Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/edac/x38_edac.c
15109 views
1
/*
2
* Intel X38 Memory Controller kernel module
3
* Copyright (C) 2008 Cluster Computing, Inc.
4
*
5
* This file may be distributed under the terms of the
6
* GNU General Public License.
7
*
8
* This file is based on i3200_edac.c
9
*
10
*/
11
12
#include <linux/module.h>
13
#include <linux/init.h>
14
#include <linux/pci.h>
15
#include <linux/pci_ids.h>
16
#include <linux/edac.h>
17
#include "edac_core.h"
18
19
#define X38_REVISION "1.1"
20
21
#define EDAC_MOD_STR "x38_edac"
22
23
#define PCI_DEVICE_ID_INTEL_X38_HB 0x29e0
24
25
#define X38_RANKS 8
26
#define X38_RANKS_PER_CHANNEL 4
27
#define X38_CHANNELS 2
28
29
/* Intel X38 register addresses - device 0 function 0 - DRAM Controller */
30
31
#define X38_MCHBAR_LOW 0x48 /* MCH Memory Mapped Register BAR */
32
#define X38_MCHBAR_HIGH 0x4c
33
#define X38_MCHBAR_MASK 0xfffffc000ULL /* bits 35:14 */
34
#define X38_MMR_WINDOW_SIZE 16384
35
36
#define X38_TOM 0xa0 /* Top of Memory (16b)
37
*
38
* 15:10 reserved
39
* 9:0 total populated physical memory
40
*/
41
#define X38_TOM_MASK 0x3ff /* bits 9:0 */
42
#define X38_TOM_SHIFT 26 /* 64MiB grain */
43
44
#define X38_ERRSTS 0xc8 /* Error Status Register (16b)
45
*
46
* 15 reserved
47
* 14 Isochronous TBWRR Run Behind FIFO Full
48
* (ITCV)
49
* 13 Isochronous TBWRR Run Behind FIFO Put
50
* (ITSTV)
51
* 12 reserved
52
* 11 MCH Thermal Sensor Event
53
* for SMI/SCI/SERR (GTSE)
54
* 10 reserved
55
* 9 LOCK to non-DRAM Memory Flag (LCKF)
56
* 8 reserved
57
* 7 DRAM Throttle Flag (DTF)
58
* 6:2 reserved
59
* 1 Multi-bit DRAM ECC Error Flag (DMERR)
60
* 0 Single-bit DRAM ECC Error Flag (DSERR)
61
*/
62
#define X38_ERRSTS_UE 0x0002
63
#define X38_ERRSTS_CE 0x0001
64
#define X38_ERRSTS_BITS (X38_ERRSTS_UE | X38_ERRSTS_CE)
65
66
67
/* Intel MMIO register space - device 0 function 0 - MMR space */
68
69
#define X38_C0DRB 0x200 /* Channel 0 DRAM Rank Boundary (16b x 4)
70
*
71
* 15:10 reserved
72
* 9:0 Channel 0 DRAM Rank Boundary Address
73
*/
74
#define X38_C1DRB 0x600 /* Channel 1 DRAM Rank Boundary (16b x 4) */
75
#define X38_DRB_MASK 0x3ff /* bits 9:0 */
76
#define X38_DRB_SHIFT 26 /* 64MiB grain */
77
78
#define X38_C0ECCERRLOG 0x280 /* Channel 0 ECC Error Log (64b)
79
*
80
* 63:48 Error Column Address (ERRCOL)
81
* 47:32 Error Row Address (ERRROW)
82
* 31:29 Error Bank Address (ERRBANK)
83
* 28:27 Error Rank Address (ERRRANK)
84
* 26:24 reserved
85
* 23:16 Error Syndrome (ERRSYND)
86
* 15: 2 reserved
87
* 1 Multiple Bit Error Status (MERRSTS)
88
* 0 Correctable Error Status (CERRSTS)
89
*/
90
#define X38_C1ECCERRLOG 0x680 /* Channel 1 ECC Error Log (64b) */
91
#define X38_ECCERRLOG_CE 0x1
92
#define X38_ECCERRLOG_UE 0x2
93
#define X38_ECCERRLOG_RANK_BITS 0x18000000
94
#define X38_ECCERRLOG_SYNDROME_BITS 0xff0000
95
96
#define X38_CAPID0 0xe0 /* see P.94 of spec for details */
97
98
static int x38_channel_num;
99
100
static int how_many_channel(struct pci_dev *pdev)
101
{
102
unsigned char capid0_8b; /* 8th byte of CAPID0 */
103
104
pci_read_config_byte(pdev, X38_CAPID0 + 8, &capid0_8b);
105
if (capid0_8b & 0x20) { /* check DCD: Dual Channel Disable */
106
debugf0("In single channel mode.\n");
107
x38_channel_num = 1;
108
} else {
109
debugf0("In dual channel mode.\n");
110
x38_channel_num = 2;
111
}
112
113
return x38_channel_num;
114
}
115
116
static unsigned long eccerrlog_syndrome(u64 log)
117
{
118
return (log & X38_ECCERRLOG_SYNDROME_BITS) >> 16;
119
}
120
121
static int eccerrlog_row(int channel, u64 log)
122
{
123
return ((log & X38_ECCERRLOG_RANK_BITS) >> 27) |
124
(channel * X38_RANKS_PER_CHANNEL);
125
}
126
127
enum x38_chips {
128
X38 = 0,
129
};
130
131
struct x38_dev_info {
132
const char *ctl_name;
133
};
134
135
struct x38_error_info {
136
u16 errsts;
137
u16 errsts2;
138
u64 eccerrlog[X38_CHANNELS];
139
};
140
141
static const struct x38_dev_info x38_devs[] = {
142
[X38] = {
143
.ctl_name = "x38"},
144
};
145
146
static struct pci_dev *mci_pdev;
147
static int x38_registered = 1;
148
149
150
static void x38_clear_error_info(struct mem_ctl_info *mci)
151
{
152
struct pci_dev *pdev;
153
154
pdev = to_pci_dev(mci->dev);
155
156
/*
157
* Clear any error bits.
158
* (Yes, we really clear bits by writing 1 to them.)
159
*/
160
pci_write_bits16(pdev, X38_ERRSTS, X38_ERRSTS_BITS,
161
X38_ERRSTS_BITS);
162
}
163
164
static u64 x38_readq(const void __iomem *addr)
165
{
166
return readl(addr) | (((u64)readl(addr + 4)) << 32);
167
}
168
169
static void x38_get_and_clear_error_info(struct mem_ctl_info *mci,
170
struct x38_error_info *info)
171
{
172
struct pci_dev *pdev;
173
void __iomem *window = mci->pvt_info;
174
175
pdev = to_pci_dev(mci->dev);
176
177
/*
178
* This is a mess because there is no atomic way to read all the
179
* registers at once and the registers can transition from CE being
180
* overwritten by UE.
181
*/
182
pci_read_config_word(pdev, X38_ERRSTS, &info->errsts);
183
if (!(info->errsts & X38_ERRSTS_BITS))
184
return;
185
186
info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
187
if (x38_channel_num == 2)
188
info->eccerrlog[1] = x38_readq(window + X38_C1ECCERRLOG);
189
190
pci_read_config_word(pdev, X38_ERRSTS, &info->errsts2);
191
192
/*
193
* If the error is the same for both reads then the first set
194
* of reads is valid. If there is a change then there is a CE
195
* with no info and the second set of reads is valid and
196
* should be UE info.
197
*/
198
if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
199
info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
200
if (x38_channel_num == 2)
201
info->eccerrlog[1] =
202
x38_readq(window + X38_C1ECCERRLOG);
203
}
204
205
x38_clear_error_info(mci);
206
}
207
208
static void x38_process_error_info(struct mem_ctl_info *mci,
209
struct x38_error_info *info)
210
{
211
int channel;
212
u64 log;
213
214
if (!(info->errsts & X38_ERRSTS_BITS))
215
return;
216
217
if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
218
edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
219
info->errsts = info->errsts2;
220
}
221
222
for (channel = 0; channel < x38_channel_num; channel++) {
223
log = info->eccerrlog[channel];
224
if (log & X38_ECCERRLOG_UE) {
225
edac_mc_handle_ue(mci, 0, 0,
226
eccerrlog_row(channel, log), "x38 UE");
227
} else if (log & X38_ECCERRLOG_CE) {
228
edac_mc_handle_ce(mci, 0, 0,
229
eccerrlog_syndrome(log),
230
eccerrlog_row(channel, log), 0, "x38 CE");
231
}
232
}
233
}
234
235
static void x38_check(struct mem_ctl_info *mci)
236
{
237
struct x38_error_info info;
238
239
debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
240
x38_get_and_clear_error_info(mci, &info);
241
x38_process_error_info(mci, &info);
242
}
243
244
245
void __iomem *x38_map_mchbar(struct pci_dev *pdev)
246
{
247
union {
248
u64 mchbar;
249
struct {
250
u32 mchbar_low;
251
u32 mchbar_high;
252
};
253
} u;
254
void __iomem *window;
255
256
pci_read_config_dword(pdev, X38_MCHBAR_LOW, &u.mchbar_low);
257
pci_write_config_dword(pdev, X38_MCHBAR_LOW, u.mchbar_low | 0x1);
258
pci_read_config_dword(pdev, X38_MCHBAR_HIGH, &u.mchbar_high);
259
u.mchbar &= X38_MCHBAR_MASK;
260
261
if (u.mchbar != (resource_size_t)u.mchbar) {
262
printk(KERN_ERR
263
"x38: mmio space beyond accessible range (0x%llx)\n",
264
(unsigned long long)u.mchbar);
265
return NULL;
266
}
267
268
window = ioremap_nocache(u.mchbar, X38_MMR_WINDOW_SIZE);
269
if (!window)
270
printk(KERN_ERR "x38: cannot map mmio space at 0x%llx\n",
271
(unsigned long long)u.mchbar);
272
273
return window;
274
}
275
276
277
static void x38_get_drbs(void __iomem *window,
278
u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
279
{
280
int i;
281
282
for (i = 0; i < X38_RANKS_PER_CHANNEL; i++) {
283
drbs[0][i] = readw(window + X38_C0DRB + 2*i) & X38_DRB_MASK;
284
drbs[1][i] = readw(window + X38_C1DRB + 2*i) & X38_DRB_MASK;
285
}
286
}
287
288
static bool x38_is_stacked(struct pci_dev *pdev,
289
u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
290
{
291
u16 tom;
292
293
pci_read_config_word(pdev, X38_TOM, &tom);
294
tom &= X38_TOM_MASK;
295
296
return drbs[X38_CHANNELS - 1][X38_RANKS_PER_CHANNEL - 1] == tom;
297
}
298
299
static unsigned long drb_to_nr_pages(
300
u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL],
301
bool stacked, int channel, int rank)
302
{
303
int n;
304
305
n = drbs[channel][rank];
306
if (rank > 0)
307
n -= drbs[channel][rank - 1];
308
if (stacked && (channel == 1) && drbs[channel][rank] ==
309
drbs[channel][X38_RANKS_PER_CHANNEL - 1]) {
310
n -= drbs[0][X38_RANKS_PER_CHANNEL - 1];
311
}
312
313
n <<= (X38_DRB_SHIFT - PAGE_SHIFT);
314
return n;
315
}
316
317
static int x38_probe1(struct pci_dev *pdev, int dev_idx)
318
{
319
int rc;
320
int i;
321
struct mem_ctl_info *mci = NULL;
322
unsigned long last_page;
323
u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL];
324
bool stacked;
325
void __iomem *window;
326
327
debugf0("MC: %s()\n", __func__);
328
329
window = x38_map_mchbar(pdev);
330
if (!window)
331
return -ENODEV;
332
333
x38_get_drbs(window, drbs);
334
335
how_many_channel(pdev);
336
337
/* FIXME: unconventional pvt_info usage */
338
mci = edac_mc_alloc(0, X38_RANKS, x38_channel_num, 0);
339
if (!mci)
340
return -ENOMEM;
341
342
debugf3("MC: %s(): init mci\n", __func__);
343
344
mci->dev = &pdev->dev;
345
mci->mtype_cap = MEM_FLAG_DDR2;
346
347
mci->edac_ctl_cap = EDAC_FLAG_SECDED;
348
mci->edac_cap = EDAC_FLAG_SECDED;
349
350
mci->mod_name = EDAC_MOD_STR;
351
mci->mod_ver = X38_REVISION;
352
mci->ctl_name = x38_devs[dev_idx].ctl_name;
353
mci->dev_name = pci_name(pdev);
354
mci->edac_check = x38_check;
355
mci->ctl_page_to_phys = NULL;
356
mci->pvt_info = window;
357
358
stacked = x38_is_stacked(pdev, drbs);
359
360
/*
361
* The dram rank boundary (DRB) reg values are boundary addresses
362
* for each DRAM rank with a granularity of 64MB. DRB regs are
363
* cumulative; the last one will contain the total memory
364
* contained in all ranks.
365
*/
366
last_page = -1UL;
367
for (i = 0; i < mci->nr_csrows; i++) {
368
unsigned long nr_pages;
369
struct csrow_info *csrow = &mci->csrows[i];
370
371
nr_pages = drb_to_nr_pages(drbs, stacked,
372
i / X38_RANKS_PER_CHANNEL,
373
i % X38_RANKS_PER_CHANNEL);
374
375
if (nr_pages == 0) {
376
csrow->mtype = MEM_EMPTY;
377
continue;
378
}
379
380
csrow->first_page = last_page + 1;
381
last_page += nr_pages;
382
csrow->last_page = last_page;
383
csrow->nr_pages = nr_pages;
384
385
csrow->grain = nr_pages << PAGE_SHIFT;
386
csrow->mtype = MEM_DDR2;
387
csrow->dtype = DEV_UNKNOWN;
388
csrow->edac_mode = EDAC_UNKNOWN;
389
}
390
391
x38_clear_error_info(mci);
392
393
rc = -ENODEV;
394
if (edac_mc_add_mc(mci)) {
395
debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
396
goto fail;
397
}
398
399
/* get this far and it's successful */
400
debugf3("MC: %s(): success\n", __func__);
401
return 0;
402
403
fail:
404
iounmap(window);
405
if (mci)
406
edac_mc_free(mci);
407
408
return rc;
409
}
410
411
static int __devinit x38_init_one(struct pci_dev *pdev,
412
const struct pci_device_id *ent)
413
{
414
int rc;
415
416
debugf0("MC: %s()\n", __func__);
417
418
if (pci_enable_device(pdev) < 0)
419
return -EIO;
420
421
rc = x38_probe1(pdev, ent->driver_data);
422
if (!mci_pdev)
423
mci_pdev = pci_dev_get(pdev);
424
425
return rc;
426
}
427
428
static void __devexit x38_remove_one(struct pci_dev *pdev)
429
{
430
struct mem_ctl_info *mci;
431
432
debugf0("%s()\n", __func__);
433
434
mci = edac_mc_del_mc(&pdev->dev);
435
if (!mci)
436
return;
437
438
iounmap(mci->pvt_info);
439
440
edac_mc_free(mci);
441
}
442
443
static const struct pci_device_id x38_pci_tbl[] __devinitdata = {
444
{
445
PCI_VEND_DEV(INTEL, X38_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
446
X38},
447
{
448
0,
449
} /* 0 terminated list. */
450
};
451
452
MODULE_DEVICE_TABLE(pci, x38_pci_tbl);
453
454
static struct pci_driver x38_driver = {
455
.name = EDAC_MOD_STR,
456
.probe = x38_init_one,
457
.remove = __devexit_p(x38_remove_one),
458
.id_table = x38_pci_tbl,
459
};
460
461
static int __init x38_init(void)
462
{
463
int pci_rc;
464
465
debugf3("MC: %s()\n", __func__);
466
467
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
468
opstate_init();
469
470
pci_rc = pci_register_driver(&x38_driver);
471
if (pci_rc < 0)
472
goto fail0;
473
474
if (!mci_pdev) {
475
x38_registered = 0;
476
mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
477
PCI_DEVICE_ID_INTEL_X38_HB, NULL);
478
if (!mci_pdev) {
479
debugf0("x38 pci_get_device fail\n");
480
pci_rc = -ENODEV;
481
goto fail1;
482
}
483
484
pci_rc = x38_init_one(mci_pdev, x38_pci_tbl);
485
if (pci_rc < 0) {
486
debugf0("x38 init fail\n");
487
pci_rc = -ENODEV;
488
goto fail1;
489
}
490
}
491
492
return 0;
493
494
fail1:
495
pci_unregister_driver(&x38_driver);
496
497
fail0:
498
if (mci_pdev)
499
pci_dev_put(mci_pdev);
500
501
return pci_rc;
502
}
503
504
static void __exit x38_exit(void)
505
{
506
debugf3("MC: %s()\n", __func__);
507
508
pci_unregister_driver(&x38_driver);
509
if (!x38_registered) {
510
x38_remove_one(mci_pdev);
511
pci_dev_put(mci_pdev);
512
}
513
}
514
515
module_init(x38_init);
516
module_exit(x38_exit);
517
518
MODULE_LICENSE("GPL");
519
MODULE_AUTHOR("Cluster Computing, Inc. Hitoshi Mitake");
520
MODULE_DESCRIPTION("MC support for Intel X38 memory hub controllers");
521
522
module_param(edac_op_state, int, 0444);
523
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
524
525