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
249
info->errsts = info->errsts2;
250
}
251
252
pfn = deap_pfn(info->edeap, info->deap);
253
offset = deap_offset(info->deap);
254
channel = deap_channel(info->deap);
255
256
row = edac_mc_find_csrow_by_page(mci, pfn);
257
258
if (info->errsts & I3000_ERRSTS_UE)
259
edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE");
260
else
261
edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row,
262
multi_chan ? channel : 0, "i3000 CE");
263
264
return 1;
265
}
266
267
static void i3000_check(struct mem_ctl_info *mci)
268
{
269
struct i3000_error_info info;
270
271
debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
272
i3000_get_error_info(mci, &info);
273
i3000_process_error_info(mci, &info, 1);
274
}
275
276
static int i3000_is_interleaved(const unsigned char *c0dra,
277
const unsigned char *c1dra,
278
const unsigned char *c0drb,
279
const unsigned char *c1drb)
280
{
281
int i;
282
283
/*
284
* If the channels aren't populated identically then
285
* we're not interleaved.
286
*/
287
for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
288
if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
289
even_rank_attrib(c0dra[i]) !=
290
even_rank_attrib(c1dra[i]))
291
return 0;
292
293
/*
294
* If the rank boundaries for the two channels are different
295
* then we're not interleaved.
296
*/
297
for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
298
if (c0drb[i] != c1drb[i])
299
return 0;
300
301
return 1;
302
}
303
304
static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
305
{
306
int rc;
307
int i;
308
struct mem_ctl_info *mci = NULL;
309
unsigned long last_cumul_size;
310
int interleaved, nr_channels;
311
unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
312
unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
313
unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
314
unsigned long mchbar;
315
void __iomem *window;
316
317
debugf0("MC: %s()\n", __func__);
318
319
pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
320
mchbar &= I3000_MCHBAR_MASK;
321
window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
322
if (!window) {
323
printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
324
mchbar);
325
return -ENODEV;
326
}
327
328
c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */
329
c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */
330
c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */
331
c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */
332
333
for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
334
c0drb[i] = readb(window + I3000_C0DRB + i);
335
c1drb[i] = readb(window + I3000_C1DRB + i);
336
}
337
338
iounmap(window);
339
340
/*
341
* Figure out how many channels we have.
342
*
343
* If we have what the datasheet calls "asymmetric channels"
344
* (essentially the same as what was called "virtual single
345
* channel mode" in the i82875) then it's a single channel as
346
* far as EDAC is concerned.
347
*/
348
interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
349
nr_channels = interleaved ? 2 : 1;
350
mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels, 0);
351
if (!mci)
352
return -ENOMEM;
353
354
debugf3("MC: %s(): init mci\n", __func__);
355
356
mci->dev = &pdev->dev;
357
mci->mtype_cap = MEM_FLAG_DDR2;
358
359
mci->edac_ctl_cap = EDAC_FLAG_SECDED;
360
mci->edac_cap = EDAC_FLAG_SECDED;
361
362
mci->mod_name = EDAC_MOD_STR;
363
mci->mod_ver = I3000_REVISION;
364
mci->ctl_name = i3000_devs[dev_idx].ctl_name;
365
mci->dev_name = pci_name(pdev);
366
mci->edac_check = i3000_check;
367
mci->ctl_page_to_phys = NULL;
368
369
/*
370
* The dram rank boundary (DRB) reg values are boundary addresses
371
* for each DRAM rank with a granularity of 32MB. DRB regs are
372
* cumulative; the last one will contain the total memory
373
* contained in all ranks.
374
*
375
* If we're in interleaved mode then we're only walking through
376
* the ranks of controller 0, so we double all the values we see.
377
*/
378
for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
379
u8 value;
380
u32 cumul_size;
381
struct csrow_info *csrow = &mci->csrows[i];
382
383
value = drb[i];
384
cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
385
if (interleaved)
386
cumul_size <<= 1;
387
debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
388
__func__, i, cumul_size);
389
if (cumul_size == last_cumul_size) {
390
csrow->mtype = MEM_EMPTY;
391
continue;
392
}
393
394
csrow->first_page = last_cumul_size;
395
csrow->last_page = cumul_size - 1;
396
csrow->nr_pages = cumul_size - last_cumul_size;
397
last_cumul_size = cumul_size;
398
csrow->grain = I3000_DEAP_GRAIN;
399
csrow->mtype = MEM_DDR2;
400
csrow->dtype = DEV_UNKNOWN;
401
csrow->edac_mode = EDAC_UNKNOWN;
402
}
403
404
/*
405
* Clear any error bits.
406
* (Yes, we really clear bits by writing 1 to them.)
407
*/
408
pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
409
I3000_ERRSTS_BITS);
410
411
rc = -ENODEV;
412
if (edac_mc_add_mc(mci)) {
413
debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
414
goto fail;
415
}
416
417
/* allocating generic PCI control info */
418
i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
419
if (!i3000_pci) {
420
printk(KERN_WARNING
421
"%s(): Unable to create PCI control\n",
422
__func__);
423
printk(KERN_WARNING
424
"%s(): PCI error report via EDAC not setup\n",
425
__func__);
426
}
427
428
/* get this far and it's successful */
429
debugf3("MC: %s(): success\n", __func__);
430
return 0;
431
432
fail:
433
if (mci)
434
edac_mc_free(mci);
435
436
return rc;
437
}
438
439
/* returns count (>= 0), or negative on error */
440
static int __devinit i3000_init_one(struct pci_dev *pdev,
441
const struct pci_device_id *ent)
442
{
443
int rc;
444
445
debugf0("MC: %s()\n", __func__);
446
447
if (pci_enable_device(pdev) < 0)
448
return -EIO;
449
450
rc = i3000_probe1(pdev, ent->driver_data);
451
if (!mci_pdev)
452
mci_pdev = pci_dev_get(pdev);
453
454
return rc;
455
}
456
457
static void __devexit i3000_remove_one(struct pci_dev *pdev)
458
{
459
struct mem_ctl_info *mci;
460
461
debugf0("%s()\n", __func__);
462
463
if (i3000_pci)
464
edac_pci_release_generic_ctl(i3000_pci);
465
466
mci = edac_mc_del_mc(&pdev->dev);
467
if (!mci)
468
return;
469
470
edac_mc_free(mci);
471
}
472
473
static const struct pci_device_id i3000_pci_tbl[] __devinitdata = {
474
{
475
PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
476
I3000},
477
{
478
0,
479
} /* 0 terminated list. */
480
};
481
482
MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
483
484
static struct pci_driver i3000_driver = {
485
.name = EDAC_MOD_STR,
486
.probe = i3000_init_one,
487
.remove = __devexit_p(i3000_remove_one),
488
.id_table = i3000_pci_tbl,
489
};
490
491
static int __init i3000_init(void)
492
{
493
int pci_rc;
494
495
debugf3("MC: %s()\n", __func__);
496
497
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
498
opstate_init();
499
500
pci_rc = pci_register_driver(&i3000_driver);
501
if (pci_rc < 0)
502
goto fail0;
503
504
if (!mci_pdev) {
505
i3000_registered = 0;
506
mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
507
PCI_DEVICE_ID_INTEL_3000_HB, NULL);
508
if (!mci_pdev) {
509
debugf0("i3000 pci_get_device fail\n");
510
pci_rc = -ENODEV;
511
goto fail1;
512
}
513
514
pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
515
if (pci_rc < 0) {
516
debugf0("i3000 init fail\n");
517
pci_rc = -ENODEV;
518
goto fail1;
519
}
520
}
521
522
return 0;
523
524
fail1:
525
pci_unregister_driver(&i3000_driver);
526
527
fail0:
528
if (mci_pdev)
529
pci_dev_put(mci_pdev);
530
531
return pci_rc;
532
}
533
534
static void __exit i3000_exit(void)
535
{
536
debugf3("MC: %s()\n", __func__);
537
538
pci_unregister_driver(&i3000_driver);
539
if (!i3000_registered) {
540
i3000_remove_one(mci_pdev);
541
pci_dev_put(mci_pdev);
542
}
543
}
544
545
module_init(i3000_init);
546
module_exit(i3000_exit);
547
548
MODULE_LICENSE("GPL");
549
MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
550
MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
551
552
module_param(edac_op_state, int, 0444);
553
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
554
555