Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/firewire/sbp2.c
15109 views
1
/*
2
* SBP2 driver (SCSI over IEEE1394)
3
*
4
* Copyright (C) 2005-2007 Kristian Hoegsberg <[email protected]>
5
*
6
* This program is free software; you can redistribute it and/or modify
7
* it under the terms of the GNU General Public License as published by
8
* the Free Software Foundation; either version 2 of the License, or
9
* (at your option) any later version.
10
*
11
* This program is distributed in the hope that it will be useful,
12
* but WITHOUT ANY WARRANTY; without even the implied warranty of
13
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14
* GNU General Public License for more details.
15
*
16
* You should have received a copy of the GNU General Public License
17
* along with this program; if not, write to the Free Software Foundation,
18
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
*/
20
21
/*
22
* The basic structure of this driver is based on the old storage driver,
23
* drivers/ieee1394/sbp2.c, originally written by
24
* James Goodwin <[email protected]>
25
* with later contributions and ongoing maintenance from
26
* Ben Collins <[email protected]>,
27
* Stefan Richter <[email protected]>
28
* and many others.
29
*/
30
31
#include <linux/blkdev.h>
32
#include <linux/bug.h>
33
#include <linux/completion.h>
34
#include <linux/delay.h>
35
#include <linux/device.h>
36
#include <linux/dma-mapping.h>
37
#include <linux/firewire.h>
38
#include <linux/firewire-constants.h>
39
#include <linux/init.h>
40
#include <linux/jiffies.h>
41
#include <linux/kernel.h>
42
#include <linux/kref.h>
43
#include <linux/list.h>
44
#include <linux/mod_devicetable.h>
45
#include <linux/module.h>
46
#include <linux/moduleparam.h>
47
#include <linux/scatterlist.h>
48
#include <linux/slab.h>
49
#include <linux/spinlock.h>
50
#include <linux/string.h>
51
#include <linux/stringify.h>
52
#include <linux/workqueue.h>
53
54
#include <asm/byteorder.h>
55
#include <asm/system.h>
56
57
#include <scsi/scsi.h>
58
#include <scsi/scsi_cmnd.h>
59
#include <scsi/scsi_device.h>
60
#include <scsi/scsi_host.h>
61
62
/*
63
* So far only bridges from Oxford Semiconductor are known to support
64
* concurrent logins. Depending on firmware, four or two concurrent logins
65
* are possible on OXFW911 and newer Oxsemi bridges.
66
*
67
* Concurrent logins are useful together with cluster filesystems.
68
*/
69
static int sbp2_param_exclusive_login = 1;
70
module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
71
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
72
"(default = Y, use N for concurrent initiators)");
73
74
/*
75
* Flags for firmware oddities
76
*
77
* - 128kB max transfer
78
* Limit transfer size. Necessary for some old bridges.
79
*
80
* - 36 byte inquiry
81
* When scsi_mod probes the device, let the inquiry command look like that
82
* from MS Windows.
83
*
84
* - skip mode page 8
85
* Suppress sending of mode_sense for mode page 8 if the device pretends to
86
* support the SCSI Primary Block commands instead of Reduced Block Commands.
87
*
88
* - fix capacity
89
* Tell sd_mod to correct the last sector number reported by read_capacity.
90
* Avoids access beyond actual disk limits on devices with an off-by-one bug.
91
* Don't use this with devices which don't have this bug.
92
*
93
* - delay inquiry
94
* Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
95
*
96
* - power condition
97
* Set the power condition field in the START STOP UNIT commands sent by
98
* sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
99
* Some disks need this to spin down or to resume properly.
100
*
101
* - override internal blacklist
102
* Instead of adding to the built-in blacklist, use only the workarounds
103
* specified in the module load parameter.
104
* Useful if a blacklist entry interfered with a non-broken device.
105
*/
106
#define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
107
#define SBP2_WORKAROUND_INQUIRY_36 0x2
108
#define SBP2_WORKAROUND_MODE_SENSE_8 0x4
109
#define SBP2_WORKAROUND_FIX_CAPACITY 0x8
110
#define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
111
#define SBP2_INQUIRY_DELAY 12
112
#define SBP2_WORKAROUND_POWER_CONDITION 0x20
113
#define SBP2_WORKAROUND_OVERRIDE 0x100
114
115
static int sbp2_param_workarounds;
116
module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
117
MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
118
", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
119
", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
120
", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
121
", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
122
", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
123
", set power condition in start stop unit = "
124
__stringify(SBP2_WORKAROUND_POWER_CONDITION)
125
", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
126
", or a combination)");
127
128
static const char sbp2_driver_name[] = "sbp2";
129
130
/*
131
* We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
132
* and one struct scsi_device per sbp2_logical_unit.
133
*/
134
struct sbp2_logical_unit {
135
struct sbp2_target *tgt;
136
struct list_head link;
137
struct fw_address_handler address_handler;
138
struct list_head orb_list;
139
140
u64 command_block_agent_address;
141
u16 lun;
142
int login_id;
143
144
/*
145
* The generation is updated once we've logged in or reconnected
146
* to the logical unit. Thus, I/O to the device will automatically
147
* fail and get retried if it happens in a window where the device
148
* is not ready, e.g. after a bus reset but before we reconnect.
149
*/
150
int generation;
151
int retries;
152
struct delayed_work work;
153
bool has_sdev;
154
bool blocked;
155
};
156
157
/*
158
* We create one struct sbp2_target per IEEE 1212 Unit Directory
159
* and one struct Scsi_Host per sbp2_target.
160
*/
161
struct sbp2_target {
162
struct kref kref;
163
struct fw_unit *unit;
164
const char *bus_id;
165
struct list_head lu_list;
166
167
u64 management_agent_address;
168
u64 guid;
169
int directory_id;
170
int node_id;
171
int address_high;
172
unsigned int workarounds;
173
unsigned int mgt_orb_timeout;
174
unsigned int max_payload;
175
176
int dont_block; /* counter for each logical unit */
177
int blocked; /* ditto */
178
};
179
180
static struct fw_device *target_device(struct sbp2_target *tgt)
181
{
182
return fw_parent_device(tgt->unit);
183
}
184
185
/* Impossible login_id, to detect logout attempt before successful login */
186
#define INVALID_LOGIN_ID 0x10000
187
188
#define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
189
#define SBP2_ORB_NULL 0x80000000
190
#define SBP2_RETRY_LIMIT 0xf /* 15 retries */
191
#define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
192
193
/*
194
* There is no transport protocol limit to the CDB length, but we implement
195
* a fixed length only. 16 bytes is enough for disks larger than 2 TB.
196
*/
197
#define SBP2_MAX_CDB_SIZE 16
198
199
/*
200
* The default maximum s/g segment size of a FireWire controller is
201
* usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
202
* be quadlet-aligned, we set the length limit to 0xffff & ~3.
203
*/
204
#define SBP2_MAX_SEG_SIZE 0xfffc
205
206
/* Unit directory keys */
207
#define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
208
#define SBP2_CSR_FIRMWARE_REVISION 0x3c
209
#define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
210
#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
211
212
/* Management orb opcodes */
213
#define SBP2_LOGIN_REQUEST 0x0
214
#define SBP2_QUERY_LOGINS_REQUEST 0x1
215
#define SBP2_RECONNECT_REQUEST 0x3
216
#define SBP2_SET_PASSWORD_REQUEST 0x4
217
#define SBP2_LOGOUT_REQUEST 0x7
218
#define SBP2_ABORT_TASK_REQUEST 0xb
219
#define SBP2_ABORT_TASK_SET 0xc
220
#define SBP2_LOGICAL_UNIT_RESET 0xe
221
#define SBP2_TARGET_RESET_REQUEST 0xf
222
223
/* Offsets for command block agent registers */
224
#define SBP2_AGENT_STATE 0x00
225
#define SBP2_AGENT_RESET 0x04
226
#define SBP2_ORB_POINTER 0x08
227
#define SBP2_DOORBELL 0x10
228
#define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
229
230
/* Status write response codes */
231
#define SBP2_STATUS_REQUEST_COMPLETE 0x0
232
#define SBP2_STATUS_TRANSPORT_FAILURE 0x1
233
#define SBP2_STATUS_ILLEGAL_REQUEST 0x2
234
#define SBP2_STATUS_VENDOR_DEPENDENT 0x3
235
236
#define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
237
#define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
238
#define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
239
#define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
240
#define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
241
#define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
242
#define STATUS_GET_ORB_LOW(v) ((v).orb_low)
243
#define STATUS_GET_DATA(v) ((v).data)
244
245
struct sbp2_status {
246
u32 status;
247
u32 orb_low;
248
u8 data[24];
249
};
250
251
struct sbp2_pointer {
252
__be32 high;
253
__be32 low;
254
};
255
256
struct sbp2_orb {
257
struct fw_transaction t;
258
struct kref kref;
259
dma_addr_t request_bus;
260
int rcode;
261
void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
262
struct list_head link;
263
};
264
265
#define MANAGEMENT_ORB_LUN(v) ((v))
266
#define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
267
#define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
268
#define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
269
#define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
270
#define MANAGEMENT_ORB_NOTIFY ((1) << 31)
271
272
#define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
273
#define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
274
275
struct sbp2_management_orb {
276
struct sbp2_orb base;
277
struct {
278
struct sbp2_pointer password;
279
struct sbp2_pointer response;
280
__be32 misc;
281
__be32 length;
282
struct sbp2_pointer status_fifo;
283
} request;
284
__be32 response[4];
285
dma_addr_t response_bus;
286
struct completion done;
287
struct sbp2_status status;
288
};
289
290
struct sbp2_login_response {
291
__be32 misc;
292
struct sbp2_pointer command_block_agent;
293
__be32 reconnect_hold;
294
};
295
#define COMMAND_ORB_DATA_SIZE(v) ((v))
296
#define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
297
#define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
298
#define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
299
#define COMMAND_ORB_SPEED(v) ((v) << 24)
300
#define COMMAND_ORB_DIRECTION ((1) << 27)
301
#define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
302
#define COMMAND_ORB_NOTIFY ((1) << 31)
303
304
struct sbp2_command_orb {
305
struct sbp2_orb base;
306
struct {
307
struct sbp2_pointer next;
308
struct sbp2_pointer data_descriptor;
309
__be32 misc;
310
u8 command_block[SBP2_MAX_CDB_SIZE];
311
} request;
312
struct scsi_cmnd *cmd;
313
struct sbp2_logical_unit *lu;
314
315
struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
316
dma_addr_t page_table_bus;
317
};
318
319
#define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
320
#define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
321
322
/*
323
* List of devices with known bugs.
324
*
325
* The firmware_revision field, masked with 0xffff00, is the best
326
* indicator for the type of bridge chip of a device. It yields a few
327
* false positives but this did not break correctly behaving devices
328
* so far.
329
*/
330
static const struct {
331
u32 firmware_revision;
332
u32 model;
333
unsigned int workarounds;
334
} sbp2_workarounds_table[] = {
335
/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
336
.firmware_revision = 0x002800,
337
.model = 0x001010,
338
.workarounds = SBP2_WORKAROUND_INQUIRY_36 |
339
SBP2_WORKAROUND_MODE_SENSE_8 |
340
SBP2_WORKAROUND_POWER_CONDITION,
341
},
342
/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
343
.firmware_revision = 0x002800,
344
.model = 0x000000,
345
.workarounds = SBP2_WORKAROUND_POWER_CONDITION,
346
},
347
/* Initio bridges, actually only needed for some older ones */ {
348
.firmware_revision = 0x000200,
349
.model = SBP2_ROM_VALUE_WILDCARD,
350
.workarounds = SBP2_WORKAROUND_INQUIRY_36,
351
},
352
/* PL-3507 bridge with Prolific firmware */ {
353
.firmware_revision = 0x012800,
354
.model = SBP2_ROM_VALUE_WILDCARD,
355
.workarounds = SBP2_WORKAROUND_POWER_CONDITION,
356
},
357
/* Symbios bridge */ {
358
.firmware_revision = 0xa0b800,
359
.model = SBP2_ROM_VALUE_WILDCARD,
360
.workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
361
},
362
/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
363
.firmware_revision = 0x002600,
364
.model = SBP2_ROM_VALUE_WILDCARD,
365
.workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
366
},
367
/*
368
* iPod 2nd generation: needs 128k max transfer size workaround
369
* iPod 3rd generation: needs fix capacity workaround
370
*/
371
{
372
.firmware_revision = 0x0a2700,
373
.model = 0x000000,
374
.workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
375
SBP2_WORKAROUND_FIX_CAPACITY,
376
},
377
/* iPod 4th generation */ {
378
.firmware_revision = 0x0a2700,
379
.model = 0x000021,
380
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
381
},
382
/* iPod mini */ {
383
.firmware_revision = 0x0a2700,
384
.model = 0x000022,
385
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
386
},
387
/* iPod mini */ {
388
.firmware_revision = 0x0a2700,
389
.model = 0x000023,
390
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
391
},
392
/* iPod Photo */ {
393
.firmware_revision = 0x0a2700,
394
.model = 0x00007e,
395
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
396
}
397
};
398
399
static void free_orb(struct kref *kref)
400
{
401
struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
402
403
kfree(orb);
404
}
405
406
static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
407
int tcode, int destination, int source,
408
int generation, unsigned long long offset,
409
void *payload, size_t length, void *callback_data)
410
{
411
struct sbp2_logical_unit *lu = callback_data;
412
struct sbp2_orb *orb;
413
struct sbp2_status status;
414
unsigned long flags;
415
416
if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
417
length < 8 || length > sizeof(status)) {
418
fw_send_response(card, request, RCODE_TYPE_ERROR);
419
return;
420
}
421
422
status.status = be32_to_cpup(payload);
423
status.orb_low = be32_to_cpup(payload + 4);
424
memset(status.data, 0, sizeof(status.data));
425
if (length > 8)
426
memcpy(status.data, payload + 8, length - 8);
427
428
if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
429
fw_notify("non-orb related status write, not handled\n");
430
fw_send_response(card, request, RCODE_COMPLETE);
431
return;
432
}
433
434
/* Lookup the orb corresponding to this status write. */
435
spin_lock_irqsave(&card->lock, flags);
436
list_for_each_entry(orb, &lu->orb_list, link) {
437
if (STATUS_GET_ORB_HIGH(status) == 0 &&
438
STATUS_GET_ORB_LOW(status) == orb->request_bus) {
439
orb->rcode = RCODE_COMPLETE;
440
list_del(&orb->link);
441
break;
442
}
443
}
444
spin_unlock_irqrestore(&card->lock, flags);
445
446
if (&orb->link != &lu->orb_list) {
447
orb->callback(orb, &status);
448
kref_put(&orb->kref, free_orb); /* orb callback reference */
449
} else {
450
fw_error("status write for unknown orb\n");
451
}
452
453
fw_send_response(card, request, RCODE_COMPLETE);
454
}
455
456
static void complete_transaction(struct fw_card *card, int rcode,
457
void *payload, size_t length, void *data)
458
{
459
struct sbp2_orb *orb = data;
460
unsigned long flags;
461
462
/*
463
* This is a little tricky. We can get the status write for
464
* the orb before we get this callback. The status write
465
* handler above will assume the orb pointer transaction was
466
* successful and set the rcode to RCODE_COMPLETE for the orb.
467
* So this callback only sets the rcode if it hasn't already
468
* been set and only does the cleanup if the transaction
469
* failed and we didn't already get a status write.
470
*/
471
spin_lock_irqsave(&card->lock, flags);
472
473
if (orb->rcode == -1)
474
orb->rcode = rcode;
475
if (orb->rcode != RCODE_COMPLETE) {
476
list_del(&orb->link);
477
spin_unlock_irqrestore(&card->lock, flags);
478
479
orb->callback(orb, NULL);
480
kref_put(&orb->kref, free_orb); /* orb callback reference */
481
} else {
482
spin_unlock_irqrestore(&card->lock, flags);
483
}
484
485
kref_put(&orb->kref, free_orb); /* transaction callback reference */
486
}
487
488
static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
489
int node_id, int generation, u64 offset)
490
{
491
struct fw_device *device = target_device(lu->tgt);
492
struct sbp2_pointer orb_pointer;
493
unsigned long flags;
494
495
orb_pointer.high = 0;
496
orb_pointer.low = cpu_to_be32(orb->request_bus);
497
498
spin_lock_irqsave(&device->card->lock, flags);
499
list_add_tail(&orb->link, &lu->orb_list);
500
spin_unlock_irqrestore(&device->card->lock, flags);
501
502
kref_get(&orb->kref); /* transaction callback reference */
503
kref_get(&orb->kref); /* orb callback reference */
504
505
fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
506
node_id, generation, device->max_speed, offset,
507
&orb_pointer, 8, complete_transaction, orb);
508
}
509
510
static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
511
{
512
struct fw_device *device = target_device(lu->tgt);
513
struct sbp2_orb *orb, *next;
514
struct list_head list;
515
unsigned long flags;
516
int retval = -ENOENT;
517
518
INIT_LIST_HEAD(&list);
519
spin_lock_irqsave(&device->card->lock, flags);
520
list_splice_init(&lu->orb_list, &list);
521
spin_unlock_irqrestore(&device->card->lock, flags);
522
523
list_for_each_entry_safe(orb, next, &list, link) {
524
retval = 0;
525
if (fw_cancel_transaction(device->card, &orb->t) == 0)
526
continue;
527
528
orb->rcode = RCODE_CANCELLED;
529
orb->callback(orb, NULL);
530
kref_put(&orb->kref, free_orb); /* orb callback reference */
531
}
532
533
return retval;
534
}
535
536
static void complete_management_orb(struct sbp2_orb *base_orb,
537
struct sbp2_status *status)
538
{
539
struct sbp2_management_orb *orb =
540
container_of(base_orb, struct sbp2_management_orb, base);
541
542
if (status)
543
memcpy(&orb->status, status, sizeof(*status));
544
complete(&orb->done);
545
}
546
547
static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
548
int generation, int function,
549
int lun_or_login_id, void *response)
550
{
551
struct fw_device *device = target_device(lu->tgt);
552
struct sbp2_management_orb *orb;
553
unsigned int timeout;
554
int retval = -ENOMEM;
555
556
if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
557
return 0;
558
559
orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
560
if (orb == NULL)
561
return -ENOMEM;
562
563
kref_init(&orb->base.kref);
564
orb->response_bus =
565
dma_map_single(device->card->device, &orb->response,
566
sizeof(orb->response), DMA_FROM_DEVICE);
567
if (dma_mapping_error(device->card->device, orb->response_bus))
568
goto fail_mapping_response;
569
570
orb->request.response.high = 0;
571
orb->request.response.low = cpu_to_be32(orb->response_bus);
572
573
orb->request.misc = cpu_to_be32(
574
MANAGEMENT_ORB_NOTIFY |
575
MANAGEMENT_ORB_FUNCTION(function) |
576
MANAGEMENT_ORB_LUN(lun_or_login_id));
577
orb->request.length = cpu_to_be32(
578
MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
579
580
orb->request.status_fifo.high =
581
cpu_to_be32(lu->address_handler.offset >> 32);
582
orb->request.status_fifo.low =
583
cpu_to_be32(lu->address_handler.offset);
584
585
if (function == SBP2_LOGIN_REQUEST) {
586
/* Ask for 2^2 == 4 seconds reconnect grace period */
587
orb->request.misc |= cpu_to_be32(
588
MANAGEMENT_ORB_RECONNECT(2) |
589
MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
590
timeout = lu->tgt->mgt_orb_timeout;
591
} else {
592
timeout = SBP2_ORB_TIMEOUT;
593
}
594
595
init_completion(&orb->done);
596
orb->base.callback = complete_management_orb;
597
598
orb->base.request_bus =
599
dma_map_single(device->card->device, &orb->request,
600
sizeof(orb->request), DMA_TO_DEVICE);
601
if (dma_mapping_error(device->card->device, orb->base.request_bus))
602
goto fail_mapping_request;
603
604
sbp2_send_orb(&orb->base, lu, node_id, generation,
605
lu->tgt->management_agent_address);
606
607
wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
608
609
retval = -EIO;
610
if (sbp2_cancel_orbs(lu) == 0) {
611
fw_error("%s: orb reply timed out, rcode=0x%02x\n",
612
lu->tgt->bus_id, orb->base.rcode);
613
goto out;
614
}
615
616
if (orb->base.rcode != RCODE_COMPLETE) {
617
fw_error("%s: management write failed, rcode 0x%02x\n",
618
lu->tgt->bus_id, orb->base.rcode);
619
goto out;
620
}
621
622
if (STATUS_GET_RESPONSE(orb->status) != 0 ||
623
STATUS_GET_SBP_STATUS(orb->status) != 0) {
624
fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
625
STATUS_GET_RESPONSE(orb->status),
626
STATUS_GET_SBP_STATUS(orb->status));
627
goto out;
628
}
629
630
retval = 0;
631
out:
632
dma_unmap_single(device->card->device, orb->base.request_bus,
633
sizeof(orb->request), DMA_TO_DEVICE);
634
fail_mapping_request:
635
dma_unmap_single(device->card->device, orb->response_bus,
636
sizeof(orb->response), DMA_FROM_DEVICE);
637
fail_mapping_response:
638
if (response)
639
memcpy(response, orb->response, sizeof(orb->response));
640
kref_put(&orb->base.kref, free_orb);
641
642
return retval;
643
}
644
645
static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
646
{
647
struct fw_device *device = target_device(lu->tgt);
648
__be32 d = 0;
649
650
fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
651
lu->tgt->node_id, lu->generation, device->max_speed,
652
lu->command_block_agent_address + SBP2_AGENT_RESET,
653
&d, 4);
654
}
655
656
static void complete_agent_reset_write_no_wait(struct fw_card *card,
657
int rcode, void *payload, size_t length, void *data)
658
{
659
kfree(data);
660
}
661
662
static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
663
{
664
struct fw_device *device = target_device(lu->tgt);
665
struct fw_transaction *t;
666
static __be32 d;
667
668
t = kmalloc(sizeof(*t), GFP_ATOMIC);
669
if (t == NULL)
670
return;
671
672
fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
673
lu->tgt->node_id, lu->generation, device->max_speed,
674
lu->command_block_agent_address + SBP2_AGENT_RESET,
675
&d, 4, complete_agent_reset_write_no_wait, t);
676
}
677
678
static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
679
{
680
/*
681
* We may access dont_block without taking card->lock here:
682
* All callers of sbp2_allow_block() and all callers of sbp2_unblock()
683
* are currently serialized against each other.
684
* And a wrong result in sbp2_conditionally_block()'s access of
685
* dont_block is rather harmless, it simply misses its first chance.
686
*/
687
--lu->tgt->dont_block;
688
}
689
690
/*
691
* Blocks lu->tgt if all of the following conditions are met:
692
* - Login, INQUIRY, and high-level SCSI setup of all of the target's
693
* logical units have been finished (indicated by dont_block == 0).
694
* - lu->generation is stale.
695
*
696
* Note, scsi_block_requests() must be called while holding card->lock,
697
* otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
698
* unblock the target.
699
*/
700
static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
701
{
702
struct sbp2_target *tgt = lu->tgt;
703
struct fw_card *card = target_device(tgt)->card;
704
struct Scsi_Host *shost =
705
container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
706
unsigned long flags;
707
708
spin_lock_irqsave(&card->lock, flags);
709
if (!tgt->dont_block && !lu->blocked &&
710
lu->generation != card->generation) {
711
lu->blocked = true;
712
if (++tgt->blocked == 1)
713
scsi_block_requests(shost);
714
}
715
spin_unlock_irqrestore(&card->lock, flags);
716
}
717
718
/*
719
* Unblocks lu->tgt as soon as all its logical units can be unblocked.
720
* Note, it is harmless to run scsi_unblock_requests() outside the
721
* card->lock protected section. On the other hand, running it inside
722
* the section might clash with shost->host_lock.
723
*/
724
static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
725
{
726
struct sbp2_target *tgt = lu->tgt;
727
struct fw_card *card = target_device(tgt)->card;
728
struct Scsi_Host *shost =
729
container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
730
unsigned long flags;
731
bool unblock = false;
732
733
spin_lock_irqsave(&card->lock, flags);
734
if (lu->blocked && lu->generation == card->generation) {
735
lu->blocked = false;
736
unblock = --tgt->blocked == 0;
737
}
738
spin_unlock_irqrestore(&card->lock, flags);
739
740
if (unblock)
741
scsi_unblock_requests(shost);
742
}
743
744
/*
745
* Prevents future blocking of tgt and unblocks it.
746
* Note, it is harmless to run scsi_unblock_requests() outside the
747
* card->lock protected section. On the other hand, running it inside
748
* the section might clash with shost->host_lock.
749
*/
750
static void sbp2_unblock(struct sbp2_target *tgt)
751
{
752
struct fw_card *card = target_device(tgt)->card;
753
struct Scsi_Host *shost =
754
container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
755
unsigned long flags;
756
757
spin_lock_irqsave(&card->lock, flags);
758
++tgt->dont_block;
759
spin_unlock_irqrestore(&card->lock, flags);
760
761
scsi_unblock_requests(shost);
762
}
763
764
static int sbp2_lun2int(u16 lun)
765
{
766
struct scsi_lun eight_bytes_lun;
767
768
memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
769
eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
770
eight_bytes_lun.scsi_lun[1] = lun & 0xff;
771
772
return scsilun_to_int(&eight_bytes_lun);
773
}
774
775
static void sbp2_release_target(struct kref *kref)
776
{
777
struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
778
struct sbp2_logical_unit *lu, *next;
779
struct Scsi_Host *shost =
780
container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
781
struct scsi_device *sdev;
782
struct fw_device *device = target_device(tgt);
783
784
/* prevent deadlocks */
785
sbp2_unblock(tgt);
786
787
list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
788
sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
789
if (sdev) {
790
scsi_remove_device(sdev);
791
scsi_device_put(sdev);
792
}
793
if (lu->login_id != INVALID_LOGIN_ID) {
794
int generation, node_id;
795
/*
796
* tgt->node_id may be obsolete here if we failed
797
* during initial login or after a bus reset where
798
* the topology changed.
799
*/
800
generation = device->generation;
801
smp_rmb(); /* node_id vs. generation */
802
node_id = device->node_id;
803
sbp2_send_management_orb(lu, node_id, generation,
804
SBP2_LOGOUT_REQUEST,
805
lu->login_id, NULL);
806
}
807
fw_core_remove_address_handler(&lu->address_handler);
808
list_del(&lu->link);
809
kfree(lu);
810
}
811
scsi_remove_host(shost);
812
fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
813
814
fw_unit_put(tgt->unit);
815
scsi_host_put(shost);
816
fw_device_put(device);
817
}
818
819
static void sbp2_target_get(struct sbp2_target *tgt)
820
{
821
kref_get(&tgt->kref);
822
}
823
824
static void sbp2_target_put(struct sbp2_target *tgt)
825
{
826
kref_put(&tgt->kref, sbp2_release_target);
827
}
828
829
/*
830
* Always get the target's kref when scheduling work on one its units.
831
* Each workqueue job is responsible to call sbp2_target_put() upon return.
832
*/
833
static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
834
{
835
sbp2_target_get(lu->tgt);
836
if (!queue_delayed_work(fw_workqueue, &lu->work, delay))
837
sbp2_target_put(lu->tgt);
838
}
839
840
/*
841
* Write retransmit retry values into the BUSY_TIMEOUT register.
842
* - The single-phase retry protocol is supported by all SBP-2 devices, but the
843
* default retry_limit value is 0 (i.e. never retry transmission). We write a
844
* saner value after logging into the device.
845
* - The dual-phase retry protocol is optional to implement, and if not
846
* supported, writes to the dual-phase portion of the register will be
847
* ignored. We try to write the original 1394-1995 default here.
848
* - In the case of devices that are also SBP-3-compliant, all writes are
849
* ignored, as the register is read-only, but contains single-phase retry of
850
* 15, which is what we're trying to set for all SBP-2 device anyway, so this
851
* write attempt is safe and yields more consistent behavior for all devices.
852
*
853
* See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
854
* and section 6.4 of the SBP-3 spec for further details.
855
*/
856
static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
857
{
858
struct fw_device *device = target_device(lu->tgt);
859
__be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
860
861
fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
862
lu->tgt->node_id, lu->generation, device->max_speed,
863
CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
864
}
865
866
static void sbp2_reconnect(struct work_struct *work);
867
868
static void sbp2_login(struct work_struct *work)
869
{
870
struct sbp2_logical_unit *lu =
871
container_of(work, struct sbp2_logical_unit, work.work);
872
struct sbp2_target *tgt = lu->tgt;
873
struct fw_device *device = target_device(tgt);
874
struct Scsi_Host *shost;
875
struct scsi_device *sdev;
876
struct sbp2_login_response response;
877
int generation, node_id, local_node_id;
878
879
if (fw_device_is_shutdown(device))
880
goto out;
881
882
generation = device->generation;
883
smp_rmb(); /* node IDs must not be older than generation */
884
node_id = device->node_id;
885
local_node_id = device->card->node_id;
886
887
/* If this is a re-login attempt, log out, or we might be rejected. */
888
if (lu->has_sdev)
889
sbp2_send_management_orb(lu, device->node_id, generation,
890
SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
891
892
if (sbp2_send_management_orb(lu, node_id, generation,
893
SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
894
if (lu->retries++ < 5) {
895
sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
896
} else {
897
fw_error("%s: failed to login to LUN %04x\n",
898
tgt->bus_id, lu->lun);
899
/* Let any waiting I/O fail from now on. */
900
sbp2_unblock(lu->tgt);
901
}
902
goto out;
903
}
904
905
tgt->node_id = node_id;
906
tgt->address_high = local_node_id << 16;
907
smp_wmb(); /* node IDs must not be older than generation */
908
lu->generation = generation;
909
910
lu->command_block_agent_address =
911
((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
912
<< 32) | be32_to_cpu(response.command_block_agent.low);
913
lu->login_id = be32_to_cpu(response.misc) & 0xffff;
914
915
fw_notify("%s: logged in to LUN %04x (%d retries)\n",
916
tgt->bus_id, lu->lun, lu->retries);
917
918
/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
919
sbp2_set_busy_timeout(lu);
920
921
PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
922
sbp2_agent_reset(lu);
923
924
/* This was a re-login. */
925
if (lu->has_sdev) {
926
sbp2_cancel_orbs(lu);
927
sbp2_conditionally_unblock(lu);
928
goto out;
929
}
930
931
if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
932
ssleep(SBP2_INQUIRY_DELAY);
933
934
shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
935
sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
936
/*
937
* FIXME: We are unable to perform reconnects while in sbp2_login().
938
* Therefore __scsi_add_device() will get into trouble if a bus reset
939
* happens in parallel. It will either fail or leave us with an
940
* unusable sdev. As a workaround we check for this and retry the
941
* whole login and SCSI probing.
942
*/
943
944
/* Reported error during __scsi_add_device() */
945
if (IS_ERR(sdev))
946
goto out_logout_login;
947
948
/* Unreported error during __scsi_add_device() */
949
smp_rmb(); /* get current card generation */
950
if (generation != device->card->generation) {
951
scsi_remove_device(sdev);
952
scsi_device_put(sdev);
953
goto out_logout_login;
954
}
955
956
/* No error during __scsi_add_device() */
957
lu->has_sdev = true;
958
scsi_device_put(sdev);
959
sbp2_allow_block(lu);
960
goto out;
961
962
out_logout_login:
963
smp_rmb(); /* generation may have changed */
964
generation = device->generation;
965
smp_rmb(); /* node_id must not be older than generation */
966
967
sbp2_send_management_orb(lu, device->node_id, generation,
968
SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
969
/*
970
* If a bus reset happened, sbp2_update will have requeued
971
* lu->work already. Reset the work from reconnect to login.
972
*/
973
PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
974
out:
975
sbp2_target_put(tgt);
976
}
977
978
static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
979
{
980
struct sbp2_logical_unit *lu;
981
982
lu = kmalloc(sizeof(*lu), GFP_KERNEL);
983
if (!lu)
984
return -ENOMEM;
985
986
lu->address_handler.length = 0x100;
987
lu->address_handler.address_callback = sbp2_status_write;
988
lu->address_handler.callback_data = lu;
989
990
if (fw_core_add_address_handler(&lu->address_handler,
991
&fw_high_memory_region) < 0) {
992
kfree(lu);
993
return -ENOMEM;
994
}
995
996
lu->tgt = tgt;
997
lu->lun = lun_entry & 0xffff;
998
lu->login_id = INVALID_LOGIN_ID;
999
lu->retries = 0;
1000
lu->has_sdev = false;
1001
lu->blocked = false;
1002
++tgt->dont_block;
1003
INIT_LIST_HEAD(&lu->orb_list);
1004
INIT_DELAYED_WORK(&lu->work, sbp2_login);
1005
1006
list_add_tail(&lu->link, &tgt->lu_list);
1007
return 0;
1008
}
1009
1010
static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1011
const u32 *directory)
1012
{
1013
struct fw_csr_iterator ci;
1014
int key, value;
1015
1016
fw_csr_iterator_init(&ci, directory);
1017
while (fw_csr_iterator_next(&ci, &key, &value))
1018
if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1019
sbp2_add_logical_unit(tgt, value) < 0)
1020
return -ENOMEM;
1021
return 0;
1022
}
1023
1024
static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1025
u32 *model, u32 *firmware_revision)
1026
{
1027
struct fw_csr_iterator ci;
1028
int key, value;
1029
1030
fw_csr_iterator_init(&ci, directory);
1031
while (fw_csr_iterator_next(&ci, &key, &value)) {
1032
switch (key) {
1033
1034
case CSR_DEPENDENT_INFO | CSR_OFFSET:
1035
tgt->management_agent_address =
1036
CSR_REGISTER_BASE + 4 * value;
1037
break;
1038
1039
case CSR_DIRECTORY_ID:
1040
tgt->directory_id = value;
1041
break;
1042
1043
case CSR_MODEL:
1044
*model = value;
1045
break;
1046
1047
case SBP2_CSR_FIRMWARE_REVISION:
1048
*firmware_revision = value;
1049
break;
1050
1051
case SBP2_CSR_UNIT_CHARACTERISTICS:
1052
/* the timeout value is stored in 500ms units */
1053
tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1054
break;
1055
1056
case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1057
if (sbp2_add_logical_unit(tgt, value) < 0)
1058
return -ENOMEM;
1059
break;
1060
1061
case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1062
/* Adjust for the increment in the iterator */
1063
if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1064
return -ENOMEM;
1065
break;
1066
}
1067
}
1068
return 0;
1069
}
1070
1071
/*
1072
* Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1073
* provided in the config rom. Most devices do provide a value, which
1074
* we'll use for login management orbs, but with some sane limits.
1075
*/
1076
static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1077
{
1078
unsigned int timeout = tgt->mgt_orb_timeout;
1079
1080
if (timeout > 40000)
1081
fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n",
1082
tgt->bus_id, timeout / 1000);
1083
1084
tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1085
}
1086
1087
static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1088
u32 firmware_revision)
1089
{
1090
int i;
1091
unsigned int w = sbp2_param_workarounds;
1092
1093
if (w)
1094
fw_notify("Please notify [email protected] "
1095
"if you need the workarounds parameter for %s\n",
1096
tgt->bus_id);
1097
1098
if (w & SBP2_WORKAROUND_OVERRIDE)
1099
goto out;
1100
1101
for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1102
1103
if (sbp2_workarounds_table[i].firmware_revision !=
1104
(firmware_revision & 0xffffff00))
1105
continue;
1106
1107
if (sbp2_workarounds_table[i].model != model &&
1108
sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1109
continue;
1110
1111
w |= sbp2_workarounds_table[i].workarounds;
1112
break;
1113
}
1114
out:
1115
if (w)
1116
fw_notify("Workarounds for %s: 0x%x "
1117
"(firmware_revision 0x%06x, model_id 0x%06x)\n",
1118
tgt->bus_id, w, firmware_revision, model);
1119
tgt->workarounds = w;
1120
}
1121
1122
static struct scsi_host_template scsi_driver_template;
1123
1124
static int sbp2_probe(struct device *dev)
1125
{
1126
struct fw_unit *unit = fw_unit(dev);
1127
struct fw_device *device = fw_parent_device(unit);
1128
struct sbp2_target *tgt;
1129
struct sbp2_logical_unit *lu;
1130
struct Scsi_Host *shost;
1131
u32 model, firmware_revision;
1132
1133
if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1134
BUG_ON(dma_set_max_seg_size(device->card->device,
1135
SBP2_MAX_SEG_SIZE));
1136
1137
shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1138
if (shost == NULL)
1139
return -ENOMEM;
1140
1141
tgt = (struct sbp2_target *)shost->hostdata;
1142
dev_set_drvdata(&unit->device, tgt);
1143
tgt->unit = unit;
1144
kref_init(&tgt->kref);
1145
INIT_LIST_HEAD(&tgt->lu_list);
1146
tgt->bus_id = dev_name(&unit->device);
1147
tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1148
1149
if (fw_device_enable_phys_dma(device) < 0)
1150
goto fail_shost_put;
1151
1152
shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1153
1154
if (scsi_add_host(shost, &unit->device) < 0)
1155
goto fail_shost_put;
1156
1157
fw_device_get(device);
1158
fw_unit_get(unit);
1159
1160
/* implicit directory ID */
1161
tgt->directory_id = ((unit->directory - device->config_rom) * 4
1162
+ CSR_CONFIG_ROM) & 0xffffff;
1163
1164
firmware_revision = SBP2_ROM_VALUE_MISSING;
1165
model = SBP2_ROM_VALUE_MISSING;
1166
1167
if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1168
&firmware_revision) < 0)
1169
goto fail_tgt_put;
1170
1171
sbp2_clamp_management_orb_timeout(tgt);
1172
sbp2_init_workarounds(tgt, model, firmware_revision);
1173
1174
/*
1175
* At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1176
* and so on up to 4096 bytes. The SBP-2 max_payload field
1177
* specifies the max payload size as 2 ^ (max_payload + 2), so
1178
* if we set this to max_speed + 7, we get the right value.
1179
*/
1180
tgt->max_payload = min(device->max_speed + 7, 10U);
1181
tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1);
1182
1183
/* Do the login in a workqueue so we can easily reschedule retries. */
1184
list_for_each_entry(lu, &tgt->lu_list, link)
1185
sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1186
return 0;
1187
1188
fail_tgt_put:
1189
sbp2_target_put(tgt);
1190
return -ENOMEM;
1191
1192
fail_shost_put:
1193
scsi_host_put(shost);
1194
return -ENOMEM;
1195
}
1196
1197
static int sbp2_remove(struct device *dev)
1198
{
1199
struct fw_unit *unit = fw_unit(dev);
1200
struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1201
1202
sbp2_target_put(tgt);
1203
return 0;
1204
}
1205
1206
static void sbp2_reconnect(struct work_struct *work)
1207
{
1208
struct sbp2_logical_unit *lu =
1209
container_of(work, struct sbp2_logical_unit, work.work);
1210
struct sbp2_target *tgt = lu->tgt;
1211
struct fw_device *device = target_device(tgt);
1212
int generation, node_id, local_node_id;
1213
1214
if (fw_device_is_shutdown(device))
1215
goto out;
1216
1217
generation = device->generation;
1218
smp_rmb(); /* node IDs must not be older than generation */
1219
node_id = device->node_id;
1220
local_node_id = device->card->node_id;
1221
1222
if (sbp2_send_management_orb(lu, node_id, generation,
1223
SBP2_RECONNECT_REQUEST,
1224
lu->login_id, NULL) < 0) {
1225
/*
1226
* If reconnect was impossible even though we are in the
1227
* current generation, fall back and try to log in again.
1228
*
1229
* We could check for "Function rejected" status, but
1230
* looking at the bus generation as simpler and more general.
1231
*/
1232
smp_rmb(); /* get current card generation */
1233
if (generation == device->card->generation ||
1234
lu->retries++ >= 5) {
1235
fw_error("%s: failed to reconnect\n", tgt->bus_id);
1236
lu->retries = 0;
1237
PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1238
}
1239
sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1240
goto out;
1241
}
1242
1243
tgt->node_id = node_id;
1244
tgt->address_high = local_node_id << 16;
1245
smp_wmb(); /* node IDs must not be older than generation */
1246
lu->generation = generation;
1247
1248
fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1249
tgt->bus_id, lu->lun, lu->retries);
1250
1251
sbp2_agent_reset(lu);
1252
sbp2_cancel_orbs(lu);
1253
sbp2_conditionally_unblock(lu);
1254
out:
1255
sbp2_target_put(tgt);
1256
}
1257
1258
static void sbp2_update(struct fw_unit *unit)
1259
{
1260
struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1261
struct sbp2_logical_unit *lu;
1262
1263
fw_device_enable_phys_dma(fw_parent_device(unit));
1264
1265
/*
1266
* Fw-core serializes sbp2_update() against sbp2_remove().
1267
* Iteration over tgt->lu_list is therefore safe here.
1268
*/
1269
list_for_each_entry(lu, &tgt->lu_list, link) {
1270
sbp2_conditionally_block(lu);
1271
lu->retries = 0;
1272
sbp2_queue_work(lu, 0);
1273
}
1274
}
1275
1276
#define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1277
#define SBP2_SW_VERSION_ENTRY 0x00010483
1278
1279
static const struct ieee1394_device_id sbp2_id_table[] = {
1280
{
1281
.match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1282
IEEE1394_MATCH_VERSION,
1283
.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1284
.version = SBP2_SW_VERSION_ENTRY,
1285
},
1286
{ }
1287
};
1288
1289
static struct fw_driver sbp2_driver = {
1290
.driver = {
1291
.owner = THIS_MODULE,
1292
.name = sbp2_driver_name,
1293
.bus = &fw_bus_type,
1294
.probe = sbp2_probe,
1295
.remove = sbp2_remove,
1296
},
1297
.update = sbp2_update,
1298
.id_table = sbp2_id_table,
1299
};
1300
1301
static void sbp2_unmap_scatterlist(struct device *card_device,
1302
struct sbp2_command_orb *orb)
1303
{
1304
if (scsi_sg_count(orb->cmd))
1305
dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1306
scsi_sg_count(orb->cmd),
1307
orb->cmd->sc_data_direction);
1308
1309
if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1310
dma_unmap_single(card_device, orb->page_table_bus,
1311
sizeof(orb->page_table), DMA_TO_DEVICE);
1312
}
1313
1314
static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1315
{
1316
int sam_status;
1317
1318
sense_data[0] = 0x70;
1319
sense_data[1] = 0x0;
1320
sense_data[2] = sbp2_status[1];
1321
sense_data[3] = sbp2_status[4];
1322
sense_data[4] = sbp2_status[5];
1323
sense_data[5] = sbp2_status[6];
1324
sense_data[6] = sbp2_status[7];
1325
sense_data[7] = 10;
1326
sense_data[8] = sbp2_status[8];
1327
sense_data[9] = sbp2_status[9];
1328
sense_data[10] = sbp2_status[10];
1329
sense_data[11] = sbp2_status[11];
1330
sense_data[12] = sbp2_status[2];
1331
sense_data[13] = sbp2_status[3];
1332
sense_data[14] = sbp2_status[12];
1333
sense_data[15] = sbp2_status[13];
1334
1335
sam_status = sbp2_status[0] & 0x3f;
1336
1337
switch (sam_status) {
1338
case SAM_STAT_GOOD:
1339
case SAM_STAT_CHECK_CONDITION:
1340
case SAM_STAT_CONDITION_MET:
1341
case SAM_STAT_BUSY:
1342
case SAM_STAT_RESERVATION_CONFLICT:
1343
case SAM_STAT_COMMAND_TERMINATED:
1344
return DID_OK << 16 | sam_status;
1345
1346
default:
1347
return DID_ERROR << 16;
1348
}
1349
}
1350
1351
static void complete_command_orb(struct sbp2_orb *base_orb,
1352
struct sbp2_status *status)
1353
{
1354
struct sbp2_command_orb *orb =
1355
container_of(base_orb, struct sbp2_command_orb, base);
1356
struct fw_device *device = target_device(orb->lu->tgt);
1357
int result;
1358
1359
if (status != NULL) {
1360
if (STATUS_GET_DEAD(*status))
1361
sbp2_agent_reset_no_wait(orb->lu);
1362
1363
switch (STATUS_GET_RESPONSE(*status)) {
1364
case SBP2_STATUS_REQUEST_COMPLETE:
1365
result = DID_OK << 16;
1366
break;
1367
case SBP2_STATUS_TRANSPORT_FAILURE:
1368
result = DID_BUS_BUSY << 16;
1369
break;
1370
case SBP2_STATUS_ILLEGAL_REQUEST:
1371
case SBP2_STATUS_VENDOR_DEPENDENT:
1372
default:
1373
result = DID_ERROR << 16;
1374
break;
1375
}
1376
1377
if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1378
result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1379
orb->cmd->sense_buffer);
1380
} else {
1381
/*
1382
* If the orb completes with status == NULL, something
1383
* went wrong, typically a bus reset happened mid-orb
1384
* or when sending the write (less likely).
1385
*/
1386
result = DID_BUS_BUSY << 16;
1387
sbp2_conditionally_block(orb->lu);
1388
}
1389
1390
dma_unmap_single(device->card->device, orb->base.request_bus,
1391
sizeof(orb->request), DMA_TO_DEVICE);
1392
sbp2_unmap_scatterlist(device->card->device, orb);
1393
1394
orb->cmd->result = result;
1395
orb->cmd->scsi_done(orb->cmd);
1396
}
1397
1398
static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1399
struct fw_device *device, struct sbp2_logical_unit *lu)
1400
{
1401
struct scatterlist *sg = scsi_sglist(orb->cmd);
1402
int i, n;
1403
1404
n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1405
orb->cmd->sc_data_direction);
1406
if (n == 0)
1407
goto fail;
1408
1409
/*
1410
* Handle the special case where there is only one element in
1411
* the scatter list by converting it to an immediate block
1412
* request. This is also a workaround for broken devices such
1413
* as the second generation iPod which doesn't support page
1414
* tables.
1415
*/
1416
if (n == 1) {
1417
orb->request.data_descriptor.high =
1418
cpu_to_be32(lu->tgt->address_high);
1419
orb->request.data_descriptor.low =
1420
cpu_to_be32(sg_dma_address(sg));
1421
orb->request.misc |=
1422
cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1423
return 0;
1424
}
1425
1426
for_each_sg(sg, sg, n, i) {
1427
orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1428
orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1429
}
1430
1431
orb->page_table_bus =
1432
dma_map_single(device->card->device, orb->page_table,
1433
sizeof(orb->page_table), DMA_TO_DEVICE);
1434
if (dma_mapping_error(device->card->device, orb->page_table_bus))
1435
goto fail_page_table;
1436
1437
/*
1438
* The data_descriptor pointer is the one case where we need
1439
* to fill in the node ID part of the address. All other
1440
* pointers assume that the data referenced reside on the
1441
* initiator (i.e. us), but data_descriptor can refer to data
1442
* on other nodes so we need to put our ID in descriptor.high.
1443
*/
1444
orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1445
orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1446
orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1447
COMMAND_ORB_DATA_SIZE(n));
1448
1449
return 0;
1450
1451
fail_page_table:
1452
dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1453
scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1454
fail:
1455
return -ENOMEM;
1456
}
1457
1458
/* SCSI stack integration */
1459
1460
static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1461
struct scsi_cmnd *cmd)
1462
{
1463
struct sbp2_logical_unit *lu = cmd->device->hostdata;
1464
struct fw_device *device = target_device(lu->tgt);
1465
struct sbp2_command_orb *orb;
1466
int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1467
1468
/*
1469
* Bidirectional commands are not yet implemented, and unknown
1470
* transfer direction not handled.
1471
*/
1472
if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1473
fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1474
cmd->result = DID_ERROR << 16;
1475
cmd->scsi_done(cmd);
1476
return 0;
1477
}
1478
1479
orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1480
if (orb == NULL) {
1481
fw_notify("failed to alloc orb\n");
1482
return SCSI_MLQUEUE_HOST_BUSY;
1483
}
1484
1485
/* Initialize rcode to something not RCODE_COMPLETE. */
1486
orb->base.rcode = -1;
1487
kref_init(&orb->base.kref);
1488
orb->lu = lu;
1489
orb->cmd = cmd;
1490
orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1491
orb->request.misc = cpu_to_be32(
1492
COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1493
COMMAND_ORB_SPEED(device->max_speed) |
1494
COMMAND_ORB_NOTIFY);
1495
1496
if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1497
orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1498
1499
generation = device->generation;
1500
smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1501
1502
if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1503
goto out;
1504
1505
memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1506
1507
orb->base.callback = complete_command_orb;
1508
orb->base.request_bus =
1509
dma_map_single(device->card->device, &orb->request,
1510
sizeof(orb->request), DMA_TO_DEVICE);
1511
if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1512
sbp2_unmap_scatterlist(device->card->device, orb);
1513
goto out;
1514
}
1515
1516
sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1517
lu->command_block_agent_address + SBP2_ORB_POINTER);
1518
retval = 0;
1519
out:
1520
kref_put(&orb->base.kref, free_orb);
1521
return retval;
1522
}
1523
1524
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1525
{
1526
struct sbp2_logical_unit *lu = sdev->hostdata;
1527
1528
/* (Re-)Adding logical units via the SCSI stack is not supported. */
1529
if (!lu)
1530
return -ENOSYS;
1531
1532
sdev->allow_restart = 1;
1533
1534
/* SBP-2 requires quadlet alignment of the data buffers. */
1535
blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1536
1537
if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1538
sdev->inquiry_len = 36;
1539
1540
return 0;
1541
}
1542
1543
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1544
{
1545
struct sbp2_logical_unit *lu = sdev->hostdata;
1546
1547
sdev->use_10_for_rw = 1;
1548
1549
if (sbp2_param_exclusive_login)
1550
sdev->manage_start_stop = 1;
1551
1552
if (sdev->type == TYPE_ROM)
1553
sdev->use_10_for_ms = 1;
1554
1555
if (sdev->type == TYPE_DISK &&
1556
lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1557
sdev->skip_ms_page_8 = 1;
1558
1559
if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1560
sdev->fix_capacity = 1;
1561
1562
if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1563
sdev->start_stop_pwr_cond = 1;
1564
1565
if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1566
blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1567
1568
blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1569
1570
return 0;
1571
}
1572
1573
/*
1574
* Called by scsi stack when something has really gone wrong. Usually
1575
* called when a command has timed-out for some reason.
1576
*/
1577
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1578
{
1579
struct sbp2_logical_unit *lu = cmd->device->hostdata;
1580
1581
fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1582
sbp2_agent_reset(lu);
1583
sbp2_cancel_orbs(lu);
1584
1585
return SUCCESS;
1586
}
1587
1588
/*
1589
* Format of /sys/bus/scsi/devices/.../ieee1394_id:
1590
* u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1591
*
1592
* This is the concatenation of target port identifier and logical unit
1593
* identifier as per SAM-2...SAM-4 annex A.
1594
*/
1595
static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1596
struct device_attribute *attr, char *buf)
1597
{
1598
struct scsi_device *sdev = to_scsi_device(dev);
1599
struct sbp2_logical_unit *lu;
1600
1601
if (!sdev)
1602
return 0;
1603
1604
lu = sdev->hostdata;
1605
1606
return sprintf(buf, "%016llx:%06x:%04x\n",
1607
(unsigned long long)lu->tgt->guid,
1608
lu->tgt->directory_id, lu->lun);
1609
}
1610
1611
static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1612
1613
static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1614
&dev_attr_ieee1394_id,
1615
NULL
1616
};
1617
1618
static struct scsi_host_template scsi_driver_template = {
1619
.module = THIS_MODULE,
1620
.name = "SBP-2 IEEE-1394",
1621
.proc_name = sbp2_driver_name,
1622
.queuecommand = sbp2_scsi_queuecommand,
1623
.slave_alloc = sbp2_scsi_slave_alloc,
1624
.slave_configure = sbp2_scsi_slave_configure,
1625
.eh_abort_handler = sbp2_scsi_abort,
1626
.this_id = -1,
1627
.sg_tablesize = SG_ALL,
1628
.use_clustering = ENABLE_CLUSTERING,
1629
.cmd_per_lun = 1,
1630
.can_queue = 1,
1631
.sdev_attrs = sbp2_scsi_sysfs_attrs,
1632
};
1633
1634
MODULE_AUTHOR("Kristian Hoegsberg <[email protected]>");
1635
MODULE_DESCRIPTION("SCSI over IEEE1394");
1636
MODULE_LICENSE("GPL");
1637
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1638
1639
/* Provide a module alias so root-on-sbp2 initrds don't break. */
1640
#ifndef CONFIG_IEEE1394_SBP2_MODULE
1641
MODULE_ALIAS("sbp2");
1642
#endif
1643
1644
static int __init sbp2_init(void)
1645
{
1646
return driver_register(&sbp2_driver.driver);
1647
}
1648
1649
static void __exit sbp2_cleanup(void)
1650
{
1651
driver_unregister(&sbp2_driver.driver);
1652
}
1653
1654
module_init(sbp2_init);
1655
module_exit(sbp2_cleanup);
1656
1657