Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/gpu/drm/i915/i915_gem_tiling.c
15113 views
1
/*
2
* Copyright © 2008 Intel Corporation
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining a
5
* copy of this software and associated documentation files (the "Software"),
6
* to deal in the Software without restriction, including without limitation
7
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
* and/or sell copies of the Software, and to permit persons to whom the
9
* Software is furnished to do so, subject to the following conditions:
10
*
11
* The above copyright notice and this permission notice (including the next
12
* paragraph) shall be included in all copies or substantial portions of the
13
* Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
* IN THE SOFTWARE.
22
*
23
* Authors:
24
* Eric Anholt <[email protected]>
25
*
26
*/
27
28
#include "linux/string.h"
29
#include "linux/bitops.h"
30
#include "drmP.h"
31
#include "drm.h"
32
#include "i915_drm.h"
33
#include "i915_drv.h"
34
35
/** @file i915_gem_tiling.c
36
*
37
* Support for managing tiling state of buffer objects.
38
*
39
* The idea behind tiling is to increase cache hit rates by rearranging
40
* pixel data so that a group of pixel accesses are in the same cacheline.
41
* Performance improvement from doing this on the back/depth buffer are on
42
* the order of 30%.
43
*
44
* Intel architectures make this somewhat more complicated, though, by
45
* adjustments made to addressing of data when the memory is in interleaved
46
* mode (matched pairs of DIMMS) to improve memory bandwidth.
47
* For interleaved memory, the CPU sends every sequential 64 bytes
48
* to an alternate memory channel so it can get the bandwidth from both.
49
*
50
* The GPU also rearranges its accesses for increased bandwidth to interleaved
51
* memory, and it matches what the CPU does for non-tiled. However, when tiled
52
* it does it a little differently, since one walks addresses not just in the
53
* X direction but also Y. So, along with alternating channels when bit
54
* 6 of the address flips, it also alternates when other bits flip -- Bits 9
55
* (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
56
* are common to both the 915 and 965-class hardware.
57
*
58
* The CPU also sometimes XORs in higher bits as well, to improve
59
* bandwidth doing strided access like we do so frequently in graphics. This
60
* is called "Channel XOR Randomization" in the MCH documentation. The result
61
* is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
62
* decode.
63
*
64
* All of this bit 6 XORing has an effect on our memory management,
65
* as we need to make sure that the 3d driver can correctly address object
66
* contents.
67
*
68
* If we don't have interleaved memory, all tiling is safe and no swizzling is
69
* required.
70
*
71
* When bit 17 is XORed in, we simply refuse to tile at all. Bit
72
* 17 is not just a page offset, so as we page an objet out and back in,
73
* individual pages in it will have different bit 17 addresses, resulting in
74
* each 64 bytes being swapped with its neighbor!
75
*
76
* Otherwise, if interleaved, we have to tell the 3d driver what the address
77
* swizzling it needs to do is, since it's writing with the CPU to the pages
78
* (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
79
* pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
80
* required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
81
* to match what the GPU expects.
82
*/
83
84
/**
85
* Detects bit 6 swizzling of address lookup between IGD access and CPU
86
* access through main memory.
87
*/
88
void
89
i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
90
{
91
drm_i915_private_t *dev_priv = dev->dev_private;
92
uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
93
uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
94
95
if (INTEL_INFO(dev)->gen >= 5) {
96
/* On Ironlake whatever DRAM config, GPU always do
97
* same swizzling setup.
98
*/
99
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
100
swizzle_y = I915_BIT_6_SWIZZLE_9;
101
} else if (IS_GEN2(dev)) {
102
/* As far as we know, the 865 doesn't have these bit 6
103
* swizzling issues.
104
*/
105
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
106
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
107
} else if (IS_MOBILE(dev)) {
108
uint32_t dcc;
109
110
/* On mobile 9xx chipsets, channel interleave by the CPU is
111
* determined by DCC. For single-channel, neither the CPU
112
* nor the GPU do swizzling. For dual channel interleaved,
113
* the GPU's interleave is bit 9 and 10 for X tiled, and bit
114
* 9 for Y tiled. The CPU's interleave is independent, and
115
* can be based on either bit 11 (haven't seen this yet) or
116
* bit 17 (common).
117
*/
118
dcc = I915_READ(DCC);
119
switch (dcc & DCC_ADDRESSING_MODE_MASK) {
120
case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
121
case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
122
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
123
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
124
break;
125
case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
126
if (dcc & DCC_CHANNEL_XOR_DISABLE) {
127
/* This is the base swizzling by the GPU for
128
* tiled buffers.
129
*/
130
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
131
swizzle_y = I915_BIT_6_SWIZZLE_9;
132
} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
133
/* Bit 11 swizzling by the CPU in addition. */
134
swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
135
swizzle_y = I915_BIT_6_SWIZZLE_9_11;
136
} else {
137
/* Bit 17 swizzling by the CPU in addition. */
138
swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
139
swizzle_y = I915_BIT_6_SWIZZLE_9_17;
140
}
141
break;
142
}
143
if (dcc == 0xffffffff) {
144
DRM_ERROR("Couldn't read from MCHBAR. "
145
"Disabling tiling.\n");
146
swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
147
swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
148
}
149
} else {
150
/* The 965, G33, and newer, have a very flexible memory
151
* configuration. It will enable dual-channel mode
152
* (interleaving) on as much memory as it can, and the GPU
153
* will additionally sometimes enable different bit 6
154
* swizzling for tiled objects from the CPU.
155
*
156
* Here's what I found on the G965:
157
* slot fill memory size swizzling
158
* 0A 0B 1A 1B 1-ch 2-ch
159
* 512 0 0 0 512 0 O
160
* 512 0 512 0 16 1008 X
161
* 512 0 0 512 16 1008 X
162
* 0 512 0 512 16 1008 X
163
* 1024 1024 1024 0 2048 1024 O
164
*
165
* We could probably detect this based on either the DRB
166
* matching, which was the case for the swizzling required in
167
* the table above, or from the 1-ch value being less than
168
* the minimum size of a rank.
169
*/
170
if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
171
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
172
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
173
} else {
174
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
175
swizzle_y = I915_BIT_6_SWIZZLE_9;
176
}
177
}
178
179
dev_priv->mm.bit_6_swizzle_x = swizzle_x;
180
dev_priv->mm.bit_6_swizzle_y = swizzle_y;
181
}
182
183
/* Check pitch constriants for all chips & tiling formats */
184
static bool
185
i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
186
{
187
int tile_width;
188
189
/* Linear is always fine */
190
if (tiling_mode == I915_TILING_NONE)
191
return true;
192
193
if (IS_GEN2(dev) ||
194
(tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
195
tile_width = 128;
196
else
197
tile_width = 512;
198
199
/* check maximum stride & object size */
200
if (INTEL_INFO(dev)->gen >= 4) {
201
/* i965 stores the end address of the gtt mapping in the fence
202
* reg, so dont bother to check the size */
203
if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
204
return false;
205
} else {
206
if (stride > 8192)
207
return false;
208
209
if (IS_GEN3(dev)) {
210
if (size > I830_FENCE_MAX_SIZE_VAL << 20)
211
return false;
212
} else {
213
if (size > I830_FENCE_MAX_SIZE_VAL << 19)
214
return false;
215
}
216
}
217
218
/* 965+ just needs multiples of tile width */
219
if (INTEL_INFO(dev)->gen >= 4) {
220
if (stride & (tile_width - 1))
221
return false;
222
return true;
223
}
224
225
/* Pre-965 needs power of two tile widths */
226
if (stride < tile_width)
227
return false;
228
229
if (stride & (stride - 1))
230
return false;
231
232
return true;
233
}
234
235
/* Is the current GTT allocation valid for the change in tiling? */
236
static bool
237
i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
238
{
239
u32 size;
240
241
if (tiling_mode == I915_TILING_NONE)
242
return true;
243
244
if (INTEL_INFO(obj->base.dev)->gen >= 4)
245
return true;
246
247
if (INTEL_INFO(obj->base.dev)->gen == 3) {
248
if (obj->gtt_offset & ~I915_FENCE_START_MASK)
249
return false;
250
} else {
251
if (obj->gtt_offset & ~I830_FENCE_START_MASK)
252
return false;
253
}
254
255
/*
256
* Previous chips need to be aligned to the size of the smallest
257
* fence register that can contain the object.
258
*/
259
if (INTEL_INFO(obj->base.dev)->gen == 3)
260
size = 1024*1024;
261
else
262
size = 512*1024;
263
264
while (size < obj->base.size)
265
size <<= 1;
266
267
if (obj->gtt_space->size != size)
268
return false;
269
270
if (obj->gtt_offset & (size - 1))
271
return false;
272
273
return true;
274
}
275
276
/**
277
* Sets the tiling mode of an object, returning the required swizzling of
278
* bit 6 of addresses in the object.
279
*/
280
int
281
i915_gem_set_tiling(struct drm_device *dev, void *data,
282
struct drm_file *file)
283
{
284
struct drm_i915_gem_set_tiling *args = data;
285
drm_i915_private_t *dev_priv = dev->dev_private;
286
struct drm_i915_gem_object *obj;
287
int ret = 0;
288
289
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
290
if (&obj->base == NULL)
291
return -ENOENT;
292
293
if (!i915_tiling_ok(dev,
294
args->stride, obj->base.size, args->tiling_mode)) {
295
drm_gem_object_unreference_unlocked(&obj->base);
296
return -EINVAL;
297
}
298
299
if (obj->pin_count) {
300
drm_gem_object_unreference_unlocked(&obj->base);
301
return -EBUSY;
302
}
303
304
if (args->tiling_mode == I915_TILING_NONE) {
305
args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
306
args->stride = 0;
307
} else {
308
if (args->tiling_mode == I915_TILING_X)
309
args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
310
else
311
args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
312
313
/* Hide bit 17 swizzling from the user. This prevents old Mesa
314
* from aborting the application on sw fallbacks to bit 17,
315
* and we use the pread/pwrite bit17 paths to swizzle for it.
316
* If there was a user that was relying on the swizzle
317
* information for drm_intel_bo_map()ed reads/writes this would
318
* break it, but we don't have any of those.
319
*/
320
if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
321
args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
322
if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
323
args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
324
325
/* If we can't handle the swizzling, make it untiled. */
326
if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
327
args->tiling_mode = I915_TILING_NONE;
328
args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
329
args->stride = 0;
330
}
331
}
332
333
mutex_lock(&dev->struct_mutex);
334
if (args->tiling_mode != obj->tiling_mode ||
335
args->stride != obj->stride) {
336
/* We need to rebind the object if its current allocation
337
* no longer meets the alignment restrictions for its new
338
* tiling mode. Otherwise we can just leave it alone, but
339
* need to ensure that any fence register is cleared.
340
*/
341
i915_gem_release_mmap(obj);
342
343
obj->map_and_fenceable =
344
obj->gtt_space == NULL ||
345
(obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end &&
346
i915_gem_object_fence_ok(obj, args->tiling_mode));
347
348
/* Rebind if we need a change of alignment */
349
if (!obj->map_and_fenceable) {
350
u32 unfenced_alignment =
351
i915_gem_get_unfenced_gtt_alignment(dev,
352
obj->base.size,
353
args->tiling_mode);
354
if (obj->gtt_offset & (unfenced_alignment - 1))
355
ret = i915_gem_object_unbind(obj);
356
}
357
358
if (ret == 0) {
359
obj->tiling_changed = true;
360
obj->tiling_mode = args->tiling_mode;
361
obj->stride = args->stride;
362
}
363
}
364
/* we have to maintain this existing ABI... */
365
args->stride = obj->stride;
366
args->tiling_mode = obj->tiling_mode;
367
drm_gem_object_unreference(&obj->base);
368
mutex_unlock(&dev->struct_mutex);
369
370
return ret;
371
}
372
373
/**
374
* Returns the current tiling mode and required bit 6 swizzling for the object.
375
*/
376
int
377
i915_gem_get_tiling(struct drm_device *dev, void *data,
378
struct drm_file *file)
379
{
380
struct drm_i915_gem_get_tiling *args = data;
381
drm_i915_private_t *dev_priv = dev->dev_private;
382
struct drm_i915_gem_object *obj;
383
384
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
385
if (&obj->base == NULL)
386
return -ENOENT;
387
388
mutex_lock(&dev->struct_mutex);
389
390
args->tiling_mode = obj->tiling_mode;
391
switch (obj->tiling_mode) {
392
case I915_TILING_X:
393
args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
394
break;
395
case I915_TILING_Y:
396
args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
397
break;
398
case I915_TILING_NONE:
399
args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
400
break;
401
default:
402
DRM_ERROR("unknown tiling mode\n");
403
}
404
405
/* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
406
if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
407
args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
408
if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
409
args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
410
411
drm_gem_object_unreference(&obj->base);
412
mutex_unlock(&dev->struct_mutex);
413
414
return 0;
415
}
416
417
/**
418
* Swap every 64 bytes of this page around, to account for it having a new
419
* bit 17 of its physical address and therefore being interpreted differently
420
* by the GPU.
421
*/
422
static void
423
i915_gem_swizzle_page(struct page *page)
424
{
425
char temp[64];
426
char *vaddr;
427
int i;
428
429
vaddr = kmap(page);
430
431
for (i = 0; i < PAGE_SIZE; i += 128) {
432
memcpy(temp, &vaddr[i], 64);
433
memcpy(&vaddr[i], &vaddr[i + 64], 64);
434
memcpy(&vaddr[i + 64], temp, 64);
435
}
436
437
kunmap(page);
438
}
439
440
void
441
i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
442
{
443
struct drm_device *dev = obj->base.dev;
444
drm_i915_private_t *dev_priv = dev->dev_private;
445
int page_count = obj->base.size >> PAGE_SHIFT;
446
int i;
447
448
if (dev_priv->mm.bit_6_swizzle_x != I915_BIT_6_SWIZZLE_9_10_17)
449
return;
450
451
if (obj->bit_17 == NULL)
452
return;
453
454
for (i = 0; i < page_count; i++) {
455
char new_bit_17 = page_to_phys(obj->pages[i]) >> 17;
456
if ((new_bit_17 & 0x1) !=
457
(test_bit(i, obj->bit_17) != 0)) {
458
i915_gem_swizzle_page(obj->pages[i]);
459
set_page_dirty(obj->pages[i]);
460
}
461
}
462
}
463
464
void
465
i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
466
{
467
struct drm_device *dev = obj->base.dev;
468
drm_i915_private_t *dev_priv = dev->dev_private;
469
int page_count = obj->base.size >> PAGE_SHIFT;
470
int i;
471
472
if (dev_priv->mm.bit_6_swizzle_x != I915_BIT_6_SWIZZLE_9_10_17)
473
return;
474
475
if (obj->bit_17 == NULL) {
476
obj->bit_17 = kmalloc(BITS_TO_LONGS(page_count) *
477
sizeof(long), GFP_KERNEL);
478
if (obj->bit_17 == NULL) {
479
DRM_ERROR("Failed to allocate memory for bit 17 "
480
"record\n");
481
return;
482
}
483
}
484
485
for (i = 0; i < page_count; i++) {
486
if (page_to_phys(obj->pages[i]) & (1 << 17))
487
__set_bit(i, obj->bit_17);
488
else
489
__clear_bit(i, obj->bit_17);
490
}
491
}
492
493