Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/firmware/dmi_scan.c
15109 views
1
#include <linux/types.h>
2
#include <linux/string.h>
3
#include <linux/init.h>
4
#include <linux/module.h>
5
#include <linux/ctype.h>
6
#include <linux/dmi.h>
7
#include <linux/efi.h>
8
#include <linux/bootmem.h>
9
#include <asm/dmi.h>
10
11
/*
12
* DMI stands for "Desktop Management Interface". It is part
13
* of and an antecedent to, SMBIOS, which stands for System
14
* Management BIOS. See further: http://www.dmtf.org/standards
15
*/
16
static char dmi_empty_string[] = " ";
17
18
/*
19
* Catch too early calls to dmi_check_system():
20
*/
21
static int dmi_initialized;
22
23
static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
24
{
25
const u8 *bp = ((u8 *) dm) + dm->length;
26
27
if (s) {
28
s--;
29
while (s > 0 && *bp) {
30
bp += strlen(bp) + 1;
31
s--;
32
}
33
34
if (*bp != 0) {
35
size_t len = strlen(bp)+1;
36
size_t cmp_len = len > 8 ? 8 : len;
37
38
if (!memcmp(bp, dmi_empty_string, cmp_len))
39
return dmi_empty_string;
40
return bp;
41
}
42
}
43
44
return "";
45
}
46
47
static char * __init dmi_string(const struct dmi_header *dm, u8 s)
48
{
49
const char *bp = dmi_string_nosave(dm, s);
50
char *str;
51
size_t len;
52
53
if (bp == dmi_empty_string)
54
return dmi_empty_string;
55
56
len = strlen(bp) + 1;
57
str = dmi_alloc(len);
58
if (str != NULL)
59
strcpy(str, bp);
60
else
61
printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
62
63
return str;
64
}
65
66
/*
67
* We have to be cautious here. We have seen BIOSes with DMI pointers
68
* pointing to completely the wrong place for example
69
*/
70
static void dmi_table(u8 *buf, int len, int num,
71
void (*decode)(const struct dmi_header *, void *),
72
void *private_data)
73
{
74
u8 *data = buf;
75
int i = 0;
76
77
/*
78
* Stop when we see all the items the table claimed to have
79
* OR we run off the end of the table (also happens)
80
*/
81
while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
82
const struct dmi_header *dm = (const struct dmi_header *)data;
83
84
/*
85
* We want to know the total length (formatted area and
86
* strings) before decoding to make sure we won't run off the
87
* table in dmi_decode or dmi_string
88
*/
89
data += dm->length;
90
while ((data - buf < len - 1) && (data[0] || data[1]))
91
data++;
92
if (data - buf < len - 1)
93
decode(dm, private_data);
94
data += 2;
95
i++;
96
}
97
}
98
99
static u32 dmi_base;
100
static u16 dmi_len;
101
static u16 dmi_num;
102
103
static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
104
void *))
105
{
106
u8 *buf;
107
108
buf = dmi_ioremap(dmi_base, dmi_len);
109
if (buf == NULL)
110
return -1;
111
112
dmi_table(buf, dmi_len, dmi_num, decode, NULL);
113
114
dmi_iounmap(buf, dmi_len);
115
return 0;
116
}
117
118
static int __init dmi_checksum(const u8 *buf)
119
{
120
u8 sum = 0;
121
int a;
122
123
for (a = 0; a < 15; a++)
124
sum += buf[a];
125
126
return sum == 0;
127
}
128
129
static char *dmi_ident[DMI_STRING_MAX];
130
static LIST_HEAD(dmi_devices);
131
int dmi_available;
132
133
/*
134
* Save a DMI string
135
*/
136
static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
137
{
138
const char *d = (const char*) dm;
139
char *p;
140
141
if (dmi_ident[slot])
142
return;
143
144
p = dmi_string(dm, d[string]);
145
if (p == NULL)
146
return;
147
148
dmi_ident[slot] = p;
149
}
150
151
static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
152
{
153
const u8 *d = (u8*) dm + index;
154
char *s;
155
int is_ff = 1, is_00 = 1, i;
156
157
if (dmi_ident[slot])
158
return;
159
160
for (i = 0; i < 16 && (is_ff || is_00); i++) {
161
if(d[i] != 0x00) is_ff = 0;
162
if(d[i] != 0xFF) is_00 = 0;
163
}
164
165
if (is_ff || is_00)
166
return;
167
168
s = dmi_alloc(16*2+4+1);
169
if (!s)
170
return;
171
172
sprintf(s, "%pUB", d);
173
174
dmi_ident[slot] = s;
175
}
176
177
static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
178
{
179
const u8 *d = (u8*) dm + index;
180
char *s;
181
182
if (dmi_ident[slot])
183
return;
184
185
s = dmi_alloc(4);
186
if (!s)
187
return;
188
189
sprintf(s, "%u", *d & 0x7F);
190
dmi_ident[slot] = s;
191
}
192
193
static void __init dmi_save_one_device(int type, const char *name)
194
{
195
struct dmi_device *dev;
196
197
/* No duplicate device */
198
if (dmi_find_device(type, name, NULL))
199
return;
200
201
dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
202
if (!dev) {
203
printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
204
return;
205
}
206
207
dev->type = type;
208
strcpy((char *)(dev + 1), name);
209
dev->name = (char *)(dev + 1);
210
dev->device_data = NULL;
211
list_add(&dev->list, &dmi_devices);
212
}
213
214
static void __init dmi_save_devices(const struct dmi_header *dm)
215
{
216
int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
217
218
for (i = 0; i < count; i++) {
219
const char *d = (char *)(dm + 1) + (i * 2);
220
221
/* Skip disabled device */
222
if ((*d & 0x80) == 0)
223
continue;
224
225
dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
226
}
227
}
228
229
static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
230
{
231
int i, count = *(u8 *)(dm + 1);
232
struct dmi_device *dev;
233
234
for (i = 1; i <= count; i++) {
235
char *devname = dmi_string(dm, i);
236
237
if (devname == dmi_empty_string)
238
continue;
239
240
dev = dmi_alloc(sizeof(*dev));
241
if (!dev) {
242
printk(KERN_ERR
243
"dmi_save_oem_strings_devices: out of memory.\n");
244
break;
245
}
246
247
dev->type = DMI_DEV_TYPE_OEM_STRING;
248
dev->name = devname;
249
dev->device_data = NULL;
250
251
list_add(&dev->list, &dmi_devices);
252
}
253
}
254
255
static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
256
{
257
struct dmi_device *dev;
258
void * data;
259
260
data = dmi_alloc(dm->length);
261
if (data == NULL) {
262
printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
263
return;
264
}
265
266
memcpy(data, dm, dm->length);
267
268
dev = dmi_alloc(sizeof(*dev));
269
if (!dev) {
270
printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
271
return;
272
}
273
274
dev->type = DMI_DEV_TYPE_IPMI;
275
dev->name = "IPMI controller";
276
dev->device_data = data;
277
278
list_add_tail(&dev->list, &dmi_devices);
279
}
280
281
static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
282
int devfn, const char *name)
283
{
284
struct dmi_dev_onboard *onboard_dev;
285
286
onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
287
if (!onboard_dev) {
288
printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n");
289
return;
290
}
291
onboard_dev->instance = instance;
292
onboard_dev->segment = segment;
293
onboard_dev->bus = bus;
294
onboard_dev->devfn = devfn;
295
296
strcpy((char *)&onboard_dev[1], name);
297
onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
298
onboard_dev->dev.name = (char *)&onboard_dev[1];
299
onboard_dev->dev.device_data = onboard_dev;
300
301
list_add(&onboard_dev->dev.list, &dmi_devices);
302
}
303
304
static void __init dmi_save_extended_devices(const struct dmi_header *dm)
305
{
306
const u8 *d = (u8*) dm + 5;
307
308
/* Skip disabled device */
309
if ((*d & 0x80) == 0)
310
return;
311
312
dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
313
dmi_string_nosave(dm, *(d-1)));
314
dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
315
}
316
317
/*
318
* Process a DMI table entry. Right now all we care about are the BIOS
319
* and machine entries. For 2.5 we should pull the smbus controller info
320
* out of here.
321
*/
322
static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
323
{
324
switch(dm->type) {
325
case 0: /* BIOS Information */
326
dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
327
dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
328
dmi_save_ident(dm, DMI_BIOS_DATE, 8);
329
break;
330
case 1: /* System Information */
331
dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
332
dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
333
dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
334
dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
335
dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
336
break;
337
case 2: /* Base Board Information */
338
dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
339
dmi_save_ident(dm, DMI_BOARD_NAME, 5);
340
dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
341
dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
342
dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
343
break;
344
case 3: /* Chassis Information */
345
dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
346
dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
347
dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
348
dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
349
dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
350
break;
351
case 10: /* Onboard Devices Information */
352
dmi_save_devices(dm);
353
break;
354
case 11: /* OEM Strings */
355
dmi_save_oem_strings_devices(dm);
356
break;
357
case 38: /* IPMI Device Information */
358
dmi_save_ipmi_device(dm);
359
break;
360
case 41: /* Onboard Devices Extended Information */
361
dmi_save_extended_devices(dm);
362
}
363
}
364
365
static void __init print_filtered(const char *info)
366
{
367
const char *p;
368
369
if (!info)
370
return;
371
372
for (p = info; *p; p++)
373
if (isprint(*p))
374
printk(KERN_CONT "%c", *p);
375
else
376
printk(KERN_CONT "\\x%02x", *p & 0xff);
377
}
378
379
static void __init dmi_dump_ids(void)
380
{
381
const char *board; /* Board Name is optional */
382
383
printk(KERN_DEBUG "DMI: ");
384
print_filtered(dmi_get_system_info(DMI_SYS_VENDOR));
385
printk(KERN_CONT " ");
386
print_filtered(dmi_get_system_info(DMI_PRODUCT_NAME));
387
board = dmi_get_system_info(DMI_BOARD_NAME);
388
if (board) {
389
printk(KERN_CONT "/");
390
print_filtered(board);
391
}
392
printk(KERN_CONT ", BIOS ");
393
print_filtered(dmi_get_system_info(DMI_BIOS_VERSION));
394
printk(KERN_CONT " ");
395
print_filtered(dmi_get_system_info(DMI_BIOS_DATE));
396
printk(KERN_CONT "\n");
397
}
398
399
static int __init dmi_present(const char __iomem *p)
400
{
401
u8 buf[15];
402
403
memcpy_fromio(buf, p, 15);
404
if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
405
dmi_num = (buf[13] << 8) | buf[12];
406
dmi_len = (buf[7] << 8) | buf[6];
407
dmi_base = (buf[11] << 24) | (buf[10] << 16) |
408
(buf[9] << 8) | buf[8];
409
410
/*
411
* DMI version 0.0 means that the real version is taken from
412
* the SMBIOS version, which we don't know at this point.
413
*/
414
if (buf[14] != 0)
415
printk(KERN_INFO "DMI %d.%d present.\n",
416
buf[14] >> 4, buf[14] & 0xF);
417
else
418
printk(KERN_INFO "DMI present.\n");
419
if (dmi_walk_early(dmi_decode) == 0) {
420
dmi_dump_ids();
421
return 0;
422
}
423
}
424
return 1;
425
}
426
427
void __init dmi_scan_machine(void)
428
{
429
char __iomem *p, *q;
430
int rc;
431
432
if (efi_enabled) {
433
if (efi.smbios == EFI_INVALID_TABLE_ADDR)
434
goto error;
435
436
/* This is called as a core_initcall() because it isn't
437
* needed during early boot. This also means we can
438
* iounmap the space when we're done with it.
439
*/
440
p = dmi_ioremap(efi.smbios, 32);
441
if (p == NULL)
442
goto error;
443
444
rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
445
dmi_iounmap(p, 32);
446
if (!rc) {
447
dmi_available = 1;
448
goto out;
449
}
450
}
451
else {
452
/*
453
* no iounmap() for that ioremap(); it would be a no-op, but
454
* it's so early in setup that sucker gets confused into doing
455
* what it shouldn't if we actually call it.
456
*/
457
p = dmi_ioremap(0xF0000, 0x10000);
458
if (p == NULL)
459
goto error;
460
461
for (q = p; q < p + 0x10000; q += 16) {
462
rc = dmi_present(q);
463
if (!rc) {
464
dmi_available = 1;
465
dmi_iounmap(p, 0x10000);
466
goto out;
467
}
468
}
469
dmi_iounmap(p, 0x10000);
470
}
471
error:
472
printk(KERN_INFO "DMI not present or invalid.\n");
473
out:
474
dmi_initialized = 1;
475
}
476
477
/**
478
* dmi_matches - check if dmi_system_id structure matches system DMI data
479
* @dmi: pointer to the dmi_system_id structure to check
480
*/
481
static bool dmi_matches(const struct dmi_system_id *dmi)
482
{
483
int i;
484
485
WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
486
487
for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
488
int s = dmi->matches[i].slot;
489
if (s == DMI_NONE)
490
break;
491
if (dmi_ident[s]
492
&& strstr(dmi_ident[s], dmi->matches[i].substr))
493
continue;
494
/* No match */
495
return false;
496
}
497
return true;
498
}
499
500
/**
501
* dmi_is_end_of_table - check for end-of-table marker
502
* @dmi: pointer to the dmi_system_id structure to check
503
*/
504
static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
505
{
506
return dmi->matches[0].slot == DMI_NONE;
507
}
508
509
/**
510
* dmi_check_system - check system DMI data
511
* @list: array of dmi_system_id structures to match against
512
* All non-null elements of the list must match
513
* their slot's (field index's) data (i.e., each
514
* list string must be a substring of the specified
515
* DMI slot's string data) to be considered a
516
* successful match.
517
*
518
* Walk the blacklist table running matching functions until someone
519
* returns non zero or we hit the end. Callback function is called for
520
* each successful match. Returns the number of matches.
521
*/
522
int dmi_check_system(const struct dmi_system_id *list)
523
{
524
int count = 0;
525
const struct dmi_system_id *d;
526
527
for (d = list; !dmi_is_end_of_table(d); d++)
528
if (dmi_matches(d)) {
529
count++;
530
if (d->callback && d->callback(d))
531
break;
532
}
533
534
return count;
535
}
536
EXPORT_SYMBOL(dmi_check_system);
537
538
/**
539
* dmi_first_match - find dmi_system_id structure matching system DMI data
540
* @list: array of dmi_system_id structures to match against
541
* All non-null elements of the list must match
542
* their slot's (field index's) data (i.e., each
543
* list string must be a substring of the specified
544
* DMI slot's string data) to be considered a
545
* successful match.
546
*
547
* Walk the blacklist table until the first match is found. Return the
548
* pointer to the matching entry or NULL if there's no match.
549
*/
550
const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
551
{
552
const struct dmi_system_id *d;
553
554
for (d = list; !dmi_is_end_of_table(d); d++)
555
if (dmi_matches(d))
556
return d;
557
558
return NULL;
559
}
560
EXPORT_SYMBOL(dmi_first_match);
561
562
/**
563
* dmi_get_system_info - return DMI data value
564
* @field: data index (see enum dmi_field)
565
*
566
* Returns one DMI data value, can be used to perform
567
* complex DMI data checks.
568
*/
569
const char *dmi_get_system_info(int field)
570
{
571
return dmi_ident[field];
572
}
573
EXPORT_SYMBOL(dmi_get_system_info);
574
575
/**
576
* dmi_name_in_serial - Check if string is in the DMI product serial information
577
* @str: string to check for
578
*/
579
int dmi_name_in_serial(const char *str)
580
{
581
int f = DMI_PRODUCT_SERIAL;
582
if (dmi_ident[f] && strstr(dmi_ident[f], str))
583
return 1;
584
return 0;
585
}
586
587
/**
588
* dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
589
* @str: Case sensitive Name
590
*/
591
int dmi_name_in_vendors(const char *str)
592
{
593
static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
594
DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
595
DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
596
int i;
597
for (i = 0; fields[i] != DMI_NONE; i++) {
598
int f = fields[i];
599
if (dmi_ident[f] && strstr(dmi_ident[f], str))
600
return 1;
601
}
602
return 0;
603
}
604
EXPORT_SYMBOL(dmi_name_in_vendors);
605
606
/**
607
* dmi_find_device - find onboard device by type/name
608
* @type: device type or %DMI_DEV_TYPE_ANY to match all device types
609
* @name: device name string or %NULL to match all
610
* @from: previous device found in search, or %NULL for new search.
611
*
612
* Iterates through the list of known onboard devices. If a device is
613
* found with a matching @vendor and @device, a pointer to its device
614
* structure is returned. Otherwise, %NULL is returned.
615
* A new search is initiated by passing %NULL as the @from argument.
616
* If @from is not %NULL, searches continue from next device.
617
*/
618
const struct dmi_device * dmi_find_device(int type, const char *name,
619
const struct dmi_device *from)
620
{
621
const struct list_head *head = from ? &from->list : &dmi_devices;
622
struct list_head *d;
623
624
for(d = head->next; d != &dmi_devices; d = d->next) {
625
const struct dmi_device *dev =
626
list_entry(d, struct dmi_device, list);
627
628
if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
629
((name == NULL) || (strcmp(dev->name, name) == 0)))
630
return dev;
631
}
632
633
return NULL;
634
}
635
EXPORT_SYMBOL(dmi_find_device);
636
637
/**
638
* dmi_get_date - parse a DMI date
639
* @field: data index (see enum dmi_field)
640
* @yearp: optional out parameter for the year
641
* @monthp: optional out parameter for the month
642
* @dayp: optional out parameter for the day
643
*
644
* The date field is assumed to be in the form resembling
645
* [mm[/dd]]/yy[yy] and the result is stored in the out
646
* parameters any or all of which can be omitted.
647
*
648
* If the field doesn't exist, all out parameters are set to zero
649
* and false is returned. Otherwise, true is returned with any
650
* invalid part of date set to zero.
651
*
652
* On return, year, month and day are guaranteed to be in the
653
* range of [0,9999], [0,12] and [0,31] respectively.
654
*/
655
bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
656
{
657
int year = 0, month = 0, day = 0;
658
bool exists;
659
const char *s, *y;
660
char *e;
661
662
s = dmi_get_system_info(field);
663
exists = s;
664
if (!exists)
665
goto out;
666
667
/*
668
* Determine year first. We assume the date string resembles
669
* mm/dd/yy[yy] but the original code extracted only the year
670
* from the end. Keep the behavior in the spirit of no
671
* surprises.
672
*/
673
y = strrchr(s, '/');
674
if (!y)
675
goto out;
676
677
y++;
678
year = simple_strtoul(y, &e, 10);
679
if (y != e && year < 100) { /* 2-digit year */
680
year += 1900;
681
if (year < 1996) /* no dates < spec 1.0 */
682
year += 100;
683
}
684
if (year > 9999) /* year should fit in %04d */
685
year = 0;
686
687
/* parse the mm and dd */
688
month = simple_strtoul(s, &e, 10);
689
if (s == e || *e != '/' || !month || month > 12) {
690
month = 0;
691
goto out;
692
}
693
694
s = e + 1;
695
day = simple_strtoul(s, &e, 10);
696
if (s == y || s == e || *e != '/' || day > 31)
697
day = 0;
698
out:
699
if (yearp)
700
*yearp = year;
701
if (monthp)
702
*monthp = month;
703
if (dayp)
704
*dayp = day;
705
return exists;
706
}
707
EXPORT_SYMBOL(dmi_get_date);
708
709
/**
710
* dmi_walk - Walk the DMI table and get called back for every record
711
* @decode: Callback function
712
* @private_data: Private data to be passed to the callback function
713
*
714
* Returns -1 when the DMI table can't be reached, 0 on success.
715
*/
716
int dmi_walk(void (*decode)(const struct dmi_header *, void *),
717
void *private_data)
718
{
719
u8 *buf;
720
721
if (!dmi_available)
722
return -1;
723
724
buf = ioremap(dmi_base, dmi_len);
725
if (buf == NULL)
726
return -1;
727
728
dmi_table(buf, dmi_len, dmi_num, decode, private_data);
729
730
iounmap(buf);
731
return 0;
732
}
733
EXPORT_SYMBOL_GPL(dmi_walk);
734
735
/**
736
* dmi_match - compare a string to the dmi field (if exists)
737
* @f: DMI field identifier
738
* @str: string to compare the DMI field to
739
*
740
* Returns true if the requested field equals to the str (including NULL).
741
*/
742
bool dmi_match(enum dmi_field f, const char *str)
743
{
744
const char *info = dmi_get_system_info(f);
745
746
if (info == NULL || str == NULL)
747
return info == str;
748
749
return !strcmp(info, str);
750
}
751
EXPORT_SYMBOL_GPL(dmi_match);
752
753