Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/firewire/net.c
15109 views
1
/*
2
* IPv4 over IEEE 1394, per RFC 2734
3
*
4
* Copyright (C) 2009 Jay Fenlason <[email protected]>
5
*
6
* based on eth1394 by Ben Collins et al
7
*/
8
9
#include <linux/bug.h>
10
#include <linux/delay.h>
11
#include <linux/device.h>
12
#include <linux/ethtool.h>
13
#include <linux/firewire.h>
14
#include <linux/firewire-constants.h>
15
#include <linux/highmem.h>
16
#include <linux/in.h>
17
#include <linux/ip.h>
18
#include <linux/jiffies.h>
19
#include <linux/mod_devicetable.h>
20
#include <linux/module.h>
21
#include <linux/moduleparam.h>
22
#include <linux/mutex.h>
23
#include <linux/netdevice.h>
24
#include <linux/skbuff.h>
25
#include <linux/slab.h>
26
#include <linux/spinlock.h>
27
28
#include <asm/unaligned.h>
29
#include <net/arp.h>
30
31
/* rx limits */
32
#define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */
33
#define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2)
34
35
/* tx limits */
36
#define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */
37
#define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */
38
#define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */
39
40
#define IEEE1394_BROADCAST_CHANNEL 31
41
#define IEEE1394_ALL_NODES (0xffc0 | 0x003f)
42
#define IEEE1394_MAX_PAYLOAD_S100 512
43
#define FWNET_NO_FIFO_ADDR (~0ULL)
44
45
#define IANA_SPECIFIER_ID 0x00005eU
46
#define RFC2734_SW_VERSION 0x000001U
47
48
#define IEEE1394_GASP_HDR_SIZE 8
49
50
#define RFC2374_UNFRAG_HDR_SIZE 4
51
#define RFC2374_FRAG_HDR_SIZE 8
52
#define RFC2374_FRAG_OVERHEAD 4
53
54
#define RFC2374_HDR_UNFRAG 0 /* unfragmented */
55
#define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */
56
#define RFC2374_HDR_LASTFRAG 2 /* last fragment */
57
#define RFC2374_HDR_INTFRAG 3 /* interior fragment */
58
59
#define RFC2734_HW_ADDR_LEN 16
60
61
struct rfc2734_arp {
62
__be16 hw_type; /* 0x0018 */
63
__be16 proto_type; /* 0x0806 */
64
u8 hw_addr_len; /* 16 */
65
u8 ip_addr_len; /* 4 */
66
__be16 opcode; /* ARP Opcode */
67
/* Above is exactly the same format as struct arphdr */
68
69
__be64 s_uniq_id; /* Sender's 64bit EUI */
70
u8 max_rec; /* Sender's max packet size */
71
u8 sspd; /* Sender's max speed */
72
__be16 fifo_hi; /* hi 16bits of sender's FIFO addr */
73
__be32 fifo_lo; /* lo 32bits of sender's FIFO addr */
74
__be32 sip; /* Sender's IP Address */
75
__be32 tip; /* IP Address of requested hw addr */
76
} __attribute__((packed));
77
78
/* This header format is specific to this driver implementation. */
79
#define FWNET_ALEN 8
80
#define FWNET_HLEN 10
81
struct fwnet_header {
82
u8 h_dest[FWNET_ALEN]; /* destination address */
83
__be16 h_proto; /* packet type ID field */
84
} __attribute__((packed));
85
86
/* IPv4 and IPv6 encapsulation header */
87
struct rfc2734_header {
88
u32 w0;
89
u32 w1;
90
};
91
92
#define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30)
93
#define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff))
94
#define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16)
95
#define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff))
96
#define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16)
97
98
#define fwnet_set_hdr_lf(lf) ((lf) << 30)
99
#define fwnet_set_hdr_ether_type(et) (et)
100
#define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16)
101
#define fwnet_set_hdr_fg_off(fgo) (fgo)
102
103
#define fwnet_set_hdr_dgl(dgl) ((dgl) << 16)
104
105
static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
106
unsigned ether_type)
107
{
108
hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
109
| fwnet_set_hdr_ether_type(ether_type);
110
}
111
112
static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
113
unsigned ether_type, unsigned dg_size, unsigned dgl)
114
{
115
hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
116
| fwnet_set_hdr_dg_size(dg_size)
117
| fwnet_set_hdr_ether_type(ether_type);
118
hdr->w1 = fwnet_set_hdr_dgl(dgl);
119
}
120
121
static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
122
unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
123
{
124
hdr->w0 = fwnet_set_hdr_lf(lf)
125
| fwnet_set_hdr_dg_size(dg_size)
126
| fwnet_set_hdr_fg_off(fg_off);
127
hdr->w1 = fwnet_set_hdr_dgl(dgl);
128
}
129
130
/* This list keeps track of what parts of the datagram have been filled in */
131
struct fwnet_fragment_info {
132
struct list_head fi_link;
133
u16 offset;
134
u16 len;
135
};
136
137
struct fwnet_partial_datagram {
138
struct list_head pd_link;
139
struct list_head fi_list;
140
struct sk_buff *skb;
141
/* FIXME Why not use skb->data? */
142
char *pbuf;
143
u16 datagram_label;
144
u16 ether_type;
145
u16 datagram_size;
146
};
147
148
static DEFINE_MUTEX(fwnet_device_mutex);
149
static LIST_HEAD(fwnet_device_list);
150
151
struct fwnet_device {
152
struct list_head dev_link;
153
spinlock_t lock;
154
enum {
155
FWNET_BROADCAST_ERROR,
156
FWNET_BROADCAST_RUNNING,
157
FWNET_BROADCAST_STOPPED,
158
} broadcast_state;
159
struct fw_iso_context *broadcast_rcv_context;
160
struct fw_iso_buffer broadcast_rcv_buffer;
161
void **broadcast_rcv_buffer_ptrs;
162
unsigned broadcast_rcv_next_ptr;
163
unsigned num_broadcast_rcv_ptrs;
164
unsigned rcv_buffer_size;
165
/*
166
* This value is the maximum unfragmented datagram size that can be
167
* sent by the hardware. It already has the GASP overhead and the
168
* unfragmented datagram header overhead calculated into it.
169
*/
170
unsigned broadcast_xmt_max_payload;
171
u16 broadcast_xmt_datagramlabel;
172
173
/*
174
* The CSR address that remote nodes must send datagrams to for us to
175
* receive them.
176
*/
177
struct fw_address_handler handler;
178
u64 local_fifo;
179
180
/* Number of tx datagrams that have been queued but not yet acked */
181
int queued_datagrams;
182
183
int peer_count;
184
struct list_head peer_list;
185
struct fw_card *card;
186
struct net_device *netdev;
187
};
188
189
struct fwnet_peer {
190
struct list_head peer_link;
191
struct fwnet_device *dev;
192
u64 guid;
193
u64 fifo;
194
__be32 ip;
195
196
/* guarded by dev->lock */
197
struct list_head pd_list; /* received partial datagrams */
198
unsigned pdg_size; /* pd_list size */
199
200
u16 datagram_label; /* outgoing datagram label */
201
u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */
202
int node_id;
203
int generation;
204
unsigned speed;
205
};
206
207
/* This is our task struct. It's used for the packet complete callback. */
208
struct fwnet_packet_task {
209
struct fw_transaction transaction;
210
struct rfc2734_header hdr;
211
struct sk_buff *skb;
212
struct fwnet_device *dev;
213
214
int outstanding_pkts;
215
u64 fifo_addr;
216
u16 dest_node;
217
u16 max_payload;
218
u8 generation;
219
u8 speed;
220
u8 enqueued;
221
};
222
223
/*
224
* saddr == NULL means use device source address.
225
* daddr == NULL means leave destination address (eg unresolved arp).
226
*/
227
static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
228
unsigned short type, const void *daddr,
229
const void *saddr, unsigned len)
230
{
231
struct fwnet_header *h;
232
233
h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
234
put_unaligned_be16(type, &h->h_proto);
235
236
if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
237
memset(h->h_dest, 0, net->addr_len);
238
239
return net->hard_header_len;
240
}
241
242
if (daddr) {
243
memcpy(h->h_dest, daddr, net->addr_len);
244
245
return net->hard_header_len;
246
}
247
248
return -net->hard_header_len;
249
}
250
251
static int fwnet_header_rebuild(struct sk_buff *skb)
252
{
253
struct fwnet_header *h = (struct fwnet_header *)skb->data;
254
255
if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
256
return arp_find((unsigned char *)&h->h_dest, skb);
257
258
fw_notify("%s: unable to resolve type %04x addresses\n",
259
skb->dev->name, be16_to_cpu(h->h_proto));
260
return 0;
261
}
262
263
static int fwnet_header_cache(const struct neighbour *neigh,
264
struct hh_cache *hh)
265
{
266
struct net_device *net;
267
struct fwnet_header *h;
268
269
if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
270
return -1;
271
net = neigh->dev;
272
h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
273
h->h_proto = hh->hh_type;
274
memcpy(h->h_dest, neigh->ha, net->addr_len);
275
hh->hh_len = FWNET_HLEN;
276
277
return 0;
278
}
279
280
/* Called by Address Resolution module to notify changes in address. */
281
static void fwnet_header_cache_update(struct hh_cache *hh,
282
const struct net_device *net, const unsigned char *haddr)
283
{
284
memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
285
}
286
287
static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
288
{
289
memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
290
291
return FWNET_ALEN;
292
}
293
294
static const struct header_ops fwnet_header_ops = {
295
.create = fwnet_header_create,
296
.rebuild = fwnet_header_rebuild,
297
.cache = fwnet_header_cache,
298
.cache_update = fwnet_header_cache_update,
299
.parse = fwnet_header_parse,
300
};
301
302
/* FIXME: is this correct for all cases? */
303
static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
304
unsigned offset, unsigned len)
305
{
306
struct fwnet_fragment_info *fi;
307
unsigned end = offset + len;
308
309
list_for_each_entry(fi, &pd->fi_list, fi_link)
310
if (offset < fi->offset + fi->len && end > fi->offset)
311
return true;
312
313
return false;
314
}
315
316
/* Assumes that new fragment does not overlap any existing fragments */
317
static struct fwnet_fragment_info *fwnet_frag_new(
318
struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
319
{
320
struct fwnet_fragment_info *fi, *fi2, *new;
321
struct list_head *list;
322
323
list = &pd->fi_list;
324
list_for_each_entry(fi, &pd->fi_list, fi_link) {
325
if (fi->offset + fi->len == offset) {
326
/* The new fragment can be tacked on to the end */
327
/* Did the new fragment plug a hole? */
328
fi2 = list_entry(fi->fi_link.next,
329
struct fwnet_fragment_info, fi_link);
330
if (fi->offset + fi->len == fi2->offset) {
331
/* glue fragments together */
332
fi->len += len + fi2->len;
333
list_del(&fi2->fi_link);
334
kfree(fi2);
335
} else {
336
fi->len += len;
337
}
338
339
return fi;
340
}
341
if (offset + len == fi->offset) {
342
/* The new fragment can be tacked on to the beginning */
343
/* Did the new fragment plug a hole? */
344
fi2 = list_entry(fi->fi_link.prev,
345
struct fwnet_fragment_info, fi_link);
346
if (fi2->offset + fi2->len == fi->offset) {
347
/* glue fragments together */
348
fi2->len += fi->len + len;
349
list_del(&fi->fi_link);
350
kfree(fi);
351
352
return fi2;
353
}
354
fi->offset = offset;
355
fi->len += len;
356
357
return fi;
358
}
359
if (offset > fi->offset + fi->len) {
360
list = &fi->fi_link;
361
break;
362
}
363
if (offset + len < fi->offset) {
364
list = fi->fi_link.prev;
365
break;
366
}
367
}
368
369
new = kmalloc(sizeof(*new), GFP_ATOMIC);
370
if (!new) {
371
fw_error("out of memory\n");
372
return NULL;
373
}
374
375
new->offset = offset;
376
new->len = len;
377
list_add(&new->fi_link, list);
378
379
return new;
380
}
381
382
static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
383
struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
384
void *frag_buf, unsigned frag_off, unsigned frag_len)
385
{
386
struct fwnet_partial_datagram *new;
387
struct fwnet_fragment_info *fi;
388
389
new = kmalloc(sizeof(*new), GFP_ATOMIC);
390
if (!new)
391
goto fail;
392
393
INIT_LIST_HEAD(&new->fi_list);
394
fi = fwnet_frag_new(new, frag_off, frag_len);
395
if (fi == NULL)
396
goto fail_w_new;
397
398
new->datagram_label = datagram_label;
399
new->datagram_size = dg_size;
400
new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
401
if (new->skb == NULL)
402
goto fail_w_fi;
403
404
skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
405
new->pbuf = skb_put(new->skb, dg_size);
406
memcpy(new->pbuf + frag_off, frag_buf, frag_len);
407
list_add_tail(&new->pd_link, &peer->pd_list);
408
409
return new;
410
411
fail_w_fi:
412
kfree(fi);
413
fail_w_new:
414
kfree(new);
415
fail:
416
fw_error("out of memory\n");
417
418
return NULL;
419
}
420
421
static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
422
u16 datagram_label)
423
{
424
struct fwnet_partial_datagram *pd;
425
426
list_for_each_entry(pd, &peer->pd_list, pd_link)
427
if (pd->datagram_label == datagram_label)
428
return pd;
429
430
return NULL;
431
}
432
433
434
static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
435
{
436
struct fwnet_fragment_info *fi, *n;
437
438
list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
439
kfree(fi);
440
441
list_del(&old->pd_link);
442
dev_kfree_skb_any(old->skb);
443
kfree(old);
444
}
445
446
static bool fwnet_pd_update(struct fwnet_peer *peer,
447
struct fwnet_partial_datagram *pd, void *frag_buf,
448
unsigned frag_off, unsigned frag_len)
449
{
450
if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
451
return false;
452
453
memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
454
455
/*
456
* Move list entry to beginning of list so that oldest partial
457
* datagrams percolate to the end of the list
458
*/
459
list_move_tail(&pd->pd_link, &peer->pd_list);
460
461
return true;
462
}
463
464
static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
465
{
466
struct fwnet_fragment_info *fi;
467
468
fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
469
470
return fi->len == pd->datagram_size;
471
}
472
473
/* caller must hold dev->lock */
474
static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
475
u64 guid)
476
{
477
struct fwnet_peer *peer;
478
479
list_for_each_entry(peer, &dev->peer_list, peer_link)
480
if (peer->guid == guid)
481
return peer;
482
483
return NULL;
484
}
485
486
/* caller must hold dev->lock */
487
static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
488
int node_id, int generation)
489
{
490
struct fwnet_peer *peer;
491
492
list_for_each_entry(peer, &dev->peer_list, peer_link)
493
if (peer->node_id == node_id &&
494
peer->generation == generation)
495
return peer;
496
497
return NULL;
498
}
499
500
/* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
501
static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
502
{
503
max_rec = min(max_rec, speed + 8);
504
max_rec = min(max_rec, 0xbU); /* <= 4096 */
505
if (max_rec < 8) {
506
fw_notify("max_rec %x out of range\n", max_rec);
507
max_rec = 8;
508
}
509
510
return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
511
}
512
513
514
static int fwnet_finish_incoming_packet(struct net_device *net,
515
struct sk_buff *skb, u16 source_node_id,
516
bool is_broadcast, u16 ether_type)
517
{
518
struct fwnet_device *dev;
519
static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
520
int status;
521
__be64 guid;
522
523
dev = netdev_priv(net);
524
/* Write metadata, and then pass to the receive level */
525
skb->dev = net;
526
skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
527
528
/*
529
* Parse the encapsulation header. This actually does the job of
530
* converting to an ethernet frame header, as well as arp
531
* conversion if needed. ARP conversion is easier in this
532
* direction, since we are using ethernet as our backend.
533
*/
534
/*
535
* If this is an ARP packet, convert it. First, we want to make
536
* use of some of the fields, since they tell us a little bit
537
* about the sending machine.
538
*/
539
if (ether_type == ETH_P_ARP) {
540
struct rfc2734_arp *arp1394;
541
struct arphdr *arp;
542
unsigned char *arp_ptr;
543
u64 fifo_addr;
544
u64 peer_guid;
545
unsigned sspd;
546
u16 max_payload;
547
struct fwnet_peer *peer;
548
unsigned long flags;
549
550
arp1394 = (struct rfc2734_arp *)skb->data;
551
arp = (struct arphdr *)skb->data;
552
arp_ptr = (unsigned char *)(arp + 1);
553
peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
554
fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
555
| get_unaligned_be32(&arp1394->fifo_lo);
556
557
sspd = arp1394->sspd;
558
/* Sanity check. OS X 10.3 PPC reportedly sends 131. */
559
if (sspd > SCODE_3200) {
560
fw_notify("sspd %x out of range\n", sspd);
561
sspd = SCODE_3200;
562
}
563
max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
564
565
spin_lock_irqsave(&dev->lock, flags);
566
peer = fwnet_peer_find_by_guid(dev, peer_guid);
567
if (peer) {
568
peer->fifo = fifo_addr;
569
570
if (peer->speed > sspd)
571
peer->speed = sspd;
572
if (peer->max_payload > max_payload)
573
peer->max_payload = max_payload;
574
575
peer->ip = arp1394->sip;
576
}
577
spin_unlock_irqrestore(&dev->lock, flags);
578
579
if (!peer) {
580
fw_notify("No peer for ARP packet from %016llx\n",
581
(unsigned long long)peer_guid);
582
goto no_peer;
583
}
584
585
/*
586
* Now that we're done with the 1394 specific stuff, we'll
587
* need to alter some of the data. Believe it or not, all
588
* that needs to be done is sender_IP_address needs to be
589
* moved, the destination hardware address get stuffed
590
* in and the hardware address length set to 8.
591
*
592
* IMPORTANT: The code below overwrites 1394 specific data
593
* needed above so keep the munging of the data for the
594
* higher level IP stack last.
595
*/
596
597
arp->ar_hln = 8;
598
/* skip over sender unique id */
599
arp_ptr += arp->ar_hln;
600
/* move sender IP addr */
601
put_unaligned(arp1394->sip, (u32 *)arp_ptr);
602
/* skip over sender IP addr */
603
arp_ptr += arp->ar_pln;
604
605
if (arp->ar_op == htons(ARPOP_REQUEST))
606
memset(arp_ptr, 0, sizeof(u64));
607
else
608
memcpy(arp_ptr, net->dev_addr, sizeof(u64));
609
}
610
611
/* Now add the ethernet header. */
612
guid = cpu_to_be64(dev->card->guid);
613
if (dev_hard_header(skb, net, ether_type,
614
is_broadcast ? &broadcast_hw : &guid,
615
NULL, skb->len) >= 0) {
616
struct fwnet_header *eth;
617
u16 *rawp;
618
__be16 protocol;
619
620
skb_reset_mac_header(skb);
621
skb_pull(skb, sizeof(*eth));
622
eth = (struct fwnet_header *)skb_mac_header(skb);
623
if (*eth->h_dest & 1) {
624
if (memcmp(eth->h_dest, net->broadcast,
625
net->addr_len) == 0)
626
skb->pkt_type = PACKET_BROADCAST;
627
#if 0
628
else
629
skb->pkt_type = PACKET_MULTICAST;
630
#endif
631
} else {
632
if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
633
skb->pkt_type = PACKET_OTHERHOST;
634
}
635
if (ntohs(eth->h_proto) >= 1536) {
636
protocol = eth->h_proto;
637
} else {
638
rawp = (u16 *)skb->data;
639
if (*rawp == 0xffff)
640
protocol = htons(ETH_P_802_3);
641
else
642
protocol = htons(ETH_P_802_2);
643
}
644
skb->protocol = protocol;
645
}
646
status = netif_rx(skb);
647
if (status == NET_RX_DROP) {
648
net->stats.rx_errors++;
649
net->stats.rx_dropped++;
650
} else {
651
net->stats.rx_packets++;
652
net->stats.rx_bytes += skb->len;
653
}
654
655
return 0;
656
657
no_peer:
658
net->stats.rx_errors++;
659
net->stats.rx_dropped++;
660
661
dev_kfree_skb_any(skb);
662
663
return -ENOENT;
664
}
665
666
static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
667
int source_node_id, int generation,
668
bool is_broadcast)
669
{
670
struct sk_buff *skb;
671
struct net_device *net = dev->netdev;
672
struct rfc2734_header hdr;
673
unsigned lf;
674
unsigned long flags;
675
struct fwnet_peer *peer;
676
struct fwnet_partial_datagram *pd;
677
int fg_off;
678
int dg_size;
679
u16 datagram_label;
680
int retval;
681
u16 ether_type;
682
683
hdr.w0 = be32_to_cpu(buf[0]);
684
lf = fwnet_get_hdr_lf(&hdr);
685
if (lf == RFC2374_HDR_UNFRAG) {
686
/*
687
* An unfragmented datagram has been received by the ieee1394
688
* bus. Build an skbuff around it so we can pass it to the
689
* high level network layer.
690
*/
691
ether_type = fwnet_get_hdr_ether_type(&hdr);
692
buf++;
693
len -= RFC2374_UNFRAG_HDR_SIZE;
694
695
skb = dev_alloc_skb(len + net->hard_header_len + 15);
696
if (unlikely(!skb)) {
697
fw_error("out of memory\n");
698
net->stats.rx_dropped++;
699
700
return -ENOMEM;
701
}
702
skb_reserve(skb, (net->hard_header_len + 15) & ~15);
703
memcpy(skb_put(skb, len), buf, len);
704
705
return fwnet_finish_incoming_packet(net, skb, source_node_id,
706
is_broadcast, ether_type);
707
}
708
/* A datagram fragment has been received, now the fun begins. */
709
hdr.w1 = ntohl(buf[1]);
710
buf += 2;
711
len -= RFC2374_FRAG_HDR_SIZE;
712
if (lf == RFC2374_HDR_FIRSTFRAG) {
713
ether_type = fwnet_get_hdr_ether_type(&hdr);
714
fg_off = 0;
715
} else {
716
ether_type = 0;
717
fg_off = fwnet_get_hdr_fg_off(&hdr);
718
}
719
datagram_label = fwnet_get_hdr_dgl(&hdr);
720
dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
721
722
spin_lock_irqsave(&dev->lock, flags);
723
724
peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
725
if (!peer) {
726
retval = -ENOENT;
727
goto fail;
728
}
729
730
pd = fwnet_pd_find(peer, datagram_label);
731
if (pd == NULL) {
732
while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
733
/* remove the oldest */
734
fwnet_pd_delete(list_first_entry(&peer->pd_list,
735
struct fwnet_partial_datagram, pd_link));
736
peer->pdg_size--;
737
}
738
pd = fwnet_pd_new(net, peer, datagram_label,
739
dg_size, buf, fg_off, len);
740
if (pd == NULL) {
741
retval = -ENOMEM;
742
goto fail;
743
}
744
peer->pdg_size++;
745
} else {
746
if (fwnet_frag_overlap(pd, fg_off, len) ||
747
pd->datagram_size != dg_size) {
748
/*
749
* Differing datagram sizes or overlapping fragments,
750
* discard old datagram and start a new one.
751
*/
752
fwnet_pd_delete(pd);
753
pd = fwnet_pd_new(net, peer, datagram_label,
754
dg_size, buf, fg_off, len);
755
if (pd == NULL) {
756
peer->pdg_size--;
757
retval = -ENOMEM;
758
goto fail;
759
}
760
} else {
761
if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
762
/*
763
* Couldn't save off fragment anyway
764
* so might as well obliterate the
765
* datagram now.
766
*/
767
fwnet_pd_delete(pd);
768
peer->pdg_size--;
769
retval = -ENOMEM;
770
goto fail;
771
}
772
}
773
} /* new datagram or add to existing one */
774
775
if (lf == RFC2374_HDR_FIRSTFRAG)
776
pd->ether_type = ether_type;
777
778
if (fwnet_pd_is_complete(pd)) {
779
ether_type = pd->ether_type;
780
peer->pdg_size--;
781
skb = skb_get(pd->skb);
782
fwnet_pd_delete(pd);
783
784
spin_unlock_irqrestore(&dev->lock, flags);
785
786
return fwnet_finish_incoming_packet(net, skb, source_node_id,
787
false, ether_type);
788
}
789
/*
790
* Datagram is not complete, we're done for the
791
* moment.
792
*/
793
retval = 0;
794
fail:
795
spin_unlock_irqrestore(&dev->lock, flags);
796
797
return retval;
798
}
799
800
static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
801
int tcode, int destination, int source, int generation,
802
unsigned long long offset, void *payload, size_t length,
803
void *callback_data)
804
{
805
struct fwnet_device *dev = callback_data;
806
int rcode;
807
808
if (destination == IEEE1394_ALL_NODES) {
809
kfree(r);
810
811
return;
812
}
813
814
if (offset != dev->handler.offset)
815
rcode = RCODE_ADDRESS_ERROR;
816
else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
817
rcode = RCODE_TYPE_ERROR;
818
else if (fwnet_incoming_packet(dev, payload, length,
819
source, generation, false) != 0) {
820
fw_error("Incoming packet failure\n");
821
rcode = RCODE_CONFLICT_ERROR;
822
} else
823
rcode = RCODE_COMPLETE;
824
825
fw_send_response(card, r, rcode);
826
}
827
828
static void fwnet_receive_broadcast(struct fw_iso_context *context,
829
u32 cycle, size_t header_length, void *header, void *data)
830
{
831
struct fwnet_device *dev;
832
struct fw_iso_packet packet;
833
struct fw_card *card;
834
__be16 *hdr_ptr;
835
__be32 *buf_ptr;
836
int retval;
837
u32 length;
838
u16 source_node_id;
839
u32 specifier_id;
840
u32 ver;
841
unsigned long offset;
842
unsigned long flags;
843
844
dev = data;
845
card = dev->card;
846
hdr_ptr = header;
847
length = be16_to_cpup(hdr_ptr);
848
849
spin_lock_irqsave(&dev->lock, flags);
850
851
offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
852
buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
853
if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
854
dev->broadcast_rcv_next_ptr = 0;
855
856
spin_unlock_irqrestore(&dev->lock, flags);
857
858
specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
859
| (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
860
ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
861
source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
862
863
if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
864
buf_ptr += 2;
865
length -= IEEE1394_GASP_HDR_SIZE;
866
fwnet_incoming_packet(dev, buf_ptr, length,
867
source_node_id, -1, true);
868
}
869
870
packet.payload_length = dev->rcv_buffer_size;
871
packet.interrupt = 1;
872
packet.skip = 0;
873
packet.tag = 3;
874
packet.sy = 0;
875
packet.header_length = IEEE1394_GASP_HDR_SIZE;
876
877
spin_lock_irqsave(&dev->lock, flags);
878
879
retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
880
&dev->broadcast_rcv_buffer, offset);
881
882
spin_unlock_irqrestore(&dev->lock, flags);
883
884
if (retval >= 0)
885
fw_iso_context_queue_flush(dev->broadcast_rcv_context);
886
else
887
fw_error("requeue failed\n");
888
}
889
890
static struct kmem_cache *fwnet_packet_task_cache;
891
892
static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
893
{
894
dev_kfree_skb_any(ptask->skb);
895
kmem_cache_free(fwnet_packet_task_cache, ptask);
896
}
897
898
/* Caller must hold dev->lock. */
899
static void dec_queued_datagrams(struct fwnet_device *dev)
900
{
901
if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
902
netif_wake_queue(dev->netdev);
903
}
904
905
static int fwnet_send_packet(struct fwnet_packet_task *ptask);
906
907
static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
908
{
909
struct fwnet_device *dev = ptask->dev;
910
struct sk_buff *skb = ptask->skb;
911
unsigned long flags;
912
bool free;
913
914
spin_lock_irqsave(&dev->lock, flags);
915
916
ptask->outstanding_pkts--;
917
918
/* Check whether we or the networking TX soft-IRQ is last user. */
919
free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
920
if (free)
921
dec_queued_datagrams(dev);
922
923
if (ptask->outstanding_pkts == 0) {
924
dev->netdev->stats.tx_packets++;
925
dev->netdev->stats.tx_bytes += skb->len;
926
}
927
928
spin_unlock_irqrestore(&dev->lock, flags);
929
930
if (ptask->outstanding_pkts > 0) {
931
u16 dg_size;
932
u16 fg_off;
933
u16 datagram_label;
934
u16 lf;
935
936
/* Update the ptask to point to the next fragment and send it */
937
lf = fwnet_get_hdr_lf(&ptask->hdr);
938
switch (lf) {
939
case RFC2374_HDR_LASTFRAG:
940
case RFC2374_HDR_UNFRAG:
941
default:
942
fw_error("Outstanding packet %x lf %x, header %x,%x\n",
943
ptask->outstanding_pkts, lf, ptask->hdr.w0,
944
ptask->hdr.w1);
945
BUG();
946
947
case RFC2374_HDR_FIRSTFRAG:
948
/* Set frag type here for future interior fragments */
949
dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
950
fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
951
datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
952
break;
953
954
case RFC2374_HDR_INTFRAG:
955
dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
956
fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
957
+ ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
958
datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
959
break;
960
}
961
962
skb_pull(skb, ptask->max_payload);
963
if (ptask->outstanding_pkts > 1) {
964
fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
965
dg_size, fg_off, datagram_label);
966
} else {
967
fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
968
dg_size, fg_off, datagram_label);
969
ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
970
}
971
fwnet_send_packet(ptask);
972
}
973
974
if (free)
975
fwnet_free_ptask(ptask);
976
}
977
978
static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
979
{
980
struct fwnet_device *dev = ptask->dev;
981
unsigned long flags;
982
bool free;
983
984
spin_lock_irqsave(&dev->lock, flags);
985
986
/* One fragment failed; don't try to send remaining fragments. */
987
ptask->outstanding_pkts = 0;
988
989
/* Check whether we or the networking TX soft-IRQ is last user. */
990
free = ptask->enqueued;
991
if (free)
992
dec_queued_datagrams(dev);
993
994
dev->netdev->stats.tx_dropped++;
995
dev->netdev->stats.tx_errors++;
996
997
spin_unlock_irqrestore(&dev->lock, flags);
998
999
if (free)
1000
fwnet_free_ptask(ptask);
1001
}
1002
1003
static void fwnet_write_complete(struct fw_card *card, int rcode,
1004
void *payload, size_t length, void *data)
1005
{
1006
struct fwnet_packet_task *ptask = data;
1007
static unsigned long j;
1008
static int last_rcode, errors_skipped;
1009
1010
if (rcode == RCODE_COMPLETE) {
1011
fwnet_transmit_packet_done(ptask);
1012
} else {
1013
fwnet_transmit_packet_failed(ptask);
1014
1015
if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) {
1016
fw_error("fwnet_write_complete: "
1017
"failed: %x (skipped %d)\n", rcode, errors_skipped);
1018
1019
errors_skipped = 0;
1020
last_rcode = rcode;
1021
} else
1022
errors_skipped++;
1023
}
1024
}
1025
1026
static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1027
{
1028
struct fwnet_device *dev;
1029
unsigned tx_len;
1030
struct rfc2734_header *bufhdr;
1031
unsigned long flags;
1032
bool free;
1033
1034
dev = ptask->dev;
1035
tx_len = ptask->max_payload;
1036
switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1037
case RFC2374_HDR_UNFRAG:
1038
bufhdr = (struct rfc2734_header *)
1039
skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1040
put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1041
break;
1042
1043
case RFC2374_HDR_FIRSTFRAG:
1044
case RFC2374_HDR_INTFRAG:
1045
case RFC2374_HDR_LASTFRAG:
1046
bufhdr = (struct rfc2734_header *)
1047
skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1048
put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1049
put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1050
break;
1051
1052
default:
1053
BUG();
1054
}
1055
if (ptask->dest_node == IEEE1394_ALL_NODES) {
1056
u8 *p;
1057
int generation;
1058
int node_id;
1059
1060
/* ptask->generation may not have been set yet */
1061
generation = dev->card->generation;
1062
smp_rmb();
1063
node_id = dev->card->node_id;
1064
1065
p = skb_push(ptask->skb, 8);
1066
put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1067
put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1068
| RFC2734_SW_VERSION, &p[4]);
1069
1070
/* We should not transmit if broadcast_channel.valid == 0. */
1071
fw_send_request(dev->card, &ptask->transaction,
1072
TCODE_STREAM_DATA,
1073
fw_stream_packet_destination_id(3,
1074
IEEE1394_BROADCAST_CHANNEL, 0),
1075
generation, SCODE_100, 0ULL, ptask->skb->data,
1076
tx_len + 8, fwnet_write_complete, ptask);
1077
1078
spin_lock_irqsave(&dev->lock, flags);
1079
1080
/* If the AT tasklet already ran, we may be last user. */
1081
free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1082
if (!free)
1083
ptask->enqueued = true;
1084
else
1085
dec_queued_datagrams(dev);
1086
1087
spin_unlock_irqrestore(&dev->lock, flags);
1088
1089
goto out;
1090
}
1091
1092
fw_send_request(dev->card, &ptask->transaction,
1093
TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1094
ptask->generation, ptask->speed, ptask->fifo_addr,
1095
ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1096
1097
spin_lock_irqsave(&dev->lock, flags);
1098
1099
/* If the AT tasklet already ran, we may be last user. */
1100
free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1101
if (!free)
1102
ptask->enqueued = true;
1103
else
1104
dec_queued_datagrams(dev);
1105
1106
spin_unlock_irqrestore(&dev->lock, flags);
1107
1108
dev->netdev->trans_start = jiffies;
1109
out:
1110
if (free)
1111
fwnet_free_ptask(ptask);
1112
1113
return 0;
1114
}
1115
1116
static int fwnet_broadcast_start(struct fwnet_device *dev)
1117
{
1118
struct fw_iso_context *context;
1119
int retval;
1120
unsigned num_packets;
1121
unsigned max_receive;
1122
struct fw_iso_packet packet;
1123
unsigned long offset;
1124
unsigned u;
1125
1126
if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1127
/* outside OHCI posted write area? */
1128
static const struct fw_address_region region = {
1129
.start = 0xffff00000000ULL,
1130
.end = CSR_REGISTER_BASE,
1131
};
1132
1133
dev->handler.length = 4096;
1134
dev->handler.address_callback = fwnet_receive_packet;
1135
dev->handler.callback_data = dev;
1136
1137
retval = fw_core_add_address_handler(&dev->handler, &region);
1138
if (retval < 0)
1139
goto failed_initial;
1140
1141
dev->local_fifo = dev->handler.offset;
1142
}
1143
1144
max_receive = 1U << (dev->card->max_receive + 1);
1145
num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1146
1147
if (!dev->broadcast_rcv_context) {
1148
void **ptrptr;
1149
1150
context = fw_iso_context_create(dev->card,
1151
FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1152
dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1153
if (IS_ERR(context)) {
1154
retval = PTR_ERR(context);
1155
goto failed_context_create;
1156
}
1157
1158
retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1159
dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1160
if (retval < 0)
1161
goto failed_buffer_init;
1162
1163
ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1164
if (!ptrptr) {
1165
retval = -ENOMEM;
1166
goto failed_ptrs_alloc;
1167
}
1168
1169
dev->broadcast_rcv_buffer_ptrs = ptrptr;
1170
for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1171
void *ptr;
1172
unsigned v;
1173
1174
ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1175
for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1176
*ptrptr++ = (void *)
1177
((char *)ptr + v * max_receive);
1178
}
1179
dev->broadcast_rcv_context = context;
1180
} else {
1181
context = dev->broadcast_rcv_context;
1182
}
1183
1184
packet.payload_length = max_receive;
1185
packet.interrupt = 1;
1186
packet.skip = 0;
1187
packet.tag = 3;
1188
packet.sy = 0;
1189
packet.header_length = IEEE1394_GASP_HDR_SIZE;
1190
offset = 0;
1191
1192
for (u = 0; u < num_packets; u++) {
1193
retval = fw_iso_context_queue(context, &packet,
1194
&dev->broadcast_rcv_buffer, offset);
1195
if (retval < 0)
1196
goto failed_rcv_queue;
1197
1198
offset += max_receive;
1199
}
1200
dev->num_broadcast_rcv_ptrs = num_packets;
1201
dev->rcv_buffer_size = max_receive;
1202
dev->broadcast_rcv_next_ptr = 0U;
1203
retval = fw_iso_context_start(context, -1, 0,
1204
FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1205
if (retval < 0)
1206
goto failed_rcv_queue;
1207
1208
/* FIXME: adjust it according to the min. speed of all known peers? */
1209
dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1210
- IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1211
dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1212
1213
return 0;
1214
1215
failed_rcv_queue:
1216
kfree(dev->broadcast_rcv_buffer_ptrs);
1217
dev->broadcast_rcv_buffer_ptrs = NULL;
1218
failed_ptrs_alloc:
1219
fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1220
failed_buffer_init:
1221
fw_iso_context_destroy(context);
1222
dev->broadcast_rcv_context = NULL;
1223
failed_context_create:
1224
fw_core_remove_address_handler(&dev->handler);
1225
failed_initial:
1226
dev->local_fifo = FWNET_NO_FIFO_ADDR;
1227
1228
return retval;
1229
}
1230
1231
static void set_carrier_state(struct fwnet_device *dev)
1232
{
1233
if (dev->peer_count > 1)
1234
netif_carrier_on(dev->netdev);
1235
else
1236
netif_carrier_off(dev->netdev);
1237
}
1238
1239
/* ifup */
1240
static int fwnet_open(struct net_device *net)
1241
{
1242
struct fwnet_device *dev = netdev_priv(net);
1243
int ret;
1244
1245
if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1246
ret = fwnet_broadcast_start(dev);
1247
if (ret)
1248
return ret;
1249
}
1250
netif_start_queue(net);
1251
1252
spin_lock_irq(&dev->lock);
1253
set_carrier_state(dev);
1254
spin_unlock_irq(&dev->lock);
1255
1256
return 0;
1257
}
1258
1259
/* ifdown */
1260
static int fwnet_stop(struct net_device *net)
1261
{
1262
netif_stop_queue(net);
1263
1264
/* Deallocate iso context for use by other applications? */
1265
1266
return 0;
1267
}
1268
1269
static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1270
{
1271
struct fwnet_header hdr_buf;
1272
struct fwnet_device *dev = netdev_priv(net);
1273
__be16 proto;
1274
u16 dest_node;
1275
unsigned max_payload;
1276
u16 dg_size;
1277
u16 *datagram_label_ptr;
1278
struct fwnet_packet_task *ptask;
1279
struct fwnet_peer *peer;
1280
unsigned long flags;
1281
1282
spin_lock_irqsave(&dev->lock, flags);
1283
1284
/* Can this happen? */
1285
if (netif_queue_stopped(dev->netdev)) {
1286
spin_unlock_irqrestore(&dev->lock, flags);
1287
1288
return NETDEV_TX_BUSY;
1289
}
1290
1291
ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1292
if (ptask == NULL)
1293
goto fail;
1294
1295
skb = skb_share_check(skb, GFP_ATOMIC);
1296
if (!skb)
1297
goto fail;
1298
1299
/*
1300
* Make a copy of the driver-specific header.
1301
* We might need to rebuild the header on tx failure.
1302
*/
1303
memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1304
skb_pull(skb, sizeof(hdr_buf));
1305
1306
proto = hdr_buf.h_proto;
1307
dg_size = skb->len;
1308
1309
/*
1310
* Set the transmission type for the packet. ARP packets and IP
1311
* broadcast packets are sent via GASP.
1312
*/
1313
if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1314
|| proto == htons(ETH_P_ARP)
1315
|| (proto == htons(ETH_P_IP)
1316
&& IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1317
max_payload = dev->broadcast_xmt_max_payload;
1318
datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1319
1320
ptask->fifo_addr = FWNET_NO_FIFO_ADDR;
1321
ptask->generation = 0;
1322
ptask->dest_node = IEEE1394_ALL_NODES;
1323
ptask->speed = SCODE_100;
1324
} else {
1325
__be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1326
u8 generation;
1327
1328
peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1329
if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1330
goto fail;
1331
1332
generation = peer->generation;
1333
dest_node = peer->node_id;
1334
max_payload = peer->max_payload;
1335
datagram_label_ptr = &peer->datagram_label;
1336
1337
ptask->fifo_addr = peer->fifo;
1338
ptask->generation = generation;
1339
ptask->dest_node = dest_node;
1340
ptask->speed = peer->speed;
1341
}
1342
1343
/* If this is an ARP packet, convert it */
1344
if (proto == htons(ETH_P_ARP)) {
1345
struct arphdr *arp = (struct arphdr *)skb->data;
1346
unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1347
struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1348
__be32 ipaddr;
1349
1350
ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1351
1352
arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN;
1353
arp1394->max_rec = dev->card->max_receive;
1354
arp1394->sspd = dev->card->link_speed;
1355
1356
put_unaligned_be16(dev->local_fifo >> 32,
1357
&arp1394->fifo_hi);
1358
put_unaligned_be32(dev->local_fifo & 0xffffffff,
1359
&arp1394->fifo_lo);
1360
put_unaligned(ipaddr, &arp1394->sip);
1361
}
1362
1363
ptask->hdr.w0 = 0;
1364
ptask->hdr.w1 = 0;
1365
ptask->skb = skb;
1366
ptask->dev = dev;
1367
1368
/* Does it all fit in one packet? */
1369
if (dg_size <= max_payload) {
1370
fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1371
ptask->outstanding_pkts = 1;
1372
max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1373
} else {
1374
u16 datagram_label;
1375
1376
max_payload -= RFC2374_FRAG_OVERHEAD;
1377
datagram_label = (*datagram_label_ptr)++;
1378
fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1379
datagram_label);
1380
ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1381
max_payload += RFC2374_FRAG_HDR_SIZE;
1382
}
1383
1384
if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1385
netif_stop_queue(dev->netdev);
1386
1387
spin_unlock_irqrestore(&dev->lock, flags);
1388
1389
ptask->max_payload = max_payload;
1390
ptask->enqueued = 0;
1391
1392
fwnet_send_packet(ptask);
1393
1394
return NETDEV_TX_OK;
1395
1396
fail:
1397
spin_unlock_irqrestore(&dev->lock, flags);
1398
1399
if (ptask)
1400
kmem_cache_free(fwnet_packet_task_cache, ptask);
1401
1402
if (skb != NULL)
1403
dev_kfree_skb(skb);
1404
1405
net->stats.tx_dropped++;
1406
net->stats.tx_errors++;
1407
1408
/*
1409
* FIXME: According to a patch from 2003-02-26, "returning non-zero
1410
* causes serious problems" here, allegedly. Before that patch,
1411
* -ERRNO was returned which is not appropriate under Linux 2.6.
1412
* Perhaps more needs to be done? Stop the queue in serious
1413
* conditions and restart it elsewhere?
1414
*/
1415
return NETDEV_TX_OK;
1416
}
1417
1418
static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1419
{
1420
if (new_mtu < 68)
1421
return -EINVAL;
1422
1423
net->mtu = new_mtu;
1424
return 0;
1425
}
1426
1427
static const struct ethtool_ops fwnet_ethtool_ops = {
1428
.get_link = ethtool_op_get_link,
1429
};
1430
1431
static const struct net_device_ops fwnet_netdev_ops = {
1432
.ndo_open = fwnet_open,
1433
.ndo_stop = fwnet_stop,
1434
.ndo_start_xmit = fwnet_tx,
1435
.ndo_change_mtu = fwnet_change_mtu,
1436
};
1437
1438
static void fwnet_init_dev(struct net_device *net)
1439
{
1440
net->header_ops = &fwnet_header_ops;
1441
net->netdev_ops = &fwnet_netdev_ops;
1442
net->watchdog_timeo = 2 * HZ;
1443
net->flags = IFF_BROADCAST | IFF_MULTICAST;
1444
net->features = NETIF_F_HIGHDMA;
1445
net->addr_len = FWNET_ALEN;
1446
net->hard_header_len = FWNET_HLEN;
1447
net->type = ARPHRD_IEEE1394;
1448
net->tx_queue_len = FWNET_TX_QUEUE_LEN;
1449
net->ethtool_ops = &fwnet_ethtool_ops;
1450
}
1451
1452
/* caller must hold fwnet_device_mutex */
1453
static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1454
{
1455
struct fwnet_device *dev;
1456
1457
list_for_each_entry(dev, &fwnet_device_list, dev_link)
1458
if (dev->card == card)
1459
return dev;
1460
1461
return NULL;
1462
}
1463
1464
static int fwnet_add_peer(struct fwnet_device *dev,
1465
struct fw_unit *unit, struct fw_device *device)
1466
{
1467
struct fwnet_peer *peer;
1468
1469
peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1470
if (!peer)
1471
return -ENOMEM;
1472
1473
dev_set_drvdata(&unit->device, peer);
1474
1475
peer->dev = dev;
1476
peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1477
peer->fifo = FWNET_NO_FIFO_ADDR;
1478
peer->ip = 0;
1479
INIT_LIST_HEAD(&peer->pd_list);
1480
peer->pdg_size = 0;
1481
peer->datagram_label = 0;
1482
peer->speed = device->max_speed;
1483
peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1484
1485
peer->generation = device->generation;
1486
smp_rmb();
1487
peer->node_id = device->node_id;
1488
1489
spin_lock_irq(&dev->lock);
1490
list_add_tail(&peer->peer_link, &dev->peer_list);
1491
dev->peer_count++;
1492
set_carrier_state(dev);
1493
spin_unlock_irq(&dev->lock);
1494
1495
return 0;
1496
}
1497
1498
static int fwnet_probe(struct device *_dev)
1499
{
1500
struct fw_unit *unit = fw_unit(_dev);
1501
struct fw_device *device = fw_parent_device(unit);
1502
struct fw_card *card = device->card;
1503
struct net_device *net;
1504
bool allocated_netdev = false;
1505
struct fwnet_device *dev;
1506
unsigned max_mtu;
1507
int ret;
1508
1509
mutex_lock(&fwnet_device_mutex);
1510
1511
dev = fwnet_dev_find(card);
1512
if (dev) {
1513
net = dev->netdev;
1514
goto have_dev;
1515
}
1516
1517
net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1518
if (net == NULL) {
1519
ret = -ENOMEM;
1520
goto out;
1521
}
1522
1523
allocated_netdev = true;
1524
SET_NETDEV_DEV(net, card->device);
1525
dev = netdev_priv(net);
1526
1527
spin_lock_init(&dev->lock);
1528
dev->broadcast_state = FWNET_BROADCAST_ERROR;
1529
dev->broadcast_rcv_context = NULL;
1530
dev->broadcast_xmt_max_payload = 0;
1531
dev->broadcast_xmt_datagramlabel = 0;
1532
dev->local_fifo = FWNET_NO_FIFO_ADDR;
1533
dev->queued_datagrams = 0;
1534
INIT_LIST_HEAD(&dev->peer_list);
1535
dev->card = card;
1536
dev->netdev = net;
1537
1538
/*
1539
* Use the RFC 2734 default 1500 octets or the maximum payload
1540
* as initial MTU
1541
*/
1542
max_mtu = (1 << (card->max_receive + 1))
1543
- sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1544
net->mtu = min(1500U, max_mtu);
1545
1546
/* Set our hardware address while we're at it */
1547
put_unaligned_be64(card->guid, net->dev_addr);
1548
put_unaligned_be64(~0ULL, net->broadcast);
1549
ret = register_netdev(net);
1550
if (ret) {
1551
fw_error("Cannot register the driver\n");
1552
goto out;
1553
}
1554
1555
list_add_tail(&dev->dev_link, &fwnet_device_list);
1556
fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1557
net->name, (unsigned long long)card->guid);
1558
have_dev:
1559
ret = fwnet_add_peer(dev, unit, device);
1560
if (ret && allocated_netdev) {
1561
unregister_netdev(net);
1562
list_del(&dev->dev_link);
1563
}
1564
out:
1565
if (ret && allocated_netdev)
1566
free_netdev(net);
1567
1568
mutex_unlock(&fwnet_device_mutex);
1569
1570
return ret;
1571
}
1572
1573
static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1574
{
1575
struct fwnet_partial_datagram *pd, *pd_next;
1576
1577
spin_lock_irq(&dev->lock);
1578
list_del(&peer->peer_link);
1579
dev->peer_count--;
1580
set_carrier_state(dev);
1581
spin_unlock_irq(&dev->lock);
1582
1583
list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1584
fwnet_pd_delete(pd);
1585
1586
kfree(peer);
1587
}
1588
1589
static int fwnet_remove(struct device *_dev)
1590
{
1591
struct fwnet_peer *peer = dev_get_drvdata(_dev);
1592
struct fwnet_device *dev = peer->dev;
1593
struct net_device *net;
1594
int i;
1595
1596
mutex_lock(&fwnet_device_mutex);
1597
1598
net = dev->netdev;
1599
if (net && peer->ip)
1600
arp_invalidate(net, peer->ip);
1601
1602
fwnet_remove_peer(peer, dev);
1603
1604
if (list_empty(&dev->peer_list)) {
1605
unregister_netdev(net);
1606
1607
if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1608
fw_core_remove_address_handler(&dev->handler);
1609
if (dev->broadcast_rcv_context) {
1610
fw_iso_context_stop(dev->broadcast_rcv_context);
1611
fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1612
dev->card);
1613
fw_iso_context_destroy(dev->broadcast_rcv_context);
1614
}
1615
for (i = 0; dev->queued_datagrams && i < 5; i++)
1616
ssleep(1);
1617
WARN_ON(dev->queued_datagrams);
1618
list_del(&dev->dev_link);
1619
1620
free_netdev(net);
1621
}
1622
1623
mutex_unlock(&fwnet_device_mutex);
1624
1625
return 0;
1626
}
1627
1628
/*
1629
* FIXME abort partially sent fragmented datagrams,
1630
* discard partially received fragmented datagrams
1631
*/
1632
static void fwnet_update(struct fw_unit *unit)
1633
{
1634
struct fw_device *device = fw_parent_device(unit);
1635
struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1636
int generation;
1637
1638
generation = device->generation;
1639
1640
spin_lock_irq(&peer->dev->lock);
1641
peer->node_id = device->node_id;
1642
peer->generation = generation;
1643
spin_unlock_irq(&peer->dev->lock);
1644
}
1645
1646
static const struct ieee1394_device_id fwnet_id_table[] = {
1647
{
1648
.match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1649
IEEE1394_MATCH_VERSION,
1650
.specifier_id = IANA_SPECIFIER_ID,
1651
.version = RFC2734_SW_VERSION,
1652
},
1653
{ }
1654
};
1655
1656
static struct fw_driver fwnet_driver = {
1657
.driver = {
1658
.owner = THIS_MODULE,
1659
.name = "net",
1660
.bus = &fw_bus_type,
1661
.probe = fwnet_probe,
1662
.remove = fwnet_remove,
1663
},
1664
.update = fwnet_update,
1665
.id_table = fwnet_id_table,
1666
};
1667
1668
static const u32 rfc2374_unit_directory_data[] = {
1669
0x00040000, /* directory_length */
1670
0x1200005e, /* unit_specifier_id: IANA */
1671
0x81000003, /* textual descriptor offset */
1672
0x13000001, /* unit_sw_version: RFC 2734 */
1673
0x81000005, /* textual descriptor offset */
1674
0x00030000, /* descriptor_length */
1675
0x00000000, /* text */
1676
0x00000000, /* minimal ASCII, en */
1677
0x49414e41, /* I A N A */
1678
0x00030000, /* descriptor_length */
1679
0x00000000, /* text */
1680
0x00000000, /* minimal ASCII, en */
1681
0x49507634, /* I P v 4 */
1682
};
1683
1684
static struct fw_descriptor rfc2374_unit_directory = {
1685
.length = ARRAY_SIZE(rfc2374_unit_directory_data),
1686
.key = (CSR_DIRECTORY | CSR_UNIT) << 24,
1687
.data = rfc2374_unit_directory_data
1688
};
1689
1690
static int __init fwnet_init(void)
1691
{
1692
int err;
1693
1694
err = fw_core_add_descriptor(&rfc2374_unit_directory);
1695
if (err)
1696
return err;
1697
1698
fwnet_packet_task_cache = kmem_cache_create("packet_task",
1699
sizeof(struct fwnet_packet_task), 0, 0, NULL);
1700
if (!fwnet_packet_task_cache) {
1701
err = -ENOMEM;
1702
goto out;
1703
}
1704
1705
err = driver_register(&fwnet_driver.driver);
1706
if (!err)
1707
return 0;
1708
1709
kmem_cache_destroy(fwnet_packet_task_cache);
1710
out:
1711
fw_core_remove_descriptor(&rfc2374_unit_directory);
1712
1713
return err;
1714
}
1715
module_init(fwnet_init);
1716
1717
static void __exit fwnet_cleanup(void)
1718
{
1719
driver_unregister(&fwnet_driver.driver);
1720
kmem_cache_destroy(fwnet_packet_task_cache);
1721
fw_core_remove_descriptor(&rfc2374_unit_directory);
1722
}
1723
module_exit(fwnet_cleanup);
1724
1725
MODULE_AUTHOR("Jay Fenlason <[email protected]>");
1726
MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1727
MODULE_LICENSE("GPL");
1728
MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
1729
1730