Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/firewire/ohci.c
15109 views
1
/*
2
* Driver for OHCI 1394 controllers
3
*
4
* Copyright (C) 2003-2006 Kristian Hoegsberg <[email protected]>
5
*
6
* This program is free software; you can redistribute it and/or modify
7
* it under the terms of the GNU General Public License as published by
8
* the Free Software Foundation; either version 2 of the License, or
9
* (at your option) any later version.
10
*
11
* This program is distributed in the hope that it will be useful,
12
* but WITHOUT ANY WARRANTY; without even the implied warranty of
13
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14
* GNU General Public License for more details.
15
*
16
* You should have received a copy of the GNU General Public License
17
* along with this program; if not, write to the Free Software Foundation,
18
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
*/
20
21
#include <linux/bitops.h>
22
#include <linux/bug.h>
23
#include <linux/compiler.h>
24
#include <linux/delay.h>
25
#include <linux/device.h>
26
#include <linux/dma-mapping.h>
27
#include <linux/firewire.h>
28
#include <linux/firewire-constants.h>
29
#include <linux/init.h>
30
#include <linux/interrupt.h>
31
#include <linux/io.h>
32
#include <linux/kernel.h>
33
#include <linux/list.h>
34
#include <linux/mm.h>
35
#include <linux/module.h>
36
#include <linux/moduleparam.h>
37
#include <linux/mutex.h>
38
#include <linux/pci.h>
39
#include <linux/pci_ids.h>
40
#include <linux/slab.h>
41
#include <linux/spinlock.h>
42
#include <linux/string.h>
43
#include <linux/time.h>
44
#include <linux/vmalloc.h>
45
46
#include <asm/byteorder.h>
47
#include <asm/page.h>
48
#include <asm/system.h>
49
50
#ifdef CONFIG_PPC_PMAC
51
#include <asm/pmac_feature.h>
52
#endif
53
54
#include "core.h"
55
#include "ohci.h"
56
57
#define DESCRIPTOR_OUTPUT_MORE 0
58
#define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59
#define DESCRIPTOR_INPUT_MORE (2 << 12)
60
#define DESCRIPTOR_INPUT_LAST (3 << 12)
61
#define DESCRIPTOR_STATUS (1 << 11)
62
#define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63
#define DESCRIPTOR_PING (1 << 7)
64
#define DESCRIPTOR_YY (1 << 6)
65
#define DESCRIPTOR_NO_IRQ (0 << 4)
66
#define DESCRIPTOR_IRQ_ERROR (1 << 4)
67
#define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68
#define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69
#define DESCRIPTOR_WAIT (3 << 0)
70
71
struct descriptor {
72
__le16 req_count;
73
__le16 control;
74
__le32 data_address;
75
__le32 branch_address;
76
__le16 res_count;
77
__le16 transfer_status;
78
} __attribute__((aligned(16)));
79
80
#define CONTROL_SET(regs) (regs)
81
#define CONTROL_CLEAR(regs) ((regs) + 4)
82
#define COMMAND_PTR(regs) ((regs) + 12)
83
#define CONTEXT_MATCH(regs) ((regs) + 16)
84
85
#define AR_BUFFER_SIZE (32*1024)
86
#define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87
/* we need at least two pages for proper list management */
88
#define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
89
90
#define MAX_ASYNC_PAYLOAD 4096
91
#define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
92
#define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93
94
struct ar_context {
95
struct fw_ohci *ohci;
96
struct page *pages[AR_BUFFERS];
97
void *buffer;
98
struct descriptor *descriptors;
99
dma_addr_t descriptors_bus;
100
void *pointer;
101
unsigned int last_buffer_index;
102
u32 regs;
103
struct tasklet_struct tasklet;
104
};
105
106
struct context;
107
108
typedef int (*descriptor_callback_t)(struct context *ctx,
109
struct descriptor *d,
110
struct descriptor *last);
111
112
/*
113
* A buffer that contains a block of DMA-able coherent memory used for
114
* storing a portion of a DMA descriptor program.
115
*/
116
struct descriptor_buffer {
117
struct list_head list;
118
dma_addr_t buffer_bus;
119
size_t buffer_size;
120
size_t used;
121
struct descriptor buffer[0];
122
};
123
124
struct context {
125
struct fw_ohci *ohci;
126
u32 regs;
127
int total_allocation;
128
bool running;
129
bool flushing;
130
131
/*
132
* List of page-sized buffers for storing DMA descriptors.
133
* Head of list contains buffers in use and tail of list contains
134
* free buffers.
135
*/
136
struct list_head buffer_list;
137
138
/*
139
* Pointer to a buffer inside buffer_list that contains the tail
140
* end of the current DMA program.
141
*/
142
struct descriptor_buffer *buffer_tail;
143
144
/*
145
* The descriptor containing the branch address of the first
146
* descriptor that has not yet been filled by the device.
147
*/
148
struct descriptor *last;
149
150
/*
151
* The last descriptor in the DMA program. It contains the branch
152
* address that must be updated upon appending a new descriptor.
153
*/
154
struct descriptor *prev;
155
156
descriptor_callback_t callback;
157
158
struct tasklet_struct tasklet;
159
};
160
161
#define IT_HEADER_SY(v) ((v) << 0)
162
#define IT_HEADER_TCODE(v) ((v) << 4)
163
#define IT_HEADER_CHANNEL(v) ((v) << 8)
164
#define IT_HEADER_TAG(v) ((v) << 14)
165
#define IT_HEADER_SPEED(v) ((v) << 16)
166
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
167
168
struct iso_context {
169
struct fw_iso_context base;
170
struct context context;
171
int excess_bytes;
172
void *header;
173
size_t header_length;
174
175
u8 sync;
176
u8 tags;
177
};
178
179
#define CONFIG_ROM_SIZE 1024
180
181
struct fw_ohci {
182
struct fw_card card;
183
184
__iomem char *registers;
185
int node_id;
186
int generation;
187
int request_generation; /* for timestamping incoming requests */
188
unsigned quirks;
189
unsigned int pri_req_max;
190
u32 bus_time;
191
bool is_root;
192
bool csr_state_setclear_abdicate;
193
int n_ir;
194
int n_it;
195
/*
196
* Spinlock for accessing fw_ohci data. Never call out of
197
* this driver with this lock held.
198
*/
199
spinlock_t lock;
200
201
struct mutex phy_reg_mutex;
202
203
void *misc_buffer;
204
dma_addr_t misc_buffer_bus;
205
206
struct ar_context ar_request_ctx;
207
struct ar_context ar_response_ctx;
208
struct context at_request_ctx;
209
struct context at_response_ctx;
210
211
u32 it_context_support;
212
u32 it_context_mask; /* unoccupied IT contexts */
213
struct iso_context *it_context_list;
214
u64 ir_context_channels; /* unoccupied channels */
215
u32 ir_context_support;
216
u32 ir_context_mask; /* unoccupied IR contexts */
217
struct iso_context *ir_context_list;
218
u64 mc_channels; /* channels in use by the multichannel IR context */
219
bool mc_allocated;
220
221
__be32 *config_rom;
222
dma_addr_t config_rom_bus;
223
__be32 *next_config_rom;
224
dma_addr_t next_config_rom_bus;
225
__be32 next_header;
226
227
__le32 *self_id_cpu;
228
dma_addr_t self_id_bus;
229
struct tasklet_struct bus_reset_tasklet;
230
231
u32 self_id_buffer[512];
232
};
233
234
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235
{
236
return container_of(card, struct fw_ohci, card);
237
}
238
239
#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
240
#define IR_CONTEXT_BUFFER_FILL 0x80000000
241
#define IR_CONTEXT_ISOCH_HEADER 0x40000000
242
#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
243
#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
244
#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
245
246
#define CONTEXT_RUN 0x8000
247
#define CONTEXT_WAKE 0x1000
248
#define CONTEXT_DEAD 0x0800
249
#define CONTEXT_ACTIVE 0x0400
250
251
#define OHCI1394_MAX_AT_REQ_RETRIES 0xf
252
#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
253
#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
254
255
#define OHCI1394_REGISTER_SIZE 0x800
256
#define OHCI_LOOP_COUNT 500
257
#define OHCI1394_PCI_HCI_Control 0x40
258
#define SELF_ID_BUF_SIZE 0x800
259
#define OHCI_TCODE_PHY_PACKET 0x0e
260
#define OHCI_VERSION_1_1 0x010010
261
262
static char ohci_driver_name[] = KBUILD_MODNAME;
263
264
#define PCI_DEVICE_ID_AGERE_FW643 0x5901
265
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
266
#define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
267
#define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
268
269
#define QUIRK_CYCLE_TIMER 1
270
#define QUIRK_RESET_PACKET 2
271
#define QUIRK_BE_HEADERS 4
272
#define QUIRK_NO_1394A 8
273
#define QUIRK_NO_MSI 16
274
275
/* In case of multiple matches in ohci_quirks[], only the first one is used. */
276
static const struct {
277
unsigned short vendor, device, revision, flags;
278
} ohci_quirks[] = {
279
{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
280
QUIRK_CYCLE_TIMER},
281
282
{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
283
QUIRK_BE_HEADERS},
284
285
{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
286
QUIRK_NO_MSI},
287
288
{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
289
QUIRK_NO_MSI},
290
291
{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
292
QUIRK_CYCLE_TIMER},
293
294
{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
295
QUIRK_CYCLE_TIMER},
296
297
{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
298
QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
299
300
{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
301
QUIRK_RESET_PACKET},
302
303
{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
304
QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
305
};
306
307
/* This overrides anything that was found in ohci_quirks[]. */
308
static int param_quirks;
309
module_param_named(quirks, param_quirks, int, 0644);
310
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
311
", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
312
", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
313
", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
314
", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
315
", disable MSI = " __stringify(QUIRK_NO_MSI)
316
")");
317
318
#define OHCI_PARAM_DEBUG_AT_AR 1
319
#define OHCI_PARAM_DEBUG_SELFIDS 2
320
#define OHCI_PARAM_DEBUG_IRQS 4
321
#define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
322
323
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
324
325
static int param_debug;
326
module_param_named(debug, param_debug, int, 0644);
327
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
328
", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
329
", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
330
", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
331
", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
332
", or a combination, or all = -1)");
333
334
static void log_irqs(u32 evt)
335
{
336
if (likely(!(param_debug &
337
(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
338
return;
339
340
if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
341
!(evt & OHCI1394_busReset))
342
return;
343
344
fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
345
evt & OHCI1394_selfIDComplete ? " selfID" : "",
346
evt & OHCI1394_RQPkt ? " AR_req" : "",
347
evt & OHCI1394_RSPkt ? " AR_resp" : "",
348
evt & OHCI1394_reqTxComplete ? " AT_req" : "",
349
evt & OHCI1394_respTxComplete ? " AT_resp" : "",
350
evt & OHCI1394_isochRx ? " IR" : "",
351
evt & OHCI1394_isochTx ? " IT" : "",
352
evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
353
evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
354
evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
355
evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
356
evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
357
evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
358
evt & OHCI1394_busReset ? " busReset" : "",
359
evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
360
OHCI1394_RSPkt | OHCI1394_reqTxComplete |
361
OHCI1394_respTxComplete | OHCI1394_isochRx |
362
OHCI1394_isochTx | OHCI1394_postedWriteErr |
363
OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
364
OHCI1394_cycleInconsistent |
365
OHCI1394_regAccessFail | OHCI1394_busReset)
366
? " ?" : "");
367
}
368
369
static const char *speed[] = {
370
[0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
371
};
372
static const char *power[] = {
373
[0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
374
[4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
375
};
376
static const char port[] = { '.', '-', 'p', 'c', };
377
378
static char _p(u32 *s, int shift)
379
{
380
return port[*s >> shift & 3];
381
}
382
383
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
384
{
385
if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
386
return;
387
388
fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
389
self_id_count, generation, node_id);
390
391
for (; self_id_count--; ++s)
392
if ((*s & 1 << 23) == 0)
393
fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
394
"%s gc=%d %s %s%s%s\n",
395
*s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
396
speed[*s >> 14 & 3], *s >> 16 & 63,
397
power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
398
*s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
399
else
400
fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
401
*s, *s >> 24 & 63,
402
_p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
403
_p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
404
}
405
406
static const char *evts[] = {
407
[0x00] = "evt_no_status", [0x01] = "-reserved-",
408
[0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
409
[0x04] = "evt_underrun", [0x05] = "evt_overrun",
410
[0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
411
[0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
412
[0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
413
[0x0c] = "-reserved-", [0x0d] = "-reserved-",
414
[0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
415
[0x10] = "-reserved-", [0x11] = "ack_complete",
416
[0x12] = "ack_pending ", [0x13] = "-reserved-",
417
[0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
418
[0x16] = "ack_busy_B", [0x17] = "-reserved-",
419
[0x18] = "-reserved-", [0x19] = "-reserved-",
420
[0x1a] = "-reserved-", [0x1b] = "ack_tardy",
421
[0x1c] = "-reserved-", [0x1d] = "ack_data_error",
422
[0x1e] = "ack_type_error", [0x1f] = "-reserved-",
423
[0x20] = "pending/cancelled",
424
};
425
static const char *tcodes[] = {
426
[0x0] = "QW req", [0x1] = "BW req",
427
[0x2] = "W resp", [0x3] = "-reserved-",
428
[0x4] = "QR req", [0x5] = "BR req",
429
[0x6] = "QR resp", [0x7] = "BR resp",
430
[0x8] = "cycle start", [0x9] = "Lk req",
431
[0xa] = "async stream packet", [0xb] = "Lk resp",
432
[0xc] = "-reserved-", [0xd] = "-reserved-",
433
[0xe] = "link internal", [0xf] = "-reserved-",
434
};
435
436
static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
437
{
438
int tcode = header[0] >> 4 & 0xf;
439
char specific[12];
440
441
if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
442
return;
443
444
if (unlikely(evt >= ARRAY_SIZE(evts)))
445
evt = 0x1f;
446
447
if (evt == OHCI1394_evt_bus_reset) {
448
fw_notify("A%c evt_bus_reset, generation %d\n",
449
dir, (header[2] >> 16) & 0xff);
450
return;
451
}
452
453
switch (tcode) {
454
case 0x0: case 0x6: case 0x8:
455
snprintf(specific, sizeof(specific), " = %08x",
456
be32_to_cpu((__force __be32)header[3]));
457
break;
458
case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
459
snprintf(specific, sizeof(specific), " %x,%x",
460
header[3] >> 16, header[3] & 0xffff);
461
break;
462
default:
463
specific[0] = '\0';
464
}
465
466
switch (tcode) {
467
case 0xa:
468
fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
469
break;
470
case 0xe:
471
fw_notify("A%c %s, PHY %08x %08x\n",
472
dir, evts[evt], header[1], header[2]);
473
break;
474
case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
475
fw_notify("A%c spd %x tl %02x, "
476
"%04x -> %04x, %s, "
477
"%s, %04x%08x%s\n",
478
dir, speed, header[0] >> 10 & 0x3f,
479
header[1] >> 16, header[0] >> 16, evts[evt],
480
tcodes[tcode], header[1] & 0xffff, header[2], specific);
481
break;
482
default:
483
fw_notify("A%c spd %x tl %02x, "
484
"%04x -> %04x, %s, "
485
"%s%s\n",
486
dir, speed, header[0] >> 10 & 0x3f,
487
header[1] >> 16, header[0] >> 16, evts[evt],
488
tcodes[tcode], specific);
489
}
490
}
491
492
#else
493
494
#define param_debug 0
495
static inline void log_irqs(u32 evt) {}
496
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
497
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
498
499
#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
500
501
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
502
{
503
writel(data, ohci->registers + offset);
504
}
505
506
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
507
{
508
return readl(ohci->registers + offset);
509
}
510
511
static inline void flush_writes(const struct fw_ohci *ohci)
512
{
513
/* Do a dummy read to flush writes. */
514
reg_read(ohci, OHCI1394_Version);
515
}
516
517
static int read_phy_reg(struct fw_ohci *ohci, int addr)
518
{
519
u32 val;
520
int i;
521
522
reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
523
for (i = 0; i < 3 + 100; i++) {
524
val = reg_read(ohci, OHCI1394_PhyControl);
525
if (val & OHCI1394_PhyControl_ReadDone)
526
return OHCI1394_PhyControl_ReadData(val);
527
528
/*
529
* Try a few times without waiting. Sleeping is necessary
530
* only when the link/PHY interface is busy.
531
*/
532
if (i >= 3)
533
msleep(1);
534
}
535
fw_error("failed to read phy reg\n");
536
537
return -EBUSY;
538
}
539
540
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
541
{
542
int i;
543
544
reg_write(ohci, OHCI1394_PhyControl,
545
OHCI1394_PhyControl_Write(addr, val));
546
for (i = 0; i < 3 + 100; i++) {
547
val = reg_read(ohci, OHCI1394_PhyControl);
548
if (!(val & OHCI1394_PhyControl_WritePending))
549
return 0;
550
551
if (i >= 3)
552
msleep(1);
553
}
554
fw_error("failed to write phy reg\n");
555
556
return -EBUSY;
557
}
558
559
static int update_phy_reg(struct fw_ohci *ohci, int addr,
560
int clear_bits, int set_bits)
561
{
562
int ret = read_phy_reg(ohci, addr);
563
if (ret < 0)
564
return ret;
565
566
/*
567
* The interrupt status bits are cleared by writing a one bit.
568
* Avoid clearing them unless explicitly requested in set_bits.
569
*/
570
if (addr == 5)
571
clear_bits |= PHY_INT_STATUS_BITS;
572
573
return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
574
}
575
576
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
577
{
578
int ret;
579
580
ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
581
if (ret < 0)
582
return ret;
583
584
return read_phy_reg(ohci, addr);
585
}
586
587
static int ohci_read_phy_reg(struct fw_card *card, int addr)
588
{
589
struct fw_ohci *ohci = fw_ohci(card);
590
int ret;
591
592
mutex_lock(&ohci->phy_reg_mutex);
593
ret = read_phy_reg(ohci, addr);
594
mutex_unlock(&ohci->phy_reg_mutex);
595
596
return ret;
597
}
598
599
static int ohci_update_phy_reg(struct fw_card *card, int addr,
600
int clear_bits, int set_bits)
601
{
602
struct fw_ohci *ohci = fw_ohci(card);
603
int ret;
604
605
mutex_lock(&ohci->phy_reg_mutex);
606
ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
607
mutex_unlock(&ohci->phy_reg_mutex);
608
609
return ret;
610
}
611
612
static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
613
{
614
return page_private(ctx->pages[i]);
615
}
616
617
static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
618
{
619
struct descriptor *d;
620
621
d = &ctx->descriptors[index];
622
d->branch_address &= cpu_to_le32(~0xf);
623
d->res_count = cpu_to_le16(PAGE_SIZE);
624
d->transfer_status = 0;
625
626
wmb(); /* finish init of new descriptors before branch_address update */
627
d = &ctx->descriptors[ctx->last_buffer_index];
628
d->branch_address |= cpu_to_le32(1);
629
630
ctx->last_buffer_index = index;
631
632
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
633
flush_writes(ctx->ohci);
634
}
635
636
static void ar_context_release(struct ar_context *ctx)
637
{
638
unsigned int i;
639
640
if (ctx->buffer)
641
vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
642
643
for (i = 0; i < AR_BUFFERS; i++)
644
if (ctx->pages[i]) {
645
dma_unmap_page(ctx->ohci->card.device,
646
ar_buffer_bus(ctx, i),
647
PAGE_SIZE, DMA_FROM_DEVICE);
648
__free_page(ctx->pages[i]);
649
}
650
}
651
652
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
653
{
654
if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
655
reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
656
flush_writes(ctx->ohci);
657
658
fw_error("AR error: %s; DMA stopped\n", error_msg);
659
}
660
/* FIXME: restart? */
661
}
662
663
static inline unsigned int ar_next_buffer_index(unsigned int index)
664
{
665
return (index + 1) % AR_BUFFERS;
666
}
667
668
static inline unsigned int ar_prev_buffer_index(unsigned int index)
669
{
670
return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
671
}
672
673
static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
674
{
675
return ar_next_buffer_index(ctx->last_buffer_index);
676
}
677
678
/*
679
* We search for the buffer that contains the last AR packet DMA data written
680
* by the controller.
681
*/
682
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
683
unsigned int *buffer_offset)
684
{
685
unsigned int i, next_i, last = ctx->last_buffer_index;
686
__le16 res_count, next_res_count;
687
688
i = ar_first_buffer_index(ctx);
689
res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
690
691
/* A buffer that is not yet completely filled must be the last one. */
692
while (i != last && res_count == 0) {
693
694
/* Peek at the next descriptor. */
695
next_i = ar_next_buffer_index(i);
696
rmb(); /* read descriptors in order */
697
next_res_count = ACCESS_ONCE(
698
ctx->descriptors[next_i].res_count);
699
/*
700
* If the next descriptor is still empty, we must stop at this
701
* descriptor.
702
*/
703
if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
704
/*
705
* The exception is when the DMA data for one packet is
706
* split over three buffers; in this case, the middle
707
* buffer's descriptor might be never updated by the
708
* controller and look still empty, and we have to peek
709
* at the third one.
710
*/
711
if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
712
next_i = ar_next_buffer_index(next_i);
713
rmb();
714
next_res_count = ACCESS_ONCE(
715
ctx->descriptors[next_i].res_count);
716
if (next_res_count != cpu_to_le16(PAGE_SIZE))
717
goto next_buffer_is_active;
718
}
719
720
break;
721
}
722
723
next_buffer_is_active:
724
i = next_i;
725
res_count = next_res_count;
726
}
727
728
rmb(); /* read res_count before the DMA data */
729
730
*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
731
if (*buffer_offset > PAGE_SIZE) {
732
*buffer_offset = 0;
733
ar_context_abort(ctx, "corrupted descriptor");
734
}
735
736
return i;
737
}
738
739
static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
740
unsigned int end_buffer_index,
741
unsigned int end_buffer_offset)
742
{
743
unsigned int i;
744
745
i = ar_first_buffer_index(ctx);
746
while (i != end_buffer_index) {
747
dma_sync_single_for_cpu(ctx->ohci->card.device,
748
ar_buffer_bus(ctx, i),
749
PAGE_SIZE, DMA_FROM_DEVICE);
750
i = ar_next_buffer_index(i);
751
}
752
if (end_buffer_offset > 0)
753
dma_sync_single_for_cpu(ctx->ohci->card.device,
754
ar_buffer_bus(ctx, i),
755
end_buffer_offset, DMA_FROM_DEVICE);
756
}
757
758
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
759
#define cond_le32_to_cpu(v) \
760
(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
761
#else
762
#define cond_le32_to_cpu(v) le32_to_cpu(v)
763
#endif
764
765
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
766
{
767
struct fw_ohci *ohci = ctx->ohci;
768
struct fw_packet p;
769
u32 status, length, tcode;
770
int evt;
771
772
p.header[0] = cond_le32_to_cpu(buffer[0]);
773
p.header[1] = cond_le32_to_cpu(buffer[1]);
774
p.header[2] = cond_le32_to_cpu(buffer[2]);
775
776
tcode = (p.header[0] >> 4) & 0x0f;
777
switch (tcode) {
778
case TCODE_WRITE_QUADLET_REQUEST:
779
case TCODE_READ_QUADLET_RESPONSE:
780
p.header[3] = (__force __u32) buffer[3];
781
p.header_length = 16;
782
p.payload_length = 0;
783
break;
784
785
case TCODE_READ_BLOCK_REQUEST :
786
p.header[3] = cond_le32_to_cpu(buffer[3]);
787
p.header_length = 16;
788
p.payload_length = 0;
789
break;
790
791
case TCODE_WRITE_BLOCK_REQUEST:
792
case TCODE_READ_BLOCK_RESPONSE:
793
case TCODE_LOCK_REQUEST:
794
case TCODE_LOCK_RESPONSE:
795
p.header[3] = cond_le32_to_cpu(buffer[3]);
796
p.header_length = 16;
797
p.payload_length = p.header[3] >> 16;
798
if (p.payload_length > MAX_ASYNC_PAYLOAD) {
799
ar_context_abort(ctx, "invalid packet length");
800
return NULL;
801
}
802
break;
803
804
case TCODE_WRITE_RESPONSE:
805
case TCODE_READ_QUADLET_REQUEST:
806
case OHCI_TCODE_PHY_PACKET:
807
p.header_length = 12;
808
p.payload_length = 0;
809
break;
810
811
default:
812
ar_context_abort(ctx, "invalid tcode");
813
return NULL;
814
}
815
816
p.payload = (void *) buffer + p.header_length;
817
818
/* FIXME: What to do about evt_* errors? */
819
length = (p.header_length + p.payload_length + 3) / 4;
820
status = cond_le32_to_cpu(buffer[length]);
821
evt = (status >> 16) & 0x1f;
822
823
p.ack = evt - 16;
824
p.speed = (status >> 21) & 0x7;
825
p.timestamp = status & 0xffff;
826
p.generation = ohci->request_generation;
827
828
log_ar_at_event('R', p.speed, p.header, evt);
829
830
/*
831
* Several controllers, notably from NEC and VIA, forget to
832
* write ack_complete status at PHY packet reception.
833
*/
834
if (evt == OHCI1394_evt_no_status &&
835
(p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
836
p.ack = ACK_COMPLETE;
837
838
/*
839
* The OHCI bus reset handler synthesizes a PHY packet with
840
* the new generation number when a bus reset happens (see
841
* section 8.4.2.3). This helps us determine when a request
842
* was received and make sure we send the response in the same
843
* generation. We only need this for requests; for responses
844
* we use the unique tlabel for finding the matching
845
* request.
846
*
847
* Alas some chips sometimes emit bus reset packets with a
848
* wrong generation. We set the correct generation for these
849
* at a slightly incorrect time (in bus_reset_tasklet).
850
*/
851
if (evt == OHCI1394_evt_bus_reset) {
852
if (!(ohci->quirks & QUIRK_RESET_PACKET))
853
ohci->request_generation = (p.header[2] >> 16) & 0xff;
854
} else if (ctx == &ohci->ar_request_ctx) {
855
fw_core_handle_request(&ohci->card, &p);
856
} else {
857
fw_core_handle_response(&ohci->card, &p);
858
}
859
860
return buffer + length + 1;
861
}
862
863
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
864
{
865
void *next;
866
867
while (p < end) {
868
next = handle_ar_packet(ctx, p);
869
if (!next)
870
return p;
871
p = next;
872
}
873
874
return p;
875
}
876
877
static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
878
{
879
unsigned int i;
880
881
i = ar_first_buffer_index(ctx);
882
while (i != end_buffer) {
883
dma_sync_single_for_device(ctx->ohci->card.device,
884
ar_buffer_bus(ctx, i),
885
PAGE_SIZE, DMA_FROM_DEVICE);
886
ar_context_link_page(ctx, i);
887
i = ar_next_buffer_index(i);
888
}
889
}
890
891
static void ar_context_tasklet(unsigned long data)
892
{
893
struct ar_context *ctx = (struct ar_context *)data;
894
unsigned int end_buffer_index, end_buffer_offset;
895
void *p, *end;
896
897
p = ctx->pointer;
898
if (!p)
899
return;
900
901
end_buffer_index = ar_search_last_active_buffer(ctx,
902
&end_buffer_offset);
903
ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
904
end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
905
906
if (end_buffer_index < ar_first_buffer_index(ctx)) {
907
/*
908
* The filled part of the overall buffer wraps around; handle
909
* all packets up to the buffer end here. If the last packet
910
* wraps around, its tail will be visible after the buffer end
911
* because the buffer start pages are mapped there again.
912
*/
913
void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
914
p = handle_ar_packets(ctx, p, buffer_end);
915
if (p < buffer_end)
916
goto error;
917
/* adjust p to point back into the actual buffer */
918
p -= AR_BUFFERS * PAGE_SIZE;
919
}
920
921
p = handle_ar_packets(ctx, p, end);
922
if (p != end) {
923
if (p > end)
924
ar_context_abort(ctx, "inconsistent descriptor");
925
goto error;
926
}
927
928
ctx->pointer = p;
929
ar_recycle_buffers(ctx, end_buffer_index);
930
931
return;
932
933
error:
934
ctx->pointer = NULL;
935
}
936
937
static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
938
unsigned int descriptors_offset, u32 regs)
939
{
940
unsigned int i;
941
dma_addr_t dma_addr;
942
struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
943
struct descriptor *d;
944
945
ctx->regs = regs;
946
ctx->ohci = ohci;
947
tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
948
949
for (i = 0; i < AR_BUFFERS; i++) {
950
ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
951
if (!ctx->pages[i])
952
goto out_of_memory;
953
dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
954
0, PAGE_SIZE, DMA_FROM_DEVICE);
955
if (dma_mapping_error(ohci->card.device, dma_addr)) {
956
__free_page(ctx->pages[i]);
957
ctx->pages[i] = NULL;
958
goto out_of_memory;
959
}
960
set_page_private(ctx->pages[i], dma_addr);
961
}
962
963
for (i = 0; i < AR_BUFFERS; i++)
964
pages[i] = ctx->pages[i];
965
for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
966
pages[AR_BUFFERS + i] = ctx->pages[i];
967
ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
968
-1, PAGE_KERNEL);
969
if (!ctx->buffer)
970
goto out_of_memory;
971
972
ctx->descriptors = ohci->misc_buffer + descriptors_offset;
973
ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
974
975
for (i = 0; i < AR_BUFFERS; i++) {
976
d = &ctx->descriptors[i];
977
d->req_count = cpu_to_le16(PAGE_SIZE);
978
d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
979
DESCRIPTOR_STATUS |
980
DESCRIPTOR_BRANCH_ALWAYS);
981
d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
982
d->branch_address = cpu_to_le32(ctx->descriptors_bus +
983
ar_next_buffer_index(i) * sizeof(struct descriptor));
984
}
985
986
return 0;
987
988
out_of_memory:
989
ar_context_release(ctx);
990
991
return -ENOMEM;
992
}
993
994
static void ar_context_run(struct ar_context *ctx)
995
{
996
unsigned int i;
997
998
for (i = 0; i < AR_BUFFERS; i++)
999
ar_context_link_page(ctx, i);
1000
1001
ctx->pointer = ctx->buffer;
1002
1003
reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1004
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1005
flush_writes(ctx->ohci);
1006
}
1007
1008
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1009
{
1010
__le16 branch;
1011
1012
branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1013
1014
/* figure out which descriptor the branch address goes in */
1015
if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1016
return d;
1017
else
1018
return d + z - 1;
1019
}
1020
1021
static void context_tasklet(unsigned long data)
1022
{
1023
struct context *ctx = (struct context *) data;
1024
struct descriptor *d, *last;
1025
u32 address;
1026
int z;
1027
struct descriptor_buffer *desc;
1028
1029
desc = list_entry(ctx->buffer_list.next,
1030
struct descriptor_buffer, list);
1031
last = ctx->last;
1032
while (last->branch_address != 0) {
1033
struct descriptor_buffer *old_desc = desc;
1034
address = le32_to_cpu(last->branch_address);
1035
z = address & 0xf;
1036
address &= ~0xf;
1037
1038
/* If the branch address points to a buffer outside of the
1039
* current buffer, advance to the next buffer. */
1040
if (address < desc->buffer_bus ||
1041
address >= desc->buffer_bus + desc->used)
1042
desc = list_entry(desc->list.next,
1043
struct descriptor_buffer, list);
1044
d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1045
last = find_branch_descriptor(d, z);
1046
1047
if (!ctx->callback(ctx, d, last))
1048
break;
1049
1050
if (old_desc != desc) {
1051
/* If we've advanced to the next buffer, move the
1052
* previous buffer to the free list. */
1053
unsigned long flags;
1054
old_desc->used = 0;
1055
spin_lock_irqsave(&ctx->ohci->lock, flags);
1056
list_move_tail(&old_desc->list, &ctx->buffer_list);
1057
spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1058
}
1059
ctx->last = last;
1060
}
1061
}
1062
1063
/*
1064
* Allocate a new buffer and add it to the list of free buffers for this
1065
* context. Must be called with ohci->lock held.
1066
*/
1067
static int context_add_buffer(struct context *ctx)
1068
{
1069
struct descriptor_buffer *desc;
1070
dma_addr_t uninitialized_var(bus_addr);
1071
int offset;
1072
1073
/*
1074
* 16MB of descriptors should be far more than enough for any DMA
1075
* program. This will catch run-away userspace or DoS attacks.
1076
*/
1077
if (ctx->total_allocation >= 16*1024*1024)
1078
return -ENOMEM;
1079
1080
desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1081
&bus_addr, GFP_ATOMIC);
1082
if (!desc)
1083
return -ENOMEM;
1084
1085
offset = (void *)&desc->buffer - (void *)desc;
1086
desc->buffer_size = PAGE_SIZE - offset;
1087
desc->buffer_bus = bus_addr + offset;
1088
desc->used = 0;
1089
1090
list_add_tail(&desc->list, &ctx->buffer_list);
1091
ctx->total_allocation += PAGE_SIZE;
1092
1093
return 0;
1094
}
1095
1096
static int context_init(struct context *ctx, struct fw_ohci *ohci,
1097
u32 regs, descriptor_callback_t callback)
1098
{
1099
ctx->ohci = ohci;
1100
ctx->regs = regs;
1101
ctx->total_allocation = 0;
1102
1103
INIT_LIST_HEAD(&ctx->buffer_list);
1104
if (context_add_buffer(ctx) < 0)
1105
return -ENOMEM;
1106
1107
ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1108
struct descriptor_buffer, list);
1109
1110
tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1111
ctx->callback = callback;
1112
1113
/*
1114
* We put a dummy descriptor in the buffer that has a NULL
1115
* branch address and looks like it's been sent. That way we
1116
* have a descriptor to append DMA programs to.
1117
*/
1118
memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1119
ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1120
ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1121
ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1122
ctx->last = ctx->buffer_tail->buffer;
1123
ctx->prev = ctx->buffer_tail->buffer;
1124
1125
return 0;
1126
}
1127
1128
static void context_release(struct context *ctx)
1129
{
1130
struct fw_card *card = &ctx->ohci->card;
1131
struct descriptor_buffer *desc, *tmp;
1132
1133
list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1134
dma_free_coherent(card->device, PAGE_SIZE, desc,
1135
desc->buffer_bus -
1136
((void *)&desc->buffer - (void *)desc));
1137
}
1138
1139
/* Must be called with ohci->lock held */
1140
static struct descriptor *context_get_descriptors(struct context *ctx,
1141
int z, dma_addr_t *d_bus)
1142
{
1143
struct descriptor *d = NULL;
1144
struct descriptor_buffer *desc = ctx->buffer_tail;
1145
1146
if (z * sizeof(*d) > desc->buffer_size)
1147
return NULL;
1148
1149
if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1150
/* No room for the descriptor in this buffer, so advance to the
1151
* next one. */
1152
1153
if (desc->list.next == &ctx->buffer_list) {
1154
/* If there is no free buffer next in the list,
1155
* allocate one. */
1156
if (context_add_buffer(ctx) < 0)
1157
return NULL;
1158
}
1159
desc = list_entry(desc->list.next,
1160
struct descriptor_buffer, list);
1161
ctx->buffer_tail = desc;
1162
}
1163
1164
d = desc->buffer + desc->used / sizeof(*d);
1165
memset(d, 0, z * sizeof(*d));
1166
*d_bus = desc->buffer_bus + desc->used;
1167
1168
return d;
1169
}
1170
1171
static void context_run(struct context *ctx, u32 extra)
1172
{
1173
struct fw_ohci *ohci = ctx->ohci;
1174
1175
reg_write(ohci, COMMAND_PTR(ctx->regs),
1176
le32_to_cpu(ctx->last->branch_address));
1177
reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1178
reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1179
ctx->running = true;
1180
flush_writes(ohci);
1181
}
1182
1183
static void context_append(struct context *ctx,
1184
struct descriptor *d, int z, int extra)
1185
{
1186
dma_addr_t d_bus;
1187
struct descriptor_buffer *desc = ctx->buffer_tail;
1188
1189
d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1190
1191
desc->used += (z + extra) * sizeof(*d);
1192
1193
wmb(); /* finish init of new descriptors before branch_address update */
1194
ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1195
ctx->prev = find_branch_descriptor(d, z);
1196
}
1197
1198
static void context_stop(struct context *ctx)
1199
{
1200
u32 reg;
1201
int i;
1202
1203
reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1204
ctx->running = false;
1205
flush_writes(ctx->ohci);
1206
1207
for (i = 0; i < 10; i++) {
1208
reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1209
if ((reg & CONTEXT_ACTIVE) == 0)
1210
return;
1211
1212
mdelay(1);
1213
}
1214
fw_error("Error: DMA context still active (0x%08x)\n", reg);
1215
}
1216
1217
struct driver_data {
1218
u8 inline_data[8];
1219
struct fw_packet *packet;
1220
};
1221
1222
/*
1223
* This function apppends a packet to the DMA queue for transmission.
1224
* Must always be called with the ochi->lock held to ensure proper
1225
* generation handling and locking around packet queue manipulation.
1226
*/
1227
static int at_context_queue_packet(struct context *ctx,
1228
struct fw_packet *packet)
1229
{
1230
struct fw_ohci *ohci = ctx->ohci;
1231
dma_addr_t d_bus, uninitialized_var(payload_bus);
1232
struct driver_data *driver_data;
1233
struct descriptor *d, *last;
1234
__le32 *header;
1235
int z, tcode;
1236
1237
d = context_get_descriptors(ctx, 4, &d_bus);
1238
if (d == NULL) {
1239
packet->ack = RCODE_SEND_ERROR;
1240
return -1;
1241
}
1242
1243
d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1244
d[0].res_count = cpu_to_le16(packet->timestamp);
1245
1246
/*
1247
* The DMA format for asyncronous link packets is different
1248
* from the IEEE1394 layout, so shift the fields around
1249
* accordingly.
1250
*/
1251
1252
tcode = (packet->header[0] >> 4) & 0x0f;
1253
header = (__le32 *) &d[1];
1254
switch (tcode) {
1255
case TCODE_WRITE_QUADLET_REQUEST:
1256
case TCODE_WRITE_BLOCK_REQUEST:
1257
case TCODE_WRITE_RESPONSE:
1258
case TCODE_READ_QUADLET_REQUEST:
1259
case TCODE_READ_BLOCK_REQUEST:
1260
case TCODE_READ_QUADLET_RESPONSE:
1261
case TCODE_READ_BLOCK_RESPONSE:
1262
case TCODE_LOCK_REQUEST:
1263
case TCODE_LOCK_RESPONSE:
1264
header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1265
(packet->speed << 16));
1266
header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1267
(packet->header[0] & 0xffff0000));
1268
header[2] = cpu_to_le32(packet->header[2]);
1269
1270
if (TCODE_IS_BLOCK_PACKET(tcode))
1271
header[3] = cpu_to_le32(packet->header[3]);
1272
else
1273
header[3] = (__force __le32) packet->header[3];
1274
1275
d[0].req_count = cpu_to_le16(packet->header_length);
1276
break;
1277
1278
case TCODE_LINK_INTERNAL:
1279
header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1280
(packet->speed << 16));
1281
header[1] = cpu_to_le32(packet->header[1]);
1282
header[2] = cpu_to_le32(packet->header[2]);
1283
d[0].req_count = cpu_to_le16(12);
1284
1285
if (is_ping_packet(&packet->header[1]))
1286
d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1287
break;
1288
1289
case TCODE_STREAM_DATA:
1290
header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1291
(packet->speed << 16));
1292
header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1293
d[0].req_count = cpu_to_le16(8);
1294
break;
1295
1296
default:
1297
/* BUG(); */
1298
packet->ack = RCODE_SEND_ERROR;
1299
return -1;
1300
}
1301
1302
BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1303
driver_data = (struct driver_data *) &d[3];
1304
driver_data->packet = packet;
1305
packet->driver_data = driver_data;
1306
1307
if (packet->payload_length > 0) {
1308
if (packet->payload_length > sizeof(driver_data->inline_data)) {
1309
payload_bus = dma_map_single(ohci->card.device,
1310
packet->payload,
1311
packet->payload_length,
1312
DMA_TO_DEVICE);
1313
if (dma_mapping_error(ohci->card.device, payload_bus)) {
1314
packet->ack = RCODE_SEND_ERROR;
1315
return -1;
1316
}
1317
packet->payload_bus = payload_bus;
1318
packet->payload_mapped = true;
1319
} else {
1320
memcpy(driver_data->inline_data, packet->payload,
1321
packet->payload_length);
1322
payload_bus = d_bus + 3 * sizeof(*d);
1323
}
1324
1325
d[2].req_count = cpu_to_le16(packet->payload_length);
1326
d[2].data_address = cpu_to_le32(payload_bus);
1327
last = &d[2];
1328
z = 3;
1329
} else {
1330
last = &d[0];
1331
z = 2;
1332
}
1333
1334
last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1335
DESCRIPTOR_IRQ_ALWAYS |
1336
DESCRIPTOR_BRANCH_ALWAYS);
1337
1338
/* FIXME: Document how the locking works. */
1339
if (ohci->generation != packet->generation) {
1340
if (packet->payload_mapped)
1341
dma_unmap_single(ohci->card.device, payload_bus,
1342
packet->payload_length, DMA_TO_DEVICE);
1343
packet->ack = RCODE_GENERATION;
1344
return -1;
1345
}
1346
1347
context_append(ctx, d, z, 4 - z);
1348
1349
if (ctx->running) {
1350
reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1351
flush_writes(ohci);
1352
} else {
1353
context_run(ctx, 0);
1354
}
1355
1356
return 0;
1357
}
1358
1359
static void at_context_flush(struct context *ctx)
1360
{
1361
tasklet_disable(&ctx->tasklet);
1362
1363
ctx->flushing = true;
1364
context_tasklet((unsigned long)ctx);
1365
ctx->flushing = false;
1366
1367
tasklet_enable(&ctx->tasklet);
1368
}
1369
1370
static int handle_at_packet(struct context *context,
1371
struct descriptor *d,
1372
struct descriptor *last)
1373
{
1374
struct driver_data *driver_data;
1375
struct fw_packet *packet;
1376
struct fw_ohci *ohci = context->ohci;
1377
int evt;
1378
1379
if (last->transfer_status == 0 && !context->flushing)
1380
/* This descriptor isn't done yet, stop iteration. */
1381
return 0;
1382
1383
driver_data = (struct driver_data *) &d[3];
1384
packet = driver_data->packet;
1385
if (packet == NULL)
1386
/* This packet was cancelled, just continue. */
1387
return 1;
1388
1389
if (packet->payload_mapped)
1390
dma_unmap_single(ohci->card.device, packet->payload_bus,
1391
packet->payload_length, DMA_TO_DEVICE);
1392
1393
evt = le16_to_cpu(last->transfer_status) & 0x1f;
1394
packet->timestamp = le16_to_cpu(last->res_count);
1395
1396
log_ar_at_event('T', packet->speed, packet->header, evt);
1397
1398
switch (evt) {
1399
case OHCI1394_evt_timeout:
1400
/* Async response transmit timed out. */
1401
packet->ack = RCODE_CANCELLED;
1402
break;
1403
1404
case OHCI1394_evt_flushed:
1405
/*
1406
* The packet was flushed should give same error as
1407
* when we try to use a stale generation count.
1408
*/
1409
packet->ack = RCODE_GENERATION;
1410
break;
1411
1412
case OHCI1394_evt_missing_ack:
1413
if (context->flushing)
1414
packet->ack = RCODE_GENERATION;
1415
else {
1416
/*
1417
* Using a valid (current) generation count, but the
1418
* node is not on the bus or not sending acks.
1419
*/
1420
packet->ack = RCODE_NO_ACK;
1421
}
1422
break;
1423
1424
case ACK_COMPLETE + 0x10:
1425
case ACK_PENDING + 0x10:
1426
case ACK_BUSY_X + 0x10:
1427
case ACK_BUSY_A + 0x10:
1428
case ACK_BUSY_B + 0x10:
1429
case ACK_DATA_ERROR + 0x10:
1430
case ACK_TYPE_ERROR + 0x10:
1431
packet->ack = evt - 0x10;
1432
break;
1433
1434
case OHCI1394_evt_no_status:
1435
if (context->flushing) {
1436
packet->ack = RCODE_GENERATION;
1437
break;
1438
}
1439
/* fall through */
1440
1441
default:
1442
packet->ack = RCODE_SEND_ERROR;
1443
break;
1444
}
1445
1446
packet->callback(packet, &ohci->card, packet->ack);
1447
1448
return 1;
1449
}
1450
1451
#define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1452
#define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1453
#define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1454
#define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1455
#define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1456
1457
static void handle_local_rom(struct fw_ohci *ohci,
1458
struct fw_packet *packet, u32 csr)
1459
{
1460
struct fw_packet response;
1461
int tcode, length, i;
1462
1463
tcode = HEADER_GET_TCODE(packet->header[0]);
1464
if (TCODE_IS_BLOCK_PACKET(tcode))
1465
length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1466
else
1467
length = 4;
1468
1469
i = csr - CSR_CONFIG_ROM;
1470
if (i + length > CONFIG_ROM_SIZE) {
1471
fw_fill_response(&response, packet->header,
1472
RCODE_ADDRESS_ERROR, NULL, 0);
1473
} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1474
fw_fill_response(&response, packet->header,
1475
RCODE_TYPE_ERROR, NULL, 0);
1476
} else {
1477
fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1478
(void *) ohci->config_rom + i, length);
1479
}
1480
1481
fw_core_handle_response(&ohci->card, &response);
1482
}
1483
1484
static void handle_local_lock(struct fw_ohci *ohci,
1485
struct fw_packet *packet, u32 csr)
1486
{
1487
struct fw_packet response;
1488
int tcode, length, ext_tcode, sel, try;
1489
__be32 *payload, lock_old;
1490
u32 lock_arg, lock_data;
1491
1492
tcode = HEADER_GET_TCODE(packet->header[0]);
1493
length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1494
payload = packet->payload;
1495
ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1496
1497
if (tcode == TCODE_LOCK_REQUEST &&
1498
ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1499
lock_arg = be32_to_cpu(payload[0]);
1500
lock_data = be32_to_cpu(payload[1]);
1501
} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1502
lock_arg = 0;
1503
lock_data = 0;
1504
} else {
1505
fw_fill_response(&response, packet->header,
1506
RCODE_TYPE_ERROR, NULL, 0);
1507
goto out;
1508
}
1509
1510
sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1511
reg_write(ohci, OHCI1394_CSRData, lock_data);
1512
reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1513
reg_write(ohci, OHCI1394_CSRControl, sel);
1514
1515
for (try = 0; try < 20; try++)
1516
if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1517
lock_old = cpu_to_be32(reg_read(ohci,
1518
OHCI1394_CSRData));
1519
fw_fill_response(&response, packet->header,
1520
RCODE_COMPLETE,
1521
&lock_old, sizeof(lock_old));
1522
goto out;
1523
}
1524
1525
fw_error("swap not done (CSR lock timeout)\n");
1526
fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1527
1528
out:
1529
fw_core_handle_response(&ohci->card, &response);
1530
}
1531
1532
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1533
{
1534
u64 offset, csr;
1535
1536
if (ctx == &ctx->ohci->at_request_ctx) {
1537
packet->ack = ACK_PENDING;
1538
packet->callback(packet, &ctx->ohci->card, packet->ack);
1539
}
1540
1541
offset =
1542
((unsigned long long)
1543
HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1544
packet->header[2];
1545
csr = offset - CSR_REGISTER_BASE;
1546
1547
/* Handle config rom reads. */
1548
if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1549
handle_local_rom(ctx->ohci, packet, csr);
1550
else switch (csr) {
1551
case CSR_BUS_MANAGER_ID:
1552
case CSR_BANDWIDTH_AVAILABLE:
1553
case CSR_CHANNELS_AVAILABLE_HI:
1554
case CSR_CHANNELS_AVAILABLE_LO:
1555
handle_local_lock(ctx->ohci, packet, csr);
1556
break;
1557
default:
1558
if (ctx == &ctx->ohci->at_request_ctx)
1559
fw_core_handle_request(&ctx->ohci->card, packet);
1560
else
1561
fw_core_handle_response(&ctx->ohci->card, packet);
1562
break;
1563
}
1564
1565
if (ctx == &ctx->ohci->at_response_ctx) {
1566
packet->ack = ACK_COMPLETE;
1567
packet->callback(packet, &ctx->ohci->card, packet->ack);
1568
}
1569
}
1570
1571
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1572
{
1573
unsigned long flags;
1574
int ret;
1575
1576
spin_lock_irqsave(&ctx->ohci->lock, flags);
1577
1578
if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1579
ctx->ohci->generation == packet->generation) {
1580
spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1581
handle_local_request(ctx, packet);
1582
return;
1583
}
1584
1585
ret = at_context_queue_packet(ctx, packet);
1586
spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1587
1588
if (ret < 0)
1589
packet->callback(packet, &ctx->ohci->card, packet->ack);
1590
1591
}
1592
1593
static void detect_dead_context(struct fw_ohci *ohci,
1594
const char *name, unsigned int regs)
1595
{
1596
u32 ctl;
1597
1598
ctl = reg_read(ohci, CONTROL_SET(regs));
1599
if (ctl & CONTEXT_DEAD) {
1600
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1601
fw_error("DMA context %s has stopped, error code: %s\n",
1602
name, evts[ctl & 0x1f]);
1603
#else
1604
fw_error("DMA context %s has stopped, error code: %#x\n",
1605
name, ctl & 0x1f);
1606
#endif
1607
}
1608
}
1609
1610
static void handle_dead_contexts(struct fw_ohci *ohci)
1611
{
1612
unsigned int i;
1613
char name[8];
1614
1615
detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1616
detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1617
detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1618
detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1619
for (i = 0; i < 32; ++i) {
1620
if (!(ohci->it_context_support & (1 << i)))
1621
continue;
1622
sprintf(name, "IT%u", i);
1623
detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1624
}
1625
for (i = 0; i < 32; ++i) {
1626
if (!(ohci->ir_context_support & (1 << i)))
1627
continue;
1628
sprintf(name, "IR%u", i);
1629
detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1630
}
1631
/* TODO: maybe try to flush and restart the dead contexts */
1632
}
1633
1634
static u32 cycle_timer_ticks(u32 cycle_timer)
1635
{
1636
u32 ticks;
1637
1638
ticks = cycle_timer & 0xfff;
1639
ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1640
ticks += (3072 * 8000) * (cycle_timer >> 25);
1641
1642
return ticks;
1643
}
1644
1645
/*
1646
* Some controllers exhibit one or more of the following bugs when updating the
1647
* iso cycle timer register:
1648
* - When the lowest six bits are wrapping around to zero, a read that happens
1649
* at the same time will return garbage in the lowest ten bits.
1650
* - When the cycleOffset field wraps around to zero, the cycleCount field is
1651
* not incremented for about 60 ns.
1652
* - Occasionally, the entire register reads zero.
1653
*
1654
* To catch these, we read the register three times and ensure that the
1655
* difference between each two consecutive reads is approximately the same, i.e.
1656
* less than twice the other. Furthermore, any negative difference indicates an
1657
* error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1658
* execute, so we have enough precision to compute the ratio of the differences.)
1659
*/
1660
static u32 get_cycle_time(struct fw_ohci *ohci)
1661
{
1662
u32 c0, c1, c2;
1663
u32 t0, t1, t2;
1664
s32 diff01, diff12;
1665
int i;
1666
1667
c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1668
1669
if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1670
i = 0;
1671
c1 = c2;
1672
c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1673
do {
1674
c0 = c1;
1675
c1 = c2;
1676
c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1677
t0 = cycle_timer_ticks(c0);
1678
t1 = cycle_timer_ticks(c1);
1679
t2 = cycle_timer_ticks(c2);
1680
diff01 = t1 - t0;
1681
diff12 = t2 - t1;
1682
} while ((diff01 <= 0 || diff12 <= 0 ||
1683
diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1684
&& i++ < 20);
1685
}
1686
1687
return c2;
1688
}
1689
1690
/*
1691
* This function has to be called at least every 64 seconds. The bus_time
1692
* field stores not only the upper 25 bits of the BUS_TIME register but also
1693
* the most significant bit of the cycle timer in bit 6 so that we can detect
1694
* changes in this bit.
1695
*/
1696
static u32 update_bus_time(struct fw_ohci *ohci)
1697
{
1698
u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1699
1700
if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1701
ohci->bus_time += 0x40;
1702
1703
return ohci->bus_time | cycle_time_seconds;
1704
}
1705
1706
static void bus_reset_tasklet(unsigned long data)
1707
{
1708
struct fw_ohci *ohci = (struct fw_ohci *)data;
1709
int self_id_count, i, j, reg;
1710
int generation, new_generation;
1711
unsigned long flags;
1712
void *free_rom = NULL;
1713
dma_addr_t free_rom_bus = 0;
1714
bool is_new_root;
1715
1716
reg = reg_read(ohci, OHCI1394_NodeID);
1717
if (!(reg & OHCI1394_NodeID_idValid)) {
1718
fw_notify("node ID not valid, new bus reset in progress\n");
1719
return;
1720
}
1721
if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1722
fw_notify("malconfigured bus\n");
1723
return;
1724
}
1725
ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1726
OHCI1394_NodeID_nodeNumber);
1727
1728
is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1729
if (!(ohci->is_root && is_new_root))
1730
reg_write(ohci, OHCI1394_LinkControlSet,
1731
OHCI1394_LinkControl_cycleMaster);
1732
ohci->is_root = is_new_root;
1733
1734
reg = reg_read(ohci, OHCI1394_SelfIDCount);
1735
if (reg & OHCI1394_SelfIDCount_selfIDError) {
1736
fw_notify("inconsistent self IDs\n");
1737
return;
1738
}
1739
/*
1740
* The count in the SelfIDCount register is the number of
1741
* bytes in the self ID receive buffer. Since we also receive
1742
* the inverted quadlets and a header quadlet, we shift one
1743
* bit extra to get the actual number of self IDs.
1744
*/
1745
self_id_count = (reg >> 3) & 0xff;
1746
if (self_id_count == 0 || self_id_count > 252) {
1747
fw_notify("inconsistent self IDs\n");
1748
return;
1749
}
1750
generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1751
rmb();
1752
1753
for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1754
if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1755
fw_notify("inconsistent self IDs\n");
1756
return;
1757
}
1758
ohci->self_id_buffer[j] =
1759
cond_le32_to_cpu(ohci->self_id_cpu[i]);
1760
}
1761
rmb();
1762
1763
/*
1764
* Check the consistency of the self IDs we just read. The
1765
* problem we face is that a new bus reset can start while we
1766
* read out the self IDs from the DMA buffer. If this happens,
1767
* the DMA buffer will be overwritten with new self IDs and we
1768
* will read out inconsistent data. The OHCI specification
1769
* (section 11.2) recommends a technique similar to
1770
* linux/seqlock.h, where we remember the generation of the
1771
* self IDs in the buffer before reading them out and compare
1772
* it to the current generation after reading them out. If
1773
* the two generations match we know we have a consistent set
1774
* of self IDs.
1775
*/
1776
1777
new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1778
if (new_generation != generation) {
1779
fw_notify("recursive bus reset detected, "
1780
"discarding self ids\n");
1781
return;
1782
}
1783
1784
/* FIXME: Document how the locking works. */
1785
spin_lock_irqsave(&ohci->lock, flags);
1786
1787
ohci->generation = -1; /* prevent AT packet queueing */
1788
context_stop(&ohci->at_request_ctx);
1789
context_stop(&ohci->at_response_ctx);
1790
1791
spin_unlock_irqrestore(&ohci->lock, flags);
1792
1793
/*
1794
* Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1795
* packets in the AT queues and software needs to drain them.
1796
* Some OHCI 1.1 controllers (JMicron) apparently require this too.
1797
*/
1798
at_context_flush(&ohci->at_request_ctx);
1799
at_context_flush(&ohci->at_response_ctx);
1800
1801
spin_lock_irqsave(&ohci->lock, flags);
1802
1803
ohci->generation = generation;
1804
reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1805
1806
if (ohci->quirks & QUIRK_RESET_PACKET)
1807
ohci->request_generation = generation;
1808
1809
/*
1810
* This next bit is unrelated to the AT context stuff but we
1811
* have to do it under the spinlock also. If a new config rom
1812
* was set up before this reset, the old one is now no longer
1813
* in use and we can free it. Update the config rom pointers
1814
* to point to the current config rom and clear the
1815
* next_config_rom pointer so a new update can take place.
1816
*/
1817
1818
if (ohci->next_config_rom != NULL) {
1819
if (ohci->next_config_rom != ohci->config_rom) {
1820
free_rom = ohci->config_rom;
1821
free_rom_bus = ohci->config_rom_bus;
1822
}
1823
ohci->config_rom = ohci->next_config_rom;
1824
ohci->config_rom_bus = ohci->next_config_rom_bus;
1825
ohci->next_config_rom = NULL;
1826
1827
/*
1828
* Restore config_rom image and manually update
1829
* config_rom registers. Writing the header quadlet
1830
* will indicate that the config rom is ready, so we
1831
* do that last.
1832
*/
1833
reg_write(ohci, OHCI1394_BusOptions,
1834
be32_to_cpu(ohci->config_rom[2]));
1835
ohci->config_rom[0] = ohci->next_header;
1836
reg_write(ohci, OHCI1394_ConfigROMhdr,
1837
be32_to_cpu(ohci->next_header));
1838
}
1839
1840
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1841
reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1842
reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1843
#endif
1844
1845
spin_unlock_irqrestore(&ohci->lock, flags);
1846
1847
if (free_rom)
1848
dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1849
free_rom, free_rom_bus);
1850
1851
log_selfids(ohci->node_id, generation,
1852
self_id_count, ohci->self_id_buffer);
1853
1854
fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1855
self_id_count, ohci->self_id_buffer,
1856
ohci->csr_state_setclear_abdicate);
1857
ohci->csr_state_setclear_abdicate = false;
1858
}
1859
1860
static irqreturn_t irq_handler(int irq, void *data)
1861
{
1862
struct fw_ohci *ohci = data;
1863
u32 event, iso_event;
1864
int i;
1865
1866
event = reg_read(ohci, OHCI1394_IntEventClear);
1867
1868
if (!event || !~event)
1869
return IRQ_NONE;
1870
1871
/*
1872
* busReset and postedWriteErr must not be cleared yet
1873
* (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1874
*/
1875
reg_write(ohci, OHCI1394_IntEventClear,
1876
event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1877
log_irqs(event);
1878
1879
if (event & OHCI1394_selfIDComplete)
1880
tasklet_schedule(&ohci->bus_reset_tasklet);
1881
1882
if (event & OHCI1394_RQPkt)
1883
tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1884
1885
if (event & OHCI1394_RSPkt)
1886
tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1887
1888
if (event & OHCI1394_reqTxComplete)
1889
tasklet_schedule(&ohci->at_request_ctx.tasklet);
1890
1891
if (event & OHCI1394_respTxComplete)
1892
tasklet_schedule(&ohci->at_response_ctx.tasklet);
1893
1894
if (event & OHCI1394_isochRx) {
1895
iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1896
reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1897
1898
while (iso_event) {
1899
i = ffs(iso_event) - 1;
1900
tasklet_schedule(
1901
&ohci->ir_context_list[i].context.tasklet);
1902
iso_event &= ~(1 << i);
1903
}
1904
}
1905
1906
if (event & OHCI1394_isochTx) {
1907
iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1908
reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1909
1910
while (iso_event) {
1911
i = ffs(iso_event) - 1;
1912
tasklet_schedule(
1913
&ohci->it_context_list[i].context.tasklet);
1914
iso_event &= ~(1 << i);
1915
}
1916
}
1917
1918
if (unlikely(event & OHCI1394_regAccessFail))
1919
fw_error("Register access failure - "
1920
"please notify [email protected]\n");
1921
1922
if (unlikely(event & OHCI1394_postedWriteErr)) {
1923
reg_read(ohci, OHCI1394_PostedWriteAddressHi);
1924
reg_read(ohci, OHCI1394_PostedWriteAddressLo);
1925
reg_write(ohci, OHCI1394_IntEventClear,
1926
OHCI1394_postedWriteErr);
1927
fw_error("PCI posted write error\n");
1928
}
1929
1930
if (unlikely(event & OHCI1394_cycleTooLong)) {
1931
if (printk_ratelimit())
1932
fw_notify("isochronous cycle too long\n");
1933
reg_write(ohci, OHCI1394_LinkControlSet,
1934
OHCI1394_LinkControl_cycleMaster);
1935
}
1936
1937
if (unlikely(event & OHCI1394_cycleInconsistent)) {
1938
/*
1939
* We need to clear this event bit in order to make
1940
* cycleMatch isochronous I/O work. In theory we should
1941
* stop active cycleMatch iso contexts now and restart
1942
* them at least two cycles later. (FIXME?)
1943
*/
1944
if (printk_ratelimit())
1945
fw_notify("isochronous cycle inconsistent\n");
1946
}
1947
1948
if (unlikely(event & OHCI1394_unrecoverableError))
1949
handle_dead_contexts(ohci);
1950
1951
if (event & OHCI1394_cycle64Seconds) {
1952
spin_lock(&ohci->lock);
1953
update_bus_time(ohci);
1954
spin_unlock(&ohci->lock);
1955
} else
1956
flush_writes(ohci);
1957
1958
return IRQ_HANDLED;
1959
}
1960
1961
static int software_reset(struct fw_ohci *ohci)
1962
{
1963
int i;
1964
1965
reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1966
1967
for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1968
if ((reg_read(ohci, OHCI1394_HCControlSet) &
1969
OHCI1394_HCControl_softReset) == 0)
1970
return 0;
1971
msleep(1);
1972
}
1973
1974
return -EBUSY;
1975
}
1976
1977
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1978
{
1979
size_t size = length * 4;
1980
1981
memcpy(dest, src, size);
1982
if (size < CONFIG_ROM_SIZE)
1983
memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1984
}
1985
1986
static int configure_1394a_enhancements(struct fw_ohci *ohci)
1987
{
1988
bool enable_1394a;
1989
int ret, clear, set, offset;
1990
1991
/* Check if the driver should configure link and PHY. */
1992
if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1993
OHCI1394_HCControl_programPhyEnable))
1994
return 0;
1995
1996
/* Paranoia: check whether the PHY supports 1394a, too. */
1997
enable_1394a = false;
1998
ret = read_phy_reg(ohci, 2);
1999
if (ret < 0)
2000
return ret;
2001
if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2002
ret = read_paged_phy_reg(ohci, 1, 8);
2003
if (ret < 0)
2004
return ret;
2005
if (ret >= 1)
2006
enable_1394a = true;
2007
}
2008
2009
if (ohci->quirks & QUIRK_NO_1394A)
2010
enable_1394a = false;
2011
2012
/* Configure PHY and link consistently. */
2013
if (enable_1394a) {
2014
clear = 0;
2015
set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2016
} else {
2017
clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2018
set = 0;
2019
}
2020
ret = update_phy_reg(ohci, 5, clear, set);
2021
if (ret < 0)
2022
return ret;
2023
2024
if (enable_1394a)
2025
offset = OHCI1394_HCControlSet;
2026
else
2027
offset = OHCI1394_HCControlClear;
2028
reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2029
2030
/* Clean up: configuration has been taken care of. */
2031
reg_write(ohci, OHCI1394_HCControlClear,
2032
OHCI1394_HCControl_programPhyEnable);
2033
2034
return 0;
2035
}
2036
2037
static int ohci_enable(struct fw_card *card,
2038
const __be32 *config_rom, size_t length)
2039
{
2040
struct fw_ohci *ohci = fw_ohci(card);
2041
struct pci_dev *dev = to_pci_dev(card->device);
2042
u32 lps, seconds, version, irqs;
2043
int i, ret;
2044
2045
if (software_reset(ohci)) {
2046
fw_error("Failed to reset ohci card.\n");
2047
return -EBUSY;
2048
}
2049
2050
/*
2051
* Now enable LPS, which we need in order to start accessing
2052
* most of the registers. In fact, on some cards (ALI M5251),
2053
* accessing registers in the SClk domain without LPS enabled
2054
* will lock up the machine. Wait 50msec to make sure we have
2055
* full link enabled. However, with some cards (well, at least
2056
* a JMicron PCIe card), we have to try again sometimes.
2057
*/
2058
reg_write(ohci, OHCI1394_HCControlSet,
2059
OHCI1394_HCControl_LPS |
2060
OHCI1394_HCControl_postedWriteEnable);
2061
flush_writes(ohci);
2062
2063
for (lps = 0, i = 0; !lps && i < 3; i++) {
2064
msleep(50);
2065
lps = reg_read(ohci, OHCI1394_HCControlSet) &
2066
OHCI1394_HCControl_LPS;
2067
}
2068
2069
if (!lps) {
2070
fw_error("Failed to set Link Power Status\n");
2071
return -EIO;
2072
}
2073
2074
reg_write(ohci, OHCI1394_HCControlClear,
2075
OHCI1394_HCControl_noByteSwapData);
2076
2077
reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2078
reg_write(ohci, OHCI1394_LinkControlSet,
2079
OHCI1394_LinkControl_cycleTimerEnable |
2080
OHCI1394_LinkControl_cycleMaster);
2081
2082
reg_write(ohci, OHCI1394_ATRetries,
2083
OHCI1394_MAX_AT_REQ_RETRIES |
2084
(OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2085
(OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2086
(200 << 16));
2087
2088
seconds = lower_32_bits(get_seconds());
2089
reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2090
ohci->bus_time = seconds & ~0x3f;
2091
2092
version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2093
if (version >= OHCI_VERSION_1_1) {
2094
reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2095
0xfffffffe);
2096
card->broadcast_channel_auto_allocated = true;
2097
}
2098
2099
/* Get implemented bits of the priority arbitration request counter. */
2100
reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2101
ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2102
reg_write(ohci, OHCI1394_FairnessControl, 0);
2103
card->priority_budget_implemented = ohci->pri_req_max != 0;
2104
2105
reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2106
reg_write(ohci, OHCI1394_IntEventClear, ~0);
2107
reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2108
2109
ret = configure_1394a_enhancements(ohci);
2110
if (ret < 0)
2111
return ret;
2112
2113
/* Activate link_on bit and contender bit in our self ID packets.*/
2114
ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2115
if (ret < 0)
2116
return ret;
2117
2118
/*
2119
* When the link is not yet enabled, the atomic config rom
2120
* update mechanism described below in ohci_set_config_rom()
2121
* is not active. We have to update ConfigRomHeader and
2122
* BusOptions manually, and the write to ConfigROMmap takes
2123
* effect immediately. We tie this to the enabling of the
2124
* link, so we have a valid config rom before enabling - the
2125
* OHCI requires that ConfigROMhdr and BusOptions have valid
2126
* values before enabling.
2127
*
2128
* However, when the ConfigROMmap is written, some controllers
2129
* always read back quadlets 0 and 2 from the config rom to
2130
* the ConfigRomHeader and BusOptions registers on bus reset.
2131
* They shouldn't do that in this initial case where the link
2132
* isn't enabled. This means we have to use the same
2133
* workaround here, setting the bus header to 0 and then write
2134
* the right values in the bus reset tasklet.
2135
*/
2136
2137
if (config_rom) {
2138
ohci->next_config_rom =
2139
dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2140
&ohci->next_config_rom_bus,
2141
GFP_KERNEL);
2142
if (ohci->next_config_rom == NULL)
2143
return -ENOMEM;
2144
2145
copy_config_rom(ohci->next_config_rom, config_rom, length);
2146
} else {
2147
/*
2148
* In the suspend case, config_rom is NULL, which
2149
* means that we just reuse the old config rom.
2150
*/
2151
ohci->next_config_rom = ohci->config_rom;
2152
ohci->next_config_rom_bus = ohci->config_rom_bus;
2153
}
2154
2155
ohci->next_header = ohci->next_config_rom[0];
2156
ohci->next_config_rom[0] = 0;
2157
reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2158
reg_write(ohci, OHCI1394_BusOptions,
2159
be32_to_cpu(ohci->next_config_rom[2]));
2160
reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2161
2162
reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2163
2164
if (!(ohci->quirks & QUIRK_NO_MSI))
2165
pci_enable_msi(dev);
2166
if (request_irq(dev->irq, irq_handler,
2167
pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2168
ohci_driver_name, ohci)) {
2169
fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2170
pci_disable_msi(dev);
2171
dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2172
ohci->config_rom, ohci->config_rom_bus);
2173
return -EIO;
2174
}
2175
2176
irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2177
OHCI1394_RQPkt | OHCI1394_RSPkt |
2178
OHCI1394_isochTx | OHCI1394_isochRx |
2179
OHCI1394_postedWriteErr |
2180
OHCI1394_selfIDComplete |
2181
OHCI1394_regAccessFail |
2182
OHCI1394_cycle64Seconds |
2183
OHCI1394_cycleInconsistent |
2184
OHCI1394_unrecoverableError |
2185
OHCI1394_cycleTooLong |
2186
OHCI1394_masterIntEnable;
2187
if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2188
irqs |= OHCI1394_busReset;
2189
reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2190
2191
reg_write(ohci, OHCI1394_HCControlSet,
2192
OHCI1394_HCControl_linkEnable |
2193
OHCI1394_HCControl_BIBimageValid);
2194
2195
reg_write(ohci, OHCI1394_LinkControlSet,
2196
OHCI1394_LinkControl_rcvSelfID |
2197
OHCI1394_LinkControl_rcvPhyPkt);
2198
2199
ar_context_run(&ohci->ar_request_ctx);
2200
ar_context_run(&ohci->ar_response_ctx); /* also flushes writes */
2201
2202
/* We are ready to go, reset bus to finish initialization. */
2203
fw_schedule_bus_reset(&ohci->card, false, true);
2204
2205
return 0;
2206
}
2207
2208
static int ohci_set_config_rom(struct fw_card *card,
2209
const __be32 *config_rom, size_t length)
2210
{
2211
struct fw_ohci *ohci;
2212
unsigned long flags;
2213
__be32 *next_config_rom;
2214
dma_addr_t uninitialized_var(next_config_rom_bus);
2215
2216
ohci = fw_ohci(card);
2217
2218
/*
2219
* When the OHCI controller is enabled, the config rom update
2220
* mechanism is a bit tricky, but easy enough to use. See
2221
* section 5.5.6 in the OHCI specification.
2222
*
2223
* The OHCI controller caches the new config rom address in a
2224
* shadow register (ConfigROMmapNext) and needs a bus reset
2225
* for the changes to take place. When the bus reset is
2226
* detected, the controller loads the new values for the
2227
* ConfigRomHeader and BusOptions registers from the specified
2228
* config rom and loads ConfigROMmap from the ConfigROMmapNext
2229
* shadow register. All automatically and atomically.
2230
*
2231
* Now, there's a twist to this story. The automatic load of
2232
* ConfigRomHeader and BusOptions doesn't honor the
2233
* noByteSwapData bit, so with a be32 config rom, the
2234
* controller will load be32 values in to these registers
2235
* during the atomic update, even on litte endian
2236
* architectures. The workaround we use is to put a 0 in the
2237
* header quadlet; 0 is endian agnostic and means that the
2238
* config rom isn't ready yet. In the bus reset tasklet we
2239
* then set up the real values for the two registers.
2240
*
2241
* We use ohci->lock to avoid racing with the code that sets
2242
* ohci->next_config_rom to NULL (see bus_reset_tasklet).
2243
*/
2244
2245
next_config_rom =
2246
dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2247
&next_config_rom_bus, GFP_KERNEL);
2248
if (next_config_rom == NULL)
2249
return -ENOMEM;
2250
2251
spin_lock_irqsave(&ohci->lock, flags);
2252
2253
/*
2254
* If there is not an already pending config_rom update,
2255
* push our new allocation into the ohci->next_config_rom
2256
* and then mark the local variable as null so that we
2257
* won't deallocate the new buffer.
2258
*
2259
* OTOH, if there is a pending config_rom update, just
2260
* use that buffer with the new config_rom data, and
2261
* let this routine free the unused DMA allocation.
2262
*/
2263
2264
if (ohci->next_config_rom == NULL) {
2265
ohci->next_config_rom = next_config_rom;
2266
ohci->next_config_rom_bus = next_config_rom_bus;
2267
next_config_rom = NULL;
2268
}
2269
2270
copy_config_rom(ohci->next_config_rom, config_rom, length);
2271
2272
ohci->next_header = config_rom[0];
2273
ohci->next_config_rom[0] = 0;
2274
2275
reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2276
2277
spin_unlock_irqrestore(&ohci->lock, flags);
2278
2279
/* If we didn't use the DMA allocation, delete it. */
2280
if (next_config_rom != NULL)
2281
dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2282
next_config_rom, next_config_rom_bus);
2283
2284
/*
2285
* Now initiate a bus reset to have the changes take
2286
* effect. We clean up the old config rom memory and DMA
2287
* mappings in the bus reset tasklet, since the OHCI
2288
* controller could need to access it before the bus reset
2289
* takes effect.
2290
*/
2291
2292
fw_schedule_bus_reset(&ohci->card, true, true);
2293
2294
return 0;
2295
}
2296
2297
static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2298
{
2299
struct fw_ohci *ohci = fw_ohci(card);
2300
2301
at_context_transmit(&ohci->at_request_ctx, packet);
2302
}
2303
2304
static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2305
{
2306
struct fw_ohci *ohci = fw_ohci(card);
2307
2308
at_context_transmit(&ohci->at_response_ctx, packet);
2309
}
2310
2311
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2312
{
2313
struct fw_ohci *ohci = fw_ohci(card);
2314
struct context *ctx = &ohci->at_request_ctx;
2315
struct driver_data *driver_data = packet->driver_data;
2316
int ret = -ENOENT;
2317
2318
tasklet_disable(&ctx->tasklet);
2319
2320
if (packet->ack != 0)
2321
goto out;
2322
2323
if (packet->payload_mapped)
2324
dma_unmap_single(ohci->card.device, packet->payload_bus,
2325
packet->payload_length, DMA_TO_DEVICE);
2326
2327
log_ar_at_event('T', packet->speed, packet->header, 0x20);
2328
driver_data->packet = NULL;
2329
packet->ack = RCODE_CANCELLED;
2330
packet->callback(packet, &ohci->card, packet->ack);
2331
ret = 0;
2332
out:
2333
tasklet_enable(&ctx->tasklet);
2334
2335
return ret;
2336
}
2337
2338
static int ohci_enable_phys_dma(struct fw_card *card,
2339
int node_id, int generation)
2340
{
2341
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2342
return 0;
2343
#else
2344
struct fw_ohci *ohci = fw_ohci(card);
2345
unsigned long flags;
2346
int n, ret = 0;
2347
2348
/*
2349
* FIXME: Make sure this bitmask is cleared when we clear the busReset
2350
* interrupt bit. Clear physReqResourceAllBuses on bus reset.
2351
*/
2352
2353
spin_lock_irqsave(&ohci->lock, flags);
2354
2355
if (ohci->generation != generation) {
2356
ret = -ESTALE;
2357
goto out;
2358
}
2359
2360
/*
2361
* Note, if the node ID contains a non-local bus ID, physical DMA is
2362
* enabled for _all_ nodes on remote buses.
2363
*/
2364
2365
n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2366
if (n < 32)
2367
reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2368
else
2369
reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2370
2371
flush_writes(ohci);
2372
out:
2373
spin_unlock_irqrestore(&ohci->lock, flags);
2374
2375
return ret;
2376
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2377
}
2378
2379
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2380
{
2381
struct fw_ohci *ohci = fw_ohci(card);
2382
unsigned long flags;
2383
u32 value;
2384
2385
switch (csr_offset) {
2386
case CSR_STATE_CLEAR:
2387
case CSR_STATE_SET:
2388
if (ohci->is_root &&
2389
(reg_read(ohci, OHCI1394_LinkControlSet) &
2390
OHCI1394_LinkControl_cycleMaster))
2391
value = CSR_STATE_BIT_CMSTR;
2392
else
2393
value = 0;
2394
if (ohci->csr_state_setclear_abdicate)
2395
value |= CSR_STATE_BIT_ABDICATE;
2396
2397
return value;
2398
2399
case CSR_NODE_IDS:
2400
return reg_read(ohci, OHCI1394_NodeID) << 16;
2401
2402
case CSR_CYCLE_TIME:
2403
return get_cycle_time(ohci);
2404
2405
case CSR_BUS_TIME:
2406
/*
2407
* We might be called just after the cycle timer has wrapped
2408
* around but just before the cycle64Seconds handler, so we
2409
* better check here, too, if the bus time needs to be updated.
2410
*/
2411
spin_lock_irqsave(&ohci->lock, flags);
2412
value = update_bus_time(ohci);
2413
spin_unlock_irqrestore(&ohci->lock, flags);
2414
return value;
2415
2416
case CSR_BUSY_TIMEOUT:
2417
value = reg_read(ohci, OHCI1394_ATRetries);
2418
return (value >> 4) & 0x0ffff00f;
2419
2420
case CSR_PRIORITY_BUDGET:
2421
return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2422
(ohci->pri_req_max << 8);
2423
2424
default:
2425
WARN_ON(1);
2426
return 0;
2427
}
2428
}
2429
2430
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2431
{
2432
struct fw_ohci *ohci = fw_ohci(card);
2433
unsigned long flags;
2434
2435
switch (csr_offset) {
2436
case CSR_STATE_CLEAR:
2437
if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2438
reg_write(ohci, OHCI1394_LinkControlClear,
2439
OHCI1394_LinkControl_cycleMaster);
2440
flush_writes(ohci);
2441
}
2442
if (value & CSR_STATE_BIT_ABDICATE)
2443
ohci->csr_state_setclear_abdicate = false;
2444
break;
2445
2446
case CSR_STATE_SET:
2447
if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2448
reg_write(ohci, OHCI1394_LinkControlSet,
2449
OHCI1394_LinkControl_cycleMaster);
2450
flush_writes(ohci);
2451
}
2452
if (value & CSR_STATE_BIT_ABDICATE)
2453
ohci->csr_state_setclear_abdicate = true;
2454
break;
2455
2456
case CSR_NODE_IDS:
2457
reg_write(ohci, OHCI1394_NodeID, value >> 16);
2458
flush_writes(ohci);
2459
break;
2460
2461
case CSR_CYCLE_TIME:
2462
reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2463
reg_write(ohci, OHCI1394_IntEventSet,
2464
OHCI1394_cycleInconsistent);
2465
flush_writes(ohci);
2466
break;
2467
2468
case CSR_BUS_TIME:
2469
spin_lock_irqsave(&ohci->lock, flags);
2470
ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2471
spin_unlock_irqrestore(&ohci->lock, flags);
2472
break;
2473
2474
case CSR_BUSY_TIMEOUT:
2475
value = (value & 0xf) | ((value & 0xf) << 4) |
2476
((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2477
reg_write(ohci, OHCI1394_ATRetries, value);
2478
flush_writes(ohci);
2479
break;
2480
2481
case CSR_PRIORITY_BUDGET:
2482
reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2483
flush_writes(ohci);
2484
break;
2485
2486
default:
2487
WARN_ON(1);
2488
break;
2489
}
2490
}
2491
2492
static void copy_iso_headers(struct iso_context *ctx, void *p)
2493
{
2494
int i = ctx->header_length;
2495
2496
if (i + ctx->base.header_size > PAGE_SIZE)
2497
return;
2498
2499
/*
2500
* The iso header is byteswapped to little endian by
2501
* the controller, but the remaining header quadlets
2502
* are big endian. We want to present all the headers
2503
* as big endian, so we have to swap the first quadlet.
2504
*/
2505
if (ctx->base.header_size > 0)
2506
*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2507
if (ctx->base.header_size > 4)
2508
*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2509
if (ctx->base.header_size > 8)
2510
memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2511
ctx->header_length += ctx->base.header_size;
2512
}
2513
2514
static int handle_ir_packet_per_buffer(struct context *context,
2515
struct descriptor *d,
2516
struct descriptor *last)
2517
{
2518
struct iso_context *ctx =
2519
container_of(context, struct iso_context, context);
2520
struct descriptor *pd;
2521
__le32 *ir_header;
2522
void *p;
2523
2524
for (pd = d; pd <= last; pd++)
2525
if (pd->transfer_status)
2526
break;
2527
if (pd > last)
2528
/* Descriptor(s) not done yet, stop iteration */
2529
return 0;
2530
2531
p = last + 1;
2532
copy_iso_headers(ctx, p);
2533
2534
if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2535
ir_header = (__le32 *) p;
2536
ctx->base.callback.sc(&ctx->base,
2537
le32_to_cpu(ir_header[0]) & 0xffff,
2538
ctx->header_length, ctx->header,
2539
ctx->base.callback_data);
2540
ctx->header_length = 0;
2541
}
2542
2543
return 1;
2544
}
2545
2546
/* d == last because each descriptor block is only a single descriptor. */
2547
static int handle_ir_buffer_fill(struct context *context,
2548
struct descriptor *d,
2549
struct descriptor *last)
2550
{
2551
struct iso_context *ctx =
2552
container_of(context, struct iso_context, context);
2553
2554
if (!last->transfer_status)
2555
/* Descriptor(s) not done yet, stop iteration */
2556
return 0;
2557
2558
if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2559
ctx->base.callback.mc(&ctx->base,
2560
le32_to_cpu(last->data_address) +
2561
le16_to_cpu(last->req_count) -
2562
le16_to_cpu(last->res_count),
2563
ctx->base.callback_data);
2564
2565
return 1;
2566
}
2567
2568
static int handle_it_packet(struct context *context,
2569
struct descriptor *d,
2570
struct descriptor *last)
2571
{
2572
struct iso_context *ctx =
2573
container_of(context, struct iso_context, context);
2574
int i;
2575
struct descriptor *pd;
2576
2577
for (pd = d; pd <= last; pd++)
2578
if (pd->transfer_status)
2579
break;
2580
if (pd > last)
2581
/* Descriptor(s) not done yet, stop iteration */
2582
return 0;
2583
2584
i = ctx->header_length;
2585
if (i + 4 < PAGE_SIZE) {
2586
/* Present this value as big-endian to match the receive code */
2587
*(__be32 *)(ctx->header + i) = cpu_to_be32(
2588
((u32)le16_to_cpu(pd->transfer_status) << 16) |
2589
le16_to_cpu(pd->res_count));
2590
ctx->header_length += 4;
2591
}
2592
if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2593
ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2594
ctx->header_length, ctx->header,
2595
ctx->base.callback_data);
2596
ctx->header_length = 0;
2597
}
2598
return 1;
2599
}
2600
2601
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2602
{
2603
u32 hi = channels >> 32, lo = channels;
2604
2605
reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2606
reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2607
reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2608
reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2609
mmiowb();
2610
ohci->mc_channels = channels;
2611
}
2612
2613
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2614
int type, int channel, size_t header_size)
2615
{
2616
struct fw_ohci *ohci = fw_ohci(card);
2617
struct iso_context *uninitialized_var(ctx);
2618
descriptor_callback_t uninitialized_var(callback);
2619
u64 *uninitialized_var(channels);
2620
u32 *uninitialized_var(mask), uninitialized_var(regs);
2621
unsigned long flags;
2622
int index, ret = -EBUSY;
2623
2624
spin_lock_irqsave(&ohci->lock, flags);
2625
2626
switch (type) {
2627
case FW_ISO_CONTEXT_TRANSMIT:
2628
mask = &ohci->it_context_mask;
2629
callback = handle_it_packet;
2630
index = ffs(*mask) - 1;
2631
if (index >= 0) {
2632
*mask &= ~(1 << index);
2633
regs = OHCI1394_IsoXmitContextBase(index);
2634
ctx = &ohci->it_context_list[index];
2635
}
2636
break;
2637
2638
case FW_ISO_CONTEXT_RECEIVE:
2639
channels = &ohci->ir_context_channels;
2640
mask = &ohci->ir_context_mask;
2641
callback = handle_ir_packet_per_buffer;
2642
index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2643
if (index >= 0) {
2644
*channels &= ~(1ULL << channel);
2645
*mask &= ~(1 << index);
2646
regs = OHCI1394_IsoRcvContextBase(index);
2647
ctx = &ohci->ir_context_list[index];
2648
}
2649
break;
2650
2651
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2652
mask = &ohci->ir_context_mask;
2653
callback = handle_ir_buffer_fill;
2654
index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2655
if (index >= 0) {
2656
ohci->mc_allocated = true;
2657
*mask &= ~(1 << index);
2658
regs = OHCI1394_IsoRcvContextBase(index);
2659
ctx = &ohci->ir_context_list[index];
2660
}
2661
break;
2662
2663
default:
2664
index = -1;
2665
ret = -ENOSYS;
2666
}
2667
2668
spin_unlock_irqrestore(&ohci->lock, flags);
2669
2670
if (index < 0)
2671
return ERR_PTR(ret);
2672
2673
memset(ctx, 0, sizeof(*ctx));
2674
ctx->header_length = 0;
2675
ctx->header = (void *) __get_free_page(GFP_KERNEL);
2676
if (ctx->header == NULL) {
2677
ret = -ENOMEM;
2678
goto out;
2679
}
2680
ret = context_init(&ctx->context, ohci, regs, callback);
2681
if (ret < 0)
2682
goto out_with_header;
2683
2684
if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2685
set_multichannel_mask(ohci, 0);
2686
2687
return &ctx->base;
2688
2689
out_with_header:
2690
free_page((unsigned long)ctx->header);
2691
out:
2692
spin_lock_irqsave(&ohci->lock, flags);
2693
2694
switch (type) {
2695
case FW_ISO_CONTEXT_RECEIVE:
2696
*channels |= 1ULL << channel;
2697
break;
2698
2699
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2700
ohci->mc_allocated = false;
2701
break;
2702
}
2703
*mask |= 1 << index;
2704
2705
spin_unlock_irqrestore(&ohci->lock, flags);
2706
2707
return ERR_PTR(ret);
2708
}
2709
2710
static int ohci_start_iso(struct fw_iso_context *base,
2711
s32 cycle, u32 sync, u32 tags)
2712
{
2713
struct iso_context *ctx = container_of(base, struct iso_context, base);
2714
struct fw_ohci *ohci = ctx->context.ohci;
2715
u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2716
int index;
2717
2718
/* the controller cannot start without any queued packets */
2719
if (ctx->context.last->branch_address == 0)
2720
return -ENODATA;
2721
2722
switch (ctx->base.type) {
2723
case FW_ISO_CONTEXT_TRANSMIT:
2724
index = ctx - ohci->it_context_list;
2725
match = 0;
2726
if (cycle >= 0)
2727
match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2728
(cycle & 0x7fff) << 16;
2729
2730
reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2731
reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2732
context_run(&ctx->context, match);
2733
break;
2734
2735
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2736
control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2737
/* fall through */
2738
case FW_ISO_CONTEXT_RECEIVE:
2739
index = ctx - ohci->ir_context_list;
2740
match = (tags << 28) | (sync << 8) | ctx->base.channel;
2741
if (cycle >= 0) {
2742
match |= (cycle & 0x07fff) << 12;
2743
control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2744
}
2745
2746
reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2747
reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2748
reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2749
context_run(&ctx->context, control);
2750
2751
ctx->sync = sync;
2752
ctx->tags = tags;
2753
2754
break;
2755
}
2756
2757
return 0;
2758
}
2759
2760
static int ohci_stop_iso(struct fw_iso_context *base)
2761
{
2762
struct fw_ohci *ohci = fw_ohci(base->card);
2763
struct iso_context *ctx = container_of(base, struct iso_context, base);
2764
int index;
2765
2766
switch (ctx->base.type) {
2767
case FW_ISO_CONTEXT_TRANSMIT:
2768
index = ctx - ohci->it_context_list;
2769
reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2770
break;
2771
2772
case FW_ISO_CONTEXT_RECEIVE:
2773
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2774
index = ctx - ohci->ir_context_list;
2775
reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2776
break;
2777
}
2778
flush_writes(ohci);
2779
context_stop(&ctx->context);
2780
tasklet_kill(&ctx->context.tasklet);
2781
2782
return 0;
2783
}
2784
2785
static void ohci_free_iso_context(struct fw_iso_context *base)
2786
{
2787
struct fw_ohci *ohci = fw_ohci(base->card);
2788
struct iso_context *ctx = container_of(base, struct iso_context, base);
2789
unsigned long flags;
2790
int index;
2791
2792
ohci_stop_iso(base);
2793
context_release(&ctx->context);
2794
free_page((unsigned long)ctx->header);
2795
2796
spin_lock_irqsave(&ohci->lock, flags);
2797
2798
switch (base->type) {
2799
case FW_ISO_CONTEXT_TRANSMIT:
2800
index = ctx - ohci->it_context_list;
2801
ohci->it_context_mask |= 1 << index;
2802
break;
2803
2804
case FW_ISO_CONTEXT_RECEIVE:
2805
index = ctx - ohci->ir_context_list;
2806
ohci->ir_context_mask |= 1 << index;
2807
ohci->ir_context_channels |= 1ULL << base->channel;
2808
break;
2809
2810
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2811
index = ctx - ohci->ir_context_list;
2812
ohci->ir_context_mask |= 1 << index;
2813
ohci->ir_context_channels |= ohci->mc_channels;
2814
ohci->mc_channels = 0;
2815
ohci->mc_allocated = false;
2816
break;
2817
}
2818
2819
spin_unlock_irqrestore(&ohci->lock, flags);
2820
}
2821
2822
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2823
{
2824
struct fw_ohci *ohci = fw_ohci(base->card);
2825
unsigned long flags;
2826
int ret;
2827
2828
switch (base->type) {
2829
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2830
2831
spin_lock_irqsave(&ohci->lock, flags);
2832
2833
/* Don't allow multichannel to grab other contexts' channels. */
2834
if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2835
*channels = ohci->ir_context_channels;
2836
ret = -EBUSY;
2837
} else {
2838
set_multichannel_mask(ohci, *channels);
2839
ret = 0;
2840
}
2841
2842
spin_unlock_irqrestore(&ohci->lock, flags);
2843
2844
break;
2845
default:
2846
ret = -EINVAL;
2847
}
2848
2849
return ret;
2850
}
2851
2852
#ifdef CONFIG_PM
2853
static void ohci_resume_iso_dma(struct fw_ohci *ohci)
2854
{
2855
int i;
2856
struct iso_context *ctx;
2857
2858
for (i = 0 ; i < ohci->n_ir ; i++) {
2859
ctx = &ohci->ir_context_list[i];
2860
if (ctx->context.running)
2861
ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2862
}
2863
2864
for (i = 0 ; i < ohci->n_it ; i++) {
2865
ctx = &ohci->it_context_list[i];
2866
if (ctx->context.running)
2867
ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2868
}
2869
}
2870
#endif
2871
2872
static int queue_iso_transmit(struct iso_context *ctx,
2873
struct fw_iso_packet *packet,
2874
struct fw_iso_buffer *buffer,
2875
unsigned long payload)
2876
{
2877
struct descriptor *d, *last, *pd;
2878
struct fw_iso_packet *p;
2879
__le32 *header;
2880
dma_addr_t d_bus, page_bus;
2881
u32 z, header_z, payload_z, irq;
2882
u32 payload_index, payload_end_index, next_page_index;
2883
int page, end_page, i, length, offset;
2884
2885
p = packet;
2886
payload_index = payload;
2887
2888
if (p->skip)
2889
z = 1;
2890
else
2891
z = 2;
2892
if (p->header_length > 0)
2893
z++;
2894
2895
/* Determine the first page the payload isn't contained in. */
2896
end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2897
if (p->payload_length > 0)
2898
payload_z = end_page - (payload_index >> PAGE_SHIFT);
2899
else
2900
payload_z = 0;
2901
2902
z += payload_z;
2903
2904
/* Get header size in number of descriptors. */
2905
header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2906
2907
d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2908
if (d == NULL)
2909
return -ENOMEM;
2910
2911
if (!p->skip) {
2912
d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2913
d[0].req_count = cpu_to_le16(8);
2914
/*
2915
* Link the skip address to this descriptor itself. This causes
2916
* a context to skip a cycle whenever lost cycles or FIFO
2917
* overruns occur, without dropping the data. The application
2918
* should then decide whether this is an error condition or not.
2919
* FIXME: Make the context's cycle-lost behaviour configurable?
2920
*/
2921
d[0].branch_address = cpu_to_le32(d_bus | z);
2922
2923
header = (__le32 *) &d[1];
2924
header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2925
IT_HEADER_TAG(p->tag) |
2926
IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2927
IT_HEADER_CHANNEL(ctx->base.channel) |
2928
IT_HEADER_SPEED(ctx->base.speed));
2929
header[1] =
2930
cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2931
p->payload_length));
2932
}
2933
2934
if (p->header_length > 0) {
2935
d[2].req_count = cpu_to_le16(p->header_length);
2936
d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2937
memcpy(&d[z], p->header, p->header_length);
2938
}
2939
2940
pd = d + z - payload_z;
2941
payload_end_index = payload_index + p->payload_length;
2942
for (i = 0; i < payload_z; i++) {
2943
page = payload_index >> PAGE_SHIFT;
2944
offset = payload_index & ~PAGE_MASK;
2945
next_page_index = (page + 1) << PAGE_SHIFT;
2946
length =
2947
min(next_page_index, payload_end_index) - payload_index;
2948
pd[i].req_count = cpu_to_le16(length);
2949
2950
page_bus = page_private(buffer->pages[page]);
2951
pd[i].data_address = cpu_to_le32(page_bus + offset);
2952
2953
payload_index += length;
2954
}
2955
2956
if (p->interrupt)
2957
irq = DESCRIPTOR_IRQ_ALWAYS;
2958
else
2959
irq = DESCRIPTOR_NO_IRQ;
2960
2961
last = z == 2 ? d : d + z - 1;
2962
last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2963
DESCRIPTOR_STATUS |
2964
DESCRIPTOR_BRANCH_ALWAYS |
2965
irq);
2966
2967
context_append(&ctx->context, d, z, header_z);
2968
2969
return 0;
2970
}
2971
2972
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2973
struct fw_iso_packet *packet,
2974
struct fw_iso_buffer *buffer,
2975
unsigned long payload)
2976
{
2977
struct descriptor *d, *pd;
2978
dma_addr_t d_bus, page_bus;
2979
u32 z, header_z, rest;
2980
int i, j, length;
2981
int page, offset, packet_count, header_size, payload_per_buffer;
2982
2983
/*
2984
* The OHCI controller puts the isochronous header and trailer in the
2985
* buffer, so we need at least 8 bytes.
2986
*/
2987
packet_count = packet->header_length / ctx->base.header_size;
2988
header_size = max(ctx->base.header_size, (size_t)8);
2989
2990
/* Get header size in number of descriptors. */
2991
header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2992
page = payload >> PAGE_SHIFT;
2993
offset = payload & ~PAGE_MASK;
2994
payload_per_buffer = packet->payload_length / packet_count;
2995
2996
for (i = 0; i < packet_count; i++) {
2997
/* d points to the header descriptor */
2998
z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2999
d = context_get_descriptors(&ctx->context,
3000
z + header_z, &d_bus);
3001
if (d == NULL)
3002
return -ENOMEM;
3003
3004
d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3005
DESCRIPTOR_INPUT_MORE);
3006
if (packet->skip && i == 0)
3007
d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3008
d->req_count = cpu_to_le16(header_size);
3009
d->res_count = d->req_count;
3010
d->transfer_status = 0;
3011
d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3012
3013
rest = payload_per_buffer;
3014
pd = d;
3015
for (j = 1; j < z; j++) {
3016
pd++;
3017
pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3018
DESCRIPTOR_INPUT_MORE);
3019
3020
if (offset + rest < PAGE_SIZE)
3021
length = rest;
3022
else
3023
length = PAGE_SIZE - offset;
3024
pd->req_count = cpu_to_le16(length);
3025
pd->res_count = pd->req_count;
3026
pd->transfer_status = 0;
3027
3028
page_bus = page_private(buffer->pages[page]);
3029
pd->data_address = cpu_to_le32(page_bus + offset);
3030
3031
offset = (offset + length) & ~PAGE_MASK;
3032
rest -= length;
3033
if (offset == 0)
3034
page++;
3035
}
3036
pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3037
DESCRIPTOR_INPUT_LAST |
3038
DESCRIPTOR_BRANCH_ALWAYS);
3039
if (packet->interrupt && i == packet_count - 1)
3040
pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3041
3042
context_append(&ctx->context, d, z, header_z);
3043
}
3044
3045
return 0;
3046
}
3047
3048
static int queue_iso_buffer_fill(struct iso_context *ctx,
3049
struct fw_iso_packet *packet,
3050
struct fw_iso_buffer *buffer,
3051
unsigned long payload)
3052
{
3053
struct descriptor *d;
3054
dma_addr_t d_bus, page_bus;
3055
int page, offset, rest, z, i, length;
3056
3057
page = payload >> PAGE_SHIFT;
3058
offset = payload & ~PAGE_MASK;
3059
rest = packet->payload_length;
3060
3061
/* We need one descriptor for each page in the buffer. */
3062
z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3063
3064
if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3065
return -EFAULT;
3066
3067
for (i = 0; i < z; i++) {
3068
d = context_get_descriptors(&ctx->context, 1, &d_bus);
3069
if (d == NULL)
3070
return -ENOMEM;
3071
3072
d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3073
DESCRIPTOR_BRANCH_ALWAYS);
3074
if (packet->skip && i == 0)
3075
d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3076
if (packet->interrupt && i == z - 1)
3077
d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3078
3079
if (offset + rest < PAGE_SIZE)
3080
length = rest;
3081
else
3082
length = PAGE_SIZE - offset;
3083
d->req_count = cpu_to_le16(length);
3084
d->res_count = d->req_count;
3085
d->transfer_status = 0;
3086
3087
page_bus = page_private(buffer->pages[page]);
3088
d->data_address = cpu_to_le32(page_bus + offset);
3089
3090
rest -= length;
3091
offset = 0;
3092
page++;
3093
3094
context_append(&ctx->context, d, 1, 0);
3095
}
3096
3097
return 0;
3098
}
3099
3100
static int ohci_queue_iso(struct fw_iso_context *base,
3101
struct fw_iso_packet *packet,
3102
struct fw_iso_buffer *buffer,
3103
unsigned long payload)
3104
{
3105
struct iso_context *ctx = container_of(base, struct iso_context, base);
3106
unsigned long flags;
3107
int ret = -ENOSYS;
3108
3109
spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3110
switch (base->type) {
3111
case FW_ISO_CONTEXT_TRANSMIT:
3112
ret = queue_iso_transmit(ctx, packet, buffer, payload);
3113
break;
3114
case FW_ISO_CONTEXT_RECEIVE:
3115
ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3116
break;
3117
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3118
ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3119
break;
3120
}
3121
spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3122
3123
return ret;
3124
}
3125
3126
static void ohci_flush_queue_iso(struct fw_iso_context *base)
3127
{
3128
struct context *ctx =
3129
&container_of(base, struct iso_context, base)->context;
3130
3131
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3132
flush_writes(ctx->ohci);
3133
}
3134
3135
static const struct fw_card_driver ohci_driver = {
3136
.enable = ohci_enable,
3137
.read_phy_reg = ohci_read_phy_reg,
3138
.update_phy_reg = ohci_update_phy_reg,
3139
.set_config_rom = ohci_set_config_rom,
3140
.send_request = ohci_send_request,
3141
.send_response = ohci_send_response,
3142
.cancel_packet = ohci_cancel_packet,
3143
.enable_phys_dma = ohci_enable_phys_dma,
3144
.read_csr = ohci_read_csr,
3145
.write_csr = ohci_write_csr,
3146
3147
.allocate_iso_context = ohci_allocate_iso_context,
3148
.free_iso_context = ohci_free_iso_context,
3149
.set_iso_channels = ohci_set_iso_channels,
3150
.queue_iso = ohci_queue_iso,
3151
.flush_queue_iso = ohci_flush_queue_iso,
3152
.start_iso = ohci_start_iso,
3153
.stop_iso = ohci_stop_iso,
3154
};
3155
3156
#ifdef CONFIG_PPC_PMAC
3157
static void pmac_ohci_on(struct pci_dev *dev)
3158
{
3159
if (machine_is(powermac)) {
3160
struct device_node *ofn = pci_device_to_OF_node(dev);
3161
3162
if (ofn) {
3163
pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3164
pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3165
}
3166
}
3167
}
3168
3169
static void pmac_ohci_off(struct pci_dev *dev)
3170
{
3171
if (machine_is(powermac)) {
3172
struct device_node *ofn = pci_device_to_OF_node(dev);
3173
3174
if (ofn) {
3175
pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3176
pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3177
}
3178
}
3179
}
3180
#else
3181
static inline void pmac_ohci_on(struct pci_dev *dev) {}
3182
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3183
#endif /* CONFIG_PPC_PMAC */
3184
3185
static int __devinit pci_probe(struct pci_dev *dev,
3186
const struct pci_device_id *ent)
3187
{
3188
struct fw_ohci *ohci;
3189
u32 bus_options, max_receive, link_speed, version;
3190
u64 guid;
3191
int i, err;
3192
size_t size;
3193
3194
if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3195
dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3196
return -ENOSYS;
3197
}
3198
3199
ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3200
if (ohci == NULL) {
3201
err = -ENOMEM;
3202
goto fail;
3203
}
3204
3205
fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3206
3207
pmac_ohci_on(dev);
3208
3209
err = pci_enable_device(dev);
3210
if (err) {
3211
fw_error("Failed to enable OHCI hardware\n");
3212
goto fail_free;
3213
}
3214
3215
pci_set_master(dev);
3216
pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3217
pci_set_drvdata(dev, ohci);
3218
3219
spin_lock_init(&ohci->lock);
3220
mutex_init(&ohci->phy_reg_mutex);
3221
3222
tasklet_init(&ohci->bus_reset_tasklet,
3223
bus_reset_tasklet, (unsigned long)ohci);
3224
3225
err = pci_request_region(dev, 0, ohci_driver_name);
3226
if (err) {
3227
fw_error("MMIO resource unavailable\n");
3228
goto fail_disable;
3229
}
3230
3231
ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3232
if (ohci->registers == NULL) {
3233
fw_error("Failed to remap registers\n");
3234
err = -ENXIO;
3235
goto fail_iomem;
3236
}
3237
3238
for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3239
if ((ohci_quirks[i].vendor == dev->vendor) &&
3240
(ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3241
ohci_quirks[i].device == dev->device) &&
3242
(ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3243
ohci_quirks[i].revision >= dev->revision)) {
3244
ohci->quirks = ohci_quirks[i].flags;
3245
break;
3246
}
3247
if (param_quirks)
3248
ohci->quirks = param_quirks;
3249
3250
/*
3251
* Because dma_alloc_coherent() allocates at least one page,
3252
* we save space by using a common buffer for the AR request/
3253
* response descriptors and the self IDs buffer.
3254
*/
3255
BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3256
BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3257
ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3258
PAGE_SIZE,
3259
&ohci->misc_buffer_bus,
3260
GFP_KERNEL);
3261
if (!ohci->misc_buffer) {
3262
err = -ENOMEM;
3263
goto fail_iounmap;
3264
}
3265
3266
err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3267
OHCI1394_AsReqRcvContextControlSet);
3268
if (err < 0)
3269
goto fail_misc_buf;
3270
3271
err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3272
OHCI1394_AsRspRcvContextControlSet);
3273
if (err < 0)
3274
goto fail_arreq_ctx;
3275
3276
err = context_init(&ohci->at_request_ctx, ohci,
3277
OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3278
if (err < 0)
3279
goto fail_arrsp_ctx;
3280
3281
err = context_init(&ohci->at_response_ctx, ohci,
3282
OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3283
if (err < 0)
3284
goto fail_atreq_ctx;
3285
3286
reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3287
ohci->ir_context_channels = ~0ULL;
3288
ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3289
reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3290
ohci->ir_context_mask = ohci->ir_context_support;
3291
ohci->n_ir = hweight32(ohci->ir_context_mask);
3292
size = sizeof(struct iso_context) * ohci->n_ir;
3293
ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3294
3295
reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3296
ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3297
reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3298
ohci->it_context_mask = ohci->it_context_support;
3299
ohci->n_it = hweight32(ohci->it_context_mask);
3300
size = sizeof(struct iso_context) * ohci->n_it;
3301
ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3302
3303
if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3304
err = -ENOMEM;
3305
goto fail_contexts;
3306
}
3307
3308
ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3309
ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3310
3311
bus_options = reg_read(ohci, OHCI1394_BusOptions);
3312
max_receive = (bus_options >> 12) & 0xf;
3313
link_speed = bus_options & 0x7;
3314
guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3315
reg_read(ohci, OHCI1394_GUIDLo);
3316
3317
err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3318
if (err)
3319
goto fail_contexts;
3320
3321
version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3322
fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3323
"%d IR + %d IT contexts, quirks 0x%x\n",
3324
dev_name(&dev->dev), version >> 16, version & 0xff,
3325
ohci->n_ir, ohci->n_it, ohci->quirks);
3326
3327
return 0;
3328
3329
fail_contexts:
3330
kfree(ohci->ir_context_list);
3331
kfree(ohci->it_context_list);
3332
context_release(&ohci->at_response_ctx);
3333
fail_atreq_ctx:
3334
context_release(&ohci->at_request_ctx);
3335
fail_arrsp_ctx:
3336
ar_context_release(&ohci->ar_response_ctx);
3337
fail_arreq_ctx:
3338
ar_context_release(&ohci->ar_request_ctx);
3339
fail_misc_buf:
3340
dma_free_coherent(ohci->card.device, PAGE_SIZE,
3341
ohci->misc_buffer, ohci->misc_buffer_bus);
3342
fail_iounmap:
3343
pci_iounmap(dev, ohci->registers);
3344
fail_iomem:
3345
pci_release_region(dev, 0);
3346
fail_disable:
3347
pci_disable_device(dev);
3348
fail_free:
3349
kfree(ohci);
3350
pmac_ohci_off(dev);
3351
fail:
3352
if (err == -ENOMEM)
3353
fw_error("Out of memory\n");
3354
3355
return err;
3356
}
3357
3358
static void pci_remove(struct pci_dev *dev)
3359
{
3360
struct fw_ohci *ohci;
3361
3362
ohci = pci_get_drvdata(dev);
3363
reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3364
flush_writes(ohci);
3365
fw_core_remove_card(&ohci->card);
3366
3367
/*
3368
* FIXME: Fail all pending packets here, now that the upper
3369
* layers can't queue any more.
3370
*/
3371
3372
software_reset(ohci);
3373
free_irq(dev->irq, ohci);
3374
3375
if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3376
dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3377
ohci->next_config_rom, ohci->next_config_rom_bus);
3378
if (ohci->config_rom)
3379
dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3380
ohci->config_rom, ohci->config_rom_bus);
3381
ar_context_release(&ohci->ar_request_ctx);
3382
ar_context_release(&ohci->ar_response_ctx);
3383
dma_free_coherent(ohci->card.device, PAGE_SIZE,
3384
ohci->misc_buffer, ohci->misc_buffer_bus);
3385
context_release(&ohci->at_request_ctx);
3386
context_release(&ohci->at_response_ctx);
3387
kfree(ohci->it_context_list);
3388
kfree(ohci->ir_context_list);
3389
pci_disable_msi(dev);
3390
pci_iounmap(dev, ohci->registers);
3391
pci_release_region(dev, 0);
3392
pci_disable_device(dev);
3393
kfree(ohci);
3394
pmac_ohci_off(dev);
3395
3396
fw_notify("Removed fw-ohci device.\n");
3397
}
3398
3399
#ifdef CONFIG_PM
3400
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3401
{
3402
struct fw_ohci *ohci = pci_get_drvdata(dev);
3403
int err;
3404
3405
software_reset(ohci);
3406
free_irq(dev->irq, ohci);
3407
pci_disable_msi(dev);
3408
err = pci_save_state(dev);
3409
if (err) {
3410
fw_error("pci_save_state failed\n");
3411
return err;
3412
}
3413
err = pci_set_power_state(dev, pci_choose_state(dev, state));
3414
if (err)
3415
fw_error("pci_set_power_state failed with %d\n", err);
3416
pmac_ohci_off(dev);
3417
3418
return 0;
3419
}
3420
3421
static int pci_resume(struct pci_dev *dev)
3422
{
3423
struct fw_ohci *ohci = pci_get_drvdata(dev);
3424
int err;
3425
3426
pmac_ohci_on(dev);
3427
pci_set_power_state(dev, PCI_D0);
3428
pci_restore_state(dev);
3429
err = pci_enable_device(dev);
3430
if (err) {
3431
fw_error("pci_enable_device failed\n");
3432
return err;
3433
}
3434
3435
/* Some systems don't setup GUID register on resume from ram */
3436
if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3437
!reg_read(ohci, OHCI1394_GUIDHi)) {
3438
reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3439
reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3440
}
3441
3442
err = ohci_enable(&ohci->card, NULL, 0);
3443
if (err)
3444
return err;
3445
3446
ohci_resume_iso_dma(ohci);
3447
3448
return 0;
3449
}
3450
#endif
3451
3452
static const struct pci_device_id pci_table[] = {
3453
{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3454
{ }
3455
};
3456
3457
MODULE_DEVICE_TABLE(pci, pci_table);
3458
3459
static struct pci_driver fw_ohci_pci_driver = {
3460
.name = ohci_driver_name,
3461
.id_table = pci_table,
3462
.probe = pci_probe,
3463
.remove = pci_remove,
3464
#ifdef CONFIG_PM
3465
.resume = pci_resume,
3466
.suspend = pci_suspend,
3467
#endif
3468
};
3469
3470
MODULE_AUTHOR("Kristian Hoegsberg <[email protected]>");
3471
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3472
MODULE_LICENSE("GPL");
3473
3474
/* Provide a module alias so root-on-sbp2 initrds don't break. */
3475
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3476
MODULE_ALIAS("ohci1394");
3477
#endif
3478
3479
static int __init fw_ohci_init(void)
3480
{
3481
return pci_register_driver(&fw_ohci_pci_driver);
3482
}
3483
3484
static void __exit fw_ohci_cleanup(void)
3485
{
3486
pci_unregister_driver(&fw_ohci_pci_driver);
3487
}
3488
3489
module_init(fw_ohci_init);
3490
module_exit(fw_ohci_cleanup);
3491
3492