Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/firewire/core-device.c
15109 views
1
/*
2
* Device probing and sysfs code.
3
*
4
* Copyright (C) 2005-2006 Kristian Hoegsberg <[email protected]>
5
*
6
* This program is free software; you can redistribute it and/or modify
7
* it under the terms of the GNU General Public License as published by
8
* the Free Software Foundation; either version 2 of the License, or
9
* (at your option) any later version.
10
*
11
* This program is distributed in the hope that it will be useful,
12
* but WITHOUT ANY WARRANTY; without even the implied warranty of
13
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14
* GNU General Public License for more details.
15
*
16
* You should have received a copy of the GNU General Public License
17
* along with this program; if not, write to the Free Software Foundation,
18
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
*/
20
21
#include <linux/bug.h>
22
#include <linux/ctype.h>
23
#include <linux/delay.h>
24
#include <linux/device.h>
25
#include <linux/errno.h>
26
#include <linux/firewire.h>
27
#include <linux/firewire-constants.h>
28
#include <linux/idr.h>
29
#include <linux/jiffies.h>
30
#include <linux/kobject.h>
31
#include <linux/list.h>
32
#include <linux/mod_devicetable.h>
33
#include <linux/module.h>
34
#include <linux/mutex.h>
35
#include <linux/rwsem.h>
36
#include <linux/slab.h>
37
#include <linux/spinlock.h>
38
#include <linux/string.h>
39
#include <linux/workqueue.h>
40
41
#include <asm/atomic.h>
42
#include <asm/byteorder.h>
43
#include <asm/system.h>
44
45
#include "core.h"
46
47
void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
48
{
49
ci->p = p + 1;
50
ci->end = ci->p + (p[0] >> 16);
51
}
52
EXPORT_SYMBOL(fw_csr_iterator_init);
53
54
int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
55
{
56
*key = *ci->p >> 24;
57
*value = *ci->p & 0xffffff;
58
59
return ci->p++ < ci->end;
60
}
61
EXPORT_SYMBOL(fw_csr_iterator_next);
62
63
static const u32 *search_leaf(const u32 *directory, int search_key)
64
{
65
struct fw_csr_iterator ci;
66
int last_key = 0, key, value;
67
68
fw_csr_iterator_init(&ci, directory);
69
while (fw_csr_iterator_next(&ci, &key, &value)) {
70
if (last_key == search_key &&
71
key == (CSR_DESCRIPTOR | CSR_LEAF))
72
return ci.p - 1 + value;
73
74
last_key = key;
75
}
76
77
return NULL;
78
}
79
80
static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
81
{
82
unsigned int quadlets, i;
83
char c;
84
85
if (!size || !buf)
86
return -EINVAL;
87
88
quadlets = min(block[0] >> 16, 256U);
89
if (quadlets < 2)
90
return -ENODATA;
91
92
if (block[1] != 0 || block[2] != 0)
93
/* unknown language/character set */
94
return -ENODATA;
95
96
block += 3;
97
quadlets -= 2;
98
for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
99
c = block[i / 4] >> (24 - 8 * (i % 4));
100
if (c == '\0')
101
break;
102
buf[i] = c;
103
}
104
buf[i] = '\0';
105
106
return i;
107
}
108
109
/**
110
* fw_csr_string() - reads a string from the configuration ROM
111
* @directory: e.g. root directory or unit directory
112
* @key: the key of the preceding directory entry
113
* @buf: where to put the string
114
* @size: size of @buf, in bytes
115
*
116
* The string is taken from a minimal ASCII text descriptor leaf after
117
* the immediate entry with @key. The string is zero-terminated.
118
* Returns strlen(buf) or a negative error code.
119
*/
120
int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
121
{
122
const u32 *leaf = search_leaf(directory, key);
123
if (!leaf)
124
return -ENOENT;
125
126
return textual_leaf_to_string(leaf, buf, size);
127
}
128
EXPORT_SYMBOL(fw_csr_string);
129
130
static void get_ids(const u32 *directory, int *id)
131
{
132
struct fw_csr_iterator ci;
133
int key, value;
134
135
fw_csr_iterator_init(&ci, directory);
136
while (fw_csr_iterator_next(&ci, &key, &value)) {
137
switch (key) {
138
case CSR_VENDOR: id[0] = value; break;
139
case CSR_MODEL: id[1] = value; break;
140
case CSR_SPECIFIER_ID: id[2] = value; break;
141
case CSR_VERSION: id[3] = value; break;
142
}
143
}
144
}
145
146
static void get_modalias_ids(struct fw_unit *unit, int *id)
147
{
148
get_ids(&fw_parent_device(unit)->config_rom[5], id);
149
get_ids(unit->directory, id);
150
}
151
152
static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
153
{
154
int match = 0;
155
156
if (id[0] == id_table->vendor_id)
157
match |= IEEE1394_MATCH_VENDOR_ID;
158
if (id[1] == id_table->model_id)
159
match |= IEEE1394_MATCH_MODEL_ID;
160
if (id[2] == id_table->specifier_id)
161
match |= IEEE1394_MATCH_SPECIFIER_ID;
162
if (id[3] == id_table->version)
163
match |= IEEE1394_MATCH_VERSION;
164
165
return (match & id_table->match_flags) == id_table->match_flags;
166
}
167
168
static bool is_fw_unit(struct device *dev);
169
170
static int fw_unit_match(struct device *dev, struct device_driver *drv)
171
{
172
const struct ieee1394_device_id *id_table =
173
container_of(drv, struct fw_driver, driver)->id_table;
174
int id[] = {0, 0, 0, 0};
175
176
/* We only allow binding to fw_units. */
177
if (!is_fw_unit(dev))
178
return 0;
179
180
get_modalias_ids(fw_unit(dev), id);
181
182
for (; id_table->match_flags != 0; id_table++)
183
if (match_ids(id_table, id))
184
return 1;
185
186
return 0;
187
}
188
189
static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
190
{
191
int id[] = {0, 0, 0, 0};
192
193
get_modalias_ids(unit, id);
194
195
return snprintf(buffer, buffer_size,
196
"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
197
id[0], id[1], id[2], id[3]);
198
}
199
200
static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
201
{
202
struct fw_unit *unit = fw_unit(dev);
203
char modalias[64];
204
205
get_modalias(unit, modalias, sizeof(modalias));
206
207
if (add_uevent_var(env, "MODALIAS=%s", modalias))
208
return -ENOMEM;
209
210
return 0;
211
}
212
213
struct bus_type fw_bus_type = {
214
.name = "firewire",
215
.match = fw_unit_match,
216
};
217
EXPORT_SYMBOL(fw_bus_type);
218
219
int fw_device_enable_phys_dma(struct fw_device *device)
220
{
221
int generation = device->generation;
222
223
/* device->node_id, accessed below, must not be older than generation */
224
smp_rmb();
225
226
return device->card->driver->enable_phys_dma(device->card,
227
device->node_id,
228
generation);
229
}
230
EXPORT_SYMBOL(fw_device_enable_phys_dma);
231
232
struct config_rom_attribute {
233
struct device_attribute attr;
234
u32 key;
235
};
236
237
static ssize_t show_immediate(struct device *dev,
238
struct device_attribute *dattr, char *buf)
239
{
240
struct config_rom_attribute *attr =
241
container_of(dattr, struct config_rom_attribute, attr);
242
struct fw_csr_iterator ci;
243
const u32 *dir;
244
int key, value, ret = -ENOENT;
245
246
down_read(&fw_device_rwsem);
247
248
if (is_fw_unit(dev))
249
dir = fw_unit(dev)->directory;
250
else
251
dir = fw_device(dev)->config_rom + 5;
252
253
fw_csr_iterator_init(&ci, dir);
254
while (fw_csr_iterator_next(&ci, &key, &value))
255
if (attr->key == key) {
256
ret = snprintf(buf, buf ? PAGE_SIZE : 0,
257
"0x%06x\n", value);
258
break;
259
}
260
261
up_read(&fw_device_rwsem);
262
263
return ret;
264
}
265
266
#define IMMEDIATE_ATTR(name, key) \
267
{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
268
269
static ssize_t show_text_leaf(struct device *dev,
270
struct device_attribute *dattr, char *buf)
271
{
272
struct config_rom_attribute *attr =
273
container_of(dattr, struct config_rom_attribute, attr);
274
const u32 *dir;
275
size_t bufsize;
276
char dummy_buf[2];
277
int ret;
278
279
down_read(&fw_device_rwsem);
280
281
if (is_fw_unit(dev))
282
dir = fw_unit(dev)->directory;
283
else
284
dir = fw_device(dev)->config_rom + 5;
285
286
if (buf) {
287
bufsize = PAGE_SIZE - 1;
288
} else {
289
buf = dummy_buf;
290
bufsize = 1;
291
}
292
293
ret = fw_csr_string(dir, attr->key, buf, bufsize);
294
295
if (ret >= 0) {
296
/* Strip trailing whitespace and add newline. */
297
while (ret > 0 && isspace(buf[ret - 1]))
298
ret--;
299
strcpy(buf + ret, "\n");
300
ret++;
301
}
302
303
up_read(&fw_device_rwsem);
304
305
return ret;
306
}
307
308
#define TEXT_LEAF_ATTR(name, key) \
309
{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
310
311
static struct config_rom_attribute config_rom_attributes[] = {
312
IMMEDIATE_ATTR(vendor, CSR_VENDOR),
313
IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
314
IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
315
IMMEDIATE_ATTR(version, CSR_VERSION),
316
IMMEDIATE_ATTR(model, CSR_MODEL),
317
TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
318
TEXT_LEAF_ATTR(model_name, CSR_MODEL),
319
TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
320
};
321
322
static void init_fw_attribute_group(struct device *dev,
323
struct device_attribute *attrs,
324
struct fw_attribute_group *group)
325
{
326
struct device_attribute *attr;
327
int i, j;
328
329
for (j = 0; attrs[j].attr.name != NULL; j++)
330
group->attrs[j] = &attrs[j].attr;
331
332
for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
333
attr = &config_rom_attributes[i].attr;
334
if (attr->show(dev, attr, NULL) < 0)
335
continue;
336
group->attrs[j++] = &attr->attr;
337
}
338
339
group->attrs[j] = NULL;
340
group->groups[0] = &group->group;
341
group->groups[1] = NULL;
342
group->group.attrs = group->attrs;
343
dev->groups = (const struct attribute_group **) group->groups;
344
}
345
346
static ssize_t modalias_show(struct device *dev,
347
struct device_attribute *attr, char *buf)
348
{
349
struct fw_unit *unit = fw_unit(dev);
350
int length;
351
352
length = get_modalias(unit, buf, PAGE_SIZE);
353
strcpy(buf + length, "\n");
354
355
return length + 1;
356
}
357
358
static ssize_t rom_index_show(struct device *dev,
359
struct device_attribute *attr, char *buf)
360
{
361
struct fw_device *device = fw_device(dev->parent);
362
struct fw_unit *unit = fw_unit(dev);
363
364
return snprintf(buf, PAGE_SIZE, "%d\n",
365
(int)(unit->directory - device->config_rom));
366
}
367
368
static struct device_attribute fw_unit_attributes[] = {
369
__ATTR_RO(modalias),
370
__ATTR_RO(rom_index),
371
__ATTR_NULL,
372
};
373
374
static ssize_t config_rom_show(struct device *dev,
375
struct device_attribute *attr, char *buf)
376
{
377
struct fw_device *device = fw_device(dev);
378
size_t length;
379
380
down_read(&fw_device_rwsem);
381
length = device->config_rom_length * 4;
382
memcpy(buf, device->config_rom, length);
383
up_read(&fw_device_rwsem);
384
385
return length;
386
}
387
388
static ssize_t guid_show(struct device *dev,
389
struct device_attribute *attr, char *buf)
390
{
391
struct fw_device *device = fw_device(dev);
392
int ret;
393
394
down_read(&fw_device_rwsem);
395
ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
396
device->config_rom[3], device->config_rom[4]);
397
up_read(&fw_device_rwsem);
398
399
return ret;
400
}
401
402
static int units_sprintf(char *buf, const u32 *directory)
403
{
404
struct fw_csr_iterator ci;
405
int key, value;
406
int specifier_id = 0;
407
int version = 0;
408
409
fw_csr_iterator_init(&ci, directory);
410
while (fw_csr_iterator_next(&ci, &key, &value)) {
411
switch (key) {
412
case CSR_SPECIFIER_ID:
413
specifier_id = value;
414
break;
415
case CSR_VERSION:
416
version = value;
417
break;
418
}
419
}
420
421
return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
422
}
423
424
static ssize_t units_show(struct device *dev,
425
struct device_attribute *attr, char *buf)
426
{
427
struct fw_device *device = fw_device(dev);
428
struct fw_csr_iterator ci;
429
int key, value, i = 0;
430
431
down_read(&fw_device_rwsem);
432
fw_csr_iterator_init(&ci, &device->config_rom[5]);
433
while (fw_csr_iterator_next(&ci, &key, &value)) {
434
if (key != (CSR_UNIT | CSR_DIRECTORY))
435
continue;
436
i += units_sprintf(&buf[i], ci.p + value - 1);
437
if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
438
break;
439
}
440
up_read(&fw_device_rwsem);
441
442
if (i)
443
buf[i - 1] = '\n';
444
445
return i;
446
}
447
448
static struct device_attribute fw_device_attributes[] = {
449
__ATTR_RO(config_rom),
450
__ATTR_RO(guid),
451
__ATTR_RO(units),
452
__ATTR_NULL,
453
};
454
455
static int read_rom(struct fw_device *device,
456
int generation, int index, u32 *data)
457
{
458
int rcode;
459
460
/* device->node_id, accessed below, must not be older than generation */
461
smp_rmb();
462
463
rcode = fw_run_transaction(device->card, TCODE_READ_QUADLET_REQUEST,
464
device->node_id, generation, device->max_speed,
465
(CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4,
466
data, 4);
467
be32_to_cpus(data);
468
469
return rcode;
470
}
471
472
#define MAX_CONFIG_ROM_SIZE 256
473
474
/*
475
* Read the bus info block, perform a speed probe, and read all of the rest of
476
* the config ROM. We do all this with a cached bus generation. If the bus
477
* generation changes under us, read_config_rom will fail and get retried.
478
* It's better to start all over in this case because the node from which we
479
* are reading the ROM may have changed the ROM during the reset.
480
*/
481
static int read_config_rom(struct fw_device *device, int generation)
482
{
483
const u32 *old_rom, *new_rom;
484
u32 *rom, *stack;
485
u32 sp, key;
486
int i, end, length, ret = -1;
487
488
rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
489
sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
490
if (rom == NULL)
491
return -ENOMEM;
492
493
stack = &rom[MAX_CONFIG_ROM_SIZE];
494
memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
495
496
device->max_speed = SCODE_100;
497
498
/* First read the bus info block. */
499
for (i = 0; i < 5; i++) {
500
if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
501
goto out;
502
/*
503
* As per IEEE1212 7.2, during power-up, devices can
504
* reply with a 0 for the first quadlet of the config
505
* rom to indicate that they are booting (for example,
506
* if the firmware is on the disk of a external
507
* harddisk). In that case we just fail, and the
508
* retry mechanism will try again later.
509
*/
510
if (i == 0 && rom[i] == 0)
511
goto out;
512
}
513
514
device->max_speed = device->node->max_speed;
515
516
/*
517
* Determine the speed of
518
* - devices with link speed less than PHY speed,
519
* - devices with 1394b PHY (unless only connected to 1394a PHYs),
520
* - all devices if there are 1394b repeaters.
521
* Note, we cannot use the bus info block's link_spd as starting point
522
* because some buggy firmwares set it lower than necessary and because
523
* 1394-1995 nodes do not have the field.
524
*/
525
if ((rom[2] & 0x7) < device->max_speed ||
526
device->max_speed == SCODE_BETA ||
527
device->card->beta_repeaters_present) {
528
u32 dummy;
529
530
/* for S1600 and S3200 */
531
if (device->max_speed == SCODE_BETA)
532
device->max_speed = device->card->link_speed;
533
534
while (device->max_speed > SCODE_100) {
535
if (read_rom(device, generation, 0, &dummy) ==
536
RCODE_COMPLETE)
537
break;
538
device->max_speed--;
539
}
540
}
541
542
/*
543
* Now parse the config rom. The config rom is a recursive
544
* directory structure so we parse it using a stack of
545
* references to the blocks that make up the structure. We
546
* push a reference to the root directory on the stack to
547
* start things off.
548
*/
549
length = i;
550
sp = 0;
551
stack[sp++] = 0xc0000005;
552
while (sp > 0) {
553
/*
554
* Pop the next block reference of the stack. The
555
* lower 24 bits is the offset into the config rom,
556
* the upper 8 bits are the type of the reference the
557
* block.
558
*/
559
key = stack[--sp];
560
i = key & 0xffffff;
561
if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE))
562
goto out;
563
564
/* Read header quadlet for the block to get the length. */
565
if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
566
goto out;
567
end = i + (rom[i] >> 16) + 1;
568
if (end > MAX_CONFIG_ROM_SIZE) {
569
/*
570
* This block extends outside the config ROM which is
571
* a firmware bug. Ignore this whole block, i.e.
572
* simply set a fake block length of 0.
573
*/
574
fw_error("skipped invalid ROM block %x at %llx\n",
575
rom[i],
576
i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
577
rom[i] = 0;
578
end = i;
579
}
580
i++;
581
582
/*
583
* Now read in the block. If this is a directory
584
* block, check the entries as we read them to see if
585
* it references another block, and push it in that case.
586
*/
587
for (; i < end; i++) {
588
if (read_rom(device, generation, i, &rom[i]) !=
589
RCODE_COMPLETE)
590
goto out;
591
592
if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
593
continue;
594
/*
595
* Offset points outside the ROM. May be a firmware
596
* bug or an Extended ROM entry (IEEE 1212-2001 clause
597
* 7.7.18). Simply overwrite this pointer here by a
598
* fake immediate entry so that later iterators over
599
* the ROM don't have to check offsets all the time.
600
*/
601
if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
602
fw_error("skipped unsupported ROM entry %x at %llx\n",
603
rom[i],
604
i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
605
rom[i] = 0;
606
continue;
607
}
608
stack[sp++] = i + rom[i];
609
}
610
if (length < i)
611
length = i;
612
}
613
614
old_rom = device->config_rom;
615
new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
616
if (new_rom == NULL)
617
goto out;
618
619
down_write(&fw_device_rwsem);
620
device->config_rom = new_rom;
621
device->config_rom_length = length;
622
up_write(&fw_device_rwsem);
623
624
kfree(old_rom);
625
ret = 0;
626
device->max_rec = rom[2] >> 12 & 0xf;
627
device->cmc = rom[2] >> 30 & 1;
628
device->irmc = rom[2] >> 31 & 1;
629
out:
630
kfree(rom);
631
632
return ret;
633
}
634
635
static void fw_unit_release(struct device *dev)
636
{
637
struct fw_unit *unit = fw_unit(dev);
638
639
kfree(unit);
640
}
641
642
static struct device_type fw_unit_type = {
643
.uevent = fw_unit_uevent,
644
.release = fw_unit_release,
645
};
646
647
static bool is_fw_unit(struct device *dev)
648
{
649
return dev->type == &fw_unit_type;
650
}
651
652
static void create_units(struct fw_device *device)
653
{
654
struct fw_csr_iterator ci;
655
struct fw_unit *unit;
656
int key, value, i;
657
658
i = 0;
659
fw_csr_iterator_init(&ci, &device->config_rom[5]);
660
while (fw_csr_iterator_next(&ci, &key, &value)) {
661
if (key != (CSR_UNIT | CSR_DIRECTORY))
662
continue;
663
664
/*
665
* Get the address of the unit directory and try to
666
* match the drivers id_tables against it.
667
*/
668
unit = kzalloc(sizeof(*unit), GFP_KERNEL);
669
if (unit == NULL) {
670
fw_error("failed to allocate memory for unit\n");
671
continue;
672
}
673
674
unit->directory = ci.p + value - 1;
675
unit->device.bus = &fw_bus_type;
676
unit->device.type = &fw_unit_type;
677
unit->device.parent = &device->device;
678
dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
679
680
BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
681
ARRAY_SIZE(fw_unit_attributes) +
682
ARRAY_SIZE(config_rom_attributes));
683
init_fw_attribute_group(&unit->device,
684
fw_unit_attributes,
685
&unit->attribute_group);
686
687
if (device_register(&unit->device) < 0)
688
goto skip_unit;
689
690
continue;
691
692
skip_unit:
693
kfree(unit);
694
}
695
}
696
697
static int shutdown_unit(struct device *device, void *data)
698
{
699
device_unregister(device);
700
701
return 0;
702
}
703
704
/*
705
* fw_device_rwsem acts as dual purpose mutex:
706
* - serializes accesses to fw_device_idr,
707
* - serializes accesses to fw_device.config_rom/.config_rom_length and
708
* fw_unit.directory, unless those accesses happen at safe occasions
709
*/
710
DECLARE_RWSEM(fw_device_rwsem);
711
712
DEFINE_IDR(fw_device_idr);
713
int fw_cdev_major;
714
715
struct fw_device *fw_device_get_by_devt(dev_t devt)
716
{
717
struct fw_device *device;
718
719
down_read(&fw_device_rwsem);
720
device = idr_find(&fw_device_idr, MINOR(devt));
721
if (device)
722
fw_device_get(device);
723
up_read(&fw_device_rwsem);
724
725
return device;
726
}
727
728
struct workqueue_struct *fw_workqueue;
729
EXPORT_SYMBOL(fw_workqueue);
730
731
static void fw_schedule_device_work(struct fw_device *device,
732
unsigned long delay)
733
{
734
queue_delayed_work(fw_workqueue, &device->work, delay);
735
}
736
737
/*
738
* These defines control the retry behavior for reading the config
739
* rom. It shouldn't be necessary to tweak these; if the device
740
* doesn't respond to a config rom read within 10 seconds, it's not
741
* going to respond at all. As for the initial delay, a lot of
742
* devices will be able to respond within half a second after bus
743
* reset. On the other hand, it's not really worth being more
744
* aggressive than that, since it scales pretty well; if 10 devices
745
* are plugged in, they're all getting read within one second.
746
*/
747
748
#define MAX_RETRIES 10
749
#define RETRY_DELAY (3 * HZ)
750
#define INITIAL_DELAY (HZ / 2)
751
#define SHUTDOWN_DELAY (2 * HZ)
752
753
static void fw_device_shutdown(struct work_struct *work)
754
{
755
struct fw_device *device =
756
container_of(work, struct fw_device, work.work);
757
int minor = MINOR(device->device.devt);
758
759
if (time_before64(get_jiffies_64(),
760
device->card->reset_jiffies + SHUTDOWN_DELAY)
761
&& !list_empty(&device->card->link)) {
762
fw_schedule_device_work(device, SHUTDOWN_DELAY);
763
return;
764
}
765
766
if (atomic_cmpxchg(&device->state,
767
FW_DEVICE_GONE,
768
FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
769
return;
770
771
fw_device_cdev_remove(device);
772
device_for_each_child(&device->device, NULL, shutdown_unit);
773
device_unregister(&device->device);
774
775
down_write(&fw_device_rwsem);
776
idr_remove(&fw_device_idr, minor);
777
up_write(&fw_device_rwsem);
778
779
fw_device_put(device);
780
}
781
782
static void fw_device_release(struct device *dev)
783
{
784
struct fw_device *device = fw_device(dev);
785
struct fw_card *card = device->card;
786
unsigned long flags;
787
788
/*
789
* Take the card lock so we don't set this to NULL while a
790
* FW_NODE_UPDATED callback is being handled or while the
791
* bus manager work looks at this node.
792
*/
793
spin_lock_irqsave(&card->lock, flags);
794
device->node->data = NULL;
795
spin_unlock_irqrestore(&card->lock, flags);
796
797
fw_node_put(device->node);
798
kfree(device->config_rom);
799
kfree(device);
800
fw_card_put(card);
801
}
802
803
static struct device_type fw_device_type = {
804
.release = fw_device_release,
805
};
806
807
static bool is_fw_device(struct device *dev)
808
{
809
return dev->type == &fw_device_type;
810
}
811
812
static int update_unit(struct device *dev, void *data)
813
{
814
struct fw_unit *unit = fw_unit(dev);
815
struct fw_driver *driver = (struct fw_driver *)dev->driver;
816
817
if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
818
device_lock(dev);
819
driver->update(unit);
820
device_unlock(dev);
821
}
822
823
return 0;
824
}
825
826
static void fw_device_update(struct work_struct *work)
827
{
828
struct fw_device *device =
829
container_of(work, struct fw_device, work.work);
830
831
fw_device_cdev_update(device);
832
device_for_each_child(&device->device, NULL, update_unit);
833
}
834
835
/*
836
* If a device was pending for deletion because its node went away but its
837
* bus info block and root directory header matches that of a newly discovered
838
* device, revive the existing fw_device.
839
* The newly allocated fw_device becomes obsolete instead.
840
*/
841
static int lookup_existing_device(struct device *dev, void *data)
842
{
843
struct fw_device *old = fw_device(dev);
844
struct fw_device *new = data;
845
struct fw_card *card = new->card;
846
int match = 0;
847
848
if (!is_fw_device(dev))
849
return 0;
850
851
down_read(&fw_device_rwsem); /* serialize config_rom access */
852
spin_lock_irq(&card->lock); /* serialize node access */
853
854
if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
855
atomic_cmpxchg(&old->state,
856
FW_DEVICE_GONE,
857
FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
858
struct fw_node *current_node = new->node;
859
struct fw_node *obsolete_node = old->node;
860
861
new->node = obsolete_node;
862
new->node->data = new;
863
old->node = current_node;
864
old->node->data = old;
865
866
old->max_speed = new->max_speed;
867
old->node_id = current_node->node_id;
868
smp_wmb(); /* update node_id before generation */
869
old->generation = card->generation;
870
old->config_rom_retries = 0;
871
fw_notify("rediscovered device %s\n", dev_name(dev));
872
873
PREPARE_DELAYED_WORK(&old->work, fw_device_update);
874
fw_schedule_device_work(old, 0);
875
876
if (current_node == card->root_node)
877
fw_schedule_bm_work(card, 0);
878
879
match = 1;
880
}
881
882
spin_unlock_irq(&card->lock);
883
up_read(&fw_device_rwsem);
884
885
return match;
886
}
887
888
enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
889
890
static void set_broadcast_channel(struct fw_device *device, int generation)
891
{
892
struct fw_card *card = device->card;
893
__be32 data;
894
int rcode;
895
896
if (!card->broadcast_channel_allocated)
897
return;
898
899
/*
900
* The Broadcast_Channel Valid bit is required by nodes which want to
901
* transmit on this channel. Such transmissions are practically
902
* exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
903
* to be IRM capable and have a max_rec of 8 or more. We use this fact
904
* to narrow down to which nodes we send Broadcast_Channel updates.
905
*/
906
if (!device->irmc || device->max_rec < 8)
907
return;
908
909
/*
910
* Some 1394-1995 nodes crash if this 1394a-2000 register is written.
911
* Perform a read test first.
912
*/
913
if (device->bc_implemented == BC_UNKNOWN) {
914
rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
915
device->node_id, generation, device->max_speed,
916
CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
917
&data, 4);
918
switch (rcode) {
919
case RCODE_COMPLETE:
920
if (data & cpu_to_be32(1 << 31)) {
921
device->bc_implemented = BC_IMPLEMENTED;
922
break;
923
}
924
/* else fall through to case address error */
925
case RCODE_ADDRESS_ERROR:
926
device->bc_implemented = BC_UNIMPLEMENTED;
927
}
928
}
929
930
if (device->bc_implemented == BC_IMPLEMENTED) {
931
data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
932
BROADCAST_CHANNEL_VALID);
933
fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
934
device->node_id, generation, device->max_speed,
935
CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
936
&data, 4);
937
}
938
}
939
940
int fw_device_set_broadcast_channel(struct device *dev, void *gen)
941
{
942
if (is_fw_device(dev))
943
set_broadcast_channel(fw_device(dev), (long)gen);
944
945
return 0;
946
}
947
948
static void fw_device_init(struct work_struct *work)
949
{
950
struct fw_device *device =
951
container_of(work, struct fw_device, work.work);
952
struct device *revived_dev;
953
int minor, ret;
954
955
/*
956
* All failure paths here set node->data to NULL, so that we
957
* don't try to do device_for_each_child() on a kfree()'d
958
* device.
959
*/
960
961
if (read_config_rom(device, device->generation) < 0) {
962
if (device->config_rom_retries < MAX_RETRIES &&
963
atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
964
device->config_rom_retries++;
965
fw_schedule_device_work(device, RETRY_DELAY);
966
} else {
967
if (device->node->link_on)
968
fw_notify("giving up on config rom for node id %x\n",
969
device->node_id);
970
if (device->node == device->card->root_node)
971
fw_schedule_bm_work(device->card, 0);
972
fw_device_release(&device->device);
973
}
974
return;
975
}
976
977
revived_dev = device_find_child(device->card->device,
978
device, lookup_existing_device);
979
if (revived_dev) {
980
put_device(revived_dev);
981
fw_device_release(&device->device);
982
983
return;
984
}
985
986
device_initialize(&device->device);
987
988
fw_device_get(device);
989
down_write(&fw_device_rwsem);
990
ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
991
idr_get_new(&fw_device_idr, device, &minor) :
992
-ENOMEM;
993
up_write(&fw_device_rwsem);
994
995
if (ret < 0)
996
goto error;
997
998
device->device.bus = &fw_bus_type;
999
device->device.type = &fw_device_type;
1000
device->device.parent = device->card->device;
1001
device->device.devt = MKDEV(fw_cdev_major, minor);
1002
dev_set_name(&device->device, "fw%d", minor);
1003
1004
BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1005
ARRAY_SIZE(fw_device_attributes) +
1006
ARRAY_SIZE(config_rom_attributes));
1007
init_fw_attribute_group(&device->device,
1008
fw_device_attributes,
1009
&device->attribute_group);
1010
1011
if (device_add(&device->device)) {
1012
fw_error("Failed to add device.\n");
1013
goto error_with_cdev;
1014
}
1015
1016
create_units(device);
1017
1018
/*
1019
* Transition the device to running state. If it got pulled
1020
* out from under us while we did the intialization work, we
1021
* have to shut down the device again here. Normally, though,
1022
* fw_node_event will be responsible for shutting it down when
1023
* necessary. We have to use the atomic cmpxchg here to avoid
1024
* racing with the FW_NODE_DESTROYED case in
1025
* fw_node_event().
1026
*/
1027
if (atomic_cmpxchg(&device->state,
1028
FW_DEVICE_INITIALIZING,
1029
FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1030
PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1031
fw_schedule_device_work(device, SHUTDOWN_DELAY);
1032
} else {
1033
if (device->config_rom_retries)
1034
fw_notify("created device %s: GUID %08x%08x, S%d00, "
1035
"%d config ROM retries\n",
1036
dev_name(&device->device),
1037
device->config_rom[3], device->config_rom[4],
1038
1 << device->max_speed,
1039
device->config_rom_retries);
1040
else
1041
fw_notify("created device %s: GUID %08x%08x, S%d00\n",
1042
dev_name(&device->device),
1043
device->config_rom[3], device->config_rom[4],
1044
1 << device->max_speed);
1045
device->config_rom_retries = 0;
1046
1047
set_broadcast_channel(device, device->generation);
1048
}
1049
1050
/*
1051
* Reschedule the IRM work if we just finished reading the
1052
* root node config rom. If this races with a bus reset we
1053
* just end up running the IRM work a couple of extra times -
1054
* pretty harmless.
1055
*/
1056
if (device->node == device->card->root_node)
1057
fw_schedule_bm_work(device->card, 0);
1058
1059
return;
1060
1061
error_with_cdev:
1062
down_write(&fw_device_rwsem);
1063
idr_remove(&fw_device_idr, minor);
1064
up_write(&fw_device_rwsem);
1065
error:
1066
fw_device_put(device); /* fw_device_idr's reference */
1067
1068
put_device(&device->device); /* our reference */
1069
}
1070
1071
enum {
1072
REREAD_BIB_ERROR,
1073
REREAD_BIB_GONE,
1074
REREAD_BIB_UNCHANGED,
1075
REREAD_BIB_CHANGED,
1076
};
1077
1078
/* Reread and compare bus info block and header of root directory */
1079
static int reread_config_rom(struct fw_device *device, int generation)
1080
{
1081
u32 q;
1082
int i;
1083
1084
for (i = 0; i < 6; i++) {
1085
if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
1086
return REREAD_BIB_ERROR;
1087
1088
if (i == 0 && q == 0)
1089
return REREAD_BIB_GONE;
1090
1091
if (q != device->config_rom[i])
1092
return REREAD_BIB_CHANGED;
1093
}
1094
1095
return REREAD_BIB_UNCHANGED;
1096
}
1097
1098
static void fw_device_refresh(struct work_struct *work)
1099
{
1100
struct fw_device *device =
1101
container_of(work, struct fw_device, work.work);
1102
struct fw_card *card = device->card;
1103
int node_id = device->node_id;
1104
1105
switch (reread_config_rom(device, device->generation)) {
1106
case REREAD_BIB_ERROR:
1107
if (device->config_rom_retries < MAX_RETRIES / 2 &&
1108
atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1109
device->config_rom_retries++;
1110
fw_schedule_device_work(device, RETRY_DELAY / 2);
1111
1112
return;
1113
}
1114
goto give_up;
1115
1116
case REREAD_BIB_GONE:
1117
goto gone;
1118
1119
case REREAD_BIB_UNCHANGED:
1120
if (atomic_cmpxchg(&device->state,
1121
FW_DEVICE_INITIALIZING,
1122
FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1123
goto gone;
1124
1125
fw_device_update(work);
1126
device->config_rom_retries = 0;
1127
goto out;
1128
1129
case REREAD_BIB_CHANGED:
1130
break;
1131
}
1132
1133
/*
1134
* Something changed. We keep things simple and don't investigate
1135
* further. We just destroy all previous units and create new ones.
1136
*/
1137
device_for_each_child(&device->device, NULL, shutdown_unit);
1138
1139
if (read_config_rom(device, device->generation) < 0) {
1140
if (device->config_rom_retries < MAX_RETRIES &&
1141
atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1142
device->config_rom_retries++;
1143
fw_schedule_device_work(device, RETRY_DELAY);
1144
1145
return;
1146
}
1147
goto give_up;
1148
}
1149
1150
fw_device_cdev_update(device);
1151
create_units(device);
1152
1153
/* Userspace may want to re-read attributes. */
1154
kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1155
1156
if (atomic_cmpxchg(&device->state,
1157
FW_DEVICE_INITIALIZING,
1158
FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1159
goto gone;
1160
1161
fw_notify("refreshed device %s\n", dev_name(&device->device));
1162
device->config_rom_retries = 0;
1163
goto out;
1164
1165
give_up:
1166
fw_notify("giving up on refresh of device %s\n", dev_name(&device->device));
1167
gone:
1168
atomic_set(&device->state, FW_DEVICE_GONE);
1169
PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1170
fw_schedule_device_work(device, SHUTDOWN_DELAY);
1171
out:
1172
if (node_id == card->root_node->node_id)
1173
fw_schedule_bm_work(card, 0);
1174
}
1175
1176
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1177
{
1178
struct fw_device *device;
1179
1180
switch (event) {
1181
case FW_NODE_CREATED:
1182
/*
1183
* Attempt to scan the node, regardless whether its self ID has
1184
* the L (link active) flag set or not. Some broken devices
1185
* send L=0 but have an up-and-running link; others send L=1
1186
* without actually having a link.
1187
*/
1188
create:
1189
device = kzalloc(sizeof(*device), GFP_ATOMIC);
1190
if (device == NULL)
1191
break;
1192
1193
/*
1194
* Do minimal intialization of the device here, the
1195
* rest will happen in fw_device_init().
1196
*
1197
* Attention: A lot of things, even fw_device_get(),
1198
* cannot be done before fw_device_init() finished!
1199
* You can basically just check device->state and
1200
* schedule work until then, but only while holding
1201
* card->lock.
1202
*/
1203
atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1204
device->card = fw_card_get(card);
1205
device->node = fw_node_get(node);
1206
device->node_id = node->node_id;
1207
device->generation = card->generation;
1208
device->is_local = node == card->local_node;
1209
mutex_init(&device->client_list_mutex);
1210
INIT_LIST_HEAD(&device->client_list);
1211
1212
/*
1213
* Set the node data to point back to this device so
1214
* FW_NODE_UPDATED callbacks can update the node_id
1215
* and generation for the device.
1216
*/
1217
node->data = device;
1218
1219
/*
1220
* Many devices are slow to respond after bus resets,
1221
* especially if they are bus powered and go through
1222
* power-up after getting plugged in. We schedule the
1223
* first config rom scan half a second after bus reset.
1224
*/
1225
INIT_DELAYED_WORK(&device->work, fw_device_init);
1226
fw_schedule_device_work(device, INITIAL_DELAY);
1227
break;
1228
1229
case FW_NODE_INITIATED_RESET:
1230
case FW_NODE_LINK_ON:
1231
device = node->data;
1232
if (device == NULL)
1233
goto create;
1234
1235
device->node_id = node->node_id;
1236
smp_wmb(); /* update node_id before generation */
1237
device->generation = card->generation;
1238
if (atomic_cmpxchg(&device->state,
1239
FW_DEVICE_RUNNING,
1240
FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1241
PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1242
fw_schedule_device_work(device,
1243
device->is_local ? 0 : INITIAL_DELAY);
1244
}
1245
break;
1246
1247
case FW_NODE_UPDATED:
1248
device = node->data;
1249
if (device == NULL)
1250
break;
1251
1252
device->node_id = node->node_id;
1253
smp_wmb(); /* update node_id before generation */
1254
device->generation = card->generation;
1255
if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1256
PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1257
fw_schedule_device_work(device, 0);
1258
}
1259
break;
1260
1261
case FW_NODE_DESTROYED:
1262
case FW_NODE_LINK_OFF:
1263
if (!node->data)
1264
break;
1265
1266
/*
1267
* Destroy the device associated with the node. There
1268
* are two cases here: either the device is fully
1269
* initialized (FW_DEVICE_RUNNING) or we're in the
1270
* process of reading its config rom
1271
* (FW_DEVICE_INITIALIZING). If it is fully
1272
* initialized we can reuse device->work to schedule a
1273
* full fw_device_shutdown(). If not, there's work
1274
* scheduled to read it's config rom, and we just put
1275
* the device in shutdown state to have that code fail
1276
* to create the device.
1277
*/
1278
device = node->data;
1279
if (atomic_xchg(&device->state,
1280
FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1281
PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1282
fw_schedule_device_work(device,
1283
list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1284
}
1285
break;
1286
}
1287
}
1288
1289