Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/edac/i5400_edac.c
15109 views
1
/*
2
* Intel 5400 class Memory Controllers kernel module (Seaburg)
3
*
4
* This file may be distributed under the terms of the
5
* GNU General Public License.
6
*
7
* Copyright (c) 2008 by:
8
* Ben Woodard <[email protected]>
9
* Mauro Carvalho Chehab <[email protected]>
10
*
11
* Red Hat Inc. http://www.redhat.com
12
*
13
* Forked and adapted from the i5000_edac driver which was
14
* written by Douglas Thompson Linux Networx <[email protected]>
15
*
16
* This module is based on the following document:
17
*
18
* Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
19
* http://developer.intel.com/design/chipsets/datashts/313070.htm
20
*
21
*/
22
23
#include <linux/module.h>
24
#include <linux/init.h>
25
#include <linux/pci.h>
26
#include <linux/pci_ids.h>
27
#include <linux/slab.h>
28
#include <linux/edac.h>
29
#include <linux/mmzone.h>
30
31
#include "edac_core.h"
32
33
/*
34
* Alter this version for the I5400 module when modifications are made
35
*/
36
#define I5400_REVISION " Ver: 1.0.0"
37
38
#define EDAC_MOD_STR "i5400_edac"
39
40
#define i5400_printk(level, fmt, arg...) \
41
edac_printk(level, "i5400", fmt, ##arg)
42
43
#define i5400_mc_printk(mci, level, fmt, arg...) \
44
edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
45
46
/* Limits for i5400 */
47
#define NUM_MTRS_PER_BRANCH 4
48
#define CHANNELS_PER_BRANCH 2
49
#define MAX_DIMMS_PER_CHANNEL NUM_MTRS_PER_BRANCH
50
#define MAX_CHANNELS 4
51
/* max possible csrows per channel */
52
#define MAX_CSROWS (MAX_DIMMS_PER_CHANNEL)
53
54
/* Device 16,
55
* Function 0: System Address
56
* Function 1: Memory Branch Map, Control, Errors Register
57
* Function 2: FSB Error Registers
58
*
59
* All 3 functions of Device 16 (0,1,2) share the SAME DID and
60
* uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
61
* PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
62
* for device 21 (0,1).
63
*/
64
65
/* OFFSETS for Function 0 */
66
#define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
67
#define MAXCH 0x56 /* Max Channel Number */
68
#define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
69
70
/* OFFSETS for Function 1 */
71
#define TOLM 0x6C
72
#define REDMEMB 0x7C
73
#define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0] indicate EVEN */
74
#define MIR0 0x80
75
#define MIR1 0x84
76
#define AMIR0 0x8c
77
#define AMIR1 0x90
78
79
/* Fatal error registers */
80
#define FERR_FAT_FBD 0x98 /* also called as FERR_FAT_FB_DIMM at datasheet */
81
#define FERR_FAT_FBDCHAN (3<<28) /* channel index where the highest-order error occurred */
82
83
#define NERR_FAT_FBD 0x9c
84
#define FERR_NF_FBD 0xa0 /* also called as FERR_NFAT_FB_DIMM at datasheet */
85
86
/* Non-fatal error register */
87
#define NERR_NF_FBD 0xa4
88
89
/* Enable error mask */
90
#define EMASK_FBD 0xa8
91
92
#define ERR0_FBD 0xac
93
#define ERR1_FBD 0xb0
94
#define ERR2_FBD 0xb4
95
#define MCERR_FBD 0xb8
96
97
/* No OFFSETS for Device 16 Function 2 */
98
99
/*
100
* Device 21,
101
* Function 0: Memory Map Branch 0
102
*
103
* Device 22,
104
* Function 0: Memory Map Branch 1
105
*/
106
107
/* OFFSETS for Function 0 */
108
#define AMBPRESENT_0 0x64
109
#define AMBPRESENT_1 0x66
110
#define MTR0 0x80
111
#define MTR1 0x82
112
#define MTR2 0x84
113
#define MTR3 0x86
114
115
/* OFFSETS for Function 1 */
116
#define NRECFGLOG 0x74
117
#define RECFGLOG 0x78
118
#define NRECMEMA 0xbe
119
#define NRECMEMB 0xc0
120
#define NRECFB_DIMMA 0xc4
121
#define NRECFB_DIMMB 0xc8
122
#define NRECFB_DIMMC 0xcc
123
#define NRECFB_DIMMD 0xd0
124
#define NRECFB_DIMME 0xd4
125
#define NRECFB_DIMMF 0xd8
126
#define REDMEMA 0xdC
127
#define RECMEMA 0xf0
128
#define RECMEMB 0xf4
129
#define RECFB_DIMMA 0xf8
130
#define RECFB_DIMMB 0xec
131
#define RECFB_DIMMC 0xf0
132
#define RECFB_DIMMD 0xf4
133
#define RECFB_DIMME 0xf8
134
#define RECFB_DIMMF 0xfC
135
136
/*
137
* Error indicator bits and masks
138
* Error masks are according with Table 5-17 of i5400 datasheet
139
*/
140
141
enum error_mask {
142
EMASK_M1 = 1<<0, /* Memory Write error on non-redundant retry */
143
EMASK_M2 = 1<<1, /* Memory or FB-DIMM configuration CRC read error */
144
EMASK_M3 = 1<<2, /* Reserved */
145
EMASK_M4 = 1<<3, /* Uncorrectable Data ECC on Replay */
146
EMASK_M5 = 1<<4, /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
147
EMASK_M6 = 1<<5, /* Unsupported on i5400 */
148
EMASK_M7 = 1<<6, /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
149
EMASK_M8 = 1<<7, /* Aliased Uncorrectable Patrol Data ECC */
150
EMASK_M9 = 1<<8, /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
151
EMASK_M10 = 1<<9, /* Unsupported on i5400 */
152
EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
153
EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
154
EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
155
EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
156
EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
157
EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
158
EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
159
EMASK_M18 = 1<<17, /* Unsupported on i5400 */
160
EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
161
EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
162
EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
163
EMASK_M22 = 1<<21, /* SPD protocol Error */
164
EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
165
EMASK_M24 = 1<<23, /* Refresh error */
166
EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
167
EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
168
EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
169
EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
170
EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
171
};
172
173
/*
174
* Names to translate bit error into something useful
175
*/
176
static const char *error_name[] = {
177
[0] = "Memory Write error on non-redundant retry",
178
[1] = "Memory or FB-DIMM configuration CRC read error",
179
/* Reserved */
180
[3] = "Uncorrectable Data ECC on Replay",
181
[4] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
182
/* M6 Unsupported on i5400 */
183
[6] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
184
[7] = "Aliased Uncorrectable Patrol Data ECC",
185
[8] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
186
/* M10 Unsupported on i5400 */
187
[10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
188
[11] = "Non-Aliased Uncorrectable Patrol Data ECC",
189
[12] = "Memory Write error on first attempt",
190
[13] = "FB-DIMM Configuration Write error on first attempt",
191
[14] = "Memory or FB-DIMM configuration CRC read error",
192
[15] = "Channel Failed-Over Occurred",
193
[16] = "Correctable Non-Mirrored Demand Data ECC",
194
/* M18 Unsupported on i5400 */
195
[18] = "Correctable Resilver- or Spare-Copy Data ECC",
196
[19] = "Correctable Patrol Data ECC",
197
[20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
198
[21] = "SPD protocol Error",
199
[22] = "Non-Redundant Fast Reset Timeout",
200
[23] = "Refresh error",
201
[24] = "Memory Write error on redundant retry",
202
[25] = "Redundant Fast Reset Timeout",
203
[26] = "Correctable Counter Threshold Exceeded",
204
[27] = "DIMM-Spare Copy Completed",
205
[28] = "DIMM-Isolation Completed",
206
};
207
208
/* Fatal errors */
209
#define ERROR_FAT_MASK (EMASK_M1 | \
210
EMASK_M2 | \
211
EMASK_M23)
212
213
/* Correctable errors */
214
#define ERROR_NF_CORRECTABLE (EMASK_M27 | \
215
EMASK_M20 | \
216
EMASK_M19 | \
217
EMASK_M18 | \
218
EMASK_M17 | \
219
EMASK_M16)
220
#define ERROR_NF_DIMM_SPARE (EMASK_M29 | \
221
EMASK_M28)
222
#define ERROR_NF_SPD_PROTOCOL (EMASK_M22)
223
#define ERROR_NF_NORTH_CRC (EMASK_M21)
224
225
/* Recoverable errors */
226
#define ERROR_NF_RECOVERABLE (EMASK_M26 | \
227
EMASK_M25 | \
228
EMASK_M24 | \
229
EMASK_M15 | \
230
EMASK_M14 | \
231
EMASK_M13 | \
232
EMASK_M12 | \
233
EMASK_M11 | \
234
EMASK_M9 | \
235
EMASK_M8 | \
236
EMASK_M7 | \
237
EMASK_M5)
238
239
/* uncorrectable errors */
240
#define ERROR_NF_UNCORRECTABLE (EMASK_M4)
241
242
/* mask to all non-fatal errors */
243
#define ERROR_NF_MASK (ERROR_NF_CORRECTABLE | \
244
ERROR_NF_UNCORRECTABLE | \
245
ERROR_NF_RECOVERABLE | \
246
ERROR_NF_DIMM_SPARE | \
247
ERROR_NF_SPD_PROTOCOL | \
248
ERROR_NF_NORTH_CRC)
249
250
/*
251
* Define error masks for the several registers
252
*/
253
254
/* Enable all fatal and non fatal errors */
255
#define ENABLE_EMASK_ALL (ERROR_FAT_MASK | ERROR_NF_MASK)
256
257
/* mask for fatal error registers */
258
#define FERR_FAT_MASK ERROR_FAT_MASK
259
260
/* masks for non-fatal error register */
261
static inline int to_nf_mask(unsigned int mask)
262
{
263
return (mask & EMASK_M29) | (mask >> 3);
264
};
265
266
static inline int from_nf_ferr(unsigned int mask)
267
{
268
return (mask & EMASK_M29) | /* Bit 28 */
269
(mask & ((1 << 28) - 1) << 3); /* Bits 0 to 27 */
270
};
271
272
#define FERR_NF_MASK to_nf_mask(ERROR_NF_MASK)
273
#define FERR_NF_CORRECTABLE to_nf_mask(ERROR_NF_CORRECTABLE)
274
#define FERR_NF_DIMM_SPARE to_nf_mask(ERROR_NF_DIMM_SPARE)
275
#define FERR_NF_SPD_PROTOCOL to_nf_mask(ERROR_NF_SPD_PROTOCOL)
276
#define FERR_NF_NORTH_CRC to_nf_mask(ERROR_NF_NORTH_CRC)
277
#define FERR_NF_RECOVERABLE to_nf_mask(ERROR_NF_RECOVERABLE)
278
#define FERR_NF_UNCORRECTABLE to_nf_mask(ERROR_NF_UNCORRECTABLE)
279
280
/* Defines to extract the vaious fields from the
281
* MTRx - Memory Technology Registers
282
*/
283
#define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 10))
284
#define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 9))
285
#define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 8)) ? 8 : 4)
286
#define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 6)) ? 8 : 4)
287
#define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
288
#define MTR_DIMM_RANK(mtr) (((mtr) >> 5) & 0x1)
289
#define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1)
290
#define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
291
#define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
292
#define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
293
#define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
294
295
/* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
296
static inline int extract_fbdchan_indx(u32 x)
297
{
298
return (x>>28) & 0x3;
299
}
300
301
#ifdef CONFIG_EDAC_DEBUG
302
/* MTR NUMROW */
303
static const char *numrow_toString[] = {
304
"8,192 - 13 rows",
305
"16,384 - 14 rows",
306
"32,768 - 15 rows",
307
"65,536 - 16 rows"
308
};
309
310
/* MTR NUMCOL */
311
static const char *numcol_toString[] = {
312
"1,024 - 10 columns",
313
"2,048 - 11 columns",
314
"4,096 - 12 columns",
315
"reserved"
316
};
317
#endif
318
319
/* Device name and register DID (Device ID) */
320
struct i5400_dev_info {
321
const char *ctl_name; /* name for this device */
322
u16 fsb_mapping_errors; /* DID for the branchmap,control */
323
};
324
325
/* Table of devices attributes supported by this driver */
326
static const struct i5400_dev_info i5400_devs[] = {
327
{
328
.ctl_name = "I5400",
329
.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR,
330
},
331
};
332
333
struct i5400_dimm_info {
334
int megabytes; /* size, 0 means not present */
335
};
336
337
/* driver private data structure */
338
struct i5400_pvt {
339
struct pci_dev *system_address; /* 16.0 */
340
struct pci_dev *branchmap_werrors; /* 16.1 */
341
struct pci_dev *fsb_error_regs; /* 16.2 */
342
struct pci_dev *branch_0; /* 21.0 */
343
struct pci_dev *branch_1; /* 22.0 */
344
345
u16 tolm; /* top of low memory */
346
u64 ambase; /* AMB BAR */
347
348
u16 mir0, mir1;
349
350
u16 b0_mtr[NUM_MTRS_PER_BRANCH]; /* Memory Technlogy Reg */
351
u16 b0_ambpresent0; /* Branch 0, Channel 0 */
352
u16 b0_ambpresent1; /* Brnach 0, Channel 1 */
353
354
u16 b1_mtr[NUM_MTRS_PER_BRANCH]; /* Memory Technlogy Reg */
355
u16 b1_ambpresent0; /* Branch 1, Channel 8 */
356
u16 b1_ambpresent1; /* Branch 1, Channel 1 */
357
358
/* DIMM information matrix, allocating architecture maximums */
359
struct i5400_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
360
361
/* Actual values for this controller */
362
int maxch; /* Max channels */
363
int maxdimmperch; /* Max DIMMs per channel */
364
};
365
366
/* I5400 MCH error information retrieved from Hardware */
367
struct i5400_error_info {
368
/* These registers are always read from the MC */
369
u32 ferr_fat_fbd; /* First Errors Fatal */
370
u32 nerr_fat_fbd; /* Next Errors Fatal */
371
u32 ferr_nf_fbd; /* First Errors Non-Fatal */
372
u32 nerr_nf_fbd; /* Next Errors Non-Fatal */
373
374
/* These registers are input ONLY if there was a Recoverable Error */
375
u32 redmemb; /* Recoverable Mem Data Error log B */
376
u16 recmema; /* Recoverable Mem Error log A */
377
u32 recmemb; /* Recoverable Mem Error log B */
378
379
/* These registers are input ONLY if there was a Non-Rec Error */
380
u16 nrecmema; /* Non-Recoverable Mem log A */
381
u16 nrecmemb; /* Non-Recoverable Mem log B */
382
383
};
384
385
/* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
386
5400 better to use an inline function than a macro in this case */
387
static inline int nrec_bank(struct i5400_error_info *info)
388
{
389
return ((info->nrecmema) >> 12) & 0x7;
390
}
391
static inline int nrec_rank(struct i5400_error_info *info)
392
{
393
return ((info->nrecmema) >> 8) & 0xf;
394
}
395
static inline int nrec_buf_id(struct i5400_error_info *info)
396
{
397
return ((info->nrecmema)) & 0xff;
398
}
399
static inline int nrec_rdwr(struct i5400_error_info *info)
400
{
401
return (info->nrecmemb) >> 31;
402
}
403
/* This applies to both NREC and REC string so it can be used with nrec_rdwr
404
and rec_rdwr */
405
static inline const char *rdwr_str(int rdwr)
406
{
407
return rdwr ? "Write" : "Read";
408
}
409
static inline int nrec_cas(struct i5400_error_info *info)
410
{
411
return ((info->nrecmemb) >> 16) & 0x1fff;
412
}
413
static inline int nrec_ras(struct i5400_error_info *info)
414
{
415
return (info->nrecmemb) & 0xffff;
416
}
417
static inline int rec_bank(struct i5400_error_info *info)
418
{
419
return ((info->recmema) >> 12) & 0x7;
420
}
421
static inline int rec_rank(struct i5400_error_info *info)
422
{
423
return ((info->recmema) >> 8) & 0xf;
424
}
425
static inline int rec_rdwr(struct i5400_error_info *info)
426
{
427
return (info->recmemb) >> 31;
428
}
429
static inline int rec_cas(struct i5400_error_info *info)
430
{
431
return ((info->recmemb) >> 16) & 0x1fff;
432
}
433
static inline int rec_ras(struct i5400_error_info *info)
434
{
435
return (info->recmemb) & 0xffff;
436
}
437
438
static struct edac_pci_ctl_info *i5400_pci;
439
440
/*
441
* i5400_get_error_info Retrieve the hardware error information from
442
* the hardware and cache it in the 'info'
443
* structure
444
*/
445
static void i5400_get_error_info(struct mem_ctl_info *mci,
446
struct i5400_error_info *info)
447
{
448
struct i5400_pvt *pvt;
449
u32 value;
450
451
pvt = mci->pvt_info;
452
453
/* read in the 1st FATAL error register */
454
pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
455
456
/* Mask only the bits that the doc says are valid
457
*/
458
value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
459
460
/* If there is an error, then read in the
461
NEXT FATAL error register and the Memory Error Log Register A
462
*/
463
if (value & FERR_FAT_MASK) {
464
info->ferr_fat_fbd = value;
465
466
/* harvest the various error data we need */
467
pci_read_config_dword(pvt->branchmap_werrors,
468
NERR_FAT_FBD, &info->nerr_fat_fbd);
469
pci_read_config_word(pvt->branchmap_werrors,
470
NRECMEMA, &info->nrecmema);
471
pci_read_config_word(pvt->branchmap_werrors,
472
NRECMEMB, &info->nrecmemb);
473
474
/* Clear the error bits, by writing them back */
475
pci_write_config_dword(pvt->branchmap_werrors,
476
FERR_FAT_FBD, value);
477
} else {
478
info->ferr_fat_fbd = 0;
479
info->nerr_fat_fbd = 0;
480
info->nrecmema = 0;
481
info->nrecmemb = 0;
482
}
483
484
/* read in the 1st NON-FATAL error register */
485
pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
486
487
/* If there is an error, then read in the 1st NON-FATAL error
488
* register as well */
489
if (value & FERR_NF_MASK) {
490
info->ferr_nf_fbd = value;
491
492
/* harvest the various error data we need */
493
pci_read_config_dword(pvt->branchmap_werrors,
494
NERR_NF_FBD, &info->nerr_nf_fbd);
495
pci_read_config_word(pvt->branchmap_werrors,
496
RECMEMA, &info->recmema);
497
pci_read_config_dword(pvt->branchmap_werrors,
498
RECMEMB, &info->recmemb);
499
pci_read_config_dword(pvt->branchmap_werrors,
500
REDMEMB, &info->redmemb);
501
502
/* Clear the error bits, by writing them back */
503
pci_write_config_dword(pvt->branchmap_werrors,
504
FERR_NF_FBD, value);
505
} else {
506
info->ferr_nf_fbd = 0;
507
info->nerr_nf_fbd = 0;
508
info->recmema = 0;
509
info->recmemb = 0;
510
info->redmemb = 0;
511
}
512
}
513
514
/*
515
* i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
516
* struct i5400_error_info *info,
517
* int handle_errors);
518
*
519
* handle the Intel FATAL and unrecoverable errors, if any
520
*/
521
static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
522
struct i5400_error_info *info,
523
unsigned long allErrors)
524
{
525
char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
526
int branch;
527
int channel;
528
int bank;
529
int buf_id;
530
int rank;
531
int rdwr;
532
int ras, cas;
533
int errnum;
534
char *type = NULL;
535
536
if (!allErrors)
537
return; /* if no error, return now */
538
539
if (allErrors & ERROR_FAT_MASK)
540
type = "FATAL";
541
else if (allErrors & FERR_NF_UNCORRECTABLE)
542
type = "NON-FATAL uncorrected";
543
else
544
type = "NON-FATAL recoverable";
545
546
/* ONLY ONE of the possible error bits will be set, as per the docs */
547
548
branch = extract_fbdchan_indx(info->ferr_fat_fbd);
549
channel = branch;
550
551
/* Use the NON-Recoverable macros to extract data */
552
bank = nrec_bank(info);
553
rank = nrec_rank(info);
554
buf_id = nrec_buf_id(info);
555
rdwr = nrec_rdwr(info);
556
ras = nrec_ras(info);
557
cas = nrec_cas(info);
558
559
debugf0("\t\tCSROW= %d Channels= %d,%d (Branch= %d "
560
"DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
561
rank, channel, channel + 1, branch >> 1, bank,
562
buf_id, rdwr_str(rdwr), ras, cas);
563
564
/* Only 1 bit will be on */
565
errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
566
567
/* Form out message */
568
snprintf(msg, sizeof(msg),
569
"%s (Branch=%d DRAM-Bank=%d Buffer ID = %d RDWR=%s "
570
"RAS=%d CAS=%d %s Err=0x%lx (%s))",
571
type, branch >> 1, bank, buf_id, rdwr_str(rdwr), ras, cas,
572
type, allErrors, error_name[errnum]);
573
574
/* Call the helper to output message */
575
edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
576
}
577
578
/*
579
* i5400_process_fatal_error_info(struct mem_ctl_info *mci,
580
* struct i5400_error_info *info,
581
* int handle_errors);
582
*
583
* handle the Intel NON-FATAL errors, if any
584
*/
585
static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci,
586
struct i5400_error_info *info)
587
{
588
char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
589
unsigned long allErrors;
590
int branch;
591
int channel;
592
int bank;
593
int rank;
594
int rdwr;
595
int ras, cas;
596
int errnum;
597
598
/* mask off the Error bits that are possible */
599
allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK);
600
if (!allErrors)
601
return; /* if no error, return now */
602
603
/* ONLY ONE of the possible error bits will be set, as per the docs */
604
605
if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
606
i5400_proccess_non_recoverable_info(mci, info, allErrors);
607
return;
608
}
609
610
/* Correctable errors */
611
if (allErrors & ERROR_NF_CORRECTABLE) {
612
debugf0("\tCorrected bits= 0x%lx\n", allErrors);
613
614
branch = extract_fbdchan_indx(info->ferr_nf_fbd);
615
616
channel = 0;
617
if (REC_ECC_LOCATOR_ODD(info->redmemb))
618
channel = 1;
619
620
/* Convert channel to be based from zero, instead of
621
* from branch base of 0 */
622
channel += branch;
623
624
bank = rec_bank(info);
625
rank = rec_rank(info);
626
rdwr = rec_rdwr(info);
627
ras = rec_ras(info);
628
cas = rec_cas(info);
629
630
/* Only 1 bit will be on */
631
errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
632
633
debugf0("\t\tCSROW= %d Channel= %d (Branch %d "
634
"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
635
rank, channel, branch >> 1, bank,
636
rdwr_str(rdwr), ras, cas);
637
638
/* Form out message */
639
snprintf(msg, sizeof(msg),
640
"Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
641
"RAS=%d CAS=%d, CE Err=0x%lx (%s))",
642
branch >> 1, bank, rdwr_str(rdwr), ras, cas,
643
allErrors, error_name[errnum]);
644
645
/* Call the helper to output message */
646
edac_mc_handle_fbd_ce(mci, rank, channel, msg);
647
648
return;
649
}
650
651
/* Miscellaneous errors */
652
errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
653
654
branch = extract_fbdchan_indx(info->ferr_nf_fbd);
655
656
i5400_mc_printk(mci, KERN_EMERG,
657
"Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
658
branch >> 1, allErrors, error_name[errnum]);
659
}
660
661
/*
662
* i5400_process_error_info Process the error info that is
663
* in the 'info' structure, previously retrieved from hardware
664
*/
665
static void i5400_process_error_info(struct mem_ctl_info *mci,
666
struct i5400_error_info *info)
667
{ u32 allErrors;
668
669
/* First handle any fatal errors that occurred */
670
allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
671
i5400_proccess_non_recoverable_info(mci, info, allErrors);
672
673
/* now handle any non-fatal errors that occurred */
674
i5400_process_nonfatal_error_info(mci, info);
675
}
676
677
/*
678
* i5400_clear_error Retrieve any error from the hardware
679
* but do NOT process that error.
680
* Used for 'clearing' out of previous errors
681
* Called by the Core module.
682
*/
683
static void i5400_clear_error(struct mem_ctl_info *mci)
684
{
685
struct i5400_error_info info;
686
687
i5400_get_error_info(mci, &info);
688
}
689
690
/*
691
* i5400_check_error Retrieve and process errors reported by the
692
* hardware. Called by the Core module.
693
*/
694
static void i5400_check_error(struct mem_ctl_info *mci)
695
{
696
struct i5400_error_info info;
697
debugf4("MC%d: %s: %s()\n", mci->mc_idx, __FILE__, __func__);
698
i5400_get_error_info(mci, &info);
699
i5400_process_error_info(mci, &info);
700
}
701
702
/*
703
* i5400_put_devices 'put' all the devices that we have
704
* reserved via 'get'
705
*/
706
static void i5400_put_devices(struct mem_ctl_info *mci)
707
{
708
struct i5400_pvt *pvt;
709
710
pvt = mci->pvt_info;
711
712
/* Decrement usage count for devices */
713
pci_dev_put(pvt->branch_1);
714
pci_dev_put(pvt->branch_0);
715
pci_dev_put(pvt->fsb_error_regs);
716
pci_dev_put(pvt->branchmap_werrors);
717
}
718
719
/*
720
* i5400_get_devices Find and perform 'get' operation on the MCH's
721
* device/functions we want to reference for this driver
722
*
723
* Need to 'get' device 16 func 1 and func 2
724
*/
725
static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx)
726
{
727
struct i5400_pvt *pvt;
728
struct pci_dev *pdev;
729
730
pvt = mci->pvt_info;
731
pvt->branchmap_werrors = NULL;
732
pvt->fsb_error_regs = NULL;
733
pvt->branch_0 = NULL;
734
pvt->branch_1 = NULL;
735
736
/* Attempt to 'get' the MCH register we want */
737
pdev = NULL;
738
while (!pvt->branchmap_werrors || !pvt->fsb_error_regs) {
739
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
740
PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
741
if (!pdev) {
742
/* End of list, leave */
743
i5400_printk(KERN_ERR,
744
"'system address,Process Bus' "
745
"device not found:"
746
"vendor 0x%x device 0x%x ERR funcs "
747
"(broken BIOS?)\n",
748
PCI_VENDOR_ID_INTEL,
749
PCI_DEVICE_ID_INTEL_5400_ERR);
750
goto error;
751
}
752
753
/* Store device 16 funcs 1 and 2 */
754
switch (PCI_FUNC(pdev->devfn)) {
755
case 1:
756
pvt->branchmap_werrors = pdev;
757
break;
758
case 2:
759
pvt->fsb_error_regs = pdev;
760
break;
761
}
762
}
763
764
debugf1("System Address, processor bus- PCI Bus ID: %s %x:%x\n",
765
pci_name(pvt->system_address),
766
pvt->system_address->vendor, pvt->system_address->device);
767
debugf1("Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
768
pci_name(pvt->branchmap_werrors),
769
pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device);
770
debugf1("FSB Error Regs - PCI Bus ID: %s %x:%x\n",
771
pci_name(pvt->fsb_error_regs),
772
pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
773
774
pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL,
775
PCI_DEVICE_ID_INTEL_5400_FBD0, NULL);
776
if (!pvt->branch_0) {
777
i5400_printk(KERN_ERR,
778
"MC: 'BRANCH 0' device not found:"
779
"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
780
PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0);
781
goto error;
782
}
783
784
/* If this device claims to have more than 2 channels then
785
* fetch Branch 1's information
786
*/
787
if (pvt->maxch < CHANNELS_PER_BRANCH)
788
return 0;
789
790
pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL,
791
PCI_DEVICE_ID_INTEL_5400_FBD1, NULL);
792
if (!pvt->branch_1) {
793
i5400_printk(KERN_ERR,
794
"MC: 'BRANCH 1' device not found:"
795
"vendor 0x%x device 0x%x Func 0 "
796
"(broken BIOS?)\n",
797
PCI_VENDOR_ID_INTEL,
798
PCI_DEVICE_ID_INTEL_5400_FBD1);
799
goto error;
800
}
801
802
return 0;
803
804
error:
805
i5400_put_devices(mci);
806
return -ENODEV;
807
}
808
809
/*
810
* determine_amb_present
811
*
812
* the information is contained in NUM_MTRS_PER_BRANCH different
813
* registers determining which of the NUM_MTRS_PER_BRANCH requires
814
* knowing which channel is in question
815
*
816
* 2 branches, each with 2 channels
817
* b0_ambpresent0 for channel '0'
818
* b0_ambpresent1 for channel '1'
819
* b1_ambpresent0 for channel '2'
820
* b1_ambpresent1 for channel '3'
821
*/
822
static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel)
823
{
824
int amb_present;
825
826
if (channel < CHANNELS_PER_BRANCH) {
827
if (channel & 0x1)
828
amb_present = pvt->b0_ambpresent1;
829
else
830
amb_present = pvt->b0_ambpresent0;
831
} else {
832
if (channel & 0x1)
833
amb_present = pvt->b1_ambpresent1;
834
else
835
amb_present = pvt->b1_ambpresent0;
836
}
837
838
return amb_present;
839
}
840
841
/*
842
* determine_mtr(pvt, csrow, channel)
843
*
844
* return the proper MTR register as determine by the csrow and desired channel
845
*/
846
static int determine_mtr(struct i5400_pvt *pvt, int csrow, int channel)
847
{
848
int mtr;
849
int n;
850
851
/* There is one MTR for each slot pair of FB-DIMMs,
852
Each slot pair may be at branch 0 or branch 1.
853
*/
854
n = csrow;
855
856
if (n >= NUM_MTRS_PER_BRANCH) {
857
debugf0("ERROR: trying to access an invalid csrow: %d\n",
858
csrow);
859
return 0;
860
}
861
862
if (channel < CHANNELS_PER_BRANCH)
863
mtr = pvt->b0_mtr[n];
864
else
865
mtr = pvt->b1_mtr[n];
866
867
return mtr;
868
}
869
870
/*
871
*/
872
static void decode_mtr(int slot_row, u16 mtr)
873
{
874
int ans;
875
876
ans = MTR_DIMMS_PRESENT(mtr);
877
878
debugf2("\tMTR%d=0x%x: DIMMs are %s\n", slot_row, mtr,
879
ans ? "Present" : "NOT Present");
880
if (!ans)
881
return;
882
883
debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
884
885
debugf2("\t\tELECTRICAL THROTTLING is %s\n",
886
MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
887
888
debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
889
debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single");
890
debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
891
debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
892
}
893
894
static void handle_channel(struct i5400_pvt *pvt, int csrow, int channel,
895
struct i5400_dimm_info *dinfo)
896
{
897
int mtr;
898
int amb_present_reg;
899
int addrBits;
900
901
mtr = determine_mtr(pvt, csrow, channel);
902
if (MTR_DIMMS_PRESENT(mtr)) {
903
amb_present_reg = determine_amb_present_reg(pvt, channel);
904
905
/* Determine if there is a DIMM present in this DIMM slot */
906
if (amb_present_reg & (1 << csrow)) {
907
/* Start with the number of bits for a Bank
908
* on the DRAM */
909
addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
910
/* Add thenumber of ROW bits */
911
addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
912
/* add the number of COLUMN bits */
913
addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
914
/* add the number of RANK bits */
915
addrBits += MTR_DIMM_RANK(mtr);
916
917
addrBits += 6; /* add 64 bits per DIMM */
918
addrBits -= 20; /* divide by 2^^20 */
919
addrBits -= 3; /* 8 bits per bytes */
920
921
dinfo->megabytes = 1 << addrBits;
922
}
923
}
924
}
925
926
/*
927
* calculate_dimm_size
928
*
929
* also will output a DIMM matrix map, if debug is enabled, for viewing
930
* how the DIMMs are populated
931
*/
932
static void calculate_dimm_size(struct i5400_pvt *pvt)
933
{
934
struct i5400_dimm_info *dinfo;
935
int csrow, max_csrows;
936
char *p, *mem_buffer;
937
int space, n;
938
int channel;
939
940
/* ================= Generate some debug output ================= */
941
space = PAGE_SIZE;
942
mem_buffer = p = kmalloc(space, GFP_KERNEL);
943
if (p == NULL) {
944
i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
945
__FILE__, __func__);
946
return;
947
}
948
949
/* Scan all the actual CSROWS
950
* and calculate the information for each DIMM
951
* Start with the highest csrow first, to display it first
952
* and work toward the 0th csrow
953
*/
954
max_csrows = pvt->maxdimmperch;
955
for (csrow = max_csrows - 1; csrow >= 0; csrow--) {
956
957
/* on an odd csrow, first output a 'boundary' marker,
958
* then reset the message buffer */
959
if (csrow & 0x1) {
960
n = snprintf(p, space, "---------------------------"
961
"--------------------------------");
962
p += n;
963
space -= n;
964
debugf2("%s\n", mem_buffer);
965
p = mem_buffer;
966
space = PAGE_SIZE;
967
}
968
n = snprintf(p, space, "csrow %2d ", csrow);
969
p += n;
970
space -= n;
971
972
for (channel = 0; channel < pvt->maxch; channel++) {
973
dinfo = &pvt->dimm_info[csrow][channel];
974
handle_channel(pvt, csrow, channel, dinfo);
975
n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
976
p += n;
977
space -= n;
978
}
979
debugf2("%s\n", mem_buffer);
980
p = mem_buffer;
981
space = PAGE_SIZE;
982
}
983
984
/* Output the last bottom 'boundary' marker */
985
n = snprintf(p, space, "---------------------------"
986
"--------------------------------");
987
p += n;
988
space -= n;
989
debugf2("%s\n", mem_buffer);
990
p = mem_buffer;
991
space = PAGE_SIZE;
992
993
/* now output the 'channel' labels */
994
n = snprintf(p, space, " ");
995
p += n;
996
space -= n;
997
for (channel = 0; channel < pvt->maxch; channel++) {
998
n = snprintf(p, space, "channel %d | ", channel);
999
p += n;
1000
space -= n;
1001
}
1002
1003
/* output the last message and free buffer */
1004
debugf2("%s\n", mem_buffer);
1005
kfree(mem_buffer);
1006
}
1007
1008
/*
1009
* i5400_get_mc_regs read in the necessary registers and
1010
* cache locally
1011
*
1012
* Fills in the private data members
1013
*/
1014
static void i5400_get_mc_regs(struct mem_ctl_info *mci)
1015
{
1016
struct i5400_pvt *pvt;
1017
u32 actual_tolm;
1018
u16 limit;
1019
int slot_row;
1020
int maxch;
1021
int maxdimmperch;
1022
int way0, way1;
1023
1024
pvt = mci->pvt_info;
1025
1026
pci_read_config_dword(pvt->system_address, AMBASE,
1027
(u32 *) &pvt->ambase);
1028
pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1029
((u32 *) &pvt->ambase) + sizeof(u32));
1030
1031
maxdimmperch = pvt->maxdimmperch;
1032
maxch = pvt->maxch;
1033
1034
debugf2("AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
1035
(long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1036
1037
/* Get the Branch Map regs */
1038
pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1039
pvt->tolm >>= 12;
1040
debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
1041
pvt->tolm);
1042
1043
actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
1044
debugf2("Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
1045
actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
1046
1047
pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1048
pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1049
1050
/* Get the MIR[0-1] regs */
1051
limit = (pvt->mir0 >> 4) & 0x0fff;
1052
way0 = pvt->mir0 & 0x1;
1053
way1 = pvt->mir0 & 0x2;
1054
debugf2("MIR0: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0);
1055
limit = (pvt->mir1 >> 4) & 0xfff;
1056
way0 = pvt->mir1 & 0x1;
1057
way1 = pvt->mir1 & 0x2;
1058
debugf2("MIR1: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0);
1059
1060
/* Get the set of MTR[0-3] regs by each branch */
1061
for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++) {
1062
int where = MTR0 + (slot_row * sizeof(u16));
1063
1064
/* Branch 0 set of MTR registers */
1065
pci_read_config_word(pvt->branch_0, where,
1066
&pvt->b0_mtr[slot_row]);
1067
1068
debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where,
1069
pvt->b0_mtr[slot_row]);
1070
1071
if (pvt->maxch < CHANNELS_PER_BRANCH) {
1072
pvt->b1_mtr[slot_row] = 0;
1073
continue;
1074
}
1075
1076
/* Branch 1 set of MTR registers */
1077
pci_read_config_word(pvt->branch_1, where,
1078
&pvt->b1_mtr[slot_row]);
1079
debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row, where,
1080
pvt->b1_mtr[slot_row]);
1081
}
1082
1083
/* Read and dump branch 0's MTRs */
1084
debugf2("\nMemory Technology Registers:\n");
1085
debugf2(" Branch 0:\n");
1086
for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++)
1087
decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1088
1089
pci_read_config_word(pvt->branch_0, AMBPRESENT_0,
1090
&pvt->b0_ambpresent0);
1091
debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1092
pci_read_config_word(pvt->branch_0, AMBPRESENT_1,
1093
&pvt->b0_ambpresent1);
1094
debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1095
1096
/* Only if we have 2 branchs (4 channels) */
1097
if (pvt->maxch < CHANNELS_PER_BRANCH) {
1098
pvt->b1_ambpresent0 = 0;
1099
pvt->b1_ambpresent1 = 0;
1100
} else {
1101
/* Read and dump branch 1's MTRs */
1102
debugf2(" Branch 1:\n");
1103
for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++)
1104
decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1105
1106
pci_read_config_word(pvt->branch_1, AMBPRESENT_0,
1107
&pvt->b1_ambpresent0);
1108
debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
1109
pvt->b1_ambpresent0);
1110
pci_read_config_word(pvt->branch_1, AMBPRESENT_1,
1111
&pvt->b1_ambpresent1);
1112
debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
1113
pvt->b1_ambpresent1);
1114
}
1115
1116
/* Go and determine the size of each DIMM and place in an
1117
* orderly matrix */
1118
calculate_dimm_size(pvt);
1119
}
1120
1121
/*
1122
* i5400_init_csrows Initialize the 'csrows' table within
1123
* the mci control structure with the
1124
* addressing of memory.
1125
*
1126
* return:
1127
* 0 success
1128
* 1 no actual memory found on this MC
1129
*/
1130
static int i5400_init_csrows(struct mem_ctl_info *mci)
1131
{
1132
struct i5400_pvt *pvt;
1133
struct csrow_info *p_csrow;
1134
int empty, channel_count;
1135
int max_csrows;
1136
int mtr;
1137
int csrow_megs;
1138
int channel;
1139
int csrow;
1140
1141
pvt = mci->pvt_info;
1142
1143
channel_count = pvt->maxch;
1144
max_csrows = pvt->maxdimmperch;
1145
1146
empty = 1; /* Assume NO memory */
1147
1148
for (csrow = 0; csrow < max_csrows; csrow++) {
1149
p_csrow = &mci->csrows[csrow];
1150
1151
p_csrow->csrow_idx = csrow;
1152
1153
/* use branch 0 for the basis */
1154
mtr = determine_mtr(pvt, csrow, 0);
1155
1156
/* if no DIMMS on this row, continue */
1157
if (!MTR_DIMMS_PRESENT(mtr))
1158
continue;
1159
1160
/* FAKE OUT VALUES, FIXME */
1161
p_csrow->first_page = 0 + csrow * 20;
1162
p_csrow->last_page = 9 + csrow * 20;
1163
p_csrow->page_mask = 0xFFF;
1164
1165
p_csrow->grain = 8;
1166
1167
csrow_megs = 0;
1168
for (channel = 0; channel < pvt->maxch; channel++)
1169
csrow_megs += pvt->dimm_info[csrow][channel].megabytes;
1170
1171
p_csrow->nr_pages = csrow_megs << 8;
1172
1173
/* Assume DDR2 for now */
1174
p_csrow->mtype = MEM_FB_DDR2;
1175
1176
/* ask what device type on this row */
1177
if (MTR_DRAM_WIDTH(mtr))
1178
p_csrow->dtype = DEV_X8;
1179
else
1180
p_csrow->dtype = DEV_X4;
1181
1182
p_csrow->edac_mode = EDAC_S8ECD8ED;
1183
1184
empty = 0;
1185
}
1186
1187
return empty;
1188
}
1189
1190
/*
1191
* i5400_enable_error_reporting
1192
* Turn on the memory reporting features of the hardware
1193
*/
1194
static void i5400_enable_error_reporting(struct mem_ctl_info *mci)
1195
{
1196
struct i5400_pvt *pvt;
1197
u32 fbd_error_mask;
1198
1199
pvt = mci->pvt_info;
1200
1201
/* Read the FBD Error Mask Register */
1202
pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1203
&fbd_error_mask);
1204
1205
/* Enable with a '0' */
1206
fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1207
1208
pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1209
fbd_error_mask);
1210
}
1211
1212
/*
1213
* i5400_probe1 Probe for ONE instance of device to see if it is
1214
* present.
1215
* return:
1216
* 0 for FOUND a device
1217
* < 0 for error code
1218
*/
1219
static int i5400_probe1(struct pci_dev *pdev, int dev_idx)
1220
{
1221
struct mem_ctl_info *mci;
1222
struct i5400_pvt *pvt;
1223
int num_channels;
1224
int num_dimms_per_channel;
1225
int num_csrows;
1226
1227
if (dev_idx >= ARRAY_SIZE(i5400_devs))
1228
return -EINVAL;
1229
1230
debugf0("MC: %s: %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1231
__FILE__, __func__,
1232
pdev->bus->number,
1233
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1234
1235
/* We only are looking for func 0 of the set */
1236
if (PCI_FUNC(pdev->devfn) != 0)
1237
return -ENODEV;
1238
1239
/* As we don't have a motherboard identification routine to determine
1240
* actual number of slots/dimms per channel, we thus utilize the
1241
* resource as specified by the chipset. Thus, we might have
1242
* have more DIMMs per channel than actually on the mobo, but this
1243
* allows the driver to support up to the chipset max, without
1244
* some fancy mobo determination.
1245
*/
1246
num_dimms_per_channel = MAX_DIMMS_PER_CHANNEL;
1247
num_channels = MAX_CHANNELS;
1248
num_csrows = num_dimms_per_channel;
1249
1250
debugf0("MC: %s(): Number of - Channels= %d DIMMS= %d CSROWS= %d\n",
1251
__func__, num_channels, num_dimms_per_channel, num_csrows);
1252
1253
/* allocate a new MC control structure */
1254
mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
1255
1256
if (mci == NULL)
1257
return -ENOMEM;
1258
1259
debugf0("MC: %s: %s(): mci = %p\n", __FILE__, __func__, mci);
1260
1261
mci->dev = &pdev->dev; /* record ptr to the generic device */
1262
1263
pvt = mci->pvt_info;
1264
pvt->system_address = pdev; /* Record this device in our private */
1265
pvt->maxch = num_channels;
1266
pvt->maxdimmperch = num_dimms_per_channel;
1267
1268
/* 'get' the pci devices we want to reserve for our use */
1269
if (i5400_get_devices(mci, dev_idx))
1270
goto fail0;
1271
1272
/* Time to get serious */
1273
i5400_get_mc_regs(mci); /* retrieve the hardware registers */
1274
1275
mci->mc_idx = 0;
1276
mci->mtype_cap = MEM_FLAG_FB_DDR2;
1277
mci->edac_ctl_cap = EDAC_FLAG_NONE;
1278
mci->edac_cap = EDAC_FLAG_NONE;
1279
mci->mod_name = "i5400_edac.c";
1280
mci->mod_ver = I5400_REVISION;
1281
mci->ctl_name = i5400_devs[dev_idx].ctl_name;
1282
mci->dev_name = pci_name(pdev);
1283
mci->ctl_page_to_phys = NULL;
1284
1285
/* Set the function pointer to an actual operation function */
1286
mci->edac_check = i5400_check_error;
1287
1288
/* initialize the MC control structure 'csrows' table
1289
* with the mapping and control information */
1290
if (i5400_init_csrows(mci)) {
1291
debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1292
" because i5400_init_csrows() returned nonzero "
1293
"value\n");
1294
mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
1295
} else {
1296
debugf1("MC: Enable error reporting now\n");
1297
i5400_enable_error_reporting(mci);
1298
}
1299
1300
/* add this new MC control structure to EDAC's list of MCs */
1301
if (edac_mc_add_mc(mci)) {
1302
debugf0("MC: %s: %s(): failed edac_mc_add_mc()\n",
1303
__FILE__, __func__);
1304
/* FIXME: perhaps some code should go here that disables error
1305
* reporting if we just enabled it
1306
*/
1307
goto fail1;
1308
}
1309
1310
i5400_clear_error(mci);
1311
1312
/* allocating generic PCI control info */
1313
i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1314
if (!i5400_pci) {
1315
printk(KERN_WARNING
1316
"%s(): Unable to create PCI control\n",
1317
__func__);
1318
printk(KERN_WARNING
1319
"%s(): PCI error report via EDAC not setup\n",
1320
__func__);
1321
}
1322
1323
return 0;
1324
1325
/* Error exit unwinding stack */
1326
fail1:
1327
1328
i5400_put_devices(mci);
1329
1330
fail0:
1331
edac_mc_free(mci);
1332
return -ENODEV;
1333
}
1334
1335
/*
1336
* i5400_init_one constructor for one instance of device
1337
*
1338
* returns:
1339
* negative on error
1340
* count (>= 0)
1341
*/
1342
static int __devinit i5400_init_one(struct pci_dev *pdev,
1343
const struct pci_device_id *id)
1344
{
1345
int rc;
1346
1347
debugf0("MC: %s: %s()\n", __FILE__, __func__);
1348
1349
/* wake up device */
1350
rc = pci_enable_device(pdev);
1351
if (rc)
1352
return rc;
1353
1354
/* now probe and enable the device */
1355
return i5400_probe1(pdev, id->driver_data);
1356
}
1357
1358
/*
1359
* i5400_remove_one destructor for one instance of device
1360
*
1361
*/
1362
static void __devexit i5400_remove_one(struct pci_dev *pdev)
1363
{
1364
struct mem_ctl_info *mci;
1365
1366
debugf0("%s: %s()\n", __FILE__, __func__);
1367
1368
if (i5400_pci)
1369
edac_pci_release_generic_ctl(i5400_pci);
1370
1371
mci = edac_mc_del_mc(&pdev->dev);
1372
if (!mci)
1373
return;
1374
1375
/* retrieve references to resources, and free those resources */
1376
i5400_put_devices(mci);
1377
1378
edac_mc_free(mci);
1379
}
1380
1381
/*
1382
* pci_device_id table for which devices we are looking for
1383
*
1384
* The "E500P" device is the first device supported.
1385
*/
1386
static const struct pci_device_id i5400_pci_tbl[] __devinitdata = {
1387
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)},
1388
{0,} /* 0 terminated list. */
1389
};
1390
1391
MODULE_DEVICE_TABLE(pci, i5400_pci_tbl);
1392
1393
/*
1394
* i5400_driver pci_driver structure for this module
1395
*
1396
*/
1397
static struct pci_driver i5400_driver = {
1398
.name = "i5400_edac",
1399
.probe = i5400_init_one,
1400
.remove = __devexit_p(i5400_remove_one),
1401
.id_table = i5400_pci_tbl,
1402
};
1403
1404
/*
1405
* i5400_init Module entry function
1406
* Try to initialize this module for its devices
1407
*/
1408
static int __init i5400_init(void)
1409
{
1410
int pci_rc;
1411
1412
debugf2("MC: %s: %s()\n", __FILE__, __func__);
1413
1414
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1415
opstate_init();
1416
1417
pci_rc = pci_register_driver(&i5400_driver);
1418
1419
return (pci_rc < 0) ? pci_rc : 0;
1420
}
1421
1422
/*
1423
* i5400_exit() Module exit function
1424
* Unregister the driver
1425
*/
1426
static void __exit i5400_exit(void)
1427
{
1428
debugf2("MC: %s: %s()\n", __FILE__, __func__);
1429
pci_unregister_driver(&i5400_driver);
1430
}
1431
1432
module_init(i5400_init);
1433
module_exit(i5400_exit);
1434
1435
MODULE_LICENSE("GPL");
1436
MODULE_AUTHOR("Ben Woodard <[email protected]>");
1437
MODULE_AUTHOR("Mauro Carvalho Chehab <[email protected]>");
1438
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1439
MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
1440
I5400_REVISION);
1441
1442
module_param(edac_op_state, int, 0444);
1443
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1444
1445