Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/firewire/core-iso.c
15109 views
1
/*
2
* Isochronous I/O functionality:
3
* - Isochronous DMA context management
4
* - Isochronous bus resource management (channels, bandwidth), client side
5
*
6
* Copyright (C) 2006 Kristian Hoegsberg <[email protected]>
7
*
8
* This program is free software; you can redistribute it and/or modify
9
* it under the terms of the GNU General Public License as published by
10
* the Free Software Foundation; either version 2 of the License, or
11
* (at your option) any later version.
12
*
13
* This program is distributed in the hope that it will be useful,
14
* but WITHOUT ANY WARRANTY; without even the implied warranty of
15
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16
* GNU General Public License for more details.
17
*
18
* You should have received a copy of the GNU General Public License
19
* along with this program; if not, write to the Free Software Foundation,
20
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
*/
22
23
#include <linux/dma-mapping.h>
24
#include <linux/errno.h>
25
#include <linux/firewire.h>
26
#include <linux/firewire-constants.h>
27
#include <linux/kernel.h>
28
#include <linux/mm.h>
29
#include <linux/slab.h>
30
#include <linux/spinlock.h>
31
#include <linux/vmalloc.h>
32
33
#include <asm/byteorder.h>
34
35
#include "core.h"
36
37
/*
38
* Isochronous DMA context management
39
*/
40
41
int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
42
int page_count, enum dma_data_direction direction)
43
{
44
int i, j;
45
dma_addr_t address;
46
47
buffer->page_count = page_count;
48
buffer->direction = direction;
49
50
buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
51
GFP_KERNEL);
52
if (buffer->pages == NULL)
53
goto out;
54
55
for (i = 0; i < buffer->page_count; i++) {
56
buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
57
if (buffer->pages[i] == NULL)
58
goto out_pages;
59
60
address = dma_map_page(card->device, buffer->pages[i],
61
0, PAGE_SIZE, direction);
62
if (dma_mapping_error(card->device, address)) {
63
__free_page(buffer->pages[i]);
64
goto out_pages;
65
}
66
set_page_private(buffer->pages[i], address);
67
}
68
69
return 0;
70
71
out_pages:
72
for (j = 0; j < i; j++) {
73
address = page_private(buffer->pages[j]);
74
dma_unmap_page(card->device, address,
75
PAGE_SIZE, direction);
76
__free_page(buffer->pages[j]);
77
}
78
kfree(buffer->pages);
79
out:
80
buffer->pages = NULL;
81
82
return -ENOMEM;
83
}
84
EXPORT_SYMBOL(fw_iso_buffer_init);
85
86
int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
87
{
88
unsigned long uaddr;
89
int i, err;
90
91
uaddr = vma->vm_start;
92
for (i = 0; i < buffer->page_count; i++) {
93
err = vm_insert_page(vma, uaddr, buffer->pages[i]);
94
if (err)
95
return err;
96
97
uaddr += PAGE_SIZE;
98
}
99
100
return 0;
101
}
102
103
void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
104
struct fw_card *card)
105
{
106
int i;
107
dma_addr_t address;
108
109
for (i = 0; i < buffer->page_count; i++) {
110
address = page_private(buffer->pages[i]);
111
dma_unmap_page(card->device, address,
112
PAGE_SIZE, buffer->direction);
113
__free_page(buffer->pages[i]);
114
}
115
116
kfree(buffer->pages);
117
buffer->pages = NULL;
118
}
119
EXPORT_SYMBOL(fw_iso_buffer_destroy);
120
121
/* Convert DMA address to offset into virtually contiguous buffer. */
122
size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
123
{
124
int i;
125
dma_addr_t address;
126
ssize_t offset;
127
128
for (i = 0; i < buffer->page_count; i++) {
129
address = page_private(buffer->pages[i]);
130
offset = (ssize_t)completed - (ssize_t)address;
131
if (offset > 0 && offset <= PAGE_SIZE)
132
return (i << PAGE_SHIFT) + offset;
133
}
134
135
return 0;
136
}
137
138
struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
139
int type, int channel, int speed, size_t header_size,
140
fw_iso_callback_t callback, void *callback_data)
141
{
142
struct fw_iso_context *ctx;
143
144
ctx = card->driver->allocate_iso_context(card,
145
type, channel, header_size);
146
if (IS_ERR(ctx))
147
return ctx;
148
149
ctx->card = card;
150
ctx->type = type;
151
ctx->channel = channel;
152
ctx->speed = speed;
153
ctx->header_size = header_size;
154
ctx->callback.sc = callback;
155
ctx->callback_data = callback_data;
156
157
return ctx;
158
}
159
EXPORT_SYMBOL(fw_iso_context_create);
160
161
void fw_iso_context_destroy(struct fw_iso_context *ctx)
162
{
163
ctx->card->driver->free_iso_context(ctx);
164
}
165
EXPORT_SYMBOL(fw_iso_context_destroy);
166
167
int fw_iso_context_start(struct fw_iso_context *ctx,
168
int cycle, int sync, int tags)
169
{
170
return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
171
}
172
EXPORT_SYMBOL(fw_iso_context_start);
173
174
int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
175
{
176
return ctx->card->driver->set_iso_channels(ctx, channels);
177
}
178
179
int fw_iso_context_queue(struct fw_iso_context *ctx,
180
struct fw_iso_packet *packet,
181
struct fw_iso_buffer *buffer,
182
unsigned long payload)
183
{
184
return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
185
}
186
EXPORT_SYMBOL(fw_iso_context_queue);
187
188
void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
189
{
190
ctx->card->driver->flush_queue_iso(ctx);
191
}
192
EXPORT_SYMBOL(fw_iso_context_queue_flush);
193
194
int fw_iso_context_stop(struct fw_iso_context *ctx)
195
{
196
return ctx->card->driver->stop_iso(ctx);
197
}
198
EXPORT_SYMBOL(fw_iso_context_stop);
199
200
/*
201
* Isochronous bus resource management (channels, bandwidth), client side
202
*/
203
204
static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
205
int bandwidth, bool allocate)
206
{
207
int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
208
__be32 data[2];
209
210
/*
211
* On a 1394a IRM with low contention, try < 1 is enough.
212
* On a 1394-1995 IRM, we need at least try < 2.
213
* Let's just do try < 5.
214
*/
215
for (try = 0; try < 5; try++) {
216
new = allocate ? old - bandwidth : old + bandwidth;
217
if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
218
return -EBUSY;
219
220
data[0] = cpu_to_be32(old);
221
data[1] = cpu_to_be32(new);
222
switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
223
irm_id, generation, SCODE_100,
224
CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
225
data, 8)) {
226
case RCODE_GENERATION:
227
/* A generation change frees all bandwidth. */
228
return allocate ? -EAGAIN : bandwidth;
229
230
case RCODE_COMPLETE:
231
if (be32_to_cpup(data) == old)
232
return bandwidth;
233
234
old = be32_to_cpup(data);
235
/* Fall through. */
236
}
237
}
238
239
return -EIO;
240
}
241
242
static int manage_channel(struct fw_card *card, int irm_id, int generation,
243
u32 channels_mask, u64 offset, bool allocate)
244
{
245
__be32 bit, all, old;
246
__be32 data[2];
247
int channel, ret = -EIO, retry = 5;
248
249
old = all = allocate ? cpu_to_be32(~0) : 0;
250
251
for (channel = 0; channel < 32; channel++) {
252
if (!(channels_mask & 1 << channel))
253
continue;
254
255
ret = -EBUSY;
256
257
bit = cpu_to_be32(1 << (31 - channel));
258
if ((old & bit) != (all & bit))
259
continue;
260
261
data[0] = old;
262
data[1] = old ^ bit;
263
switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
264
irm_id, generation, SCODE_100,
265
offset, data, 8)) {
266
case RCODE_GENERATION:
267
/* A generation change frees all channels. */
268
return allocate ? -EAGAIN : channel;
269
270
case RCODE_COMPLETE:
271
if (data[0] == old)
272
return channel;
273
274
old = data[0];
275
276
/* Is the IRM 1394a-2000 compliant? */
277
if ((data[0] & bit) == (data[1] & bit))
278
continue;
279
280
/* 1394-1995 IRM, fall through to retry. */
281
default:
282
if (retry) {
283
retry--;
284
channel--;
285
} else {
286
ret = -EIO;
287
}
288
}
289
}
290
291
return ret;
292
}
293
294
static void deallocate_channel(struct fw_card *card, int irm_id,
295
int generation, int channel)
296
{
297
u32 mask;
298
u64 offset;
299
300
mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
301
offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
302
CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
303
304
manage_channel(card, irm_id, generation, mask, offset, false);
305
}
306
307
/**
308
* fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
309
*
310
* In parameters: card, generation, channels_mask, bandwidth, allocate
311
* Out parameters: channel, bandwidth
312
* This function blocks (sleeps) during communication with the IRM.
313
*
314
* Allocates or deallocates at most one channel out of channels_mask.
315
* channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
316
* (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
317
* channel 0 and LSB for channel 63.)
318
* Allocates or deallocates as many bandwidth allocation units as specified.
319
*
320
* Returns channel < 0 if no channel was allocated or deallocated.
321
* Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
322
*
323
* If generation is stale, deallocations succeed but allocations fail with
324
* channel = -EAGAIN.
325
*
326
* If channel allocation fails, no bandwidth will be allocated either.
327
* If bandwidth allocation fails, no channel will be allocated either.
328
* But deallocations of channel and bandwidth are tried independently
329
* of each other's success.
330
*/
331
void fw_iso_resource_manage(struct fw_card *card, int generation,
332
u64 channels_mask, int *channel, int *bandwidth,
333
bool allocate)
334
{
335
u32 channels_hi = channels_mask; /* channels 31...0 */
336
u32 channels_lo = channels_mask >> 32; /* channels 63...32 */
337
int irm_id, ret, c = -EINVAL;
338
339
spin_lock_irq(&card->lock);
340
irm_id = card->irm_node->node_id;
341
spin_unlock_irq(&card->lock);
342
343
if (channels_hi)
344
c = manage_channel(card, irm_id, generation, channels_hi,
345
CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
346
allocate);
347
if (channels_lo && c < 0) {
348
c = manage_channel(card, irm_id, generation, channels_lo,
349
CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
350
allocate);
351
if (c >= 0)
352
c += 32;
353
}
354
*channel = c;
355
356
if (allocate && channels_mask != 0 && c < 0)
357
*bandwidth = 0;
358
359
if (*bandwidth == 0)
360
return;
361
362
ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
363
if (ret < 0)
364
*bandwidth = 0;
365
366
if (allocate && ret < 0) {
367
if (c >= 0)
368
deallocate_channel(card, irm_id, generation, c);
369
*channel = ret;
370
}
371
}
372
EXPORT_SYMBOL(fw_iso_resource_manage);
373
374