Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/gpu/drm/i915/intel_display.c
15113 views
1
/*
2
* Copyright © 2006-2007 Intel Corporation
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining a
5
* copy of this software and associated documentation files (the "Software"),
6
* to deal in the Software without restriction, including without limitation
7
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
* and/or sell copies of the Software, and to permit persons to whom the
9
* Software is furnished to do so, subject to the following conditions:
10
*
11
* The above copyright notice and this permission notice (including the next
12
* paragraph) shall be included in all copies or substantial portions of the
13
* Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21
* DEALINGS IN THE SOFTWARE.
22
*
23
* Authors:
24
* Eric Anholt <[email protected]>
25
*/
26
27
#include <linux/module.h>
28
#include <linux/input.h>
29
#include <linux/i2c.h>
30
#include <linux/kernel.h>
31
#include <linux/slab.h>
32
#include <linux/vgaarb.h>
33
#include "drmP.h"
34
#include "intel_drv.h"
35
#include "i915_drm.h"
36
#include "i915_drv.h"
37
#include "i915_trace.h"
38
#include "drm_dp_helper.h"
39
40
#include "drm_crtc_helper.h"
41
42
#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44
bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45
static void intel_update_watermarks(struct drm_device *dev);
46
static void intel_increase_pllclock(struct drm_crtc *crtc);
47
static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49
typedef struct {
50
/* given values */
51
int n;
52
int m1, m2;
53
int p1, p2;
54
/* derived values */
55
int dot;
56
int vco;
57
int m;
58
int p;
59
} intel_clock_t;
60
61
typedef struct {
62
int min, max;
63
} intel_range_t;
64
65
typedef struct {
66
int dot_limit;
67
int p2_slow, p2_fast;
68
} intel_p2_t;
69
70
#define INTEL_P2_NUM 2
71
typedef struct intel_limit intel_limit_t;
72
struct intel_limit {
73
intel_range_t dot, vco, n, m, m1, m2, p, p1;
74
intel_p2_t p2;
75
bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76
int, int, intel_clock_t *);
77
};
78
79
/* FDI */
80
#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
81
82
static bool
83
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
84
int target, int refclk, intel_clock_t *best_clock);
85
static bool
86
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
87
int target, int refclk, intel_clock_t *best_clock);
88
89
static bool
90
intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
91
int target, int refclk, intel_clock_t *best_clock);
92
static bool
93
intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
94
int target, int refclk, intel_clock_t *best_clock);
95
96
static inline u32 /* units of 100MHz */
97
intel_fdi_link_freq(struct drm_device *dev)
98
{
99
if (IS_GEN5(dev)) {
100
struct drm_i915_private *dev_priv = dev->dev_private;
101
return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
102
} else
103
return 27;
104
}
105
106
static const intel_limit_t intel_limits_i8xx_dvo = {
107
.dot = { .min = 25000, .max = 350000 },
108
.vco = { .min = 930000, .max = 1400000 },
109
.n = { .min = 3, .max = 16 },
110
.m = { .min = 96, .max = 140 },
111
.m1 = { .min = 18, .max = 26 },
112
.m2 = { .min = 6, .max = 16 },
113
.p = { .min = 4, .max = 128 },
114
.p1 = { .min = 2, .max = 33 },
115
.p2 = { .dot_limit = 165000,
116
.p2_slow = 4, .p2_fast = 2 },
117
.find_pll = intel_find_best_PLL,
118
};
119
120
static const intel_limit_t intel_limits_i8xx_lvds = {
121
.dot = { .min = 25000, .max = 350000 },
122
.vco = { .min = 930000, .max = 1400000 },
123
.n = { .min = 3, .max = 16 },
124
.m = { .min = 96, .max = 140 },
125
.m1 = { .min = 18, .max = 26 },
126
.m2 = { .min = 6, .max = 16 },
127
.p = { .min = 4, .max = 128 },
128
.p1 = { .min = 1, .max = 6 },
129
.p2 = { .dot_limit = 165000,
130
.p2_slow = 14, .p2_fast = 7 },
131
.find_pll = intel_find_best_PLL,
132
};
133
134
static const intel_limit_t intel_limits_i9xx_sdvo = {
135
.dot = { .min = 20000, .max = 400000 },
136
.vco = { .min = 1400000, .max = 2800000 },
137
.n = { .min = 1, .max = 6 },
138
.m = { .min = 70, .max = 120 },
139
.m1 = { .min = 10, .max = 22 },
140
.m2 = { .min = 5, .max = 9 },
141
.p = { .min = 5, .max = 80 },
142
.p1 = { .min = 1, .max = 8 },
143
.p2 = { .dot_limit = 200000,
144
.p2_slow = 10, .p2_fast = 5 },
145
.find_pll = intel_find_best_PLL,
146
};
147
148
static const intel_limit_t intel_limits_i9xx_lvds = {
149
.dot = { .min = 20000, .max = 400000 },
150
.vco = { .min = 1400000, .max = 2800000 },
151
.n = { .min = 1, .max = 6 },
152
.m = { .min = 70, .max = 120 },
153
.m1 = { .min = 10, .max = 22 },
154
.m2 = { .min = 5, .max = 9 },
155
.p = { .min = 7, .max = 98 },
156
.p1 = { .min = 1, .max = 8 },
157
.p2 = { .dot_limit = 112000,
158
.p2_slow = 14, .p2_fast = 7 },
159
.find_pll = intel_find_best_PLL,
160
};
161
162
163
static const intel_limit_t intel_limits_g4x_sdvo = {
164
.dot = { .min = 25000, .max = 270000 },
165
.vco = { .min = 1750000, .max = 3500000},
166
.n = { .min = 1, .max = 4 },
167
.m = { .min = 104, .max = 138 },
168
.m1 = { .min = 17, .max = 23 },
169
.m2 = { .min = 5, .max = 11 },
170
.p = { .min = 10, .max = 30 },
171
.p1 = { .min = 1, .max = 3},
172
.p2 = { .dot_limit = 270000,
173
.p2_slow = 10,
174
.p2_fast = 10
175
},
176
.find_pll = intel_g4x_find_best_PLL,
177
};
178
179
static const intel_limit_t intel_limits_g4x_hdmi = {
180
.dot = { .min = 22000, .max = 400000 },
181
.vco = { .min = 1750000, .max = 3500000},
182
.n = { .min = 1, .max = 4 },
183
.m = { .min = 104, .max = 138 },
184
.m1 = { .min = 16, .max = 23 },
185
.m2 = { .min = 5, .max = 11 },
186
.p = { .min = 5, .max = 80 },
187
.p1 = { .min = 1, .max = 8},
188
.p2 = { .dot_limit = 165000,
189
.p2_slow = 10, .p2_fast = 5 },
190
.find_pll = intel_g4x_find_best_PLL,
191
};
192
193
static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
194
.dot = { .min = 20000, .max = 115000 },
195
.vco = { .min = 1750000, .max = 3500000 },
196
.n = { .min = 1, .max = 3 },
197
.m = { .min = 104, .max = 138 },
198
.m1 = { .min = 17, .max = 23 },
199
.m2 = { .min = 5, .max = 11 },
200
.p = { .min = 28, .max = 112 },
201
.p1 = { .min = 2, .max = 8 },
202
.p2 = { .dot_limit = 0,
203
.p2_slow = 14, .p2_fast = 14
204
},
205
.find_pll = intel_g4x_find_best_PLL,
206
};
207
208
static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
209
.dot = { .min = 80000, .max = 224000 },
210
.vco = { .min = 1750000, .max = 3500000 },
211
.n = { .min = 1, .max = 3 },
212
.m = { .min = 104, .max = 138 },
213
.m1 = { .min = 17, .max = 23 },
214
.m2 = { .min = 5, .max = 11 },
215
.p = { .min = 14, .max = 42 },
216
.p1 = { .min = 2, .max = 6 },
217
.p2 = { .dot_limit = 0,
218
.p2_slow = 7, .p2_fast = 7
219
},
220
.find_pll = intel_g4x_find_best_PLL,
221
};
222
223
static const intel_limit_t intel_limits_g4x_display_port = {
224
.dot = { .min = 161670, .max = 227000 },
225
.vco = { .min = 1750000, .max = 3500000},
226
.n = { .min = 1, .max = 2 },
227
.m = { .min = 97, .max = 108 },
228
.m1 = { .min = 0x10, .max = 0x12 },
229
.m2 = { .min = 0x05, .max = 0x06 },
230
.p = { .min = 10, .max = 20 },
231
.p1 = { .min = 1, .max = 2},
232
.p2 = { .dot_limit = 0,
233
.p2_slow = 10, .p2_fast = 10 },
234
.find_pll = intel_find_pll_g4x_dp,
235
};
236
237
static const intel_limit_t intel_limits_pineview_sdvo = {
238
.dot = { .min = 20000, .max = 400000},
239
.vco = { .min = 1700000, .max = 3500000 },
240
/* Pineview's Ncounter is a ring counter */
241
.n = { .min = 3, .max = 6 },
242
.m = { .min = 2, .max = 256 },
243
/* Pineview only has one combined m divider, which we treat as m2. */
244
.m1 = { .min = 0, .max = 0 },
245
.m2 = { .min = 0, .max = 254 },
246
.p = { .min = 5, .max = 80 },
247
.p1 = { .min = 1, .max = 8 },
248
.p2 = { .dot_limit = 200000,
249
.p2_slow = 10, .p2_fast = 5 },
250
.find_pll = intel_find_best_PLL,
251
};
252
253
static const intel_limit_t intel_limits_pineview_lvds = {
254
.dot = { .min = 20000, .max = 400000 },
255
.vco = { .min = 1700000, .max = 3500000 },
256
.n = { .min = 3, .max = 6 },
257
.m = { .min = 2, .max = 256 },
258
.m1 = { .min = 0, .max = 0 },
259
.m2 = { .min = 0, .max = 254 },
260
.p = { .min = 7, .max = 112 },
261
.p1 = { .min = 1, .max = 8 },
262
.p2 = { .dot_limit = 112000,
263
.p2_slow = 14, .p2_fast = 14 },
264
.find_pll = intel_find_best_PLL,
265
};
266
267
/* Ironlake / Sandybridge
268
*
269
* We calculate clock using (register_value + 2) for N/M1/M2, so here
270
* the range value for them is (actual_value - 2).
271
*/
272
static const intel_limit_t intel_limits_ironlake_dac = {
273
.dot = { .min = 25000, .max = 350000 },
274
.vco = { .min = 1760000, .max = 3510000 },
275
.n = { .min = 1, .max = 5 },
276
.m = { .min = 79, .max = 127 },
277
.m1 = { .min = 12, .max = 22 },
278
.m2 = { .min = 5, .max = 9 },
279
.p = { .min = 5, .max = 80 },
280
.p1 = { .min = 1, .max = 8 },
281
.p2 = { .dot_limit = 225000,
282
.p2_slow = 10, .p2_fast = 5 },
283
.find_pll = intel_g4x_find_best_PLL,
284
};
285
286
static const intel_limit_t intel_limits_ironlake_single_lvds = {
287
.dot = { .min = 25000, .max = 350000 },
288
.vco = { .min = 1760000, .max = 3510000 },
289
.n = { .min = 1, .max = 3 },
290
.m = { .min = 79, .max = 118 },
291
.m1 = { .min = 12, .max = 22 },
292
.m2 = { .min = 5, .max = 9 },
293
.p = { .min = 28, .max = 112 },
294
.p1 = { .min = 2, .max = 8 },
295
.p2 = { .dot_limit = 225000,
296
.p2_slow = 14, .p2_fast = 14 },
297
.find_pll = intel_g4x_find_best_PLL,
298
};
299
300
static const intel_limit_t intel_limits_ironlake_dual_lvds = {
301
.dot = { .min = 25000, .max = 350000 },
302
.vco = { .min = 1760000, .max = 3510000 },
303
.n = { .min = 1, .max = 3 },
304
.m = { .min = 79, .max = 127 },
305
.m1 = { .min = 12, .max = 22 },
306
.m2 = { .min = 5, .max = 9 },
307
.p = { .min = 14, .max = 56 },
308
.p1 = { .min = 2, .max = 8 },
309
.p2 = { .dot_limit = 225000,
310
.p2_slow = 7, .p2_fast = 7 },
311
.find_pll = intel_g4x_find_best_PLL,
312
};
313
314
/* LVDS 100mhz refclk limits. */
315
static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
316
.dot = { .min = 25000, .max = 350000 },
317
.vco = { .min = 1760000, .max = 3510000 },
318
.n = { .min = 1, .max = 2 },
319
.m = { .min = 79, .max = 126 },
320
.m1 = { .min = 12, .max = 22 },
321
.m2 = { .min = 5, .max = 9 },
322
.p = { .min = 28, .max = 112 },
323
.p1 = { .min = 2,.max = 8 },
324
.p2 = { .dot_limit = 225000,
325
.p2_slow = 14, .p2_fast = 14 },
326
.find_pll = intel_g4x_find_best_PLL,
327
};
328
329
static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
330
.dot = { .min = 25000, .max = 350000 },
331
.vco = { .min = 1760000, .max = 3510000 },
332
.n = { .min = 1, .max = 3 },
333
.m = { .min = 79, .max = 126 },
334
.m1 = { .min = 12, .max = 22 },
335
.m2 = { .min = 5, .max = 9 },
336
.p = { .min = 14, .max = 42 },
337
.p1 = { .min = 2,.max = 6 },
338
.p2 = { .dot_limit = 225000,
339
.p2_slow = 7, .p2_fast = 7 },
340
.find_pll = intel_g4x_find_best_PLL,
341
};
342
343
static const intel_limit_t intel_limits_ironlake_display_port = {
344
.dot = { .min = 25000, .max = 350000 },
345
.vco = { .min = 1760000, .max = 3510000},
346
.n = { .min = 1, .max = 2 },
347
.m = { .min = 81, .max = 90 },
348
.m1 = { .min = 12, .max = 22 },
349
.m2 = { .min = 5, .max = 9 },
350
.p = { .min = 10, .max = 20 },
351
.p1 = { .min = 1, .max = 2},
352
.p2 = { .dot_limit = 0,
353
.p2_slow = 10, .p2_fast = 10 },
354
.find_pll = intel_find_pll_ironlake_dp,
355
};
356
357
static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
358
int refclk)
359
{
360
struct drm_device *dev = crtc->dev;
361
struct drm_i915_private *dev_priv = dev->dev_private;
362
const intel_limit_t *limit;
363
364
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
365
if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
366
LVDS_CLKB_POWER_UP) {
367
/* LVDS dual channel */
368
if (refclk == 100000)
369
limit = &intel_limits_ironlake_dual_lvds_100m;
370
else
371
limit = &intel_limits_ironlake_dual_lvds;
372
} else {
373
if (refclk == 100000)
374
limit = &intel_limits_ironlake_single_lvds_100m;
375
else
376
limit = &intel_limits_ironlake_single_lvds;
377
}
378
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
379
HAS_eDP)
380
limit = &intel_limits_ironlake_display_port;
381
else
382
limit = &intel_limits_ironlake_dac;
383
384
return limit;
385
}
386
387
static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
388
{
389
struct drm_device *dev = crtc->dev;
390
struct drm_i915_private *dev_priv = dev->dev_private;
391
const intel_limit_t *limit;
392
393
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
394
if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
395
LVDS_CLKB_POWER_UP)
396
/* LVDS with dual channel */
397
limit = &intel_limits_g4x_dual_channel_lvds;
398
else
399
/* LVDS with dual channel */
400
limit = &intel_limits_g4x_single_channel_lvds;
401
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
402
intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
403
limit = &intel_limits_g4x_hdmi;
404
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
405
limit = &intel_limits_g4x_sdvo;
406
} else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
407
limit = &intel_limits_g4x_display_port;
408
} else /* The option is for other outputs */
409
limit = &intel_limits_i9xx_sdvo;
410
411
return limit;
412
}
413
414
static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
415
{
416
struct drm_device *dev = crtc->dev;
417
const intel_limit_t *limit;
418
419
if (HAS_PCH_SPLIT(dev))
420
limit = intel_ironlake_limit(crtc, refclk);
421
else if (IS_G4X(dev)) {
422
limit = intel_g4x_limit(crtc);
423
} else if (IS_PINEVIEW(dev)) {
424
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
425
limit = &intel_limits_pineview_lvds;
426
else
427
limit = &intel_limits_pineview_sdvo;
428
} else if (!IS_GEN2(dev)) {
429
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
430
limit = &intel_limits_i9xx_lvds;
431
else
432
limit = &intel_limits_i9xx_sdvo;
433
} else {
434
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
435
limit = &intel_limits_i8xx_lvds;
436
else
437
limit = &intel_limits_i8xx_dvo;
438
}
439
return limit;
440
}
441
442
/* m1 is reserved as 0 in Pineview, n is a ring counter */
443
static void pineview_clock(int refclk, intel_clock_t *clock)
444
{
445
clock->m = clock->m2 + 2;
446
clock->p = clock->p1 * clock->p2;
447
clock->vco = refclk * clock->m / clock->n;
448
clock->dot = clock->vco / clock->p;
449
}
450
451
static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
452
{
453
if (IS_PINEVIEW(dev)) {
454
pineview_clock(refclk, clock);
455
return;
456
}
457
clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
458
clock->p = clock->p1 * clock->p2;
459
clock->vco = refclk * clock->m / (clock->n + 2);
460
clock->dot = clock->vco / clock->p;
461
}
462
463
/**
464
* Returns whether any output on the specified pipe is of the specified type
465
*/
466
bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
467
{
468
struct drm_device *dev = crtc->dev;
469
struct drm_mode_config *mode_config = &dev->mode_config;
470
struct intel_encoder *encoder;
471
472
list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
473
if (encoder->base.crtc == crtc && encoder->type == type)
474
return true;
475
476
return false;
477
}
478
479
#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
480
/**
481
* Returns whether the given set of divisors are valid for a given refclk with
482
* the given connectors.
483
*/
484
485
static bool intel_PLL_is_valid(struct drm_device *dev,
486
const intel_limit_t *limit,
487
const intel_clock_t *clock)
488
{
489
if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
490
INTELPllInvalid ("p1 out of range\n");
491
if (clock->p < limit->p.min || limit->p.max < clock->p)
492
INTELPllInvalid ("p out of range\n");
493
if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
494
INTELPllInvalid ("m2 out of range\n");
495
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
496
INTELPllInvalid ("m1 out of range\n");
497
if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
498
INTELPllInvalid ("m1 <= m2\n");
499
if (clock->m < limit->m.min || limit->m.max < clock->m)
500
INTELPllInvalid ("m out of range\n");
501
if (clock->n < limit->n.min || limit->n.max < clock->n)
502
INTELPllInvalid ("n out of range\n");
503
if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
504
INTELPllInvalid ("vco out of range\n");
505
/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
506
* connector, etc., rather than just a single range.
507
*/
508
if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
509
INTELPllInvalid ("dot out of range\n");
510
511
return true;
512
}
513
514
static bool
515
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
516
int target, int refclk, intel_clock_t *best_clock)
517
518
{
519
struct drm_device *dev = crtc->dev;
520
struct drm_i915_private *dev_priv = dev->dev_private;
521
intel_clock_t clock;
522
int err = target;
523
524
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
525
(I915_READ(LVDS)) != 0) {
526
/*
527
* For LVDS, if the panel is on, just rely on its current
528
* settings for dual-channel. We haven't figured out how to
529
* reliably set up different single/dual channel state, if we
530
* even can.
531
*/
532
if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
533
LVDS_CLKB_POWER_UP)
534
clock.p2 = limit->p2.p2_fast;
535
else
536
clock.p2 = limit->p2.p2_slow;
537
} else {
538
if (target < limit->p2.dot_limit)
539
clock.p2 = limit->p2.p2_slow;
540
else
541
clock.p2 = limit->p2.p2_fast;
542
}
543
544
memset (best_clock, 0, sizeof (*best_clock));
545
546
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
547
clock.m1++) {
548
for (clock.m2 = limit->m2.min;
549
clock.m2 <= limit->m2.max; clock.m2++) {
550
/* m1 is always 0 in Pineview */
551
if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
552
break;
553
for (clock.n = limit->n.min;
554
clock.n <= limit->n.max; clock.n++) {
555
for (clock.p1 = limit->p1.min;
556
clock.p1 <= limit->p1.max; clock.p1++) {
557
int this_err;
558
559
intel_clock(dev, refclk, &clock);
560
if (!intel_PLL_is_valid(dev, limit,
561
&clock))
562
continue;
563
564
this_err = abs(clock.dot - target);
565
if (this_err < err) {
566
*best_clock = clock;
567
err = this_err;
568
}
569
}
570
}
571
}
572
}
573
574
return (err != target);
575
}
576
577
static bool
578
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
579
int target, int refclk, intel_clock_t *best_clock)
580
{
581
struct drm_device *dev = crtc->dev;
582
struct drm_i915_private *dev_priv = dev->dev_private;
583
intel_clock_t clock;
584
int max_n;
585
bool found;
586
/* approximately equals target * 0.00585 */
587
int err_most = (target >> 8) + (target >> 9);
588
found = false;
589
590
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
591
int lvds_reg;
592
593
if (HAS_PCH_SPLIT(dev))
594
lvds_reg = PCH_LVDS;
595
else
596
lvds_reg = LVDS;
597
if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
598
LVDS_CLKB_POWER_UP)
599
clock.p2 = limit->p2.p2_fast;
600
else
601
clock.p2 = limit->p2.p2_slow;
602
} else {
603
if (target < limit->p2.dot_limit)
604
clock.p2 = limit->p2.p2_slow;
605
else
606
clock.p2 = limit->p2.p2_fast;
607
}
608
609
memset(best_clock, 0, sizeof(*best_clock));
610
max_n = limit->n.max;
611
/* based on hardware requirement, prefer smaller n to precision */
612
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
613
/* based on hardware requirement, prefere larger m1,m2 */
614
for (clock.m1 = limit->m1.max;
615
clock.m1 >= limit->m1.min; clock.m1--) {
616
for (clock.m2 = limit->m2.max;
617
clock.m2 >= limit->m2.min; clock.m2--) {
618
for (clock.p1 = limit->p1.max;
619
clock.p1 >= limit->p1.min; clock.p1--) {
620
int this_err;
621
622
intel_clock(dev, refclk, &clock);
623
if (!intel_PLL_is_valid(dev, limit,
624
&clock))
625
continue;
626
627
this_err = abs(clock.dot - target);
628
if (this_err < err_most) {
629
*best_clock = clock;
630
err_most = this_err;
631
max_n = clock.n;
632
found = true;
633
}
634
}
635
}
636
}
637
}
638
return found;
639
}
640
641
static bool
642
intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
643
int target, int refclk, intel_clock_t *best_clock)
644
{
645
struct drm_device *dev = crtc->dev;
646
intel_clock_t clock;
647
648
if (target < 200000) {
649
clock.n = 1;
650
clock.p1 = 2;
651
clock.p2 = 10;
652
clock.m1 = 12;
653
clock.m2 = 9;
654
} else {
655
clock.n = 2;
656
clock.p1 = 1;
657
clock.p2 = 10;
658
clock.m1 = 14;
659
clock.m2 = 8;
660
}
661
intel_clock(dev, refclk, &clock);
662
memcpy(best_clock, &clock, sizeof(intel_clock_t));
663
return true;
664
}
665
666
/* DisplayPort has only two frequencies, 162MHz and 270MHz */
667
static bool
668
intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
669
int target, int refclk, intel_clock_t *best_clock)
670
{
671
intel_clock_t clock;
672
if (target < 200000) {
673
clock.p1 = 2;
674
clock.p2 = 10;
675
clock.n = 2;
676
clock.m1 = 23;
677
clock.m2 = 8;
678
} else {
679
clock.p1 = 1;
680
clock.p2 = 10;
681
clock.n = 1;
682
clock.m1 = 14;
683
clock.m2 = 2;
684
}
685
clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
686
clock.p = (clock.p1 * clock.p2);
687
clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
688
clock.vco = 0;
689
memcpy(best_clock, &clock, sizeof(intel_clock_t));
690
return true;
691
}
692
693
/**
694
* intel_wait_for_vblank - wait for vblank on a given pipe
695
* @dev: drm device
696
* @pipe: pipe to wait for
697
*
698
* Wait for vblank to occur on a given pipe. Needed for various bits of
699
* mode setting code.
700
*/
701
void intel_wait_for_vblank(struct drm_device *dev, int pipe)
702
{
703
struct drm_i915_private *dev_priv = dev->dev_private;
704
int pipestat_reg = PIPESTAT(pipe);
705
706
/* Clear existing vblank status. Note this will clear any other
707
* sticky status fields as well.
708
*
709
* This races with i915_driver_irq_handler() with the result
710
* that either function could miss a vblank event. Here it is not
711
* fatal, as we will either wait upon the next vblank interrupt or
712
* timeout. Generally speaking intel_wait_for_vblank() is only
713
* called during modeset at which time the GPU should be idle and
714
* should *not* be performing page flips and thus not waiting on
715
* vblanks...
716
* Currently, the result of us stealing a vblank from the irq
717
* handler is that a single frame will be skipped during swapbuffers.
718
*/
719
I915_WRITE(pipestat_reg,
720
I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
721
722
/* Wait for vblank interrupt bit to set */
723
if (wait_for(I915_READ(pipestat_reg) &
724
PIPE_VBLANK_INTERRUPT_STATUS,
725
50))
726
DRM_DEBUG_KMS("vblank wait timed out\n");
727
}
728
729
/*
730
* intel_wait_for_pipe_off - wait for pipe to turn off
731
* @dev: drm device
732
* @pipe: pipe to wait for
733
*
734
* After disabling a pipe, we can't wait for vblank in the usual way,
735
* spinning on the vblank interrupt status bit, since we won't actually
736
* see an interrupt when the pipe is disabled.
737
*
738
* On Gen4 and above:
739
* wait for the pipe register state bit to turn off
740
*
741
* Otherwise:
742
* wait for the display line value to settle (it usually
743
* ends up stopping at the start of the next frame).
744
*
745
*/
746
void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
747
{
748
struct drm_i915_private *dev_priv = dev->dev_private;
749
750
if (INTEL_INFO(dev)->gen >= 4) {
751
int reg = PIPECONF(pipe);
752
753
/* Wait for the Pipe State to go off */
754
if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
755
100))
756
DRM_DEBUG_KMS("pipe_off wait timed out\n");
757
} else {
758
u32 last_line;
759
int reg = PIPEDSL(pipe);
760
unsigned long timeout = jiffies + msecs_to_jiffies(100);
761
762
/* Wait for the display line to settle */
763
do {
764
last_line = I915_READ(reg) & DSL_LINEMASK;
765
mdelay(5);
766
} while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
767
time_after(timeout, jiffies));
768
if (time_after(jiffies, timeout))
769
DRM_DEBUG_KMS("pipe_off wait timed out\n");
770
}
771
}
772
773
static const char *state_string(bool enabled)
774
{
775
return enabled ? "on" : "off";
776
}
777
778
/* Only for pre-ILK configs */
779
static void assert_pll(struct drm_i915_private *dev_priv,
780
enum pipe pipe, bool state)
781
{
782
int reg;
783
u32 val;
784
bool cur_state;
785
786
reg = DPLL(pipe);
787
val = I915_READ(reg);
788
cur_state = !!(val & DPLL_VCO_ENABLE);
789
WARN(cur_state != state,
790
"PLL state assertion failure (expected %s, current %s)\n",
791
state_string(state), state_string(cur_state));
792
}
793
#define assert_pll_enabled(d, p) assert_pll(d, p, true)
794
#define assert_pll_disabled(d, p) assert_pll(d, p, false)
795
796
/* For ILK+ */
797
static void assert_pch_pll(struct drm_i915_private *dev_priv,
798
enum pipe pipe, bool state)
799
{
800
int reg;
801
u32 val;
802
bool cur_state;
803
804
reg = PCH_DPLL(pipe);
805
val = I915_READ(reg);
806
cur_state = !!(val & DPLL_VCO_ENABLE);
807
WARN(cur_state != state,
808
"PCH PLL state assertion failure (expected %s, current %s)\n",
809
state_string(state), state_string(cur_state));
810
}
811
#define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
812
#define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
813
814
static void assert_fdi_tx(struct drm_i915_private *dev_priv,
815
enum pipe pipe, bool state)
816
{
817
int reg;
818
u32 val;
819
bool cur_state;
820
821
reg = FDI_TX_CTL(pipe);
822
val = I915_READ(reg);
823
cur_state = !!(val & FDI_TX_ENABLE);
824
WARN(cur_state != state,
825
"FDI TX state assertion failure (expected %s, current %s)\n",
826
state_string(state), state_string(cur_state));
827
}
828
#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
829
#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
830
831
static void assert_fdi_rx(struct drm_i915_private *dev_priv,
832
enum pipe pipe, bool state)
833
{
834
int reg;
835
u32 val;
836
bool cur_state;
837
838
reg = FDI_RX_CTL(pipe);
839
val = I915_READ(reg);
840
cur_state = !!(val & FDI_RX_ENABLE);
841
WARN(cur_state != state,
842
"FDI RX state assertion failure (expected %s, current %s)\n",
843
state_string(state), state_string(cur_state));
844
}
845
#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
846
#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
847
848
static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
849
enum pipe pipe)
850
{
851
int reg;
852
u32 val;
853
854
/* ILK FDI PLL is always enabled */
855
if (dev_priv->info->gen == 5)
856
return;
857
858
reg = FDI_TX_CTL(pipe);
859
val = I915_READ(reg);
860
WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
861
}
862
863
static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
864
enum pipe pipe)
865
{
866
int reg;
867
u32 val;
868
869
reg = FDI_RX_CTL(pipe);
870
val = I915_READ(reg);
871
WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
872
}
873
874
static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
875
enum pipe pipe)
876
{
877
int pp_reg, lvds_reg;
878
u32 val;
879
enum pipe panel_pipe = PIPE_A;
880
bool locked = locked;
881
882
if (HAS_PCH_SPLIT(dev_priv->dev)) {
883
pp_reg = PCH_PP_CONTROL;
884
lvds_reg = PCH_LVDS;
885
} else {
886
pp_reg = PP_CONTROL;
887
lvds_reg = LVDS;
888
}
889
890
val = I915_READ(pp_reg);
891
if (!(val & PANEL_POWER_ON) ||
892
((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
893
locked = false;
894
895
if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
896
panel_pipe = PIPE_B;
897
898
WARN(panel_pipe == pipe && locked,
899
"panel assertion failure, pipe %c regs locked\n",
900
pipe_name(pipe));
901
}
902
903
static void assert_pipe(struct drm_i915_private *dev_priv,
904
enum pipe pipe, bool state)
905
{
906
int reg;
907
u32 val;
908
bool cur_state;
909
910
reg = PIPECONF(pipe);
911
val = I915_READ(reg);
912
cur_state = !!(val & PIPECONF_ENABLE);
913
WARN(cur_state != state,
914
"pipe %c assertion failure (expected %s, current %s)\n",
915
pipe_name(pipe), state_string(state), state_string(cur_state));
916
}
917
#define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
918
#define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
919
920
static void assert_plane_enabled(struct drm_i915_private *dev_priv,
921
enum plane plane)
922
{
923
int reg;
924
u32 val;
925
926
reg = DSPCNTR(plane);
927
val = I915_READ(reg);
928
WARN(!(val & DISPLAY_PLANE_ENABLE),
929
"plane %c assertion failure, should be active but is disabled\n",
930
plane_name(plane));
931
}
932
933
static void assert_planes_disabled(struct drm_i915_private *dev_priv,
934
enum pipe pipe)
935
{
936
int reg, i;
937
u32 val;
938
int cur_pipe;
939
940
/* Planes are fixed to pipes on ILK+ */
941
if (HAS_PCH_SPLIT(dev_priv->dev))
942
return;
943
944
/* Need to check both planes against the pipe */
945
for (i = 0; i < 2; i++) {
946
reg = DSPCNTR(i);
947
val = I915_READ(reg);
948
cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
949
DISPPLANE_SEL_PIPE_SHIFT;
950
WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
951
"plane %c assertion failure, should be off on pipe %c but is still active\n",
952
plane_name(i), pipe_name(pipe));
953
}
954
}
955
956
static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
957
{
958
u32 val;
959
bool enabled;
960
961
val = I915_READ(PCH_DREF_CONTROL);
962
enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
963
DREF_SUPERSPREAD_SOURCE_MASK));
964
WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
965
}
966
967
static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
968
enum pipe pipe)
969
{
970
int reg;
971
u32 val;
972
bool enabled;
973
974
reg = TRANSCONF(pipe);
975
val = I915_READ(reg);
976
enabled = !!(val & TRANS_ENABLE);
977
WARN(enabled,
978
"transcoder assertion failed, should be off on pipe %c but is still active\n",
979
pipe_name(pipe));
980
}
981
982
static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
983
enum pipe pipe, int reg)
984
{
985
u32 val = I915_READ(reg);
986
WARN(DP_PIPE_ENABLED(val, pipe),
987
"PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
988
reg, pipe_name(pipe));
989
}
990
991
static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
992
enum pipe pipe, int reg)
993
{
994
u32 val = I915_READ(reg);
995
WARN(HDMI_PIPE_ENABLED(val, pipe),
996
"PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
997
reg, pipe_name(pipe));
998
}
999
1000
static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1001
enum pipe pipe)
1002
{
1003
int reg;
1004
u32 val;
1005
1006
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B);
1007
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C);
1008
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D);
1009
1010
reg = PCH_ADPA;
1011
val = I915_READ(reg);
1012
WARN(ADPA_PIPE_ENABLED(val, pipe),
1013
"PCH VGA enabled on transcoder %c, should be disabled\n",
1014
pipe_name(pipe));
1015
1016
reg = PCH_LVDS;
1017
val = I915_READ(reg);
1018
WARN(LVDS_PIPE_ENABLED(val, pipe),
1019
"PCH LVDS enabled on transcoder %c, should be disabled\n",
1020
pipe_name(pipe));
1021
1022
assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1023
assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1024
assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1025
}
1026
1027
/**
1028
* intel_enable_pll - enable a PLL
1029
* @dev_priv: i915 private structure
1030
* @pipe: pipe PLL to enable
1031
*
1032
* Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1033
* make sure the PLL reg is writable first though, since the panel write
1034
* protect mechanism may be enabled.
1035
*
1036
* Note! This is for pre-ILK only.
1037
*/
1038
static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1039
{
1040
int reg;
1041
u32 val;
1042
1043
/* No really, not for ILK+ */
1044
BUG_ON(dev_priv->info->gen >= 5);
1045
1046
/* PLL is protected by panel, make sure we can write it */
1047
if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1048
assert_panel_unlocked(dev_priv, pipe);
1049
1050
reg = DPLL(pipe);
1051
val = I915_READ(reg);
1052
val |= DPLL_VCO_ENABLE;
1053
1054
/* We do this three times for luck */
1055
I915_WRITE(reg, val);
1056
POSTING_READ(reg);
1057
udelay(150); /* wait for warmup */
1058
I915_WRITE(reg, val);
1059
POSTING_READ(reg);
1060
udelay(150); /* wait for warmup */
1061
I915_WRITE(reg, val);
1062
POSTING_READ(reg);
1063
udelay(150); /* wait for warmup */
1064
}
1065
1066
/**
1067
* intel_disable_pll - disable a PLL
1068
* @dev_priv: i915 private structure
1069
* @pipe: pipe PLL to disable
1070
*
1071
* Disable the PLL for @pipe, making sure the pipe is off first.
1072
*
1073
* Note! This is for pre-ILK only.
1074
*/
1075
static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1076
{
1077
int reg;
1078
u32 val;
1079
1080
/* Don't disable pipe A or pipe A PLLs if needed */
1081
if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1082
return;
1083
1084
/* Make sure the pipe isn't still relying on us */
1085
assert_pipe_disabled(dev_priv, pipe);
1086
1087
reg = DPLL(pipe);
1088
val = I915_READ(reg);
1089
val &= ~DPLL_VCO_ENABLE;
1090
I915_WRITE(reg, val);
1091
POSTING_READ(reg);
1092
}
1093
1094
/**
1095
* intel_enable_pch_pll - enable PCH PLL
1096
* @dev_priv: i915 private structure
1097
* @pipe: pipe PLL to enable
1098
*
1099
* The PCH PLL needs to be enabled before the PCH transcoder, since it
1100
* drives the transcoder clock.
1101
*/
1102
static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1103
enum pipe pipe)
1104
{
1105
int reg;
1106
u32 val;
1107
1108
/* PCH only available on ILK+ */
1109
BUG_ON(dev_priv->info->gen < 5);
1110
1111
/* PCH refclock must be enabled first */
1112
assert_pch_refclk_enabled(dev_priv);
1113
1114
reg = PCH_DPLL(pipe);
1115
val = I915_READ(reg);
1116
val |= DPLL_VCO_ENABLE;
1117
I915_WRITE(reg, val);
1118
POSTING_READ(reg);
1119
udelay(200);
1120
}
1121
1122
static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1123
enum pipe pipe)
1124
{
1125
int reg;
1126
u32 val;
1127
1128
/* PCH only available on ILK+ */
1129
BUG_ON(dev_priv->info->gen < 5);
1130
1131
/* Make sure transcoder isn't still depending on us */
1132
assert_transcoder_disabled(dev_priv, pipe);
1133
1134
reg = PCH_DPLL(pipe);
1135
val = I915_READ(reg);
1136
val &= ~DPLL_VCO_ENABLE;
1137
I915_WRITE(reg, val);
1138
POSTING_READ(reg);
1139
udelay(200);
1140
}
1141
1142
static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1143
enum pipe pipe)
1144
{
1145
int reg;
1146
u32 val;
1147
1148
/* PCH only available on ILK+ */
1149
BUG_ON(dev_priv->info->gen < 5);
1150
1151
/* Make sure PCH DPLL is enabled */
1152
assert_pch_pll_enabled(dev_priv, pipe);
1153
1154
/* FDI must be feeding us bits for PCH ports */
1155
assert_fdi_tx_enabled(dev_priv, pipe);
1156
assert_fdi_rx_enabled(dev_priv, pipe);
1157
1158
reg = TRANSCONF(pipe);
1159
val = I915_READ(reg);
1160
/*
1161
* make the BPC in transcoder be consistent with
1162
* that in pipeconf reg.
1163
*/
1164
val &= ~PIPE_BPC_MASK;
1165
val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1166
I915_WRITE(reg, val | TRANS_ENABLE);
1167
if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1168
DRM_ERROR("failed to enable transcoder %d\n", pipe);
1169
}
1170
1171
static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1172
enum pipe pipe)
1173
{
1174
int reg;
1175
u32 val;
1176
1177
/* FDI relies on the transcoder */
1178
assert_fdi_tx_disabled(dev_priv, pipe);
1179
assert_fdi_rx_disabled(dev_priv, pipe);
1180
1181
/* Ports must be off as well */
1182
assert_pch_ports_disabled(dev_priv, pipe);
1183
1184
reg = TRANSCONF(pipe);
1185
val = I915_READ(reg);
1186
val &= ~TRANS_ENABLE;
1187
I915_WRITE(reg, val);
1188
/* wait for PCH transcoder off, transcoder state */
1189
if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1190
DRM_ERROR("failed to disable transcoder\n");
1191
}
1192
1193
/**
1194
* intel_enable_pipe - enable a pipe, asserting requirements
1195
* @dev_priv: i915 private structure
1196
* @pipe: pipe to enable
1197
* @pch_port: on ILK+, is this pipe driving a PCH port or not
1198
*
1199
* Enable @pipe, making sure that various hardware specific requirements
1200
* are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1201
*
1202
* @pipe should be %PIPE_A or %PIPE_B.
1203
*
1204
* Will wait until the pipe is actually running (i.e. first vblank) before
1205
* returning.
1206
*/
1207
static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1208
bool pch_port)
1209
{
1210
int reg;
1211
u32 val;
1212
1213
/*
1214
* A pipe without a PLL won't actually be able to drive bits from
1215
* a plane. On ILK+ the pipe PLLs are integrated, so we don't
1216
* need the check.
1217
*/
1218
if (!HAS_PCH_SPLIT(dev_priv->dev))
1219
assert_pll_enabled(dev_priv, pipe);
1220
else {
1221
if (pch_port) {
1222
/* if driving the PCH, we need FDI enabled */
1223
assert_fdi_rx_pll_enabled(dev_priv, pipe);
1224
assert_fdi_tx_pll_enabled(dev_priv, pipe);
1225
}
1226
/* FIXME: assert CPU port conditions for SNB+ */
1227
}
1228
1229
reg = PIPECONF(pipe);
1230
val = I915_READ(reg);
1231
if (val & PIPECONF_ENABLE)
1232
return;
1233
1234
I915_WRITE(reg, val | PIPECONF_ENABLE);
1235
intel_wait_for_vblank(dev_priv->dev, pipe);
1236
}
1237
1238
/**
1239
* intel_disable_pipe - disable a pipe, asserting requirements
1240
* @dev_priv: i915 private structure
1241
* @pipe: pipe to disable
1242
*
1243
* Disable @pipe, making sure that various hardware specific requirements
1244
* are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1245
*
1246
* @pipe should be %PIPE_A or %PIPE_B.
1247
*
1248
* Will wait until the pipe has shut down before returning.
1249
*/
1250
static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1251
enum pipe pipe)
1252
{
1253
int reg;
1254
u32 val;
1255
1256
/*
1257
* Make sure planes won't keep trying to pump pixels to us,
1258
* or we might hang the display.
1259
*/
1260
assert_planes_disabled(dev_priv, pipe);
1261
1262
/* Don't disable pipe A or pipe A PLLs if needed */
1263
if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1264
return;
1265
1266
reg = PIPECONF(pipe);
1267
val = I915_READ(reg);
1268
if ((val & PIPECONF_ENABLE) == 0)
1269
return;
1270
1271
I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1272
intel_wait_for_pipe_off(dev_priv->dev, pipe);
1273
}
1274
1275
/**
1276
* intel_enable_plane - enable a display plane on a given pipe
1277
* @dev_priv: i915 private structure
1278
* @plane: plane to enable
1279
* @pipe: pipe being fed
1280
*
1281
* Enable @plane on @pipe, making sure that @pipe is running first.
1282
*/
1283
static void intel_enable_plane(struct drm_i915_private *dev_priv,
1284
enum plane plane, enum pipe pipe)
1285
{
1286
int reg;
1287
u32 val;
1288
1289
/* If the pipe isn't enabled, we can't pump pixels and may hang */
1290
assert_pipe_enabled(dev_priv, pipe);
1291
1292
reg = DSPCNTR(plane);
1293
val = I915_READ(reg);
1294
if (val & DISPLAY_PLANE_ENABLE)
1295
return;
1296
1297
I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1298
intel_wait_for_vblank(dev_priv->dev, pipe);
1299
}
1300
1301
/*
1302
* Plane regs are double buffered, going from enabled->disabled needs a
1303
* trigger in order to latch. The display address reg provides this.
1304
*/
1305
static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1306
enum plane plane)
1307
{
1308
u32 reg = DSPADDR(plane);
1309
I915_WRITE(reg, I915_READ(reg));
1310
}
1311
1312
/**
1313
* intel_disable_plane - disable a display plane
1314
* @dev_priv: i915 private structure
1315
* @plane: plane to disable
1316
* @pipe: pipe consuming the data
1317
*
1318
* Disable @plane; should be an independent operation.
1319
*/
1320
static void intel_disable_plane(struct drm_i915_private *dev_priv,
1321
enum plane plane, enum pipe pipe)
1322
{
1323
int reg;
1324
u32 val;
1325
1326
reg = DSPCNTR(plane);
1327
val = I915_READ(reg);
1328
if ((val & DISPLAY_PLANE_ENABLE) == 0)
1329
return;
1330
1331
I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1332
intel_flush_display_plane(dev_priv, plane);
1333
intel_wait_for_vblank(dev_priv->dev, pipe);
1334
}
1335
1336
static void disable_pch_dp(struct drm_i915_private *dev_priv,
1337
enum pipe pipe, int reg)
1338
{
1339
u32 val = I915_READ(reg);
1340
if (DP_PIPE_ENABLED(val, pipe))
1341
I915_WRITE(reg, val & ~DP_PORT_EN);
1342
}
1343
1344
static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1345
enum pipe pipe, int reg)
1346
{
1347
u32 val = I915_READ(reg);
1348
if (HDMI_PIPE_ENABLED(val, pipe))
1349
I915_WRITE(reg, val & ~PORT_ENABLE);
1350
}
1351
1352
/* Disable any ports connected to this transcoder */
1353
static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1354
enum pipe pipe)
1355
{
1356
u32 reg, val;
1357
1358
val = I915_READ(PCH_PP_CONTROL);
1359
I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1360
1361
disable_pch_dp(dev_priv, pipe, PCH_DP_B);
1362
disable_pch_dp(dev_priv, pipe, PCH_DP_C);
1363
disable_pch_dp(dev_priv, pipe, PCH_DP_D);
1364
1365
reg = PCH_ADPA;
1366
val = I915_READ(reg);
1367
if (ADPA_PIPE_ENABLED(val, pipe))
1368
I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1369
1370
reg = PCH_LVDS;
1371
val = I915_READ(reg);
1372
if (LVDS_PIPE_ENABLED(val, pipe)) {
1373
I915_WRITE(reg, val & ~LVDS_PORT_EN);
1374
POSTING_READ(reg);
1375
udelay(100);
1376
}
1377
1378
disable_pch_hdmi(dev_priv, pipe, HDMIB);
1379
disable_pch_hdmi(dev_priv, pipe, HDMIC);
1380
disable_pch_hdmi(dev_priv, pipe, HDMID);
1381
}
1382
1383
static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1384
{
1385
struct drm_device *dev = crtc->dev;
1386
struct drm_i915_private *dev_priv = dev->dev_private;
1387
struct drm_framebuffer *fb = crtc->fb;
1388
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1389
struct drm_i915_gem_object *obj = intel_fb->obj;
1390
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1391
int plane, i;
1392
u32 fbc_ctl, fbc_ctl2;
1393
1394
if (fb->pitch == dev_priv->cfb_pitch &&
1395
obj->fence_reg == dev_priv->cfb_fence &&
1396
intel_crtc->plane == dev_priv->cfb_plane &&
1397
I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1398
return;
1399
1400
i8xx_disable_fbc(dev);
1401
1402
dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1403
1404
if (fb->pitch < dev_priv->cfb_pitch)
1405
dev_priv->cfb_pitch = fb->pitch;
1406
1407
/* FBC_CTL wants 64B units */
1408
dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1409
dev_priv->cfb_fence = obj->fence_reg;
1410
dev_priv->cfb_plane = intel_crtc->plane;
1411
plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1412
1413
/* Clear old tags */
1414
for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1415
I915_WRITE(FBC_TAG + (i * 4), 0);
1416
1417
/* Set it up... */
1418
fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1419
if (obj->tiling_mode != I915_TILING_NONE)
1420
fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1421
I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1422
I915_WRITE(FBC_FENCE_OFF, crtc->y);
1423
1424
/* enable it... */
1425
fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1426
if (IS_I945GM(dev))
1427
fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1428
fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1429
fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1430
if (obj->tiling_mode != I915_TILING_NONE)
1431
fbc_ctl |= dev_priv->cfb_fence;
1432
I915_WRITE(FBC_CONTROL, fbc_ctl);
1433
1434
DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1435
dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1436
}
1437
1438
void i8xx_disable_fbc(struct drm_device *dev)
1439
{
1440
struct drm_i915_private *dev_priv = dev->dev_private;
1441
u32 fbc_ctl;
1442
1443
/* Disable compression */
1444
fbc_ctl = I915_READ(FBC_CONTROL);
1445
if ((fbc_ctl & FBC_CTL_EN) == 0)
1446
return;
1447
1448
fbc_ctl &= ~FBC_CTL_EN;
1449
I915_WRITE(FBC_CONTROL, fbc_ctl);
1450
1451
/* Wait for compressing bit to clear */
1452
if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1453
DRM_DEBUG_KMS("FBC idle timed out\n");
1454
return;
1455
}
1456
1457
DRM_DEBUG_KMS("disabled FBC\n");
1458
}
1459
1460
static bool i8xx_fbc_enabled(struct drm_device *dev)
1461
{
1462
struct drm_i915_private *dev_priv = dev->dev_private;
1463
1464
return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1465
}
1466
1467
static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1468
{
1469
struct drm_device *dev = crtc->dev;
1470
struct drm_i915_private *dev_priv = dev->dev_private;
1471
struct drm_framebuffer *fb = crtc->fb;
1472
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1473
struct drm_i915_gem_object *obj = intel_fb->obj;
1474
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1475
int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1476
unsigned long stall_watermark = 200;
1477
u32 dpfc_ctl;
1478
1479
dpfc_ctl = I915_READ(DPFC_CONTROL);
1480
if (dpfc_ctl & DPFC_CTL_EN) {
1481
if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1482
dev_priv->cfb_fence == obj->fence_reg &&
1483
dev_priv->cfb_plane == intel_crtc->plane &&
1484
dev_priv->cfb_y == crtc->y)
1485
return;
1486
1487
I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1488
intel_wait_for_vblank(dev, intel_crtc->pipe);
1489
}
1490
1491
dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1492
dev_priv->cfb_fence = obj->fence_reg;
1493
dev_priv->cfb_plane = intel_crtc->plane;
1494
dev_priv->cfb_y = crtc->y;
1495
1496
dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1497
if (obj->tiling_mode != I915_TILING_NONE) {
1498
dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1499
I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1500
} else {
1501
I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1502
}
1503
1504
I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1505
(stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1506
(interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1507
I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1508
1509
/* enable it... */
1510
I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1511
1512
DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1513
}
1514
1515
void g4x_disable_fbc(struct drm_device *dev)
1516
{
1517
struct drm_i915_private *dev_priv = dev->dev_private;
1518
u32 dpfc_ctl;
1519
1520
/* Disable compression */
1521
dpfc_ctl = I915_READ(DPFC_CONTROL);
1522
if (dpfc_ctl & DPFC_CTL_EN) {
1523
dpfc_ctl &= ~DPFC_CTL_EN;
1524
I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1525
1526
DRM_DEBUG_KMS("disabled FBC\n");
1527
}
1528
}
1529
1530
static bool g4x_fbc_enabled(struct drm_device *dev)
1531
{
1532
struct drm_i915_private *dev_priv = dev->dev_private;
1533
1534
return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1535
}
1536
1537
static void sandybridge_blit_fbc_update(struct drm_device *dev)
1538
{
1539
struct drm_i915_private *dev_priv = dev->dev_private;
1540
u32 blt_ecoskpd;
1541
1542
/* Make sure blitter notifies FBC of writes */
1543
gen6_gt_force_wake_get(dev_priv);
1544
blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1545
blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1546
GEN6_BLITTER_LOCK_SHIFT;
1547
I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1548
blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1549
I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1550
blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1551
GEN6_BLITTER_LOCK_SHIFT);
1552
I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1553
POSTING_READ(GEN6_BLITTER_ECOSKPD);
1554
gen6_gt_force_wake_put(dev_priv);
1555
}
1556
1557
static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1558
{
1559
struct drm_device *dev = crtc->dev;
1560
struct drm_i915_private *dev_priv = dev->dev_private;
1561
struct drm_framebuffer *fb = crtc->fb;
1562
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1563
struct drm_i915_gem_object *obj = intel_fb->obj;
1564
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1565
int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1566
unsigned long stall_watermark = 200;
1567
u32 dpfc_ctl;
1568
1569
dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1570
if (dpfc_ctl & DPFC_CTL_EN) {
1571
if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1572
dev_priv->cfb_fence == obj->fence_reg &&
1573
dev_priv->cfb_plane == intel_crtc->plane &&
1574
dev_priv->cfb_offset == obj->gtt_offset &&
1575
dev_priv->cfb_y == crtc->y)
1576
return;
1577
1578
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1579
intel_wait_for_vblank(dev, intel_crtc->pipe);
1580
}
1581
1582
dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1583
dev_priv->cfb_fence = obj->fence_reg;
1584
dev_priv->cfb_plane = intel_crtc->plane;
1585
dev_priv->cfb_offset = obj->gtt_offset;
1586
dev_priv->cfb_y = crtc->y;
1587
1588
dpfc_ctl &= DPFC_RESERVED;
1589
dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1590
if (obj->tiling_mode != I915_TILING_NONE) {
1591
dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1592
I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1593
} else {
1594
I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1595
}
1596
1597
I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1598
(stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1599
(interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1600
I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1601
I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1602
/* enable it... */
1603
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1604
1605
if (IS_GEN6(dev)) {
1606
I915_WRITE(SNB_DPFC_CTL_SA,
1607
SNB_CPU_FENCE_ENABLE | dev_priv->cfb_fence);
1608
I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1609
sandybridge_blit_fbc_update(dev);
1610
}
1611
1612
DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1613
}
1614
1615
void ironlake_disable_fbc(struct drm_device *dev)
1616
{
1617
struct drm_i915_private *dev_priv = dev->dev_private;
1618
u32 dpfc_ctl;
1619
1620
/* Disable compression */
1621
dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1622
if (dpfc_ctl & DPFC_CTL_EN) {
1623
dpfc_ctl &= ~DPFC_CTL_EN;
1624
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1625
1626
DRM_DEBUG_KMS("disabled FBC\n");
1627
}
1628
}
1629
1630
static bool ironlake_fbc_enabled(struct drm_device *dev)
1631
{
1632
struct drm_i915_private *dev_priv = dev->dev_private;
1633
1634
return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1635
}
1636
1637
bool intel_fbc_enabled(struct drm_device *dev)
1638
{
1639
struct drm_i915_private *dev_priv = dev->dev_private;
1640
1641
if (!dev_priv->display.fbc_enabled)
1642
return false;
1643
1644
return dev_priv->display.fbc_enabled(dev);
1645
}
1646
1647
void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1648
{
1649
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1650
1651
if (!dev_priv->display.enable_fbc)
1652
return;
1653
1654
dev_priv->display.enable_fbc(crtc, interval);
1655
}
1656
1657
void intel_disable_fbc(struct drm_device *dev)
1658
{
1659
struct drm_i915_private *dev_priv = dev->dev_private;
1660
1661
if (!dev_priv->display.disable_fbc)
1662
return;
1663
1664
dev_priv->display.disable_fbc(dev);
1665
}
1666
1667
/**
1668
* intel_update_fbc - enable/disable FBC as needed
1669
* @dev: the drm_device
1670
*
1671
* Set up the framebuffer compression hardware at mode set time. We
1672
* enable it if possible:
1673
* - plane A only (on pre-965)
1674
* - no pixel mulitply/line duplication
1675
* - no alpha buffer discard
1676
* - no dual wide
1677
* - framebuffer <= 2048 in width, 1536 in height
1678
*
1679
* We can't assume that any compression will take place (worst case),
1680
* so the compressed buffer has to be the same size as the uncompressed
1681
* one. It also must reside (along with the line length buffer) in
1682
* stolen memory.
1683
*
1684
* We need to enable/disable FBC on a global basis.
1685
*/
1686
static void intel_update_fbc(struct drm_device *dev)
1687
{
1688
struct drm_i915_private *dev_priv = dev->dev_private;
1689
struct drm_crtc *crtc = NULL, *tmp_crtc;
1690
struct intel_crtc *intel_crtc;
1691
struct drm_framebuffer *fb;
1692
struct intel_framebuffer *intel_fb;
1693
struct drm_i915_gem_object *obj;
1694
1695
DRM_DEBUG_KMS("\n");
1696
1697
if (!i915_powersave)
1698
return;
1699
1700
if (!I915_HAS_FBC(dev))
1701
return;
1702
1703
/*
1704
* If FBC is already on, we just have to verify that we can
1705
* keep it that way...
1706
* Need to disable if:
1707
* - more than one pipe is active
1708
* - changing FBC params (stride, fence, mode)
1709
* - new fb is too large to fit in compressed buffer
1710
* - going to an unsupported config (interlace, pixel multiply, etc.)
1711
*/
1712
list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1713
if (tmp_crtc->enabled && tmp_crtc->fb) {
1714
if (crtc) {
1715
DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1716
dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1717
goto out_disable;
1718
}
1719
crtc = tmp_crtc;
1720
}
1721
}
1722
1723
if (!crtc || crtc->fb == NULL) {
1724
DRM_DEBUG_KMS("no output, disabling\n");
1725
dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1726
goto out_disable;
1727
}
1728
1729
intel_crtc = to_intel_crtc(crtc);
1730
fb = crtc->fb;
1731
intel_fb = to_intel_framebuffer(fb);
1732
obj = intel_fb->obj;
1733
1734
if (!i915_enable_fbc) {
1735
DRM_DEBUG_KMS("fbc disabled per module param (default off)\n");
1736
dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1737
goto out_disable;
1738
}
1739
if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1740
DRM_DEBUG_KMS("framebuffer too large, disabling "
1741
"compression\n");
1742
dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1743
goto out_disable;
1744
}
1745
if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1746
(crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1747
DRM_DEBUG_KMS("mode incompatible with compression, "
1748
"disabling\n");
1749
dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1750
goto out_disable;
1751
}
1752
if ((crtc->mode.hdisplay > 2048) ||
1753
(crtc->mode.vdisplay > 1536)) {
1754
DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1755
dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1756
goto out_disable;
1757
}
1758
if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1759
DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1760
dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1761
goto out_disable;
1762
}
1763
if (obj->tiling_mode != I915_TILING_X) {
1764
DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1765
dev_priv->no_fbc_reason = FBC_NOT_TILED;
1766
goto out_disable;
1767
}
1768
1769
/* If the kernel debugger is active, always disable compression */
1770
if (in_dbg_master())
1771
goto out_disable;
1772
1773
intel_enable_fbc(crtc, 500);
1774
return;
1775
1776
out_disable:
1777
/* Multiple disables should be harmless */
1778
if (intel_fbc_enabled(dev)) {
1779
DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1780
intel_disable_fbc(dev);
1781
}
1782
}
1783
1784
int
1785
intel_pin_and_fence_fb_obj(struct drm_device *dev,
1786
struct drm_i915_gem_object *obj,
1787
struct intel_ring_buffer *pipelined)
1788
{
1789
struct drm_i915_private *dev_priv = dev->dev_private;
1790
u32 alignment;
1791
int ret;
1792
1793
switch (obj->tiling_mode) {
1794
case I915_TILING_NONE:
1795
if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1796
alignment = 128 * 1024;
1797
else if (INTEL_INFO(dev)->gen >= 4)
1798
alignment = 4 * 1024;
1799
else
1800
alignment = 64 * 1024;
1801
break;
1802
case I915_TILING_X:
1803
/* pin() will align the object as required by fence */
1804
alignment = 0;
1805
break;
1806
case I915_TILING_Y:
1807
/* FIXME: Is this true? */
1808
DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1809
return -EINVAL;
1810
default:
1811
BUG();
1812
}
1813
1814
dev_priv->mm.interruptible = false;
1815
ret = i915_gem_object_pin(obj, alignment, true);
1816
if (ret)
1817
goto err_interruptible;
1818
1819
ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1820
if (ret)
1821
goto err_unpin;
1822
1823
/* Install a fence for tiled scan-out. Pre-i965 always needs a
1824
* fence, whereas 965+ only requires a fence if using
1825
* framebuffer compression. For simplicity, we always install
1826
* a fence as the cost is not that onerous.
1827
*/
1828
if (obj->tiling_mode != I915_TILING_NONE) {
1829
ret = i915_gem_object_get_fence(obj, pipelined);
1830
if (ret)
1831
goto err_unpin;
1832
}
1833
1834
dev_priv->mm.interruptible = true;
1835
return 0;
1836
1837
err_unpin:
1838
i915_gem_object_unpin(obj);
1839
err_interruptible:
1840
dev_priv->mm.interruptible = true;
1841
return ret;
1842
}
1843
1844
/* Assume fb object is pinned & idle & fenced and just update base pointers */
1845
static int
1846
intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1847
int x, int y, enum mode_set_atomic state)
1848
{
1849
struct drm_device *dev = crtc->dev;
1850
struct drm_i915_private *dev_priv = dev->dev_private;
1851
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1852
struct intel_framebuffer *intel_fb;
1853
struct drm_i915_gem_object *obj;
1854
int plane = intel_crtc->plane;
1855
unsigned long Start, Offset;
1856
u32 dspcntr;
1857
u32 reg;
1858
1859
switch (plane) {
1860
case 0:
1861
case 1:
1862
break;
1863
default:
1864
DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1865
return -EINVAL;
1866
}
1867
1868
intel_fb = to_intel_framebuffer(fb);
1869
obj = intel_fb->obj;
1870
1871
reg = DSPCNTR(plane);
1872
dspcntr = I915_READ(reg);
1873
/* Mask out pixel format bits in case we change it */
1874
dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1875
switch (fb->bits_per_pixel) {
1876
case 8:
1877
dspcntr |= DISPPLANE_8BPP;
1878
break;
1879
case 16:
1880
if (fb->depth == 15)
1881
dspcntr |= DISPPLANE_15_16BPP;
1882
else
1883
dspcntr |= DISPPLANE_16BPP;
1884
break;
1885
case 24:
1886
case 32:
1887
dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1888
break;
1889
default:
1890
DRM_ERROR("Unknown color depth\n");
1891
return -EINVAL;
1892
}
1893
if (INTEL_INFO(dev)->gen >= 4) {
1894
if (obj->tiling_mode != I915_TILING_NONE)
1895
dspcntr |= DISPPLANE_TILED;
1896
else
1897
dspcntr &= ~DISPPLANE_TILED;
1898
}
1899
1900
if (HAS_PCH_SPLIT(dev))
1901
/* must disable */
1902
dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1903
1904
I915_WRITE(reg, dspcntr);
1905
1906
Start = obj->gtt_offset;
1907
Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1908
1909
DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1910
Start, Offset, x, y, fb->pitch);
1911
I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1912
if (INTEL_INFO(dev)->gen >= 4) {
1913
I915_WRITE(DSPSURF(plane), Start);
1914
I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1915
I915_WRITE(DSPADDR(plane), Offset);
1916
} else
1917
I915_WRITE(DSPADDR(plane), Start + Offset);
1918
POSTING_READ(reg);
1919
1920
intel_update_fbc(dev);
1921
intel_increase_pllclock(crtc);
1922
1923
return 0;
1924
}
1925
1926
static int
1927
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1928
struct drm_framebuffer *old_fb)
1929
{
1930
struct drm_device *dev = crtc->dev;
1931
struct drm_i915_master_private *master_priv;
1932
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1933
int ret;
1934
1935
/* no fb bound */
1936
if (!crtc->fb) {
1937
DRM_DEBUG_KMS("No FB bound\n");
1938
return 0;
1939
}
1940
1941
switch (intel_crtc->plane) {
1942
case 0:
1943
case 1:
1944
break;
1945
default:
1946
return -EINVAL;
1947
}
1948
1949
mutex_lock(&dev->struct_mutex);
1950
ret = intel_pin_and_fence_fb_obj(dev,
1951
to_intel_framebuffer(crtc->fb)->obj,
1952
NULL);
1953
if (ret != 0) {
1954
mutex_unlock(&dev->struct_mutex);
1955
return ret;
1956
}
1957
1958
if (old_fb) {
1959
struct drm_i915_private *dev_priv = dev->dev_private;
1960
struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1961
1962
wait_event(dev_priv->pending_flip_queue,
1963
atomic_read(&dev_priv->mm.wedged) ||
1964
atomic_read(&obj->pending_flip) == 0);
1965
1966
/* Big Hammer, we also need to ensure that any pending
1967
* MI_WAIT_FOR_EVENT inside a user batch buffer on the
1968
* current scanout is retired before unpinning the old
1969
* framebuffer.
1970
*
1971
* This should only fail upon a hung GPU, in which case we
1972
* can safely continue.
1973
*/
1974
ret = i915_gem_object_flush_gpu(obj);
1975
(void) ret;
1976
}
1977
1978
ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1979
LEAVE_ATOMIC_MODE_SET);
1980
if (ret) {
1981
i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1982
mutex_unlock(&dev->struct_mutex);
1983
return ret;
1984
}
1985
1986
if (old_fb) {
1987
intel_wait_for_vblank(dev, intel_crtc->pipe);
1988
i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1989
}
1990
1991
mutex_unlock(&dev->struct_mutex);
1992
1993
if (!dev->primary->master)
1994
return 0;
1995
1996
master_priv = dev->primary->master->driver_priv;
1997
if (!master_priv->sarea_priv)
1998
return 0;
1999
2000
if (intel_crtc->pipe) {
2001
master_priv->sarea_priv->pipeB_x = x;
2002
master_priv->sarea_priv->pipeB_y = y;
2003
} else {
2004
master_priv->sarea_priv->pipeA_x = x;
2005
master_priv->sarea_priv->pipeA_y = y;
2006
}
2007
2008
return 0;
2009
}
2010
2011
static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2012
{
2013
struct drm_device *dev = crtc->dev;
2014
struct drm_i915_private *dev_priv = dev->dev_private;
2015
u32 dpa_ctl;
2016
2017
DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2018
dpa_ctl = I915_READ(DP_A);
2019
dpa_ctl &= ~DP_PLL_FREQ_MASK;
2020
2021
if (clock < 200000) {
2022
u32 temp;
2023
dpa_ctl |= DP_PLL_FREQ_160MHZ;
2024
/* workaround for 160Mhz:
2025
1) program 0x4600c bits 15:0 = 0x8124
2026
2) program 0x46010 bit 0 = 1
2027
3) program 0x46034 bit 24 = 1
2028
4) program 0x64000 bit 14 = 1
2029
*/
2030
temp = I915_READ(0x4600c);
2031
temp &= 0xffff0000;
2032
I915_WRITE(0x4600c, temp | 0x8124);
2033
2034
temp = I915_READ(0x46010);
2035
I915_WRITE(0x46010, temp | 1);
2036
2037
temp = I915_READ(0x46034);
2038
I915_WRITE(0x46034, temp | (1 << 24));
2039
} else {
2040
dpa_ctl |= DP_PLL_FREQ_270MHZ;
2041
}
2042
I915_WRITE(DP_A, dpa_ctl);
2043
2044
POSTING_READ(DP_A);
2045
udelay(500);
2046
}
2047
2048
static void intel_fdi_normal_train(struct drm_crtc *crtc)
2049
{
2050
struct drm_device *dev = crtc->dev;
2051
struct drm_i915_private *dev_priv = dev->dev_private;
2052
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2053
int pipe = intel_crtc->pipe;
2054
u32 reg, temp;
2055
2056
/* enable normal train */
2057
reg = FDI_TX_CTL(pipe);
2058
temp = I915_READ(reg);
2059
if (IS_IVYBRIDGE(dev)) {
2060
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2061
temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2062
} else {
2063
temp &= ~FDI_LINK_TRAIN_NONE;
2064
temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2065
}
2066
I915_WRITE(reg, temp);
2067
2068
reg = FDI_RX_CTL(pipe);
2069
temp = I915_READ(reg);
2070
if (HAS_PCH_CPT(dev)) {
2071
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2072
temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2073
} else {
2074
temp &= ~FDI_LINK_TRAIN_NONE;
2075
temp |= FDI_LINK_TRAIN_NONE;
2076
}
2077
I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2078
2079
/* wait one idle pattern time */
2080
POSTING_READ(reg);
2081
udelay(1000);
2082
2083
/* IVB wants error correction enabled */
2084
if (IS_IVYBRIDGE(dev))
2085
I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2086
FDI_FE_ERRC_ENABLE);
2087
}
2088
2089
/* The FDI link training functions for ILK/Ibexpeak. */
2090
static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2091
{
2092
struct drm_device *dev = crtc->dev;
2093
struct drm_i915_private *dev_priv = dev->dev_private;
2094
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2095
int pipe = intel_crtc->pipe;
2096
int plane = intel_crtc->plane;
2097
u32 reg, temp, tries;
2098
2099
/* FDI needs bits from pipe & plane first */
2100
assert_pipe_enabled(dev_priv, pipe);
2101
assert_plane_enabled(dev_priv, plane);
2102
2103
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2104
for train result */
2105
reg = FDI_RX_IMR(pipe);
2106
temp = I915_READ(reg);
2107
temp &= ~FDI_RX_SYMBOL_LOCK;
2108
temp &= ~FDI_RX_BIT_LOCK;
2109
I915_WRITE(reg, temp);
2110
I915_READ(reg);
2111
udelay(150);
2112
2113
/* enable CPU FDI TX and PCH FDI RX */
2114
reg = FDI_TX_CTL(pipe);
2115
temp = I915_READ(reg);
2116
temp &= ~(7 << 19);
2117
temp |= (intel_crtc->fdi_lanes - 1) << 19;
2118
temp &= ~FDI_LINK_TRAIN_NONE;
2119
temp |= FDI_LINK_TRAIN_PATTERN_1;
2120
I915_WRITE(reg, temp | FDI_TX_ENABLE);
2121
2122
reg = FDI_RX_CTL(pipe);
2123
temp = I915_READ(reg);
2124
temp &= ~FDI_LINK_TRAIN_NONE;
2125
temp |= FDI_LINK_TRAIN_PATTERN_1;
2126
I915_WRITE(reg, temp | FDI_RX_ENABLE);
2127
2128
POSTING_READ(reg);
2129
udelay(150);
2130
2131
/* Ironlake workaround, enable clock pointer after FDI enable*/
2132
if (HAS_PCH_IBX(dev)) {
2133
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2134
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2135
FDI_RX_PHASE_SYNC_POINTER_EN);
2136
}
2137
2138
reg = FDI_RX_IIR(pipe);
2139
for (tries = 0; tries < 5; tries++) {
2140
temp = I915_READ(reg);
2141
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2142
2143
if ((temp & FDI_RX_BIT_LOCK)) {
2144
DRM_DEBUG_KMS("FDI train 1 done.\n");
2145
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2146
break;
2147
}
2148
}
2149
if (tries == 5)
2150
DRM_ERROR("FDI train 1 fail!\n");
2151
2152
/* Train 2 */
2153
reg = FDI_TX_CTL(pipe);
2154
temp = I915_READ(reg);
2155
temp &= ~FDI_LINK_TRAIN_NONE;
2156
temp |= FDI_LINK_TRAIN_PATTERN_2;
2157
I915_WRITE(reg, temp);
2158
2159
reg = FDI_RX_CTL(pipe);
2160
temp = I915_READ(reg);
2161
temp &= ~FDI_LINK_TRAIN_NONE;
2162
temp |= FDI_LINK_TRAIN_PATTERN_2;
2163
I915_WRITE(reg, temp);
2164
2165
POSTING_READ(reg);
2166
udelay(150);
2167
2168
reg = FDI_RX_IIR(pipe);
2169
for (tries = 0; tries < 5; tries++) {
2170
temp = I915_READ(reg);
2171
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2172
2173
if (temp & FDI_RX_SYMBOL_LOCK) {
2174
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2175
DRM_DEBUG_KMS("FDI train 2 done.\n");
2176
break;
2177
}
2178
}
2179
if (tries == 5)
2180
DRM_ERROR("FDI train 2 fail!\n");
2181
2182
DRM_DEBUG_KMS("FDI train done\n");
2183
2184
}
2185
2186
static const int snb_b_fdi_train_param [] = {
2187
FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2188
FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2189
FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2190
FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2191
};
2192
2193
/* The FDI link training functions for SNB/Cougarpoint. */
2194
static void gen6_fdi_link_train(struct drm_crtc *crtc)
2195
{
2196
struct drm_device *dev = crtc->dev;
2197
struct drm_i915_private *dev_priv = dev->dev_private;
2198
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2199
int pipe = intel_crtc->pipe;
2200
u32 reg, temp, i;
2201
2202
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2203
for train result */
2204
reg = FDI_RX_IMR(pipe);
2205
temp = I915_READ(reg);
2206
temp &= ~FDI_RX_SYMBOL_LOCK;
2207
temp &= ~FDI_RX_BIT_LOCK;
2208
I915_WRITE(reg, temp);
2209
2210
POSTING_READ(reg);
2211
udelay(150);
2212
2213
/* enable CPU FDI TX and PCH FDI RX */
2214
reg = FDI_TX_CTL(pipe);
2215
temp = I915_READ(reg);
2216
temp &= ~(7 << 19);
2217
temp |= (intel_crtc->fdi_lanes - 1) << 19;
2218
temp &= ~FDI_LINK_TRAIN_NONE;
2219
temp |= FDI_LINK_TRAIN_PATTERN_1;
2220
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2221
/* SNB-B */
2222
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2223
I915_WRITE(reg, temp | FDI_TX_ENABLE);
2224
2225
reg = FDI_RX_CTL(pipe);
2226
temp = I915_READ(reg);
2227
if (HAS_PCH_CPT(dev)) {
2228
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2229
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2230
} else {
2231
temp &= ~FDI_LINK_TRAIN_NONE;
2232
temp |= FDI_LINK_TRAIN_PATTERN_1;
2233
}
2234
I915_WRITE(reg, temp | FDI_RX_ENABLE);
2235
2236
POSTING_READ(reg);
2237
udelay(150);
2238
2239
for (i = 0; i < 4; i++ ) {
2240
reg = FDI_TX_CTL(pipe);
2241
temp = I915_READ(reg);
2242
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2243
temp |= snb_b_fdi_train_param[i];
2244
I915_WRITE(reg, temp);
2245
2246
POSTING_READ(reg);
2247
udelay(500);
2248
2249
reg = FDI_RX_IIR(pipe);
2250
temp = I915_READ(reg);
2251
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2252
2253
if (temp & FDI_RX_BIT_LOCK) {
2254
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2255
DRM_DEBUG_KMS("FDI train 1 done.\n");
2256
break;
2257
}
2258
}
2259
if (i == 4)
2260
DRM_ERROR("FDI train 1 fail!\n");
2261
2262
/* Train 2 */
2263
reg = FDI_TX_CTL(pipe);
2264
temp = I915_READ(reg);
2265
temp &= ~FDI_LINK_TRAIN_NONE;
2266
temp |= FDI_LINK_TRAIN_PATTERN_2;
2267
if (IS_GEN6(dev)) {
2268
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2269
/* SNB-B */
2270
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2271
}
2272
I915_WRITE(reg, temp);
2273
2274
reg = FDI_RX_CTL(pipe);
2275
temp = I915_READ(reg);
2276
if (HAS_PCH_CPT(dev)) {
2277
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2278
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2279
} else {
2280
temp &= ~FDI_LINK_TRAIN_NONE;
2281
temp |= FDI_LINK_TRAIN_PATTERN_2;
2282
}
2283
I915_WRITE(reg, temp);
2284
2285
POSTING_READ(reg);
2286
udelay(150);
2287
2288
for (i = 0; i < 4; i++ ) {
2289
reg = FDI_TX_CTL(pipe);
2290
temp = I915_READ(reg);
2291
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2292
temp |= snb_b_fdi_train_param[i];
2293
I915_WRITE(reg, temp);
2294
2295
POSTING_READ(reg);
2296
udelay(500);
2297
2298
reg = FDI_RX_IIR(pipe);
2299
temp = I915_READ(reg);
2300
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2301
2302
if (temp & FDI_RX_SYMBOL_LOCK) {
2303
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2304
DRM_DEBUG_KMS("FDI train 2 done.\n");
2305
break;
2306
}
2307
}
2308
if (i == 4)
2309
DRM_ERROR("FDI train 2 fail!\n");
2310
2311
DRM_DEBUG_KMS("FDI train done.\n");
2312
}
2313
2314
/* Manual link training for Ivy Bridge A0 parts */
2315
static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2316
{
2317
struct drm_device *dev = crtc->dev;
2318
struct drm_i915_private *dev_priv = dev->dev_private;
2319
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2320
int pipe = intel_crtc->pipe;
2321
u32 reg, temp, i;
2322
2323
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2324
for train result */
2325
reg = FDI_RX_IMR(pipe);
2326
temp = I915_READ(reg);
2327
temp &= ~FDI_RX_SYMBOL_LOCK;
2328
temp &= ~FDI_RX_BIT_LOCK;
2329
I915_WRITE(reg, temp);
2330
2331
POSTING_READ(reg);
2332
udelay(150);
2333
2334
/* enable CPU FDI TX and PCH FDI RX */
2335
reg = FDI_TX_CTL(pipe);
2336
temp = I915_READ(reg);
2337
temp &= ~(7 << 19);
2338
temp |= (intel_crtc->fdi_lanes - 1) << 19;
2339
temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2340
temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2341
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2342
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2343
I915_WRITE(reg, temp | FDI_TX_ENABLE);
2344
2345
reg = FDI_RX_CTL(pipe);
2346
temp = I915_READ(reg);
2347
temp &= ~FDI_LINK_TRAIN_AUTO;
2348
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2349
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2350
I915_WRITE(reg, temp | FDI_RX_ENABLE);
2351
2352
POSTING_READ(reg);
2353
udelay(150);
2354
2355
for (i = 0; i < 4; i++ ) {
2356
reg = FDI_TX_CTL(pipe);
2357
temp = I915_READ(reg);
2358
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2359
temp |= snb_b_fdi_train_param[i];
2360
I915_WRITE(reg, temp);
2361
2362
POSTING_READ(reg);
2363
udelay(500);
2364
2365
reg = FDI_RX_IIR(pipe);
2366
temp = I915_READ(reg);
2367
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2368
2369
if (temp & FDI_RX_BIT_LOCK ||
2370
(I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2371
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2372
DRM_DEBUG_KMS("FDI train 1 done.\n");
2373
break;
2374
}
2375
}
2376
if (i == 4)
2377
DRM_ERROR("FDI train 1 fail!\n");
2378
2379
/* Train 2 */
2380
reg = FDI_TX_CTL(pipe);
2381
temp = I915_READ(reg);
2382
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2383
temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2384
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2385
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2386
I915_WRITE(reg, temp);
2387
2388
reg = FDI_RX_CTL(pipe);
2389
temp = I915_READ(reg);
2390
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2391
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2392
I915_WRITE(reg, temp);
2393
2394
POSTING_READ(reg);
2395
udelay(150);
2396
2397
for (i = 0; i < 4; i++ ) {
2398
reg = FDI_TX_CTL(pipe);
2399
temp = I915_READ(reg);
2400
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2401
temp |= snb_b_fdi_train_param[i];
2402
I915_WRITE(reg, temp);
2403
2404
POSTING_READ(reg);
2405
udelay(500);
2406
2407
reg = FDI_RX_IIR(pipe);
2408
temp = I915_READ(reg);
2409
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2410
2411
if (temp & FDI_RX_SYMBOL_LOCK) {
2412
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2413
DRM_DEBUG_KMS("FDI train 2 done.\n");
2414
break;
2415
}
2416
}
2417
if (i == 4)
2418
DRM_ERROR("FDI train 2 fail!\n");
2419
2420
DRM_DEBUG_KMS("FDI train done.\n");
2421
}
2422
2423
static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2424
{
2425
struct drm_device *dev = crtc->dev;
2426
struct drm_i915_private *dev_priv = dev->dev_private;
2427
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2428
int pipe = intel_crtc->pipe;
2429
u32 reg, temp;
2430
2431
/* Write the TU size bits so error detection works */
2432
I915_WRITE(FDI_RX_TUSIZE1(pipe),
2433
I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2434
2435
/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2436
reg = FDI_RX_CTL(pipe);
2437
temp = I915_READ(reg);
2438
temp &= ~((0x7 << 19) | (0x7 << 16));
2439
temp |= (intel_crtc->fdi_lanes - 1) << 19;
2440
temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2441
I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2442
2443
POSTING_READ(reg);
2444
udelay(200);
2445
2446
/* Switch from Rawclk to PCDclk */
2447
temp = I915_READ(reg);
2448
I915_WRITE(reg, temp | FDI_PCDCLK);
2449
2450
POSTING_READ(reg);
2451
udelay(200);
2452
2453
/* Enable CPU FDI TX PLL, always on for Ironlake */
2454
reg = FDI_TX_CTL(pipe);
2455
temp = I915_READ(reg);
2456
if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2457
I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2458
2459
POSTING_READ(reg);
2460
udelay(100);
2461
}
2462
}
2463
2464
static void ironlake_fdi_disable(struct drm_crtc *crtc)
2465
{
2466
struct drm_device *dev = crtc->dev;
2467
struct drm_i915_private *dev_priv = dev->dev_private;
2468
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2469
int pipe = intel_crtc->pipe;
2470
u32 reg, temp;
2471
2472
/* disable CPU FDI tx and PCH FDI rx */
2473
reg = FDI_TX_CTL(pipe);
2474
temp = I915_READ(reg);
2475
I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2476
POSTING_READ(reg);
2477
2478
reg = FDI_RX_CTL(pipe);
2479
temp = I915_READ(reg);
2480
temp &= ~(0x7 << 16);
2481
temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2482
I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2483
2484
POSTING_READ(reg);
2485
udelay(100);
2486
2487
/* Ironlake workaround, disable clock pointer after downing FDI */
2488
if (HAS_PCH_IBX(dev)) {
2489
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2490
I915_WRITE(FDI_RX_CHICKEN(pipe),
2491
I915_READ(FDI_RX_CHICKEN(pipe) &
2492
~FDI_RX_PHASE_SYNC_POINTER_EN));
2493
}
2494
2495
/* still set train pattern 1 */
2496
reg = FDI_TX_CTL(pipe);
2497
temp = I915_READ(reg);
2498
temp &= ~FDI_LINK_TRAIN_NONE;
2499
temp |= FDI_LINK_TRAIN_PATTERN_1;
2500
I915_WRITE(reg, temp);
2501
2502
reg = FDI_RX_CTL(pipe);
2503
temp = I915_READ(reg);
2504
if (HAS_PCH_CPT(dev)) {
2505
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2506
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2507
} else {
2508
temp &= ~FDI_LINK_TRAIN_NONE;
2509
temp |= FDI_LINK_TRAIN_PATTERN_1;
2510
}
2511
/* BPC in FDI rx is consistent with that in PIPECONF */
2512
temp &= ~(0x07 << 16);
2513
temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2514
I915_WRITE(reg, temp);
2515
2516
POSTING_READ(reg);
2517
udelay(100);
2518
}
2519
2520
/*
2521
* When we disable a pipe, we need to clear any pending scanline wait events
2522
* to avoid hanging the ring, which we assume we are waiting on.
2523
*/
2524
static void intel_clear_scanline_wait(struct drm_device *dev)
2525
{
2526
struct drm_i915_private *dev_priv = dev->dev_private;
2527
struct intel_ring_buffer *ring;
2528
u32 tmp;
2529
2530
if (IS_GEN2(dev))
2531
/* Can't break the hang on i8xx */
2532
return;
2533
2534
ring = LP_RING(dev_priv);
2535
tmp = I915_READ_CTL(ring);
2536
if (tmp & RING_WAIT)
2537
I915_WRITE_CTL(ring, tmp);
2538
}
2539
2540
static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2541
{
2542
struct drm_i915_gem_object *obj;
2543
struct drm_i915_private *dev_priv;
2544
2545
if (crtc->fb == NULL)
2546
return;
2547
2548
obj = to_intel_framebuffer(crtc->fb)->obj;
2549
dev_priv = crtc->dev->dev_private;
2550
wait_event(dev_priv->pending_flip_queue,
2551
atomic_read(&obj->pending_flip) == 0);
2552
}
2553
2554
static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2555
{
2556
struct drm_device *dev = crtc->dev;
2557
struct drm_mode_config *mode_config = &dev->mode_config;
2558
struct intel_encoder *encoder;
2559
2560
/*
2561
* If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2562
* must be driven by its own crtc; no sharing is possible.
2563
*/
2564
list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2565
if (encoder->base.crtc != crtc)
2566
continue;
2567
2568
switch (encoder->type) {
2569
case INTEL_OUTPUT_EDP:
2570
if (!intel_encoder_is_pch_edp(&encoder->base))
2571
return false;
2572
continue;
2573
}
2574
}
2575
2576
return true;
2577
}
2578
2579
/*
2580
* Enable PCH resources required for PCH ports:
2581
* - PCH PLLs
2582
* - FDI training & RX/TX
2583
* - update transcoder timings
2584
* - DP transcoding bits
2585
* - transcoder
2586
*/
2587
static void ironlake_pch_enable(struct drm_crtc *crtc)
2588
{
2589
struct drm_device *dev = crtc->dev;
2590
struct drm_i915_private *dev_priv = dev->dev_private;
2591
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2592
int pipe = intel_crtc->pipe;
2593
u32 reg, temp;
2594
2595
/* For PCH output, training FDI link */
2596
dev_priv->display.fdi_link_train(crtc);
2597
2598
intel_enable_pch_pll(dev_priv, pipe);
2599
2600
if (HAS_PCH_CPT(dev)) {
2601
/* Be sure PCH DPLL SEL is set */
2602
temp = I915_READ(PCH_DPLL_SEL);
2603
if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2604
temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2605
else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2606
temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2607
I915_WRITE(PCH_DPLL_SEL, temp);
2608
}
2609
2610
/* set transcoder timing, panel must allow it */
2611
assert_panel_unlocked(dev_priv, pipe);
2612
I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2613
I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2614
I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2615
2616
I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2617
I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2618
I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2619
2620
intel_fdi_normal_train(crtc);
2621
2622
/* For PCH DP, enable TRANS_DP_CTL */
2623
if (HAS_PCH_CPT(dev) &&
2624
intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2625
reg = TRANS_DP_CTL(pipe);
2626
temp = I915_READ(reg);
2627
temp &= ~(TRANS_DP_PORT_SEL_MASK |
2628
TRANS_DP_SYNC_MASK |
2629
TRANS_DP_BPC_MASK);
2630
temp |= (TRANS_DP_OUTPUT_ENABLE |
2631
TRANS_DP_ENH_FRAMING);
2632
temp |= TRANS_DP_8BPC;
2633
2634
if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2635
temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2636
if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2637
temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2638
2639
switch (intel_trans_dp_port_sel(crtc)) {
2640
case PCH_DP_B:
2641
temp |= TRANS_DP_PORT_SEL_B;
2642
break;
2643
case PCH_DP_C:
2644
temp |= TRANS_DP_PORT_SEL_C;
2645
break;
2646
case PCH_DP_D:
2647
temp |= TRANS_DP_PORT_SEL_D;
2648
break;
2649
default:
2650
DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2651
temp |= TRANS_DP_PORT_SEL_B;
2652
break;
2653
}
2654
2655
I915_WRITE(reg, temp);
2656
}
2657
2658
intel_enable_transcoder(dev_priv, pipe);
2659
}
2660
2661
static void ironlake_crtc_enable(struct drm_crtc *crtc)
2662
{
2663
struct drm_device *dev = crtc->dev;
2664
struct drm_i915_private *dev_priv = dev->dev_private;
2665
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2666
int pipe = intel_crtc->pipe;
2667
int plane = intel_crtc->plane;
2668
u32 temp;
2669
bool is_pch_port;
2670
2671
if (intel_crtc->active)
2672
return;
2673
2674
intel_crtc->active = true;
2675
intel_update_watermarks(dev);
2676
2677
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2678
temp = I915_READ(PCH_LVDS);
2679
if ((temp & LVDS_PORT_EN) == 0)
2680
I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2681
}
2682
2683
is_pch_port = intel_crtc_driving_pch(crtc);
2684
2685
if (is_pch_port)
2686
ironlake_fdi_pll_enable(crtc);
2687
else
2688
ironlake_fdi_disable(crtc);
2689
2690
/* Enable panel fitting for LVDS */
2691
if (dev_priv->pch_pf_size &&
2692
(intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2693
/* Force use of hard-coded filter coefficients
2694
* as some pre-programmed values are broken,
2695
* e.g. x201.
2696
*/
2697
I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2698
I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2699
I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2700
}
2701
2702
intel_enable_pipe(dev_priv, pipe, is_pch_port);
2703
intel_enable_plane(dev_priv, plane, pipe);
2704
2705
if (is_pch_port)
2706
ironlake_pch_enable(crtc);
2707
2708
intel_crtc_load_lut(crtc);
2709
2710
mutex_lock(&dev->struct_mutex);
2711
intel_update_fbc(dev);
2712
mutex_unlock(&dev->struct_mutex);
2713
2714
intel_crtc_update_cursor(crtc, true);
2715
}
2716
2717
static void ironlake_crtc_disable(struct drm_crtc *crtc)
2718
{
2719
struct drm_device *dev = crtc->dev;
2720
struct drm_i915_private *dev_priv = dev->dev_private;
2721
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2722
int pipe = intel_crtc->pipe;
2723
int plane = intel_crtc->plane;
2724
u32 reg, temp;
2725
2726
if (!intel_crtc->active)
2727
return;
2728
2729
intel_crtc_wait_for_pending_flips(crtc);
2730
drm_vblank_off(dev, pipe);
2731
intel_crtc_update_cursor(crtc, false);
2732
2733
intel_disable_plane(dev_priv, plane, pipe);
2734
2735
if (dev_priv->cfb_plane == plane &&
2736
dev_priv->display.disable_fbc)
2737
dev_priv->display.disable_fbc(dev);
2738
2739
intel_disable_pipe(dev_priv, pipe);
2740
2741
/* Disable PF */
2742
I915_WRITE(PF_CTL(pipe), 0);
2743
I915_WRITE(PF_WIN_SZ(pipe), 0);
2744
2745
ironlake_fdi_disable(crtc);
2746
2747
/* This is a horrible layering violation; we should be doing this in
2748
* the connector/encoder ->prepare instead, but we don't always have
2749
* enough information there about the config to know whether it will
2750
* actually be necessary or just cause undesired flicker.
2751
*/
2752
intel_disable_pch_ports(dev_priv, pipe);
2753
2754
intel_disable_transcoder(dev_priv, pipe);
2755
2756
if (HAS_PCH_CPT(dev)) {
2757
/* disable TRANS_DP_CTL */
2758
reg = TRANS_DP_CTL(pipe);
2759
temp = I915_READ(reg);
2760
temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2761
temp |= TRANS_DP_PORT_SEL_NONE;
2762
I915_WRITE(reg, temp);
2763
2764
/* disable DPLL_SEL */
2765
temp = I915_READ(PCH_DPLL_SEL);
2766
switch (pipe) {
2767
case 0:
2768
temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2769
break;
2770
case 1:
2771
temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2772
break;
2773
case 2:
2774
/* FIXME: manage transcoder PLLs? */
2775
temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2776
break;
2777
default:
2778
BUG(); /* wtf */
2779
}
2780
I915_WRITE(PCH_DPLL_SEL, temp);
2781
}
2782
2783
/* disable PCH DPLL */
2784
intel_disable_pch_pll(dev_priv, pipe);
2785
2786
/* Switch from PCDclk to Rawclk */
2787
reg = FDI_RX_CTL(pipe);
2788
temp = I915_READ(reg);
2789
I915_WRITE(reg, temp & ~FDI_PCDCLK);
2790
2791
/* Disable CPU FDI TX PLL */
2792
reg = FDI_TX_CTL(pipe);
2793
temp = I915_READ(reg);
2794
I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2795
2796
POSTING_READ(reg);
2797
udelay(100);
2798
2799
reg = FDI_RX_CTL(pipe);
2800
temp = I915_READ(reg);
2801
I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2802
2803
/* Wait for the clocks to turn off. */
2804
POSTING_READ(reg);
2805
udelay(100);
2806
2807
intel_crtc->active = false;
2808
intel_update_watermarks(dev);
2809
2810
mutex_lock(&dev->struct_mutex);
2811
intel_update_fbc(dev);
2812
intel_clear_scanline_wait(dev);
2813
mutex_unlock(&dev->struct_mutex);
2814
}
2815
2816
static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2817
{
2818
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2819
int pipe = intel_crtc->pipe;
2820
int plane = intel_crtc->plane;
2821
2822
/* XXX: When our outputs are all unaware of DPMS modes other than off
2823
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2824
*/
2825
switch (mode) {
2826
case DRM_MODE_DPMS_ON:
2827
case DRM_MODE_DPMS_STANDBY:
2828
case DRM_MODE_DPMS_SUSPEND:
2829
DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2830
ironlake_crtc_enable(crtc);
2831
break;
2832
2833
case DRM_MODE_DPMS_OFF:
2834
DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2835
ironlake_crtc_disable(crtc);
2836
break;
2837
}
2838
}
2839
2840
static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2841
{
2842
if (!enable && intel_crtc->overlay) {
2843
struct drm_device *dev = intel_crtc->base.dev;
2844
struct drm_i915_private *dev_priv = dev->dev_private;
2845
2846
mutex_lock(&dev->struct_mutex);
2847
dev_priv->mm.interruptible = false;
2848
(void) intel_overlay_switch_off(intel_crtc->overlay);
2849
dev_priv->mm.interruptible = true;
2850
mutex_unlock(&dev->struct_mutex);
2851
}
2852
2853
/* Let userspace switch the overlay on again. In most cases userspace
2854
* has to recompute where to put it anyway.
2855
*/
2856
}
2857
2858
static void i9xx_crtc_enable(struct drm_crtc *crtc)
2859
{
2860
struct drm_device *dev = crtc->dev;
2861
struct drm_i915_private *dev_priv = dev->dev_private;
2862
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2863
int pipe = intel_crtc->pipe;
2864
int plane = intel_crtc->plane;
2865
2866
if (intel_crtc->active)
2867
return;
2868
2869
intel_crtc->active = true;
2870
intel_update_watermarks(dev);
2871
2872
intel_enable_pll(dev_priv, pipe);
2873
intel_enable_pipe(dev_priv, pipe, false);
2874
intel_enable_plane(dev_priv, plane, pipe);
2875
2876
intel_crtc_load_lut(crtc);
2877
intel_update_fbc(dev);
2878
2879
/* Give the overlay scaler a chance to enable if it's on this pipe */
2880
intel_crtc_dpms_overlay(intel_crtc, true);
2881
intel_crtc_update_cursor(crtc, true);
2882
}
2883
2884
static void i9xx_crtc_disable(struct drm_crtc *crtc)
2885
{
2886
struct drm_device *dev = crtc->dev;
2887
struct drm_i915_private *dev_priv = dev->dev_private;
2888
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2889
int pipe = intel_crtc->pipe;
2890
int plane = intel_crtc->plane;
2891
2892
if (!intel_crtc->active)
2893
return;
2894
2895
/* Give the overlay scaler a chance to disable if it's on this pipe */
2896
intel_crtc_wait_for_pending_flips(crtc);
2897
drm_vblank_off(dev, pipe);
2898
intel_crtc_dpms_overlay(intel_crtc, false);
2899
intel_crtc_update_cursor(crtc, false);
2900
2901
if (dev_priv->cfb_plane == plane &&
2902
dev_priv->display.disable_fbc)
2903
dev_priv->display.disable_fbc(dev);
2904
2905
intel_disable_plane(dev_priv, plane, pipe);
2906
intel_disable_pipe(dev_priv, pipe);
2907
intel_disable_pll(dev_priv, pipe);
2908
2909
intel_crtc->active = false;
2910
intel_update_fbc(dev);
2911
intel_update_watermarks(dev);
2912
intel_clear_scanline_wait(dev);
2913
}
2914
2915
static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2916
{
2917
/* XXX: When our outputs are all unaware of DPMS modes other than off
2918
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2919
*/
2920
switch (mode) {
2921
case DRM_MODE_DPMS_ON:
2922
case DRM_MODE_DPMS_STANDBY:
2923
case DRM_MODE_DPMS_SUSPEND:
2924
i9xx_crtc_enable(crtc);
2925
break;
2926
case DRM_MODE_DPMS_OFF:
2927
i9xx_crtc_disable(crtc);
2928
break;
2929
}
2930
}
2931
2932
/**
2933
* Sets the power management mode of the pipe and plane.
2934
*/
2935
static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2936
{
2937
struct drm_device *dev = crtc->dev;
2938
struct drm_i915_private *dev_priv = dev->dev_private;
2939
struct drm_i915_master_private *master_priv;
2940
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2941
int pipe = intel_crtc->pipe;
2942
bool enabled;
2943
2944
if (intel_crtc->dpms_mode == mode)
2945
return;
2946
2947
intel_crtc->dpms_mode = mode;
2948
2949
dev_priv->display.dpms(crtc, mode);
2950
2951
if (!dev->primary->master)
2952
return;
2953
2954
master_priv = dev->primary->master->driver_priv;
2955
if (!master_priv->sarea_priv)
2956
return;
2957
2958
enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2959
2960
switch (pipe) {
2961
case 0:
2962
master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2963
master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2964
break;
2965
case 1:
2966
master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2967
master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2968
break;
2969
default:
2970
DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
2971
break;
2972
}
2973
}
2974
2975
static void intel_crtc_disable(struct drm_crtc *crtc)
2976
{
2977
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2978
struct drm_device *dev = crtc->dev;
2979
2980
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2981
2982
if (crtc->fb) {
2983
mutex_lock(&dev->struct_mutex);
2984
i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2985
mutex_unlock(&dev->struct_mutex);
2986
}
2987
}
2988
2989
/* Prepare for a mode set.
2990
*
2991
* Note we could be a lot smarter here. We need to figure out which outputs
2992
* will be enabled, which disabled (in short, how the config will changes)
2993
* and perform the minimum necessary steps to accomplish that, e.g. updating
2994
* watermarks, FBC configuration, making sure PLLs are programmed correctly,
2995
* panel fitting is in the proper state, etc.
2996
*/
2997
static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2998
{
2999
i9xx_crtc_disable(crtc);
3000
}
3001
3002
static void i9xx_crtc_commit(struct drm_crtc *crtc)
3003
{
3004
i9xx_crtc_enable(crtc);
3005
}
3006
3007
static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3008
{
3009
ironlake_crtc_disable(crtc);
3010
}
3011
3012
static void ironlake_crtc_commit(struct drm_crtc *crtc)
3013
{
3014
ironlake_crtc_enable(crtc);
3015
}
3016
3017
void intel_encoder_prepare (struct drm_encoder *encoder)
3018
{
3019
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3020
/* lvds has its own version of prepare see intel_lvds_prepare */
3021
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3022
}
3023
3024
void intel_encoder_commit (struct drm_encoder *encoder)
3025
{
3026
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3027
/* lvds has its own version of commit see intel_lvds_commit */
3028
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3029
}
3030
3031
void intel_encoder_destroy(struct drm_encoder *encoder)
3032
{
3033
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3034
3035
drm_encoder_cleanup(encoder);
3036
kfree(intel_encoder);
3037
}
3038
3039
static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3040
struct drm_display_mode *mode,
3041
struct drm_display_mode *adjusted_mode)
3042
{
3043
struct drm_device *dev = crtc->dev;
3044
3045
if (HAS_PCH_SPLIT(dev)) {
3046
/* FDI link clock is fixed at 2.7G */
3047
if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3048
return false;
3049
}
3050
3051
/* XXX some encoders set the crtcinfo, others don't.
3052
* Obviously we need some form of conflict resolution here...
3053
*/
3054
if (adjusted_mode->crtc_htotal == 0)
3055
drm_mode_set_crtcinfo(adjusted_mode, 0);
3056
3057
return true;
3058
}
3059
3060
static int i945_get_display_clock_speed(struct drm_device *dev)
3061
{
3062
return 400000;
3063
}
3064
3065
static int i915_get_display_clock_speed(struct drm_device *dev)
3066
{
3067
return 333000;
3068
}
3069
3070
static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3071
{
3072
return 200000;
3073
}
3074
3075
static int i915gm_get_display_clock_speed(struct drm_device *dev)
3076
{
3077
u16 gcfgc = 0;
3078
3079
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3080
3081
if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3082
return 133000;
3083
else {
3084
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3085
case GC_DISPLAY_CLOCK_333_MHZ:
3086
return 333000;
3087
default:
3088
case GC_DISPLAY_CLOCK_190_200_MHZ:
3089
return 190000;
3090
}
3091
}
3092
}
3093
3094
static int i865_get_display_clock_speed(struct drm_device *dev)
3095
{
3096
return 266000;
3097
}
3098
3099
static int i855_get_display_clock_speed(struct drm_device *dev)
3100
{
3101
u16 hpllcc = 0;
3102
/* Assume that the hardware is in the high speed state. This
3103
* should be the default.
3104
*/
3105
switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3106
case GC_CLOCK_133_200:
3107
case GC_CLOCK_100_200:
3108
return 200000;
3109
case GC_CLOCK_166_250:
3110
return 250000;
3111
case GC_CLOCK_100_133:
3112
return 133000;
3113
}
3114
3115
/* Shouldn't happen */
3116
return 0;
3117
}
3118
3119
static int i830_get_display_clock_speed(struct drm_device *dev)
3120
{
3121
return 133000;
3122
}
3123
3124
struct fdi_m_n {
3125
u32 tu;
3126
u32 gmch_m;
3127
u32 gmch_n;
3128
u32 link_m;
3129
u32 link_n;
3130
};
3131
3132
static void
3133
fdi_reduce_ratio(u32 *num, u32 *den)
3134
{
3135
while (*num > 0xffffff || *den > 0xffffff) {
3136
*num >>= 1;
3137
*den >>= 1;
3138
}
3139
}
3140
3141
static void
3142
ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3143
int link_clock, struct fdi_m_n *m_n)
3144
{
3145
m_n->tu = 64; /* default size */
3146
3147
/* BUG_ON(pixel_clock > INT_MAX / 36); */
3148
m_n->gmch_m = bits_per_pixel * pixel_clock;
3149
m_n->gmch_n = link_clock * nlanes * 8;
3150
fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3151
3152
m_n->link_m = pixel_clock;
3153
m_n->link_n = link_clock;
3154
fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3155
}
3156
3157
3158
struct intel_watermark_params {
3159
unsigned long fifo_size;
3160
unsigned long max_wm;
3161
unsigned long default_wm;
3162
unsigned long guard_size;
3163
unsigned long cacheline_size;
3164
};
3165
3166
/* Pineview has different values for various configs */
3167
static const struct intel_watermark_params pineview_display_wm = {
3168
PINEVIEW_DISPLAY_FIFO,
3169
PINEVIEW_MAX_WM,
3170
PINEVIEW_DFT_WM,
3171
PINEVIEW_GUARD_WM,
3172
PINEVIEW_FIFO_LINE_SIZE
3173
};
3174
static const struct intel_watermark_params pineview_display_hplloff_wm = {
3175
PINEVIEW_DISPLAY_FIFO,
3176
PINEVIEW_MAX_WM,
3177
PINEVIEW_DFT_HPLLOFF_WM,
3178
PINEVIEW_GUARD_WM,
3179
PINEVIEW_FIFO_LINE_SIZE
3180
};
3181
static const struct intel_watermark_params pineview_cursor_wm = {
3182
PINEVIEW_CURSOR_FIFO,
3183
PINEVIEW_CURSOR_MAX_WM,
3184
PINEVIEW_CURSOR_DFT_WM,
3185
PINEVIEW_CURSOR_GUARD_WM,
3186
PINEVIEW_FIFO_LINE_SIZE,
3187
};
3188
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3189
PINEVIEW_CURSOR_FIFO,
3190
PINEVIEW_CURSOR_MAX_WM,
3191
PINEVIEW_CURSOR_DFT_WM,
3192
PINEVIEW_CURSOR_GUARD_WM,
3193
PINEVIEW_FIFO_LINE_SIZE
3194
};
3195
static const struct intel_watermark_params g4x_wm_info = {
3196
G4X_FIFO_SIZE,
3197
G4X_MAX_WM,
3198
G4X_MAX_WM,
3199
2,
3200
G4X_FIFO_LINE_SIZE,
3201
};
3202
static const struct intel_watermark_params g4x_cursor_wm_info = {
3203
I965_CURSOR_FIFO,
3204
I965_CURSOR_MAX_WM,
3205
I965_CURSOR_DFT_WM,
3206
2,
3207
G4X_FIFO_LINE_SIZE,
3208
};
3209
static const struct intel_watermark_params i965_cursor_wm_info = {
3210
I965_CURSOR_FIFO,
3211
I965_CURSOR_MAX_WM,
3212
I965_CURSOR_DFT_WM,
3213
2,
3214
I915_FIFO_LINE_SIZE,
3215
};
3216
static const struct intel_watermark_params i945_wm_info = {
3217
I945_FIFO_SIZE,
3218
I915_MAX_WM,
3219
1,
3220
2,
3221
I915_FIFO_LINE_SIZE
3222
};
3223
static const struct intel_watermark_params i915_wm_info = {
3224
I915_FIFO_SIZE,
3225
I915_MAX_WM,
3226
1,
3227
2,
3228
I915_FIFO_LINE_SIZE
3229
};
3230
static const struct intel_watermark_params i855_wm_info = {
3231
I855GM_FIFO_SIZE,
3232
I915_MAX_WM,
3233
1,
3234
2,
3235
I830_FIFO_LINE_SIZE
3236
};
3237
static const struct intel_watermark_params i830_wm_info = {
3238
I830_FIFO_SIZE,
3239
I915_MAX_WM,
3240
1,
3241
2,
3242
I830_FIFO_LINE_SIZE
3243
};
3244
3245
static const struct intel_watermark_params ironlake_display_wm_info = {
3246
ILK_DISPLAY_FIFO,
3247
ILK_DISPLAY_MAXWM,
3248
ILK_DISPLAY_DFTWM,
3249
2,
3250
ILK_FIFO_LINE_SIZE
3251
};
3252
static const struct intel_watermark_params ironlake_cursor_wm_info = {
3253
ILK_CURSOR_FIFO,
3254
ILK_CURSOR_MAXWM,
3255
ILK_CURSOR_DFTWM,
3256
2,
3257
ILK_FIFO_LINE_SIZE
3258
};
3259
static const struct intel_watermark_params ironlake_display_srwm_info = {
3260
ILK_DISPLAY_SR_FIFO,
3261
ILK_DISPLAY_MAX_SRWM,
3262
ILK_DISPLAY_DFT_SRWM,
3263
2,
3264
ILK_FIFO_LINE_SIZE
3265
};
3266
static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3267
ILK_CURSOR_SR_FIFO,
3268
ILK_CURSOR_MAX_SRWM,
3269
ILK_CURSOR_DFT_SRWM,
3270
2,
3271
ILK_FIFO_LINE_SIZE
3272
};
3273
3274
static const struct intel_watermark_params sandybridge_display_wm_info = {
3275
SNB_DISPLAY_FIFO,
3276
SNB_DISPLAY_MAXWM,
3277
SNB_DISPLAY_DFTWM,
3278
2,
3279
SNB_FIFO_LINE_SIZE
3280
};
3281
static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3282
SNB_CURSOR_FIFO,
3283
SNB_CURSOR_MAXWM,
3284
SNB_CURSOR_DFTWM,
3285
2,
3286
SNB_FIFO_LINE_SIZE
3287
};
3288
static const struct intel_watermark_params sandybridge_display_srwm_info = {
3289
SNB_DISPLAY_SR_FIFO,
3290
SNB_DISPLAY_MAX_SRWM,
3291
SNB_DISPLAY_DFT_SRWM,
3292
2,
3293
SNB_FIFO_LINE_SIZE
3294
};
3295
static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3296
SNB_CURSOR_SR_FIFO,
3297
SNB_CURSOR_MAX_SRWM,
3298
SNB_CURSOR_DFT_SRWM,
3299
2,
3300
SNB_FIFO_LINE_SIZE
3301
};
3302
3303
3304
/**
3305
* intel_calculate_wm - calculate watermark level
3306
* @clock_in_khz: pixel clock
3307
* @wm: chip FIFO params
3308
* @pixel_size: display pixel size
3309
* @latency_ns: memory latency for the platform
3310
*
3311
* Calculate the watermark level (the level at which the display plane will
3312
* start fetching from memory again). Each chip has a different display
3313
* FIFO size and allocation, so the caller needs to figure that out and pass
3314
* in the correct intel_watermark_params structure.
3315
*
3316
* As the pixel clock runs, the FIFO will be drained at a rate that depends
3317
* on the pixel size. When it reaches the watermark level, it'll start
3318
* fetching FIFO line sized based chunks from memory until the FIFO fills
3319
* past the watermark point. If the FIFO drains completely, a FIFO underrun
3320
* will occur, and a display engine hang could result.
3321
*/
3322
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3323
const struct intel_watermark_params *wm,
3324
int fifo_size,
3325
int pixel_size,
3326
unsigned long latency_ns)
3327
{
3328
long entries_required, wm_size;
3329
3330
/*
3331
* Note: we need to make sure we don't overflow for various clock &
3332
* latency values.
3333
* clocks go from a few thousand to several hundred thousand.
3334
* latency is usually a few thousand
3335
*/
3336
entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3337
1000;
3338
entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3339
3340
DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3341
3342
wm_size = fifo_size - (entries_required + wm->guard_size);
3343
3344
DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3345
3346
/* Don't promote wm_size to unsigned... */
3347
if (wm_size > (long)wm->max_wm)
3348
wm_size = wm->max_wm;
3349
if (wm_size <= 0)
3350
wm_size = wm->default_wm;
3351
return wm_size;
3352
}
3353
3354
struct cxsr_latency {
3355
int is_desktop;
3356
int is_ddr3;
3357
unsigned long fsb_freq;
3358
unsigned long mem_freq;
3359
unsigned long display_sr;
3360
unsigned long display_hpll_disable;
3361
unsigned long cursor_sr;
3362
unsigned long cursor_hpll_disable;
3363
};
3364
3365
static const struct cxsr_latency cxsr_latency_table[] = {
3366
{1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3367
{1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3368
{1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3369
{1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3370
{1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3371
3372
{1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3373
{1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3374
{1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3375
{1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3376
{1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3377
3378
{1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3379
{1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3380
{1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3381
{1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3382
{1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3383
3384
{0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3385
{0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3386
{0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3387
{0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3388
{0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3389
3390
{0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3391
{0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3392
{0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3393
{0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3394
{0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3395
3396
{0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3397
{0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3398
{0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3399
{0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3400
{0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3401
};
3402
3403
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3404
int is_ddr3,
3405
int fsb,
3406
int mem)
3407
{
3408
const struct cxsr_latency *latency;
3409
int i;
3410
3411
if (fsb == 0 || mem == 0)
3412
return NULL;
3413
3414
for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3415
latency = &cxsr_latency_table[i];
3416
if (is_desktop == latency->is_desktop &&
3417
is_ddr3 == latency->is_ddr3 &&
3418
fsb == latency->fsb_freq && mem == latency->mem_freq)
3419
return latency;
3420
}
3421
3422
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3423
3424
return NULL;
3425
}
3426
3427
static void pineview_disable_cxsr(struct drm_device *dev)
3428
{
3429
struct drm_i915_private *dev_priv = dev->dev_private;
3430
3431
/* deactivate cxsr */
3432
I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3433
}
3434
3435
/*
3436
* Latency for FIFO fetches is dependent on several factors:
3437
* - memory configuration (speed, channels)
3438
* - chipset
3439
* - current MCH state
3440
* It can be fairly high in some situations, so here we assume a fairly
3441
* pessimal value. It's a tradeoff between extra memory fetches (if we
3442
* set this value too high, the FIFO will fetch frequently to stay full)
3443
* and power consumption (set it too low to save power and we might see
3444
* FIFO underruns and display "flicker").
3445
*
3446
* A value of 5us seems to be a good balance; safe for very low end
3447
* platforms but not overly aggressive on lower latency configs.
3448
*/
3449
static const int latency_ns = 5000;
3450
3451
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3452
{
3453
struct drm_i915_private *dev_priv = dev->dev_private;
3454
uint32_t dsparb = I915_READ(DSPARB);
3455
int size;
3456
3457
size = dsparb & 0x7f;
3458
if (plane)
3459
size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3460
3461
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3462
plane ? "B" : "A", size);
3463
3464
return size;
3465
}
3466
3467
static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3468
{
3469
struct drm_i915_private *dev_priv = dev->dev_private;
3470
uint32_t dsparb = I915_READ(DSPARB);
3471
int size;
3472
3473
size = dsparb & 0x1ff;
3474
if (plane)
3475
size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3476
size >>= 1; /* Convert to cachelines */
3477
3478
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3479
plane ? "B" : "A", size);
3480
3481
return size;
3482
}
3483
3484
static int i845_get_fifo_size(struct drm_device *dev, int plane)
3485
{
3486
struct drm_i915_private *dev_priv = dev->dev_private;
3487
uint32_t dsparb = I915_READ(DSPARB);
3488
int size;
3489
3490
size = dsparb & 0x7f;
3491
size >>= 2; /* Convert to cachelines */
3492
3493
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3494
plane ? "B" : "A",
3495
size);
3496
3497
return size;
3498
}
3499
3500
static int i830_get_fifo_size(struct drm_device *dev, int plane)
3501
{
3502
struct drm_i915_private *dev_priv = dev->dev_private;
3503
uint32_t dsparb = I915_READ(DSPARB);
3504
int size;
3505
3506
size = dsparb & 0x7f;
3507
size >>= 1; /* Convert to cachelines */
3508
3509
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3510
plane ? "B" : "A", size);
3511
3512
return size;
3513
}
3514
3515
static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3516
{
3517
struct drm_crtc *crtc, *enabled = NULL;
3518
3519
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3520
if (crtc->enabled && crtc->fb) {
3521
if (enabled)
3522
return NULL;
3523
enabled = crtc;
3524
}
3525
}
3526
3527
return enabled;
3528
}
3529
3530
static void pineview_update_wm(struct drm_device *dev)
3531
{
3532
struct drm_i915_private *dev_priv = dev->dev_private;
3533
struct drm_crtc *crtc;
3534
const struct cxsr_latency *latency;
3535
u32 reg;
3536
unsigned long wm;
3537
3538
latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3539
dev_priv->fsb_freq, dev_priv->mem_freq);
3540
if (!latency) {
3541
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3542
pineview_disable_cxsr(dev);
3543
return;
3544
}
3545
3546
crtc = single_enabled_crtc(dev);
3547
if (crtc) {
3548
int clock = crtc->mode.clock;
3549
int pixel_size = crtc->fb->bits_per_pixel / 8;
3550
3551
/* Display SR */
3552
wm = intel_calculate_wm(clock, &pineview_display_wm,
3553
pineview_display_wm.fifo_size,
3554
pixel_size, latency->display_sr);
3555
reg = I915_READ(DSPFW1);
3556
reg &= ~DSPFW_SR_MASK;
3557
reg |= wm << DSPFW_SR_SHIFT;
3558
I915_WRITE(DSPFW1, reg);
3559
DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3560
3561
/* cursor SR */
3562
wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3563
pineview_display_wm.fifo_size,
3564
pixel_size, latency->cursor_sr);
3565
reg = I915_READ(DSPFW3);
3566
reg &= ~DSPFW_CURSOR_SR_MASK;
3567
reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3568
I915_WRITE(DSPFW3, reg);
3569
3570
/* Display HPLL off SR */
3571
wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3572
pineview_display_hplloff_wm.fifo_size,
3573
pixel_size, latency->display_hpll_disable);
3574
reg = I915_READ(DSPFW3);
3575
reg &= ~DSPFW_HPLL_SR_MASK;
3576
reg |= wm & DSPFW_HPLL_SR_MASK;
3577
I915_WRITE(DSPFW3, reg);
3578
3579
/* cursor HPLL off SR */
3580
wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3581
pineview_display_hplloff_wm.fifo_size,
3582
pixel_size, latency->cursor_hpll_disable);
3583
reg = I915_READ(DSPFW3);
3584
reg &= ~DSPFW_HPLL_CURSOR_MASK;
3585
reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3586
I915_WRITE(DSPFW3, reg);
3587
DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3588
3589
/* activate cxsr */
3590
I915_WRITE(DSPFW3,
3591
I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3592
DRM_DEBUG_KMS("Self-refresh is enabled\n");
3593
} else {
3594
pineview_disable_cxsr(dev);
3595
DRM_DEBUG_KMS("Self-refresh is disabled\n");
3596
}
3597
}
3598
3599
static bool g4x_compute_wm0(struct drm_device *dev,
3600
int plane,
3601
const struct intel_watermark_params *display,
3602
int display_latency_ns,
3603
const struct intel_watermark_params *cursor,
3604
int cursor_latency_ns,
3605
int *plane_wm,
3606
int *cursor_wm)
3607
{
3608
struct drm_crtc *crtc;
3609
int htotal, hdisplay, clock, pixel_size;
3610
int line_time_us, line_count;
3611
int entries, tlb_miss;
3612
3613
crtc = intel_get_crtc_for_plane(dev, plane);
3614
if (crtc->fb == NULL || !crtc->enabled) {
3615
*cursor_wm = cursor->guard_size;
3616
*plane_wm = display->guard_size;
3617
return false;
3618
}
3619
3620
htotal = crtc->mode.htotal;
3621
hdisplay = crtc->mode.hdisplay;
3622
clock = crtc->mode.clock;
3623
pixel_size = crtc->fb->bits_per_pixel / 8;
3624
3625
/* Use the small buffer method to calculate plane watermark */
3626
entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3627
tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3628
if (tlb_miss > 0)
3629
entries += tlb_miss;
3630
entries = DIV_ROUND_UP(entries, display->cacheline_size);
3631
*plane_wm = entries + display->guard_size;
3632
if (*plane_wm > (int)display->max_wm)
3633
*plane_wm = display->max_wm;
3634
3635
/* Use the large buffer method to calculate cursor watermark */
3636
line_time_us = ((htotal * 1000) / clock);
3637
line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3638
entries = line_count * 64 * pixel_size;
3639
tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3640
if (tlb_miss > 0)
3641
entries += tlb_miss;
3642
entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3643
*cursor_wm = entries + cursor->guard_size;
3644
if (*cursor_wm > (int)cursor->max_wm)
3645
*cursor_wm = (int)cursor->max_wm;
3646
3647
return true;
3648
}
3649
3650
/*
3651
* Check the wm result.
3652
*
3653
* If any calculated watermark values is larger than the maximum value that
3654
* can be programmed into the associated watermark register, that watermark
3655
* must be disabled.
3656
*/
3657
static bool g4x_check_srwm(struct drm_device *dev,
3658
int display_wm, int cursor_wm,
3659
const struct intel_watermark_params *display,
3660
const struct intel_watermark_params *cursor)
3661
{
3662
DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3663
display_wm, cursor_wm);
3664
3665
if (display_wm > display->max_wm) {
3666
DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
3667
display_wm, display->max_wm);
3668
return false;
3669
}
3670
3671
if (cursor_wm > cursor->max_wm) {
3672
DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
3673
cursor_wm, cursor->max_wm);
3674
return false;
3675
}
3676
3677
if (!(display_wm || cursor_wm)) {
3678
DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3679
return false;
3680
}
3681
3682
return true;
3683
}
3684
3685
static bool g4x_compute_srwm(struct drm_device *dev,
3686
int plane,
3687
int latency_ns,
3688
const struct intel_watermark_params *display,
3689
const struct intel_watermark_params *cursor,
3690
int *display_wm, int *cursor_wm)
3691
{
3692
struct drm_crtc *crtc;
3693
int hdisplay, htotal, pixel_size, clock;
3694
unsigned long line_time_us;
3695
int line_count, line_size;
3696
int small, large;
3697
int entries;
3698
3699
if (!latency_ns) {
3700
*display_wm = *cursor_wm = 0;
3701
return false;
3702
}
3703
3704
crtc = intel_get_crtc_for_plane(dev, plane);
3705
hdisplay = crtc->mode.hdisplay;
3706
htotal = crtc->mode.htotal;
3707
clock = crtc->mode.clock;
3708
pixel_size = crtc->fb->bits_per_pixel / 8;
3709
3710
line_time_us = (htotal * 1000) / clock;
3711
line_count = (latency_ns / line_time_us + 1000) / 1000;
3712
line_size = hdisplay * pixel_size;
3713
3714
/* Use the minimum of the small and large buffer method for primary */
3715
small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3716
large = line_count * line_size;
3717
3718
entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3719
*display_wm = entries + display->guard_size;
3720
3721
/* calculate the self-refresh watermark for display cursor */
3722
entries = line_count * pixel_size * 64;
3723
entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3724
*cursor_wm = entries + cursor->guard_size;
3725
3726
return g4x_check_srwm(dev,
3727
*display_wm, *cursor_wm,
3728
display, cursor);
3729
}
3730
3731
#define single_plane_enabled(mask) is_power_of_2(mask)
3732
3733
static void g4x_update_wm(struct drm_device *dev)
3734
{
3735
static const int sr_latency_ns = 12000;
3736
struct drm_i915_private *dev_priv = dev->dev_private;
3737
int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3738
int plane_sr, cursor_sr;
3739
unsigned int enabled = 0;
3740
3741
if (g4x_compute_wm0(dev, 0,
3742
&g4x_wm_info, latency_ns,
3743
&g4x_cursor_wm_info, latency_ns,
3744
&planea_wm, &cursora_wm))
3745
enabled |= 1;
3746
3747
if (g4x_compute_wm0(dev, 1,
3748
&g4x_wm_info, latency_ns,
3749
&g4x_cursor_wm_info, latency_ns,
3750
&planeb_wm, &cursorb_wm))
3751
enabled |= 2;
3752
3753
plane_sr = cursor_sr = 0;
3754
if (single_plane_enabled(enabled) &&
3755
g4x_compute_srwm(dev, ffs(enabled) - 1,
3756
sr_latency_ns,
3757
&g4x_wm_info,
3758
&g4x_cursor_wm_info,
3759
&plane_sr, &cursor_sr))
3760
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3761
else
3762
I915_WRITE(FW_BLC_SELF,
3763
I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
3764
3765
DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3766
planea_wm, cursora_wm,
3767
planeb_wm, cursorb_wm,
3768
plane_sr, cursor_sr);
3769
3770
I915_WRITE(DSPFW1,
3771
(plane_sr << DSPFW_SR_SHIFT) |
3772
(cursorb_wm << DSPFW_CURSORB_SHIFT) |
3773
(planeb_wm << DSPFW_PLANEB_SHIFT) |
3774
planea_wm);
3775
I915_WRITE(DSPFW2,
3776
(I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3777
(cursora_wm << DSPFW_CURSORA_SHIFT));
3778
/* HPLL off in SR has some issues on G4x... disable it */
3779
I915_WRITE(DSPFW3,
3780
(I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3781
(cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3782
}
3783
3784
static void i965_update_wm(struct drm_device *dev)
3785
{
3786
struct drm_i915_private *dev_priv = dev->dev_private;
3787
struct drm_crtc *crtc;
3788
int srwm = 1;
3789
int cursor_sr = 16;
3790
3791
/* Calc sr entries for one plane configs */
3792
crtc = single_enabled_crtc(dev);
3793
if (crtc) {
3794
/* self-refresh has much higher latency */
3795
static const int sr_latency_ns = 12000;
3796
int clock = crtc->mode.clock;
3797
int htotal = crtc->mode.htotal;
3798
int hdisplay = crtc->mode.hdisplay;
3799
int pixel_size = crtc->fb->bits_per_pixel / 8;
3800
unsigned long line_time_us;
3801
int entries;
3802
3803
line_time_us = ((htotal * 1000) / clock);
3804
3805
/* Use ns/us then divide to preserve precision */
3806
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3807
pixel_size * hdisplay;
3808
entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
3809
srwm = I965_FIFO_SIZE - entries;
3810
if (srwm < 0)
3811
srwm = 1;
3812
srwm &= 0x1ff;
3813
DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
3814
entries, srwm);
3815
3816
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3817
pixel_size * 64;
3818
entries = DIV_ROUND_UP(entries,
3819
i965_cursor_wm_info.cacheline_size);
3820
cursor_sr = i965_cursor_wm_info.fifo_size -
3821
(entries + i965_cursor_wm_info.guard_size);
3822
3823
if (cursor_sr > i965_cursor_wm_info.max_wm)
3824
cursor_sr = i965_cursor_wm_info.max_wm;
3825
3826
DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3827
"cursor %d\n", srwm, cursor_sr);
3828
3829
if (IS_CRESTLINE(dev))
3830
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3831
} else {
3832
/* Turn off self refresh if both pipes are enabled */
3833
if (IS_CRESTLINE(dev))
3834
I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3835
& ~FW_BLC_SELF_EN);
3836
}
3837
3838
DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3839
srwm);
3840
3841
/* 965 has limitations... */
3842
I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
3843
(8 << 16) | (8 << 8) | (8 << 0));
3844
I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3845
/* update cursor SR watermark */
3846
I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3847
}
3848
3849
static void i9xx_update_wm(struct drm_device *dev)
3850
{
3851
struct drm_i915_private *dev_priv = dev->dev_private;
3852
const struct intel_watermark_params *wm_info;
3853
uint32_t fwater_lo;
3854
uint32_t fwater_hi;
3855
int cwm, srwm = 1;
3856
int fifo_size;
3857
int planea_wm, planeb_wm;
3858
struct drm_crtc *crtc, *enabled = NULL;
3859
3860
if (IS_I945GM(dev))
3861
wm_info = &i945_wm_info;
3862
else if (!IS_GEN2(dev))
3863
wm_info = &i915_wm_info;
3864
else
3865
wm_info = &i855_wm_info;
3866
3867
fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3868
crtc = intel_get_crtc_for_plane(dev, 0);
3869
if (crtc->enabled && crtc->fb) {
3870
planea_wm = intel_calculate_wm(crtc->mode.clock,
3871
wm_info, fifo_size,
3872
crtc->fb->bits_per_pixel / 8,
3873
latency_ns);
3874
enabled = crtc;
3875
} else
3876
planea_wm = fifo_size - wm_info->guard_size;
3877
3878
fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3879
crtc = intel_get_crtc_for_plane(dev, 1);
3880
if (crtc->enabled && crtc->fb) {
3881
planeb_wm = intel_calculate_wm(crtc->mode.clock,
3882
wm_info, fifo_size,
3883
crtc->fb->bits_per_pixel / 8,
3884
latency_ns);
3885
if (enabled == NULL)
3886
enabled = crtc;
3887
else
3888
enabled = NULL;
3889
} else
3890
planeb_wm = fifo_size - wm_info->guard_size;
3891
3892
DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3893
3894
/*
3895
* Overlay gets an aggressive default since video jitter is bad.
3896
*/
3897
cwm = 2;
3898
3899
/* Play safe and disable self-refresh before adjusting watermarks. */
3900
if (IS_I945G(dev) || IS_I945GM(dev))
3901
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
3902
else if (IS_I915GM(dev))
3903
I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3904
3905
/* Calc sr entries for one plane configs */
3906
if (HAS_FW_BLC(dev) && enabled) {
3907
/* self-refresh has much higher latency */
3908
static const int sr_latency_ns = 6000;
3909
int clock = enabled->mode.clock;
3910
int htotal = enabled->mode.htotal;
3911
int hdisplay = enabled->mode.hdisplay;
3912
int pixel_size = enabled->fb->bits_per_pixel / 8;
3913
unsigned long line_time_us;
3914
int entries;
3915
3916
line_time_us = (htotal * 1000) / clock;
3917
3918
/* Use ns/us then divide to preserve precision */
3919
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3920
pixel_size * hdisplay;
3921
entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
3922
DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
3923
srwm = wm_info->fifo_size - entries;
3924
if (srwm < 0)
3925
srwm = 1;
3926
3927
if (IS_I945G(dev) || IS_I945GM(dev))
3928
I915_WRITE(FW_BLC_SELF,
3929
FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3930
else if (IS_I915GM(dev))
3931
I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3932
}
3933
3934
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3935
planea_wm, planeb_wm, cwm, srwm);
3936
3937
fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3938
fwater_hi = (cwm & 0x1f);
3939
3940
/* Set request length to 8 cachelines per fetch */
3941
fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3942
fwater_hi = fwater_hi | (1 << 8);
3943
3944
I915_WRITE(FW_BLC, fwater_lo);
3945
I915_WRITE(FW_BLC2, fwater_hi);
3946
3947
if (HAS_FW_BLC(dev)) {
3948
if (enabled) {
3949
if (IS_I945G(dev) || IS_I945GM(dev))
3950
I915_WRITE(FW_BLC_SELF,
3951
FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
3952
else if (IS_I915GM(dev))
3953
I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3954
DRM_DEBUG_KMS("memory self refresh enabled\n");
3955
} else
3956
DRM_DEBUG_KMS("memory self refresh disabled\n");
3957
}
3958
}
3959
3960
static void i830_update_wm(struct drm_device *dev)
3961
{
3962
struct drm_i915_private *dev_priv = dev->dev_private;
3963
struct drm_crtc *crtc;
3964
uint32_t fwater_lo;
3965
int planea_wm;
3966
3967
crtc = single_enabled_crtc(dev);
3968
if (crtc == NULL)
3969
return;
3970
3971
planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
3972
dev_priv->display.get_fifo_size(dev, 0),
3973
crtc->fb->bits_per_pixel / 8,
3974
latency_ns);
3975
fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3976
fwater_lo |= (3<<8) | planea_wm;
3977
3978
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3979
3980
I915_WRITE(FW_BLC, fwater_lo);
3981
}
3982
3983
#define ILK_LP0_PLANE_LATENCY 700
3984
#define ILK_LP0_CURSOR_LATENCY 1300
3985
3986
/*
3987
* Check the wm result.
3988
*
3989
* If any calculated watermark values is larger than the maximum value that
3990
* can be programmed into the associated watermark register, that watermark
3991
* must be disabled.
3992
*/
3993
static bool ironlake_check_srwm(struct drm_device *dev, int level,
3994
int fbc_wm, int display_wm, int cursor_wm,
3995
const struct intel_watermark_params *display,
3996
const struct intel_watermark_params *cursor)
3997
{
3998
struct drm_i915_private *dev_priv = dev->dev_private;
3999
4000
DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4001
" cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4002
4003
if (fbc_wm > SNB_FBC_MAX_SRWM) {
4004
DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4005
fbc_wm, SNB_FBC_MAX_SRWM, level);
4006
4007
/* fbc has it's own way to disable FBC WM */
4008
I915_WRITE(DISP_ARB_CTL,
4009
I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4010
return false;
4011
}
4012
4013
if (display_wm > display->max_wm) {
4014
DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4015
display_wm, SNB_DISPLAY_MAX_SRWM, level);
4016
return false;
4017
}
4018
4019
if (cursor_wm > cursor->max_wm) {
4020
DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4021
cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4022
return false;
4023
}
4024
4025
if (!(fbc_wm || display_wm || cursor_wm)) {
4026
DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4027
return false;
4028
}
4029
4030
return true;
4031
}
4032
4033
/*
4034
* Compute watermark values of WM[1-3],
4035
*/
4036
static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4037
int latency_ns,
4038
const struct intel_watermark_params *display,
4039
const struct intel_watermark_params *cursor,
4040
int *fbc_wm, int *display_wm, int *cursor_wm)
4041
{
4042
struct drm_crtc *crtc;
4043
unsigned long line_time_us;
4044
int hdisplay, htotal, pixel_size, clock;
4045
int line_count, line_size;
4046
int small, large;
4047
int entries;
4048
4049
if (!latency_ns) {
4050
*fbc_wm = *display_wm = *cursor_wm = 0;
4051
return false;
4052
}
4053
4054
crtc = intel_get_crtc_for_plane(dev, plane);
4055
hdisplay = crtc->mode.hdisplay;
4056
htotal = crtc->mode.htotal;
4057
clock = crtc->mode.clock;
4058
pixel_size = crtc->fb->bits_per_pixel / 8;
4059
4060
line_time_us = (htotal * 1000) / clock;
4061
line_count = (latency_ns / line_time_us + 1000) / 1000;
4062
line_size = hdisplay * pixel_size;
4063
4064
/* Use the minimum of the small and large buffer method for primary */
4065
small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4066
large = line_count * line_size;
4067
4068
entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4069
*display_wm = entries + display->guard_size;
4070
4071
/*
4072
* Spec says:
4073
* FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4074
*/
4075
*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4076
4077
/* calculate the self-refresh watermark for display cursor */
4078
entries = line_count * pixel_size * 64;
4079
entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4080
*cursor_wm = entries + cursor->guard_size;
4081
4082
return ironlake_check_srwm(dev, level,
4083
*fbc_wm, *display_wm, *cursor_wm,
4084
display, cursor);
4085
}
4086
4087
static void ironlake_update_wm(struct drm_device *dev)
4088
{
4089
struct drm_i915_private *dev_priv = dev->dev_private;
4090
int fbc_wm, plane_wm, cursor_wm;
4091
unsigned int enabled;
4092
4093
enabled = 0;
4094
if (g4x_compute_wm0(dev, 0,
4095
&ironlake_display_wm_info,
4096
ILK_LP0_PLANE_LATENCY,
4097
&ironlake_cursor_wm_info,
4098
ILK_LP0_CURSOR_LATENCY,
4099
&plane_wm, &cursor_wm)) {
4100
I915_WRITE(WM0_PIPEA_ILK,
4101
(plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4102
DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4103
" plane %d, " "cursor: %d\n",
4104
plane_wm, cursor_wm);
4105
enabled |= 1;
4106
}
4107
4108
if (g4x_compute_wm0(dev, 1,
4109
&ironlake_display_wm_info,
4110
ILK_LP0_PLANE_LATENCY,
4111
&ironlake_cursor_wm_info,
4112
ILK_LP0_CURSOR_LATENCY,
4113
&plane_wm, &cursor_wm)) {
4114
I915_WRITE(WM0_PIPEB_ILK,
4115
(plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4116
DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4117
" plane %d, cursor: %d\n",
4118
plane_wm, cursor_wm);
4119
enabled |= 2;
4120
}
4121
4122
/*
4123
* Calculate and update the self-refresh watermark only when one
4124
* display plane is used.
4125
*/
4126
I915_WRITE(WM3_LP_ILK, 0);
4127
I915_WRITE(WM2_LP_ILK, 0);
4128
I915_WRITE(WM1_LP_ILK, 0);
4129
4130
if (!single_plane_enabled(enabled))
4131
return;
4132
enabled = ffs(enabled) - 1;
4133
4134
/* WM1 */
4135
if (!ironlake_compute_srwm(dev, 1, enabled,
4136
ILK_READ_WM1_LATENCY() * 500,
4137
&ironlake_display_srwm_info,
4138
&ironlake_cursor_srwm_info,
4139
&fbc_wm, &plane_wm, &cursor_wm))
4140
return;
4141
4142
I915_WRITE(WM1_LP_ILK,
4143
WM1_LP_SR_EN |
4144
(ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4145
(fbc_wm << WM1_LP_FBC_SHIFT) |
4146
(plane_wm << WM1_LP_SR_SHIFT) |
4147
cursor_wm);
4148
4149
/* WM2 */
4150
if (!ironlake_compute_srwm(dev, 2, enabled,
4151
ILK_READ_WM2_LATENCY() * 500,
4152
&ironlake_display_srwm_info,
4153
&ironlake_cursor_srwm_info,
4154
&fbc_wm, &plane_wm, &cursor_wm))
4155
return;
4156
4157
I915_WRITE(WM2_LP_ILK,
4158
WM2_LP_EN |
4159
(ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4160
(fbc_wm << WM1_LP_FBC_SHIFT) |
4161
(plane_wm << WM1_LP_SR_SHIFT) |
4162
cursor_wm);
4163
4164
/*
4165
* WM3 is unsupported on ILK, probably because we don't have latency
4166
* data for that power state
4167
*/
4168
}
4169
4170
static void sandybridge_update_wm(struct drm_device *dev)
4171
{
4172
struct drm_i915_private *dev_priv = dev->dev_private;
4173
int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4174
int fbc_wm, plane_wm, cursor_wm;
4175
unsigned int enabled;
4176
4177
enabled = 0;
4178
if (g4x_compute_wm0(dev, 0,
4179
&sandybridge_display_wm_info, latency,
4180
&sandybridge_cursor_wm_info, latency,
4181
&plane_wm, &cursor_wm)) {
4182
I915_WRITE(WM0_PIPEA_ILK,
4183
(plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4184
DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4185
" plane %d, " "cursor: %d\n",
4186
plane_wm, cursor_wm);
4187
enabled |= 1;
4188
}
4189
4190
if (g4x_compute_wm0(dev, 1,
4191
&sandybridge_display_wm_info, latency,
4192
&sandybridge_cursor_wm_info, latency,
4193
&plane_wm, &cursor_wm)) {
4194
I915_WRITE(WM0_PIPEB_ILK,
4195
(plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4196
DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4197
" plane %d, cursor: %d\n",
4198
plane_wm, cursor_wm);
4199
enabled |= 2;
4200
}
4201
4202
/*
4203
* Calculate and update the self-refresh watermark only when one
4204
* display plane is used.
4205
*
4206
* SNB support 3 levels of watermark.
4207
*
4208
* WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4209
* and disabled in the descending order
4210
*
4211
*/
4212
I915_WRITE(WM3_LP_ILK, 0);
4213
I915_WRITE(WM2_LP_ILK, 0);
4214
I915_WRITE(WM1_LP_ILK, 0);
4215
4216
if (!single_plane_enabled(enabled))
4217
return;
4218
enabled = ffs(enabled) - 1;
4219
4220
/* WM1 */
4221
if (!ironlake_compute_srwm(dev, 1, enabled,
4222
SNB_READ_WM1_LATENCY() * 500,
4223
&sandybridge_display_srwm_info,
4224
&sandybridge_cursor_srwm_info,
4225
&fbc_wm, &plane_wm, &cursor_wm))
4226
return;
4227
4228
I915_WRITE(WM1_LP_ILK,
4229
WM1_LP_SR_EN |
4230
(SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4231
(fbc_wm << WM1_LP_FBC_SHIFT) |
4232
(plane_wm << WM1_LP_SR_SHIFT) |
4233
cursor_wm);
4234
4235
/* WM2 */
4236
if (!ironlake_compute_srwm(dev, 2, enabled,
4237
SNB_READ_WM2_LATENCY() * 500,
4238
&sandybridge_display_srwm_info,
4239
&sandybridge_cursor_srwm_info,
4240
&fbc_wm, &plane_wm, &cursor_wm))
4241
return;
4242
4243
I915_WRITE(WM2_LP_ILK,
4244
WM2_LP_EN |
4245
(SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4246
(fbc_wm << WM1_LP_FBC_SHIFT) |
4247
(plane_wm << WM1_LP_SR_SHIFT) |
4248
cursor_wm);
4249
4250
/* WM3 */
4251
if (!ironlake_compute_srwm(dev, 3, enabled,
4252
SNB_READ_WM3_LATENCY() * 500,
4253
&sandybridge_display_srwm_info,
4254
&sandybridge_cursor_srwm_info,
4255
&fbc_wm, &plane_wm, &cursor_wm))
4256
return;
4257
4258
I915_WRITE(WM3_LP_ILK,
4259
WM3_LP_EN |
4260
(SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4261
(fbc_wm << WM1_LP_FBC_SHIFT) |
4262
(plane_wm << WM1_LP_SR_SHIFT) |
4263
cursor_wm);
4264
}
4265
4266
/**
4267
* intel_update_watermarks - update FIFO watermark values based on current modes
4268
*
4269
* Calculate watermark values for the various WM regs based on current mode
4270
* and plane configuration.
4271
*
4272
* There are several cases to deal with here:
4273
* - normal (i.e. non-self-refresh)
4274
* - self-refresh (SR) mode
4275
* - lines are large relative to FIFO size (buffer can hold up to 2)
4276
* - lines are small relative to FIFO size (buffer can hold more than 2
4277
* lines), so need to account for TLB latency
4278
*
4279
* The normal calculation is:
4280
* watermark = dotclock * bytes per pixel * latency
4281
* where latency is platform & configuration dependent (we assume pessimal
4282
* values here).
4283
*
4284
* The SR calculation is:
4285
* watermark = (trunc(latency/line time)+1) * surface width *
4286
* bytes per pixel
4287
* where
4288
* line time = htotal / dotclock
4289
* surface width = hdisplay for normal plane and 64 for cursor
4290
* and latency is assumed to be high, as above.
4291
*
4292
* The final value programmed to the register should always be rounded up,
4293
* and include an extra 2 entries to account for clock crossings.
4294
*
4295
* We don't use the sprite, so we can ignore that. And on Crestline we have
4296
* to set the non-SR watermarks to 8.
4297
*/
4298
static void intel_update_watermarks(struct drm_device *dev)
4299
{
4300
struct drm_i915_private *dev_priv = dev->dev_private;
4301
4302
if (dev_priv->display.update_wm)
4303
dev_priv->display.update_wm(dev);
4304
}
4305
4306
static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4307
{
4308
return dev_priv->lvds_use_ssc && i915_panel_use_ssc
4309
&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4310
}
4311
4312
static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4313
struct drm_display_mode *mode,
4314
struct drm_display_mode *adjusted_mode,
4315
int x, int y,
4316
struct drm_framebuffer *old_fb)
4317
{
4318
struct drm_device *dev = crtc->dev;
4319
struct drm_i915_private *dev_priv = dev->dev_private;
4320
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4321
int pipe = intel_crtc->pipe;
4322
int plane = intel_crtc->plane;
4323
int refclk, num_connectors = 0;
4324
intel_clock_t clock, reduced_clock;
4325
u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4326
bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4327
bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4328
struct drm_mode_config *mode_config = &dev->mode_config;
4329
struct intel_encoder *encoder;
4330
const intel_limit_t *limit;
4331
int ret;
4332
u32 temp;
4333
u32 lvds_sync = 0;
4334
4335
list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4336
if (encoder->base.crtc != crtc)
4337
continue;
4338
4339
switch (encoder->type) {
4340
case INTEL_OUTPUT_LVDS:
4341
is_lvds = true;
4342
break;
4343
case INTEL_OUTPUT_SDVO:
4344
case INTEL_OUTPUT_HDMI:
4345
is_sdvo = true;
4346
if (encoder->needs_tv_clock)
4347
is_tv = true;
4348
break;
4349
case INTEL_OUTPUT_DVO:
4350
is_dvo = true;
4351
break;
4352
case INTEL_OUTPUT_TVOUT:
4353
is_tv = true;
4354
break;
4355
case INTEL_OUTPUT_ANALOG:
4356
is_crt = true;
4357
break;
4358
case INTEL_OUTPUT_DISPLAYPORT:
4359
is_dp = true;
4360
break;
4361
}
4362
4363
num_connectors++;
4364
}
4365
4366
if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4367
refclk = dev_priv->lvds_ssc_freq * 1000;
4368
DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4369
refclk / 1000);
4370
} else if (!IS_GEN2(dev)) {
4371
refclk = 96000;
4372
} else {
4373
refclk = 48000;
4374
}
4375
4376
/*
4377
* Returns a set of divisors for the desired target clock with the given
4378
* refclk, or FALSE. The returned values represent the clock equation:
4379
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4380
*/
4381
limit = intel_limit(crtc, refclk);
4382
ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4383
if (!ok) {
4384
DRM_ERROR("Couldn't find PLL settings for mode!\n");
4385
return -EINVAL;
4386
}
4387
4388
/* Ensure that the cursor is valid for the new mode before changing... */
4389
intel_crtc_update_cursor(crtc, true);
4390
4391
if (is_lvds && dev_priv->lvds_downclock_avail) {
4392
has_reduced_clock = limit->find_pll(limit, crtc,
4393
dev_priv->lvds_downclock,
4394
refclk,
4395
&reduced_clock);
4396
if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4397
/*
4398
* If the different P is found, it means that we can't
4399
* switch the display clock by using the FP0/FP1.
4400
* In such case we will disable the LVDS downclock
4401
* feature.
4402
*/
4403
DRM_DEBUG_KMS("Different P is found for "
4404
"LVDS clock/downclock\n");
4405
has_reduced_clock = 0;
4406
}
4407
}
4408
/* SDVO TV has fixed PLL values depend on its clock range,
4409
this mirrors vbios setting. */
4410
if (is_sdvo && is_tv) {
4411
if (adjusted_mode->clock >= 100000
4412
&& adjusted_mode->clock < 140500) {
4413
clock.p1 = 2;
4414
clock.p2 = 10;
4415
clock.n = 3;
4416
clock.m1 = 16;
4417
clock.m2 = 8;
4418
} else if (adjusted_mode->clock >= 140500
4419
&& adjusted_mode->clock <= 200000) {
4420
clock.p1 = 1;
4421
clock.p2 = 10;
4422
clock.n = 6;
4423
clock.m1 = 12;
4424
clock.m2 = 8;
4425
}
4426
}
4427
4428
if (IS_PINEVIEW(dev)) {
4429
fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4430
if (has_reduced_clock)
4431
fp2 = (1 << reduced_clock.n) << 16 |
4432
reduced_clock.m1 << 8 | reduced_clock.m2;
4433
} else {
4434
fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4435
if (has_reduced_clock)
4436
fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4437
reduced_clock.m2;
4438
}
4439
4440
dpll = DPLL_VGA_MODE_DIS;
4441
4442
if (!IS_GEN2(dev)) {
4443
if (is_lvds)
4444
dpll |= DPLLB_MODE_LVDS;
4445
else
4446
dpll |= DPLLB_MODE_DAC_SERIAL;
4447
if (is_sdvo) {
4448
int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4449
if (pixel_multiplier > 1) {
4450
if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4451
dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4452
}
4453
dpll |= DPLL_DVO_HIGH_SPEED;
4454
}
4455
if (is_dp)
4456
dpll |= DPLL_DVO_HIGH_SPEED;
4457
4458
/* compute bitmask from p1 value */
4459
if (IS_PINEVIEW(dev))
4460
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4461
else {
4462
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4463
if (IS_G4X(dev) && has_reduced_clock)
4464
dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4465
}
4466
switch (clock.p2) {
4467
case 5:
4468
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4469
break;
4470
case 7:
4471
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4472
break;
4473
case 10:
4474
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4475
break;
4476
case 14:
4477
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4478
break;
4479
}
4480
if (INTEL_INFO(dev)->gen >= 4)
4481
dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4482
} else {
4483
if (is_lvds) {
4484
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4485
} else {
4486
if (clock.p1 == 2)
4487
dpll |= PLL_P1_DIVIDE_BY_TWO;
4488
else
4489
dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4490
if (clock.p2 == 4)
4491
dpll |= PLL_P2_DIVIDE_BY_4;
4492
}
4493
}
4494
4495
if (is_sdvo && is_tv)
4496
dpll |= PLL_REF_INPUT_TVCLKINBC;
4497
else if (is_tv)
4498
/* XXX: just matching BIOS for now */
4499
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4500
dpll |= 3;
4501
else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4502
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4503
else
4504
dpll |= PLL_REF_INPUT_DREFCLK;
4505
4506
/* setup pipeconf */
4507
pipeconf = I915_READ(PIPECONF(pipe));
4508
4509
/* Set up the display plane register */
4510
dspcntr = DISPPLANE_GAMMA_ENABLE;
4511
4512
/* Ironlake's plane is forced to pipe, bit 24 is to
4513
enable color space conversion */
4514
if (pipe == 0)
4515
dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4516
else
4517
dspcntr |= DISPPLANE_SEL_PIPE_B;
4518
4519
if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4520
/* Enable pixel doubling when the dot clock is > 90% of the (display)
4521
* core speed.
4522
*
4523
* XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4524
* pipe == 0 check?
4525
*/
4526
if (mode->clock >
4527
dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4528
pipeconf |= PIPECONF_DOUBLE_WIDE;
4529
else
4530
pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4531
}
4532
4533
dpll |= DPLL_VCO_ENABLE;
4534
4535
DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4536
drm_mode_debug_printmodeline(mode);
4537
4538
I915_WRITE(FP0(pipe), fp);
4539
I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4540
4541
POSTING_READ(DPLL(pipe));
4542
udelay(150);
4543
4544
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
4545
* This is an exception to the general rule that mode_set doesn't turn
4546
* things on.
4547
*/
4548
if (is_lvds) {
4549
temp = I915_READ(LVDS);
4550
temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4551
if (pipe == 1) {
4552
temp |= LVDS_PIPEB_SELECT;
4553
} else {
4554
temp &= ~LVDS_PIPEB_SELECT;
4555
}
4556
/* set the corresponsding LVDS_BORDER bit */
4557
temp |= dev_priv->lvds_border_bits;
4558
/* Set the B0-B3 data pairs corresponding to whether we're going to
4559
* set the DPLLs for dual-channel mode or not.
4560
*/
4561
if (clock.p2 == 7)
4562
temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4563
else
4564
temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4565
4566
/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4567
* appropriately here, but we need to look more thoroughly into how
4568
* panels behave in the two modes.
4569
*/
4570
/* set the dithering flag on LVDS as needed */
4571
if (INTEL_INFO(dev)->gen >= 4) {
4572
if (dev_priv->lvds_dither)
4573
temp |= LVDS_ENABLE_DITHER;
4574
else
4575
temp &= ~LVDS_ENABLE_DITHER;
4576
}
4577
if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4578
lvds_sync |= LVDS_HSYNC_POLARITY;
4579
if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4580
lvds_sync |= LVDS_VSYNC_POLARITY;
4581
if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
4582
!= lvds_sync) {
4583
char flags[2] = "-+";
4584
DRM_INFO("Changing LVDS panel from "
4585
"(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4586
flags[!(temp & LVDS_HSYNC_POLARITY)],
4587
flags[!(temp & LVDS_VSYNC_POLARITY)],
4588
flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
4589
flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
4590
temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4591
temp |= lvds_sync;
4592
}
4593
I915_WRITE(LVDS, temp);
4594
}
4595
4596
if (is_dp) {
4597
intel_dp_set_m_n(crtc, mode, adjusted_mode);
4598
}
4599
4600
I915_WRITE(DPLL(pipe), dpll);
4601
4602
/* Wait for the clocks to stabilize. */
4603
POSTING_READ(DPLL(pipe));
4604
udelay(150);
4605
4606
if (INTEL_INFO(dev)->gen >= 4) {
4607
temp = 0;
4608
if (is_sdvo) {
4609
temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4610
if (temp > 1)
4611
temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4612
else
4613
temp = 0;
4614
}
4615
I915_WRITE(DPLL_MD(pipe), temp);
4616
} else {
4617
/* The pixel multiplier can only be updated once the
4618
* DPLL is enabled and the clocks are stable.
4619
*
4620
* So write it again.
4621
*/
4622
I915_WRITE(DPLL(pipe), dpll);
4623
}
4624
4625
intel_crtc->lowfreq_avail = false;
4626
if (is_lvds && has_reduced_clock && i915_powersave) {
4627
I915_WRITE(FP1(pipe), fp2);
4628
intel_crtc->lowfreq_avail = true;
4629
if (HAS_PIPE_CXSR(dev)) {
4630
DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4631
pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4632
}
4633
} else {
4634
I915_WRITE(FP1(pipe), fp);
4635
if (HAS_PIPE_CXSR(dev)) {
4636
DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4637
pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4638
}
4639
}
4640
4641
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4642
pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4643
/* the chip adds 2 halflines automatically */
4644
adjusted_mode->crtc_vdisplay -= 1;
4645
adjusted_mode->crtc_vtotal -= 1;
4646
adjusted_mode->crtc_vblank_start -= 1;
4647
adjusted_mode->crtc_vblank_end -= 1;
4648
adjusted_mode->crtc_vsync_end -= 1;
4649
adjusted_mode->crtc_vsync_start -= 1;
4650
} else
4651
pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4652
4653
I915_WRITE(HTOTAL(pipe),
4654
(adjusted_mode->crtc_hdisplay - 1) |
4655
((adjusted_mode->crtc_htotal - 1) << 16));
4656
I915_WRITE(HBLANK(pipe),
4657
(adjusted_mode->crtc_hblank_start - 1) |
4658
((adjusted_mode->crtc_hblank_end - 1) << 16));
4659
I915_WRITE(HSYNC(pipe),
4660
(adjusted_mode->crtc_hsync_start - 1) |
4661
((adjusted_mode->crtc_hsync_end - 1) << 16));
4662
4663
I915_WRITE(VTOTAL(pipe),
4664
(adjusted_mode->crtc_vdisplay - 1) |
4665
((adjusted_mode->crtc_vtotal - 1) << 16));
4666
I915_WRITE(VBLANK(pipe),
4667
(adjusted_mode->crtc_vblank_start - 1) |
4668
((adjusted_mode->crtc_vblank_end - 1) << 16));
4669
I915_WRITE(VSYNC(pipe),
4670
(adjusted_mode->crtc_vsync_start - 1) |
4671
((adjusted_mode->crtc_vsync_end - 1) << 16));
4672
4673
/* pipesrc and dspsize control the size that is scaled from,
4674
* which should always be the user's requested size.
4675
*/
4676
I915_WRITE(DSPSIZE(plane),
4677
((mode->vdisplay - 1) << 16) |
4678
(mode->hdisplay - 1));
4679
I915_WRITE(DSPPOS(plane), 0);
4680
I915_WRITE(PIPESRC(pipe),
4681
((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4682
4683
I915_WRITE(PIPECONF(pipe), pipeconf);
4684
POSTING_READ(PIPECONF(pipe));
4685
intel_enable_pipe(dev_priv, pipe, false);
4686
4687
intel_wait_for_vblank(dev, pipe);
4688
4689
I915_WRITE(DSPCNTR(plane), dspcntr);
4690
POSTING_READ(DSPCNTR(plane));
4691
intel_enable_plane(dev_priv, plane, pipe);
4692
4693
ret = intel_pipe_set_base(crtc, x, y, old_fb);
4694
4695
intel_update_watermarks(dev);
4696
4697
return ret;
4698
}
4699
4700
static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4701
struct drm_display_mode *mode,
4702
struct drm_display_mode *adjusted_mode,
4703
int x, int y,
4704
struct drm_framebuffer *old_fb)
4705
{
4706
struct drm_device *dev = crtc->dev;
4707
struct drm_i915_private *dev_priv = dev->dev_private;
4708
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4709
int pipe = intel_crtc->pipe;
4710
int plane = intel_crtc->plane;
4711
int refclk, num_connectors = 0;
4712
intel_clock_t clock, reduced_clock;
4713
u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4714
bool ok, has_reduced_clock = false, is_sdvo = false;
4715
bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4716
struct intel_encoder *has_edp_encoder = NULL;
4717
struct drm_mode_config *mode_config = &dev->mode_config;
4718
struct intel_encoder *encoder;
4719
const intel_limit_t *limit;
4720
int ret;
4721
struct fdi_m_n m_n = {0};
4722
u32 temp;
4723
u32 lvds_sync = 0;
4724
int target_clock, pixel_multiplier, lane, link_bw, bpp, factor;
4725
4726
list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4727
if (encoder->base.crtc != crtc)
4728
continue;
4729
4730
switch (encoder->type) {
4731
case INTEL_OUTPUT_LVDS:
4732
is_lvds = true;
4733
break;
4734
case INTEL_OUTPUT_SDVO:
4735
case INTEL_OUTPUT_HDMI:
4736
is_sdvo = true;
4737
if (encoder->needs_tv_clock)
4738
is_tv = true;
4739
break;
4740
case INTEL_OUTPUT_TVOUT:
4741
is_tv = true;
4742
break;
4743
case INTEL_OUTPUT_ANALOG:
4744
is_crt = true;
4745
break;
4746
case INTEL_OUTPUT_DISPLAYPORT:
4747
is_dp = true;
4748
break;
4749
case INTEL_OUTPUT_EDP:
4750
has_edp_encoder = encoder;
4751
break;
4752
}
4753
4754
num_connectors++;
4755
}
4756
4757
if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4758
refclk = dev_priv->lvds_ssc_freq * 1000;
4759
DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4760
refclk / 1000);
4761
} else {
4762
refclk = 96000;
4763
if (!has_edp_encoder ||
4764
intel_encoder_is_pch_edp(&has_edp_encoder->base))
4765
refclk = 120000; /* 120Mhz refclk */
4766
}
4767
4768
/*
4769
* Returns a set of divisors for the desired target clock with the given
4770
* refclk, or FALSE. The returned values represent the clock equation:
4771
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4772
*/
4773
limit = intel_limit(crtc, refclk);
4774
ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4775
if (!ok) {
4776
DRM_ERROR("Couldn't find PLL settings for mode!\n");
4777
return -EINVAL;
4778
}
4779
4780
/* Ensure that the cursor is valid for the new mode before changing... */
4781
intel_crtc_update_cursor(crtc, true);
4782
4783
if (is_lvds && dev_priv->lvds_downclock_avail) {
4784
has_reduced_clock = limit->find_pll(limit, crtc,
4785
dev_priv->lvds_downclock,
4786
refclk,
4787
&reduced_clock);
4788
if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4789
/*
4790
* If the different P is found, it means that we can't
4791
* switch the display clock by using the FP0/FP1.
4792
* In such case we will disable the LVDS downclock
4793
* feature.
4794
*/
4795
DRM_DEBUG_KMS("Different P is found for "
4796
"LVDS clock/downclock\n");
4797
has_reduced_clock = 0;
4798
}
4799
}
4800
/* SDVO TV has fixed PLL values depend on its clock range,
4801
this mirrors vbios setting. */
4802
if (is_sdvo && is_tv) {
4803
if (adjusted_mode->clock >= 100000
4804
&& adjusted_mode->clock < 140500) {
4805
clock.p1 = 2;
4806
clock.p2 = 10;
4807
clock.n = 3;
4808
clock.m1 = 16;
4809
clock.m2 = 8;
4810
} else if (adjusted_mode->clock >= 140500
4811
&& adjusted_mode->clock <= 200000) {
4812
clock.p1 = 1;
4813
clock.p2 = 10;
4814
clock.n = 6;
4815
clock.m1 = 12;
4816
clock.m2 = 8;
4817
}
4818
}
4819
4820
/* FDI link */
4821
pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4822
lane = 0;
4823
/* CPU eDP doesn't require FDI link, so just set DP M/N
4824
according to current link config */
4825
if (has_edp_encoder &&
4826
!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4827
target_clock = mode->clock;
4828
intel_edp_link_config(has_edp_encoder,
4829
&lane, &link_bw);
4830
} else {
4831
/* [e]DP over FDI requires target mode clock
4832
instead of link clock */
4833
if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4834
target_clock = mode->clock;
4835
else
4836
target_clock = adjusted_mode->clock;
4837
4838
/* FDI is a binary signal running at ~2.7GHz, encoding
4839
* each output octet as 10 bits. The actual frequency
4840
* is stored as a divider into a 100MHz clock, and the
4841
* mode pixel clock is stored in units of 1KHz.
4842
* Hence the bw of each lane in terms of the mode signal
4843
* is:
4844
*/
4845
link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4846
}
4847
4848
/* determine panel color depth */
4849
temp = I915_READ(PIPECONF(pipe));
4850
temp &= ~PIPE_BPC_MASK;
4851
if (is_lvds) {
4852
/* the BPC will be 6 if it is 18-bit LVDS panel */
4853
if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
4854
temp |= PIPE_8BPC;
4855
else
4856
temp |= PIPE_6BPC;
4857
} else if (has_edp_encoder) {
4858
switch (dev_priv->edp.bpp/3) {
4859
case 8:
4860
temp |= PIPE_8BPC;
4861
break;
4862
case 10:
4863
temp |= PIPE_10BPC;
4864
break;
4865
case 6:
4866
temp |= PIPE_6BPC;
4867
break;
4868
case 12:
4869
temp |= PIPE_12BPC;
4870
break;
4871
}
4872
} else
4873
temp |= PIPE_8BPC;
4874
I915_WRITE(PIPECONF(pipe), temp);
4875
4876
switch (temp & PIPE_BPC_MASK) {
4877
case PIPE_8BPC:
4878
bpp = 24;
4879
break;
4880
case PIPE_10BPC:
4881
bpp = 30;
4882
break;
4883
case PIPE_6BPC:
4884
bpp = 18;
4885
break;
4886
case PIPE_12BPC:
4887
bpp = 36;
4888
break;
4889
default:
4890
DRM_ERROR("unknown pipe bpc value\n");
4891
bpp = 24;
4892
}
4893
4894
if (!lane) {
4895
/*
4896
* Account for spread spectrum to avoid
4897
* oversubscribing the link. Max center spread
4898
* is 2.5%; use 5% for safety's sake.
4899
*/
4900
u32 bps = target_clock * bpp * 21 / 20;
4901
lane = bps / (link_bw * 8) + 1;
4902
}
4903
4904
intel_crtc->fdi_lanes = lane;
4905
4906
if (pixel_multiplier > 1)
4907
link_bw *= pixel_multiplier;
4908
ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
4909
4910
/* Ironlake: try to setup display ref clock before DPLL
4911
* enabling. This is only under driver's control after
4912
* PCH B stepping, previous chipset stepping should be
4913
* ignoring this setting.
4914
*/
4915
temp = I915_READ(PCH_DREF_CONTROL);
4916
/* Always enable nonspread source */
4917
temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4918
temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4919
temp &= ~DREF_SSC_SOURCE_MASK;
4920
temp |= DREF_SSC_SOURCE_ENABLE;
4921
I915_WRITE(PCH_DREF_CONTROL, temp);
4922
4923
POSTING_READ(PCH_DREF_CONTROL);
4924
udelay(200);
4925
4926
if (has_edp_encoder) {
4927
if (intel_panel_use_ssc(dev_priv)) {
4928
temp |= DREF_SSC1_ENABLE;
4929
I915_WRITE(PCH_DREF_CONTROL, temp);
4930
4931
POSTING_READ(PCH_DREF_CONTROL);
4932
udelay(200);
4933
}
4934
temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4935
4936
/* Enable CPU source on CPU attached eDP */
4937
if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4938
if (intel_panel_use_ssc(dev_priv))
4939
temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4940
else
4941
temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4942
} else {
4943
/* Enable SSC on PCH eDP if needed */
4944
if (intel_panel_use_ssc(dev_priv)) {
4945
DRM_ERROR("enabling SSC on PCH\n");
4946
temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
4947
}
4948
}
4949
I915_WRITE(PCH_DREF_CONTROL, temp);
4950
POSTING_READ(PCH_DREF_CONTROL);
4951
udelay(200);
4952
}
4953
4954
fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4955
if (has_reduced_clock)
4956
fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4957
reduced_clock.m2;
4958
4959
/* Enable autotuning of the PLL clock (if permissible) */
4960
factor = 21;
4961
if (is_lvds) {
4962
if ((intel_panel_use_ssc(dev_priv) &&
4963
dev_priv->lvds_ssc_freq == 100) ||
4964
(I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4965
factor = 25;
4966
} else if (is_sdvo && is_tv)
4967
factor = 20;
4968
4969
if (clock.m1 < factor * clock.n)
4970
fp |= FP_CB_TUNE;
4971
4972
dpll = 0;
4973
4974
if (is_lvds)
4975
dpll |= DPLLB_MODE_LVDS;
4976
else
4977
dpll |= DPLLB_MODE_DAC_SERIAL;
4978
if (is_sdvo) {
4979
int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4980
if (pixel_multiplier > 1) {
4981
dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4982
}
4983
dpll |= DPLL_DVO_HIGH_SPEED;
4984
}
4985
if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4986
dpll |= DPLL_DVO_HIGH_SPEED;
4987
4988
/* compute bitmask from p1 value */
4989
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4990
/* also FPA1 */
4991
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4992
4993
switch (clock.p2) {
4994
case 5:
4995
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4996
break;
4997
case 7:
4998
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4999
break;
5000
case 10:
5001
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5002
break;
5003
case 14:
5004
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5005
break;
5006
}
5007
5008
if (is_sdvo && is_tv)
5009
dpll |= PLL_REF_INPUT_TVCLKINBC;
5010
else if (is_tv)
5011
/* XXX: just matching BIOS for now */
5012
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5013
dpll |= 3;
5014
else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5015
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5016
else
5017
dpll |= PLL_REF_INPUT_DREFCLK;
5018
5019
/* setup pipeconf */
5020
pipeconf = I915_READ(PIPECONF(pipe));
5021
5022
/* Set up the display plane register */
5023
dspcntr = DISPPLANE_GAMMA_ENABLE;
5024
5025
DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5026
drm_mode_debug_printmodeline(mode);
5027
5028
/* PCH eDP needs FDI, but CPU eDP does not */
5029
if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5030
I915_WRITE(PCH_FP0(pipe), fp);
5031
I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5032
5033
POSTING_READ(PCH_DPLL(pipe));
5034
udelay(150);
5035
}
5036
5037
/* enable transcoder DPLL */
5038
if (HAS_PCH_CPT(dev)) {
5039
temp = I915_READ(PCH_DPLL_SEL);
5040
switch (pipe) {
5041
case 0:
5042
temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
5043
break;
5044
case 1:
5045
temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
5046
break;
5047
case 2:
5048
/* FIXME: manage transcoder PLLs? */
5049
temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
5050
break;
5051
default:
5052
BUG();
5053
}
5054
I915_WRITE(PCH_DPLL_SEL, temp);
5055
5056
POSTING_READ(PCH_DPLL_SEL);
5057
udelay(150);
5058
}
5059
5060
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
5061
* This is an exception to the general rule that mode_set doesn't turn
5062
* things on.
5063
*/
5064
if (is_lvds) {
5065
temp = I915_READ(PCH_LVDS);
5066
temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5067
if (pipe == 1) {
5068
if (HAS_PCH_CPT(dev))
5069
temp |= PORT_TRANS_B_SEL_CPT;
5070
else
5071
temp |= LVDS_PIPEB_SELECT;
5072
} else {
5073
if (HAS_PCH_CPT(dev))
5074
temp &= ~PORT_TRANS_SEL_MASK;
5075
else
5076
temp &= ~LVDS_PIPEB_SELECT;
5077
}
5078
/* set the corresponsding LVDS_BORDER bit */
5079
temp |= dev_priv->lvds_border_bits;
5080
/* Set the B0-B3 data pairs corresponding to whether we're going to
5081
* set the DPLLs for dual-channel mode or not.
5082
*/
5083
if (clock.p2 == 7)
5084
temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5085
else
5086
temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5087
5088
/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5089
* appropriately here, but we need to look more thoroughly into how
5090
* panels behave in the two modes.
5091
*/
5092
if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5093
lvds_sync |= LVDS_HSYNC_POLARITY;
5094
if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5095
lvds_sync |= LVDS_VSYNC_POLARITY;
5096
if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5097
!= lvds_sync) {
5098
char flags[2] = "-+";
5099
DRM_INFO("Changing LVDS panel from "
5100
"(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5101
flags[!(temp & LVDS_HSYNC_POLARITY)],
5102
flags[!(temp & LVDS_VSYNC_POLARITY)],
5103
flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5104
flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5105
temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5106
temp |= lvds_sync;
5107
}
5108
I915_WRITE(PCH_LVDS, temp);
5109
}
5110
5111
/* set the dithering flag and clear for anything other than a panel. */
5112
pipeconf &= ~PIPECONF_DITHER_EN;
5113
pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5114
if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
5115
pipeconf |= PIPECONF_DITHER_EN;
5116
pipeconf |= PIPECONF_DITHER_TYPE_ST1;
5117
}
5118
5119
if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5120
intel_dp_set_m_n(crtc, mode, adjusted_mode);
5121
} else {
5122
/* For non-DP output, clear any trans DP clock recovery setting.*/
5123
I915_WRITE(TRANSDATA_M1(pipe), 0);
5124
I915_WRITE(TRANSDATA_N1(pipe), 0);
5125
I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5126
I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5127
}
5128
5129
if (!has_edp_encoder ||
5130
intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5131
I915_WRITE(PCH_DPLL(pipe), dpll);
5132
5133
/* Wait for the clocks to stabilize. */
5134
POSTING_READ(PCH_DPLL(pipe));
5135
udelay(150);
5136
5137
/* The pixel multiplier can only be updated once the
5138
* DPLL is enabled and the clocks are stable.
5139
*
5140
* So write it again.
5141
*/
5142
I915_WRITE(PCH_DPLL(pipe), dpll);
5143
}
5144
5145
intel_crtc->lowfreq_avail = false;
5146
if (is_lvds && has_reduced_clock && i915_powersave) {
5147
I915_WRITE(PCH_FP1(pipe), fp2);
5148
intel_crtc->lowfreq_avail = true;
5149
if (HAS_PIPE_CXSR(dev)) {
5150
DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5151
pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5152
}
5153
} else {
5154
I915_WRITE(PCH_FP1(pipe), fp);
5155
if (HAS_PIPE_CXSR(dev)) {
5156
DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5157
pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5158
}
5159
}
5160
5161
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5162
pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5163
/* the chip adds 2 halflines automatically */
5164
adjusted_mode->crtc_vdisplay -= 1;
5165
adjusted_mode->crtc_vtotal -= 1;
5166
adjusted_mode->crtc_vblank_start -= 1;
5167
adjusted_mode->crtc_vblank_end -= 1;
5168
adjusted_mode->crtc_vsync_end -= 1;
5169
adjusted_mode->crtc_vsync_start -= 1;
5170
} else
5171
pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5172
5173
I915_WRITE(HTOTAL(pipe),
5174
(adjusted_mode->crtc_hdisplay - 1) |
5175
((adjusted_mode->crtc_htotal - 1) << 16));
5176
I915_WRITE(HBLANK(pipe),
5177
(adjusted_mode->crtc_hblank_start - 1) |
5178
((adjusted_mode->crtc_hblank_end - 1) << 16));
5179
I915_WRITE(HSYNC(pipe),
5180
(adjusted_mode->crtc_hsync_start - 1) |
5181
((adjusted_mode->crtc_hsync_end - 1) << 16));
5182
5183
I915_WRITE(VTOTAL(pipe),
5184
(adjusted_mode->crtc_vdisplay - 1) |
5185
((adjusted_mode->crtc_vtotal - 1) << 16));
5186
I915_WRITE(VBLANK(pipe),
5187
(adjusted_mode->crtc_vblank_start - 1) |
5188
((adjusted_mode->crtc_vblank_end - 1) << 16));
5189
I915_WRITE(VSYNC(pipe),
5190
(adjusted_mode->crtc_vsync_start - 1) |
5191
((adjusted_mode->crtc_vsync_end - 1) << 16));
5192
5193
/* pipesrc controls the size that is scaled from, which should
5194
* always be the user's requested size.
5195
*/
5196
I915_WRITE(PIPESRC(pipe),
5197
((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5198
5199
I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5200
I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5201
I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5202
I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5203
5204
if (has_edp_encoder &&
5205
!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5206
ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5207
}
5208
5209
I915_WRITE(PIPECONF(pipe), pipeconf);
5210
POSTING_READ(PIPECONF(pipe));
5211
5212
intel_wait_for_vblank(dev, pipe);
5213
5214
if (IS_GEN5(dev)) {
5215
/* enable address swizzle for tiling buffer */
5216
temp = I915_READ(DISP_ARB_CTL);
5217
I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5218
}
5219
5220
I915_WRITE(DSPCNTR(plane), dspcntr);
5221
POSTING_READ(DSPCNTR(plane));
5222
5223
ret = intel_pipe_set_base(crtc, x, y, old_fb);
5224
5225
intel_update_watermarks(dev);
5226
5227
return ret;
5228
}
5229
5230
static int intel_crtc_mode_set(struct drm_crtc *crtc,
5231
struct drm_display_mode *mode,
5232
struct drm_display_mode *adjusted_mode,
5233
int x, int y,
5234
struct drm_framebuffer *old_fb)
5235
{
5236
struct drm_device *dev = crtc->dev;
5237
struct drm_i915_private *dev_priv = dev->dev_private;
5238
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5239
int pipe = intel_crtc->pipe;
5240
int ret;
5241
5242
drm_vblank_pre_modeset(dev, pipe);
5243
5244
ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5245
x, y, old_fb);
5246
5247
drm_vblank_post_modeset(dev, pipe);
5248
5249
return ret;
5250
}
5251
5252
/** Loads the palette/gamma unit for the CRTC with the prepared values */
5253
void intel_crtc_load_lut(struct drm_crtc *crtc)
5254
{
5255
struct drm_device *dev = crtc->dev;
5256
struct drm_i915_private *dev_priv = dev->dev_private;
5257
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5258
int palreg = PALETTE(intel_crtc->pipe);
5259
int i;
5260
5261
/* The clocks have to be on to load the palette. */
5262
if (!crtc->enabled)
5263
return;
5264
5265
/* use legacy palette for Ironlake */
5266
if (HAS_PCH_SPLIT(dev))
5267
palreg = LGC_PALETTE(intel_crtc->pipe);
5268
5269
for (i = 0; i < 256; i++) {
5270
I915_WRITE(palreg + 4 * i,
5271
(intel_crtc->lut_r[i] << 16) |
5272
(intel_crtc->lut_g[i] << 8) |
5273
intel_crtc->lut_b[i]);
5274
}
5275
}
5276
5277
static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5278
{
5279
struct drm_device *dev = crtc->dev;
5280
struct drm_i915_private *dev_priv = dev->dev_private;
5281
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5282
bool visible = base != 0;
5283
u32 cntl;
5284
5285
if (intel_crtc->cursor_visible == visible)
5286
return;
5287
5288
cntl = I915_READ(_CURACNTR);
5289
if (visible) {
5290
/* On these chipsets we can only modify the base whilst
5291
* the cursor is disabled.
5292
*/
5293
I915_WRITE(_CURABASE, base);
5294
5295
cntl &= ~(CURSOR_FORMAT_MASK);
5296
/* XXX width must be 64, stride 256 => 0x00 << 28 */
5297
cntl |= CURSOR_ENABLE |
5298
CURSOR_GAMMA_ENABLE |
5299
CURSOR_FORMAT_ARGB;
5300
} else
5301
cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5302
I915_WRITE(_CURACNTR, cntl);
5303
5304
intel_crtc->cursor_visible = visible;
5305
}
5306
5307
static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5308
{
5309
struct drm_device *dev = crtc->dev;
5310
struct drm_i915_private *dev_priv = dev->dev_private;
5311
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5312
int pipe = intel_crtc->pipe;
5313
bool visible = base != 0;
5314
5315
if (intel_crtc->cursor_visible != visible) {
5316
uint32_t cntl = I915_READ(CURCNTR(pipe));
5317
if (base) {
5318
cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5319
cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5320
cntl |= pipe << 28; /* Connect to correct pipe */
5321
} else {
5322
cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5323
cntl |= CURSOR_MODE_DISABLE;
5324
}
5325
I915_WRITE(CURCNTR(pipe), cntl);
5326
5327
intel_crtc->cursor_visible = visible;
5328
}
5329
/* and commit changes on next vblank */
5330
I915_WRITE(CURBASE(pipe), base);
5331
}
5332
5333
/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5334
static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5335
bool on)
5336
{
5337
struct drm_device *dev = crtc->dev;
5338
struct drm_i915_private *dev_priv = dev->dev_private;
5339
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5340
int pipe = intel_crtc->pipe;
5341
int x = intel_crtc->cursor_x;
5342
int y = intel_crtc->cursor_y;
5343
u32 base, pos;
5344
bool visible;
5345
5346
pos = 0;
5347
5348
if (on && crtc->enabled && crtc->fb) {
5349
base = intel_crtc->cursor_addr;
5350
if (x > (int) crtc->fb->width)
5351
base = 0;
5352
5353
if (y > (int) crtc->fb->height)
5354
base = 0;
5355
} else
5356
base = 0;
5357
5358
if (x < 0) {
5359
if (x + intel_crtc->cursor_width < 0)
5360
base = 0;
5361
5362
pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5363
x = -x;
5364
}
5365
pos |= x << CURSOR_X_SHIFT;
5366
5367
if (y < 0) {
5368
if (y + intel_crtc->cursor_height < 0)
5369
base = 0;
5370
5371
pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5372
y = -y;
5373
}
5374
pos |= y << CURSOR_Y_SHIFT;
5375
5376
visible = base != 0;
5377
if (!visible && !intel_crtc->cursor_visible)
5378
return;
5379
5380
I915_WRITE(CURPOS(pipe), pos);
5381
if (IS_845G(dev) || IS_I865G(dev))
5382
i845_update_cursor(crtc, base);
5383
else
5384
i9xx_update_cursor(crtc, base);
5385
5386
if (visible)
5387
intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
5388
}
5389
5390
static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5391
struct drm_file *file,
5392
uint32_t handle,
5393
uint32_t width, uint32_t height)
5394
{
5395
struct drm_device *dev = crtc->dev;
5396
struct drm_i915_private *dev_priv = dev->dev_private;
5397
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5398
struct drm_i915_gem_object *obj;
5399
uint32_t addr;
5400
int ret;
5401
5402
DRM_DEBUG_KMS("\n");
5403
5404
/* if we want to turn off the cursor ignore width and height */
5405
if (!handle) {
5406
DRM_DEBUG_KMS("cursor off\n");
5407
addr = 0;
5408
obj = NULL;
5409
mutex_lock(&dev->struct_mutex);
5410
goto finish;
5411
}
5412
5413
/* Currently we only support 64x64 cursors */
5414
if (width != 64 || height != 64) {
5415
DRM_ERROR("we currently only support 64x64 cursors\n");
5416
return -EINVAL;
5417
}
5418
5419
obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5420
if (&obj->base == NULL)
5421
return -ENOENT;
5422
5423
if (obj->base.size < width * height * 4) {
5424
DRM_ERROR("buffer is to small\n");
5425
ret = -ENOMEM;
5426
goto fail;
5427
}
5428
5429
/* we only need to pin inside GTT if cursor is non-phy */
5430
mutex_lock(&dev->struct_mutex);
5431
if (!dev_priv->info->cursor_needs_physical) {
5432
if (obj->tiling_mode) {
5433
DRM_ERROR("cursor cannot be tiled\n");
5434
ret = -EINVAL;
5435
goto fail_locked;
5436
}
5437
5438
ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
5439
if (ret) {
5440
DRM_ERROR("failed to pin cursor bo\n");
5441
goto fail_locked;
5442
}
5443
5444
ret = i915_gem_object_set_to_gtt_domain(obj, 0);
5445
if (ret) {
5446
DRM_ERROR("failed to move cursor bo into the GTT\n");
5447
goto fail_unpin;
5448
}
5449
5450
ret = i915_gem_object_put_fence(obj);
5451
if (ret) {
5452
DRM_ERROR("failed to move cursor bo into the GTT\n");
5453
goto fail_unpin;
5454
}
5455
5456
addr = obj->gtt_offset;
5457
} else {
5458
int align = IS_I830(dev) ? 16 * 1024 : 256;
5459
ret = i915_gem_attach_phys_object(dev, obj,
5460
(intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5461
align);
5462
if (ret) {
5463
DRM_ERROR("failed to attach phys object\n");
5464
goto fail_locked;
5465
}
5466
addr = obj->phys_obj->handle->busaddr;
5467
}
5468
5469
if (IS_GEN2(dev))
5470
I915_WRITE(CURSIZE, (height << 12) | width);
5471
5472
finish:
5473
if (intel_crtc->cursor_bo) {
5474
if (dev_priv->info->cursor_needs_physical) {
5475
if (intel_crtc->cursor_bo != obj)
5476
i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5477
} else
5478
i915_gem_object_unpin(intel_crtc->cursor_bo);
5479
drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5480
}
5481
5482
mutex_unlock(&dev->struct_mutex);
5483
5484
intel_crtc->cursor_addr = addr;
5485
intel_crtc->cursor_bo = obj;
5486
intel_crtc->cursor_width = width;
5487
intel_crtc->cursor_height = height;
5488
5489
intel_crtc_update_cursor(crtc, true);
5490
5491
return 0;
5492
fail_unpin:
5493
i915_gem_object_unpin(obj);
5494
fail_locked:
5495
mutex_unlock(&dev->struct_mutex);
5496
fail:
5497
drm_gem_object_unreference_unlocked(&obj->base);
5498
return ret;
5499
}
5500
5501
static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5502
{
5503
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5504
5505
intel_crtc->cursor_x = x;
5506
intel_crtc->cursor_y = y;
5507
5508
intel_crtc_update_cursor(crtc, true);
5509
5510
return 0;
5511
}
5512
5513
/** Sets the color ramps on behalf of RandR */
5514
void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5515
u16 blue, int regno)
5516
{
5517
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5518
5519
intel_crtc->lut_r[regno] = red >> 8;
5520
intel_crtc->lut_g[regno] = green >> 8;
5521
intel_crtc->lut_b[regno] = blue >> 8;
5522
}
5523
5524
void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5525
u16 *blue, int regno)
5526
{
5527
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5528
5529
*red = intel_crtc->lut_r[regno] << 8;
5530
*green = intel_crtc->lut_g[regno] << 8;
5531
*blue = intel_crtc->lut_b[regno] << 8;
5532
}
5533
5534
static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5535
u16 *blue, uint32_t start, uint32_t size)
5536
{
5537
int end = (start + size > 256) ? 256 : start + size, i;
5538
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5539
5540
for (i = start; i < end; i++) {
5541
intel_crtc->lut_r[i] = red[i] >> 8;
5542
intel_crtc->lut_g[i] = green[i] >> 8;
5543
intel_crtc->lut_b[i] = blue[i] >> 8;
5544
}
5545
5546
intel_crtc_load_lut(crtc);
5547
}
5548
5549
/**
5550
* Get a pipe with a simple mode set on it for doing load-based monitor
5551
* detection.
5552
*
5553
* It will be up to the load-detect code to adjust the pipe as appropriate for
5554
* its requirements. The pipe will be connected to no other encoders.
5555
*
5556
* Currently this code will only succeed if there is a pipe with no encoders
5557
* configured for it. In the future, it could choose to temporarily disable
5558
* some outputs to free up a pipe for its use.
5559
*
5560
* \return crtc, or NULL if no pipes are available.
5561
*/
5562
5563
/* VESA 640x480x72Hz mode to set on the pipe */
5564
static struct drm_display_mode load_detect_mode = {
5565
DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5566
704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5567
};
5568
5569
static struct drm_framebuffer *
5570
intel_framebuffer_create(struct drm_device *dev,
5571
struct drm_mode_fb_cmd *mode_cmd,
5572
struct drm_i915_gem_object *obj)
5573
{
5574
struct intel_framebuffer *intel_fb;
5575
int ret;
5576
5577
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5578
if (!intel_fb) {
5579
drm_gem_object_unreference_unlocked(&obj->base);
5580
return ERR_PTR(-ENOMEM);
5581
}
5582
5583
ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5584
if (ret) {
5585
drm_gem_object_unreference_unlocked(&obj->base);
5586
kfree(intel_fb);
5587
return ERR_PTR(ret);
5588
}
5589
5590
return &intel_fb->base;
5591
}
5592
5593
static u32
5594
intel_framebuffer_pitch_for_width(int width, int bpp)
5595
{
5596
u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5597
return ALIGN(pitch, 64);
5598
}
5599
5600
static u32
5601
intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5602
{
5603
u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5604
return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5605
}
5606
5607
static struct drm_framebuffer *
5608
intel_framebuffer_create_for_mode(struct drm_device *dev,
5609
struct drm_display_mode *mode,
5610
int depth, int bpp)
5611
{
5612
struct drm_i915_gem_object *obj;
5613
struct drm_mode_fb_cmd mode_cmd;
5614
5615
obj = i915_gem_alloc_object(dev,
5616
intel_framebuffer_size_for_mode(mode, bpp));
5617
if (obj == NULL)
5618
return ERR_PTR(-ENOMEM);
5619
5620
mode_cmd.width = mode->hdisplay;
5621
mode_cmd.height = mode->vdisplay;
5622
mode_cmd.depth = depth;
5623
mode_cmd.bpp = bpp;
5624
mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
5625
5626
return intel_framebuffer_create(dev, &mode_cmd, obj);
5627
}
5628
5629
static struct drm_framebuffer *
5630
mode_fits_in_fbdev(struct drm_device *dev,
5631
struct drm_display_mode *mode)
5632
{
5633
struct drm_i915_private *dev_priv = dev->dev_private;
5634
struct drm_i915_gem_object *obj;
5635
struct drm_framebuffer *fb;
5636
5637
if (dev_priv->fbdev == NULL)
5638
return NULL;
5639
5640
obj = dev_priv->fbdev->ifb.obj;
5641
if (obj == NULL)
5642
return NULL;
5643
5644
fb = &dev_priv->fbdev->ifb.base;
5645
if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
5646
fb->bits_per_pixel))
5647
return NULL;
5648
5649
if (obj->base.size < mode->vdisplay * fb->pitch)
5650
return NULL;
5651
5652
return fb;
5653
}
5654
5655
bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5656
struct drm_connector *connector,
5657
struct drm_display_mode *mode,
5658
struct intel_load_detect_pipe *old)
5659
{
5660
struct intel_crtc *intel_crtc;
5661
struct drm_crtc *possible_crtc;
5662
struct drm_encoder *encoder = &intel_encoder->base;
5663
struct drm_crtc *crtc = NULL;
5664
struct drm_device *dev = encoder->dev;
5665
struct drm_framebuffer *old_fb;
5666
int i = -1;
5667
5668
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5669
connector->base.id, drm_get_connector_name(connector),
5670
encoder->base.id, drm_get_encoder_name(encoder));
5671
5672
/*
5673
* Algorithm gets a little messy:
5674
*
5675
* - if the connector already has an assigned crtc, use it (but make
5676
* sure it's on first)
5677
*
5678
* - try to find the first unused crtc that can drive this connector,
5679
* and use that if we find one
5680
*/
5681
5682
/* See if we already have a CRTC for this connector */
5683
if (encoder->crtc) {
5684
crtc = encoder->crtc;
5685
5686
intel_crtc = to_intel_crtc(crtc);
5687
old->dpms_mode = intel_crtc->dpms_mode;
5688
old->load_detect_temp = false;
5689
5690
/* Make sure the crtc and connector are running */
5691
if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5692
struct drm_encoder_helper_funcs *encoder_funcs;
5693
struct drm_crtc_helper_funcs *crtc_funcs;
5694
5695
crtc_funcs = crtc->helper_private;
5696
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5697
5698
encoder_funcs = encoder->helper_private;
5699
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5700
}
5701
5702
return true;
5703
}
5704
5705
/* Find an unused one (if possible) */
5706
list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5707
i++;
5708
if (!(encoder->possible_crtcs & (1 << i)))
5709
continue;
5710
if (!possible_crtc->enabled) {
5711
crtc = possible_crtc;
5712
break;
5713
}
5714
}
5715
5716
/*
5717
* If we didn't find an unused CRTC, don't use any.
5718
*/
5719
if (!crtc) {
5720
DRM_DEBUG_KMS("no pipe available for load-detect\n");
5721
return false;
5722
}
5723
5724
encoder->crtc = crtc;
5725
connector->encoder = encoder;
5726
5727
intel_crtc = to_intel_crtc(crtc);
5728
old->dpms_mode = intel_crtc->dpms_mode;
5729
old->load_detect_temp = true;
5730
old->release_fb = NULL;
5731
5732
if (!mode)
5733
mode = &load_detect_mode;
5734
5735
old_fb = crtc->fb;
5736
5737
/* We need a framebuffer large enough to accommodate all accesses
5738
* that the plane may generate whilst we perform load detection.
5739
* We can not rely on the fbcon either being present (we get called
5740
* during its initialisation to detect all boot displays, or it may
5741
* not even exist) or that it is large enough to satisfy the
5742
* requested mode.
5743
*/
5744
crtc->fb = mode_fits_in_fbdev(dev, mode);
5745
if (crtc->fb == NULL) {
5746
DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5747
crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5748
old->release_fb = crtc->fb;
5749
} else
5750
DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5751
if (IS_ERR(crtc->fb)) {
5752
DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5753
crtc->fb = old_fb;
5754
return false;
5755
}
5756
5757
if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5758
DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5759
if (old->release_fb)
5760
old->release_fb->funcs->destroy(old->release_fb);
5761
crtc->fb = old_fb;
5762
return false;
5763
}
5764
5765
/* let the connector get through one full cycle before testing */
5766
intel_wait_for_vblank(dev, intel_crtc->pipe);
5767
5768
return true;
5769
}
5770
5771
void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5772
struct drm_connector *connector,
5773
struct intel_load_detect_pipe *old)
5774
{
5775
struct drm_encoder *encoder = &intel_encoder->base;
5776
struct drm_device *dev = encoder->dev;
5777
struct drm_crtc *crtc = encoder->crtc;
5778
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5779
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5780
5781
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5782
connector->base.id, drm_get_connector_name(connector),
5783
encoder->base.id, drm_get_encoder_name(encoder));
5784
5785
if (old->load_detect_temp) {
5786
connector->encoder = NULL;
5787
drm_helper_disable_unused_functions(dev);
5788
5789
if (old->release_fb)
5790
old->release_fb->funcs->destroy(old->release_fb);
5791
5792
return;
5793
}
5794
5795
/* Switch crtc and encoder back off if necessary */
5796
if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5797
encoder_funcs->dpms(encoder, old->dpms_mode);
5798
crtc_funcs->dpms(crtc, old->dpms_mode);
5799
}
5800
}
5801
5802
/* Returns the clock of the currently programmed mode of the given pipe. */
5803
static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5804
{
5805
struct drm_i915_private *dev_priv = dev->dev_private;
5806
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5807
int pipe = intel_crtc->pipe;
5808
u32 dpll = I915_READ(DPLL(pipe));
5809
u32 fp;
5810
intel_clock_t clock;
5811
5812
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5813
fp = I915_READ(FP0(pipe));
5814
else
5815
fp = I915_READ(FP1(pipe));
5816
5817
clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5818
if (IS_PINEVIEW(dev)) {
5819
clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5820
clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5821
} else {
5822
clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5823
clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5824
}
5825
5826
if (!IS_GEN2(dev)) {
5827
if (IS_PINEVIEW(dev))
5828
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5829
DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5830
else
5831
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5832
DPLL_FPA01_P1_POST_DIV_SHIFT);
5833
5834
switch (dpll & DPLL_MODE_MASK) {
5835
case DPLLB_MODE_DAC_SERIAL:
5836
clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5837
5 : 10;
5838
break;
5839
case DPLLB_MODE_LVDS:
5840
clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5841
7 : 14;
5842
break;
5843
default:
5844
DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5845
"mode\n", (int)(dpll & DPLL_MODE_MASK));
5846
return 0;
5847
}
5848
5849
/* XXX: Handle the 100Mhz refclk */
5850
intel_clock(dev, 96000, &clock);
5851
} else {
5852
bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5853
5854
if (is_lvds) {
5855
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5856
DPLL_FPA01_P1_POST_DIV_SHIFT);
5857
clock.p2 = 14;
5858
5859
if ((dpll & PLL_REF_INPUT_MASK) ==
5860
PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5861
/* XXX: might not be 66MHz */
5862
intel_clock(dev, 66000, &clock);
5863
} else
5864
intel_clock(dev, 48000, &clock);
5865
} else {
5866
if (dpll & PLL_P1_DIVIDE_BY_TWO)
5867
clock.p1 = 2;
5868
else {
5869
clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5870
DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5871
}
5872
if (dpll & PLL_P2_DIVIDE_BY_4)
5873
clock.p2 = 4;
5874
else
5875
clock.p2 = 2;
5876
5877
intel_clock(dev, 48000, &clock);
5878
}
5879
}
5880
5881
/* XXX: It would be nice to validate the clocks, but we can't reuse
5882
* i830PllIsValid() because it relies on the xf86_config connector
5883
* configuration being accurate, which it isn't necessarily.
5884
*/
5885
5886
return clock.dot;
5887
}
5888
5889
/** Returns the currently programmed mode of the given pipe. */
5890
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5891
struct drm_crtc *crtc)
5892
{
5893
struct drm_i915_private *dev_priv = dev->dev_private;
5894
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5895
int pipe = intel_crtc->pipe;
5896
struct drm_display_mode *mode;
5897
int htot = I915_READ(HTOTAL(pipe));
5898
int hsync = I915_READ(HSYNC(pipe));
5899
int vtot = I915_READ(VTOTAL(pipe));
5900
int vsync = I915_READ(VSYNC(pipe));
5901
5902
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5903
if (!mode)
5904
return NULL;
5905
5906
mode->clock = intel_crtc_clock_get(dev, crtc);
5907
mode->hdisplay = (htot & 0xffff) + 1;
5908
mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5909
mode->hsync_start = (hsync & 0xffff) + 1;
5910
mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5911
mode->vdisplay = (vtot & 0xffff) + 1;
5912
mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5913
mode->vsync_start = (vsync & 0xffff) + 1;
5914
mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5915
5916
drm_mode_set_name(mode);
5917
drm_mode_set_crtcinfo(mode, 0);
5918
5919
return mode;
5920
}
5921
5922
#define GPU_IDLE_TIMEOUT 500 /* ms */
5923
5924
/* When this timer fires, we've been idle for awhile */
5925
static void intel_gpu_idle_timer(unsigned long arg)
5926
{
5927
struct drm_device *dev = (struct drm_device *)arg;
5928
drm_i915_private_t *dev_priv = dev->dev_private;
5929
5930
if (!list_empty(&dev_priv->mm.active_list)) {
5931
/* Still processing requests, so just re-arm the timer. */
5932
mod_timer(&dev_priv->idle_timer, jiffies +
5933
msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5934
return;
5935
}
5936
5937
dev_priv->busy = false;
5938
queue_work(dev_priv->wq, &dev_priv->idle_work);
5939
}
5940
5941
#define CRTC_IDLE_TIMEOUT 1000 /* ms */
5942
5943
static void intel_crtc_idle_timer(unsigned long arg)
5944
{
5945
struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5946
struct drm_crtc *crtc = &intel_crtc->base;
5947
drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5948
struct intel_framebuffer *intel_fb;
5949
5950
intel_fb = to_intel_framebuffer(crtc->fb);
5951
if (intel_fb && intel_fb->obj->active) {
5952
/* The framebuffer is still being accessed by the GPU. */
5953
mod_timer(&intel_crtc->idle_timer, jiffies +
5954
msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5955
return;
5956
}
5957
5958
intel_crtc->busy = false;
5959
queue_work(dev_priv->wq, &dev_priv->idle_work);
5960
}
5961
5962
static void intel_increase_pllclock(struct drm_crtc *crtc)
5963
{
5964
struct drm_device *dev = crtc->dev;
5965
drm_i915_private_t *dev_priv = dev->dev_private;
5966
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5967
int pipe = intel_crtc->pipe;
5968
int dpll_reg = DPLL(pipe);
5969
int dpll;
5970
5971
if (HAS_PCH_SPLIT(dev))
5972
return;
5973
5974
if (!dev_priv->lvds_downclock_avail)
5975
return;
5976
5977
dpll = I915_READ(dpll_reg);
5978
if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5979
DRM_DEBUG_DRIVER("upclocking LVDS\n");
5980
5981
/* Unlock panel regs */
5982
I915_WRITE(PP_CONTROL,
5983
I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
5984
5985
dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5986
I915_WRITE(dpll_reg, dpll);
5987
intel_wait_for_vblank(dev, pipe);
5988
5989
dpll = I915_READ(dpll_reg);
5990
if (dpll & DISPLAY_RATE_SELECT_FPA1)
5991
DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5992
5993
/* ...and lock them again */
5994
I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
5995
}
5996
5997
/* Schedule downclock */
5998
mod_timer(&intel_crtc->idle_timer, jiffies +
5999
msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6000
}
6001
6002
static void intel_decrease_pllclock(struct drm_crtc *crtc)
6003
{
6004
struct drm_device *dev = crtc->dev;
6005
drm_i915_private_t *dev_priv = dev->dev_private;
6006
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6007
int pipe = intel_crtc->pipe;
6008
int dpll_reg = DPLL(pipe);
6009
int dpll = I915_READ(dpll_reg);
6010
6011
if (HAS_PCH_SPLIT(dev))
6012
return;
6013
6014
if (!dev_priv->lvds_downclock_avail)
6015
return;
6016
6017
/*
6018
* Since this is called by a timer, we should never get here in
6019
* the manual case.
6020
*/
6021
if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6022
DRM_DEBUG_DRIVER("downclocking LVDS\n");
6023
6024
/* Unlock panel regs */
6025
I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6026
PANEL_UNLOCK_REGS);
6027
6028
dpll |= DISPLAY_RATE_SELECT_FPA1;
6029
I915_WRITE(dpll_reg, dpll);
6030
intel_wait_for_vblank(dev, pipe);
6031
dpll = I915_READ(dpll_reg);
6032
if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6033
DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6034
6035
/* ...and lock them again */
6036
I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6037
}
6038
6039
}
6040
6041
/**
6042
* intel_idle_update - adjust clocks for idleness
6043
* @work: work struct
6044
*
6045
* Either the GPU or display (or both) went idle. Check the busy status
6046
* here and adjust the CRTC and GPU clocks as necessary.
6047
*/
6048
static void intel_idle_update(struct work_struct *work)
6049
{
6050
drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6051
idle_work);
6052
struct drm_device *dev = dev_priv->dev;
6053
struct drm_crtc *crtc;
6054
struct intel_crtc *intel_crtc;
6055
6056
if (!i915_powersave)
6057
return;
6058
6059
mutex_lock(&dev->struct_mutex);
6060
6061
i915_update_gfx_val(dev_priv);
6062
6063
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6064
/* Skip inactive CRTCs */
6065
if (!crtc->fb)
6066
continue;
6067
6068
intel_crtc = to_intel_crtc(crtc);
6069
if (!intel_crtc->busy)
6070
intel_decrease_pllclock(crtc);
6071
}
6072
6073
6074
mutex_unlock(&dev->struct_mutex);
6075
}
6076
6077
/**
6078
* intel_mark_busy - mark the GPU and possibly the display busy
6079
* @dev: drm device
6080
* @obj: object we're operating on
6081
*
6082
* Callers can use this function to indicate that the GPU is busy processing
6083
* commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
6084
* buffer), we'll also mark the display as busy, so we know to increase its
6085
* clock frequency.
6086
*/
6087
void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6088
{
6089
drm_i915_private_t *dev_priv = dev->dev_private;
6090
struct drm_crtc *crtc = NULL;
6091
struct intel_framebuffer *intel_fb;
6092
struct intel_crtc *intel_crtc;
6093
6094
if (!drm_core_check_feature(dev, DRIVER_MODESET))
6095
return;
6096
6097
if (!dev_priv->busy)
6098
dev_priv->busy = true;
6099
else
6100
mod_timer(&dev_priv->idle_timer, jiffies +
6101
msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6102
6103
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6104
if (!crtc->fb)
6105
continue;
6106
6107
intel_crtc = to_intel_crtc(crtc);
6108
intel_fb = to_intel_framebuffer(crtc->fb);
6109
if (intel_fb->obj == obj) {
6110
if (!intel_crtc->busy) {
6111
/* Non-busy -> busy, upclock */
6112
intel_increase_pllclock(crtc);
6113
intel_crtc->busy = true;
6114
} else {
6115
/* Busy -> busy, put off timer */
6116
mod_timer(&intel_crtc->idle_timer, jiffies +
6117
msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6118
}
6119
}
6120
}
6121
}
6122
6123
static void intel_crtc_destroy(struct drm_crtc *crtc)
6124
{
6125
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6126
struct drm_device *dev = crtc->dev;
6127
struct intel_unpin_work *work;
6128
unsigned long flags;
6129
6130
spin_lock_irqsave(&dev->event_lock, flags);
6131
work = intel_crtc->unpin_work;
6132
intel_crtc->unpin_work = NULL;
6133
spin_unlock_irqrestore(&dev->event_lock, flags);
6134
6135
if (work) {
6136
cancel_work_sync(&work->work);
6137
kfree(work);
6138
}
6139
6140
drm_crtc_cleanup(crtc);
6141
6142
kfree(intel_crtc);
6143
}
6144
6145
static void intel_unpin_work_fn(struct work_struct *__work)
6146
{
6147
struct intel_unpin_work *work =
6148
container_of(__work, struct intel_unpin_work, work);
6149
6150
mutex_lock(&work->dev->struct_mutex);
6151
i915_gem_object_unpin(work->old_fb_obj);
6152
drm_gem_object_unreference(&work->pending_flip_obj->base);
6153
drm_gem_object_unreference(&work->old_fb_obj->base);
6154
6155
mutex_unlock(&work->dev->struct_mutex);
6156
kfree(work);
6157
}
6158
6159
static void do_intel_finish_page_flip(struct drm_device *dev,
6160
struct drm_crtc *crtc)
6161
{
6162
drm_i915_private_t *dev_priv = dev->dev_private;
6163
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6164
struct intel_unpin_work *work;
6165
struct drm_i915_gem_object *obj;
6166
struct drm_pending_vblank_event *e;
6167
struct timeval tnow, tvbl;
6168
unsigned long flags;
6169
6170
/* Ignore early vblank irqs */
6171
if (intel_crtc == NULL)
6172
return;
6173
6174
do_gettimeofday(&tnow);
6175
6176
spin_lock_irqsave(&dev->event_lock, flags);
6177
work = intel_crtc->unpin_work;
6178
if (work == NULL || !work->pending) {
6179
spin_unlock_irqrestore(&dev->event_lock, flags);
6180
return;
6181
}
6182
6183
intel_crtc->unpin_work = NULL;
6184
6185
if (work->event) {
6186
e = work->event;
6187
e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6188
6189
/* Called before vblank count and timestamps have
6190
* been updated for the vblank interval of flip
6191
* completion? Need to increment vblank count and
6192
* add one videorefresh duration to returned timestamp
6193
* to account for this. We assume this happened if we
6194
* get called over 0.9 frame durations after the last
6195
* timestamped vblank.
6196
*
6197
* This calculation can not be used with vrefresh rates
6198
* below 5Hz (10Hz to be on the safe side) without
6199
* promoting to 64 integers.
6200
*/
6201
if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6202
9 * crtc->framedur_ns) {
6203
e->event.sequence++;
6204
tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6205
crtc->framedur_ns);
6206
}
6207
6208
e->event.tv_sec = tvbl.tv_sec;
6209
e->event.tv_usec = tvbl.tv_usec;
6210
6211
list_add_tail(&e->base.link,
6212
&e->base.file_priv->event_list);
6213
wake_up_interruptible(&e->base.file_priv->event_wait);
6214
}
6215
6216
drm_vblank_put(dev, intel_crtc->pipe);
6217
6218
spin_unlock_irqrestore(&dev->event_lock, flags);
6219
6220
obj = work->old_fb_obj;
6221
6222
atomic_clear_mask(1 << intel_crtc->plane,
6223
&obj->pending_flip.counter);
6224
if (atomic_read(&obj->pending_flip) == 0)
6225
wake_up(&dev_priv->pending_flip_queue);
6226
6227
schedule_work(&work->work);
6228
6229
trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6230
}
6231
6232
void intel_finish_page_flip(struct drm_device *dev, int pipe)
6233
{
6234
drm_i915_private_t *dev_priv = dev->dev_private;
6235
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6236
6237
do_intel_finish_page_flip(dev, crtc);
6238
}
6239
6240
void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6241
{
6242
drm_i915_private_t *dev_priv = dev->dev_private;
6243
struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6244
6245
do_intel_finish_page_flip(dev, crtc);
6246
}
6247
6248
void intel_prepare_page_flip(struct drm_device *dev, int plane)
6249
{
6250
drm_i915_private_t *dev_priv = dev->dev_private;
6251
struct intel_crtc *intel_crtc =
6252
to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6253
unsigned long flags;
6254
6255
spin_lock_irqsave(&dev->event_lock, flags);
6256
if (intel_crtc->unpin_work) {
6257
if ((++intel_crtc->unpin_work->pending) > 1)
6258
DRM_ERROR("Prepared flip multiple times\n");
6259
} else {
6260
DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6261
}
6262
spin_unlock_irqrestore(&dev->event_lock, flags);
6263
}
6264
6265
static int intel_gen2_queue_flip(struct drm_device *dev,
6266
struct drm_crtc *crtc,
6267
struct drm_framebuffer *fb,
6268
struct drm_i915_gem_object *obj)
6269
{
6270
struct drm_i915_private *dev_priv = dev->dev_private;
6271
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6272
unsigned long offset;
6273
u32 flip_mask;
6274
int ret;
6275
6276
ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6277
if (ret)
6278
goto out;
6279
6280
/* Offset into the new buffer for cases of shared fbs between CRTCs */
6281
offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6282
6283
ret = BEGIN_LP_RING(6);
6284
if (ret)
6285
goto out;
6286
6287
/* Can't queue multiple flips, so wait for the previous
6288
* one to finish before executing the next.
6289
*/
6290
if (intel_crtc->plane)
6291
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6292
else
6293
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6294
OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6295
OUT_RING(MI_NOOP);
6296
OUT_RING(MI_DISPLAY_FLIP |
6297
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6298
OUT_RING(fb->pitch);
6299
OUT_RING(obj->gtt_offset + offset);
6300
OUT_RING(MI_NOOP);
6301
ADVANCE_LP_RING();
6302
out:
6303
return ret;
6304
}
6305
6306
static int intel_gen3_queue_flip(struct drm_device *dev,
6307
struct drm_crtc *crtc,
6308
struct drm_framebuffer *fb,
6309
struct drm_i915_gem_object *obj)
6310
{
6311
struct drm_i915_private *dev_priv = dev->dev_private;
6312
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6313
unsigned long offset;
6314
u32 flip_mask;
6315
int ret;
6316
6317
ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6318
if (ret)
6319
goto out;
6320
6321
/* Offset into the new buffer for cases of shared fbs between CRTCs */
6322
offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6323
6324
ret = BEGIN_LP_RING(6);
6325
if (ret)
6326
goto out;
6327
6328
if (intel_crtc->plane)
6329
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6330
else
6331
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6332
OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6333
OUT_RING(MI_NOOP);
6334
OUT_RING(MI_DISPLAY_FLIP_I915 |
6335
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6336
OUT_RING(fb->pitch);
6337
OUT_RING(obj->gtt_offset + offset);
6338
OUT_RING(MI_NOOP);
6339
6340
ADVANCE_LP_RING();
6341
out:
6342
return ret;
6343
}
6344
6345
static int intel_gen4_queue_flip(struct drm_device *dev,
6346
struct drm_crtc *crtc,
6347
struct drm_framebuffer *fb,
6348
struct drm_i915_gem_object *obj)
6349
{
6350
struct drm_i915_private *dev_priv = dev->dev_private;
6351
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6352
uint32_t pf, pipesrc;
6353
int ret;
6354
6355
ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6356
if (ret)
6357
goto out;
6358
6359
ret = BEGIN_LP_RING(4);
6360
if (ret)
6361
goto out;
6362
6363
/* i965+ uses the linear or tiled offsets from the
6364
* Display Registers (which do not change across a page-flip)
6365
* so we need only reprogram the base address.
6366
*/
6367
OUT_RING(MI_DISPLAY_FLIP |
6368
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6369
OUT_RING(fb->pitch);
6370
OUT_RING(obj->gtt_offset | obj->tiling_mode);
6371
6372
/* XXX Enabling the panel-fitter across page-flip is so far
6373
* untested on non-native modes, so ignore it for now.
6374
* pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6375
*/
6376
pf = 0;
6377
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6378
OUT_RING(pf | pipesrc);
6379
ADVANCE_LP_RING();
6380
out:
6381
return ret;
6382
}
6383
6384
static int intel_gen6_queue_flip(struct drm_device *dev,
6385
struct drm_crtc *crtc,
6386
struct drm_framebuffer *fb,
6387
struct drm_i915_gem_object *obj)
6388
{
6389
struct drm_i915_private *dev_priv = dev->dev_private;
6390
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6391
uint32_t pf, pipesrc;
6392
int ret;
6393
6394
ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6395
if (ret)
6396
goto out;
6397
6398
ret = BEGIN_LP_RING(4);
6399
if (ret)
6400
goto out;
6401
6402
OUT_RING(MI_DISPLAY_FLIP |
6403
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6404
OUT_RING(fb->pitch | obj->tiling_mode);
6405
OUT_RING(obj->gtt_offset);
6406
6407
pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6408
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6409
OUT_RING(pf | pipesrc);
6410
ADVANCE_LP_RING();
6411
out:
6412
return ret;
6413
}
6414
6415
/*
6416
* On gen7 we currently use the blit ring because (in early silicon at least)
6417
* the render ring doesn't give us interrpts for page flip completion, which
6418
* means clients will hang after the first flip is queued. Fortunately the
6419
* blit ring generates interrupts properly, so use it instead.
6420
*/
6421
static int intel_gen7_queue_flip(struct drm_device *dev,
6422
struct drm_crtc *crtc,
6423
struct drm_framebuffer *fb,
6424
struct drm_i915_gem_object *obj)
6425
{
6426
struct drm_i915_private *dev_priv = dev->dev_private;
6427
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6428
struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6429
int ret;
6430
6431
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6432
if (ret)
6433
goto out;
6434
6435
ret = intel_ring_begin(ring, 4);
6436
if (ret)
6437
goto out;
6438
6439
intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
6440
intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
6441
intel_ring_emit(ring, (obj->gtt_offset));
6442
intel_ring_emit(ring, (MI_NOOP));
6443
intel_ring_advance(ring);
6444
out:
6445
return ret;
6446
}
6447
6448
static int intel_default_queue_flip(struct drm_device *dev,
6449
struct drm_crtc *crtc,
6450
struct drm_framebuffer *fb,
6451
struct drm_i915_gem_object *obj)
6452
{
6453
return -ENODEV;
6454
}
6455
6456
static int intel_crtc_page_flip(struct drm_crtc *crtc,
6457
struct drm_framebuffer *fb,
6458
struct drm_pending_vblank_event *event)
6459
{
6460
struct drm_device *dev = crtc->dev;
6461
struct drm_i915_private *dev_priv = dev->dev_private;
6462
struct intel_framebuffer *intel_fb;
6463
struct drm_i915_gem_object *obj;
6464
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6465
struct intel_unpin_work *work;
6466
unsigned long flags;
6467
int ret;
6468
6469
work = kzalloc(sizeof *work, GFP_KERNEL);
6470
if (work == NULL)
6471
return -ENOMEM;
6472
6473
work->event = event;
6474
work->dev = crtc->dev;
6475
intel_fb = to_intel_framebuffer(crtc->fb);
6476
work->old_fb_obj = intel_fb->obj;
6477
INIT_WORK(&work->work, intel_unpin_work_fn);
6478
6479
/* We borrow the event spin lock for protecting unpin_work */
6480
spin_lock_irqsave(&dev->event_lock, flags);
6481
if (intel_crtc->unpin_work) {
6482
spin_unlock_irqrestore(&dev->event_lock, flags);
6483
kfree(work);
6484
6485
DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6486
return -EBUSY;
6487
}
6488
intel_crtc->unpin_work = work;
6489
spin_unlock_irqrestore(&dev->event_lock, flags);
6490
6491
intel_fb = to_intel_framebuffer(fb);
6492
obj = intel_fb->obj;
6493
6494
mutex_lock(&dev->struct_mutex);
6495
6496
/* Reference the objects for the scheduled work. */
6497
drm_gem_object_reference(&work->old_fb_obj->base);
6498
drm_gem_object_reference(&obj->base);
6499
6500
crtc->fb = fb;
6501
6502
ret = drm_vblank_get(dev, intel_crtc->pipe);
6503
if (ret)
6504
goto cleanup_objs;
6505
6506
work->pending_flip_obj = obj;
6507
6508
work->enable_stall_check = true;
6509
6510
/* Block clients from rendering to the new back buffer until
6511
* the flip occurs and the object is no longer visible.
6512
*/
6513
atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6514
6515
ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6516
if (ret)
6517
goto cleanup_pending;
6518
6519
mutex_unlock(&dev->struct_mutex);
6520
6521
trace_i915_flip_request(intel_crtc->plane, obj);
6522
6523
return 0;
6524
6525
cleanup_pending:
6526
atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6527
cleanup_objs:
6528
drm_gem_object_unreference(&work->old_fb_obj->base);
6529
drm_gem_object_unreference(&obj->base);
6530
mutex_unlock(&dev->struct_mutex);
6531
6532
spin_lock_irqsave(&dev->event_lock, flags);
6533
intel_crtc->unpin_work = NULL;
6534
spin_unlock_irqrestore(&dev->event_lock, flags);
6535
6536
kfree(work);
6537
6538
return ret;
6539
}
6540
6541
static void intel_sanitize_modesetting(struct drm_device *dev,
6542
int pipe, int plane)
6543
{
6544
struct drm_i915_private *dev_priv = dev->dev_private;
6545
u32 reg, val;
6546
6547
if (HAS_PCH_SPLIT(dev))
6548
return;
6549
6550
/* Who knows what state these registers were left in by the BIOS or
6551
* grub?
6552
*
6553
* If we leave the registers in a conflicting state (e.g. with the
6554
* display plane reading from the other pipe than the one we intend
6555
* to use) then when we attempt to teardown the active mode, we will
6556
* not disable the pipes and planes in the correct order -- leaving
6557
* a plane reading from a disabled pipe and possibly leading to
6558
* undefined behaviour.
6559
*/
6560
6561
reg = DSPCNTR(plane);
6562
val = I915_READ(reg);
6563
6564
if ((val & DISPLAY_PLANE_ENABLE) == 0)
6565
return;
6566
if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6567
return;
6568
6569
/* This display plane is active and attached to the other CPU pipe. */
6570
pipe = !pipe;
6571
6572
/* Disable the plane and wait for it to stop reading from the pipe. */
6573
intel_disable_plane(dev_priv, plane, pipe);
6574
intel_disable_pipe(dev_priv, pipe);
6575
}
6576
6577
static void intel_crtc_reset(struct drm_crtc *crtc)
6578
{
6579
struct drm_device *dev = crtc->dev;
6580
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6581
6582
/* Reset flags back to the 'unknown' status so that they
6583
* will be correctly set on the initial modeset.
6584
*/
6585
intel_crtc->dpms_mode = -1;
6586
6587
/* We need to fix up any BIOS configuration that conflicts with
6588
* our expectations.
6589
*/
6590
intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6591
}
6592
6593
static struct drm_crtc_helper_funcs intel_helper_funcs = {
6594
.dpms = intel_crtc_dpms,
6595
.mode_fixup = intel_crtc_mode_fixup,
6596
.mode_set = intel_crtc_mode_set,
6597
.mode_set_base = intel_pipe_set_base,
6598
.mode_set_base_atomic = intel_pipe_set_base_atomic,
6599
.load_lut = intel_crtc_load_lut,
6600
.disable = intel_crtc_disable,
6601
};
6602
6603
static const struct drm_crtc_funcs intel_crtc_funcs = {
6604
.reset = intel_crtc_reset,
6605
.cursor_set = intel_crtc_cursor_set,
6606
.cursor_move = intel_crtc_cursor_move,
6607
.gamma_set = intel_crtc_gamma_set,
6608
.set_config = drm_crtc_helper_set_config,
6609
.destroy = intel_crtc_destroy,
6610
.page_flip = intel_crtc_page_flip,
6611
};
6612
6613
static void intel_crtc_init(struct drm_device *dev, int pipe)
6614
{
6615
drm_i915_private_t *dev_priv = dev->dev_private;
6616
struct intel_crtc *intel_crtc;
6617
int i;
6618
6619
intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6620
if (intel_crtc == NULL)
6621
return;
6622
6623
drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6624
6625
drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6626
for (i = 0; i < 256; i++) {
6627
intel_crtc->lut_r[i] = i;
6628
intel_crtc->lut_g[i] = i;
6629
intel_crtc->lut_b[i] = i;
6630
}
6631
6632
/* Swap pipes & planes for FBC on pre-965 */
6633
intel_crtc->pipe = pipe;
6634
intel_crtc->plane = pipe;
6635
if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6636
DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6637
intel_crtc->plane = !pipe;
6638
}
6639
6640
BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6641
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6642
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6643
dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6644
6645
intel_crtc_reset(&intel_crtc->base);
6646
intel_crtc->active = true; /* force the pipe off on setup_init_config */
6647
6648
if (HAS_PCH_SPLIT(dev)) {
6649
intel_helper_funcs.prepare = ironlake_crtc_prepare;
6650
intel_helper_funcs.commit = ironlake_crtc_commit;
6651
} else {
6652
intel_helper_funcs.prepare = i9xx_crtc_prepare;
6653
intel_helper_funcs.commit = i9xx_crtc_commit;
6654
}
6655
6656
drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6657
6658
intel_crtc->busy = false;
6659
6660
setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6661
(unsigned long)intel_crtc);
6662
}
6663
6664
int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6665
struct drm_file *file)
6666
{
6667
drm_i915_private_t *dev_priv = dev->dev_private;
6668
struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6669
struct drm_mode_object *drmmode_obj;
6670
struct intel_crtc *crtc;
6671
6672
if (!dev_priv) {
6673
DRM_ERROR("called with no initialization\n");
6674
return -EINVAL;
6675
}
6676
6677
drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6678
DRM_MODE_OBJECT_CRTC);
6679
6680
if (!drmmode_obj) {
6681
DRM_ERROR("no such CRTC id\n");
6682
return -EINVAL;
6683
}
6684
6685
crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6686
pipe_from_crtc_id->pipe = crtc->pipe;
6687
6688
return 0;
6689
}
6690
6691
static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6692
{
6693
struct intel_encoder *encoder;
6694
int index_mask = 0;
6695
int entry = 0;
6696
6697
list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6698
if (type_mask & encoder->clone_mask)
6699
index_mask |= (1 << entry);
6700
entry++;
6701
}
6702
6703
return index_mask;
6704
}
6705
6706
static bool has_edp_a(struct drm_device *dev)
6707
{
6708
struct drm_i915_private *dev_priv = dev->dev_private;
6709
6710
if (!IS_MOBILE(dev))
6711
return false;
6712
6713
if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6714
return false;
6715
6716
if (IS_GEN5(dev) &&
6717
(I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6718
return false;
6719
6720
return true;
6721
}
6722
6723
static void intel_setup_outputs(struct drm_device *dev)
6724
{
6725
struct drm_i915_private *dev_priv = dev->dev_private;
6726
struct intel_encoder *encoder;
6727
bool dpd_is_edp = false;
6728
bool has_lvds = false;
6729
6730
if (IS_MOBILE(dev) && !IS_I830(dev))
6731
has_lvds = intel_lvds_init(dev);
6732
if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6733
/* disable the panel fitter on everything but LVDS */
6734
I915_WRITE(PFIT_CONTROL, 0);
6735
}
6736
6737
if (HAS_PCH_SPLIT(dev)) {
6738
dpd_is_edp = intel_dpd_is_edp(dev);
6739
6740
if (has_edp_a(dev))
6741
intel_dp_init(dev, DP_A);
6742
6743
if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6744
intel_dp_init(dev, PCH_DP_D);
6745
}
6746
6747
intel_crt_init(dev);
6748
6749
if (HAS_PCH_SPLIT(dev)) {
6750
int found;
6751
6752
if (I915_READ(HDMIB) & PORT_DETECTED) {
6753
/* PCH SDVOB multiplex with HDMIB */
6754
found = intel_sdvo_init(dev, PCH_SDVOB);
6755
if (!found)
6756
intel_hdmi_init(dev, HDMIB);
6757
if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6758
intel_dp_init(dev, PCH_DP_B);
6759
}
6760
6761
if (I915_READ(HDMIC) & PORT_DETECTED)
6762
intel_hdmi_init(dev, HDMIC);
6763
6764
if (I915_READ(HDMID) & PORT_DETECTED)
6765
intel_hdmi_init(dev, HDMID);
6766
6767
if (I915_READ(PCH_DP_C) & DP_DETECTED)
6768
intel_dp_init(dev, PCH_DP_C);
6769
6770
if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6771
intel_dp_init(dev, PCH_DP_D);
6772
6773
} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6774
bool found = false;
6775
6776
if (I915_READ(SDVOB) & SDVO_DETECTED) {
6777
DRM_DEBUG_KMS("probing SDVOB\n");
6778
found = intel_sdvo_init(dev, SDVOB);
6779
if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6780
DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6781
intel_hdmi_init(dev, SDVOB);
6782
}
6783
6784
if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6785
DRM_DEBUG_KMS("probing DP_B\n");
6786
intel_dp_init(dev, DP_B);
6787
}
6788
}
6789
6790
/* Before G4X SDVOC doesn't have its own detect register */
6791
6792
if (I915_READ(SDVOB) & SDVO_DETECTED) {
6793
DRM_DEBUG_KMS("probing SDVOC\n");
6794
found = intel_sdvo_init(dev, SDVOC);
6795
}
6796
6797
if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6798
6799
if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6800
DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6801
intel_hdmi_init(dev, SDVOC);
6802
}
6803
if (SUPPORTS_INTEGRATED_DP(dev)) {
6804
DRM_DEBUG_KMS("probing DP_C\n");
6805
intel_dp_init(dev, DP_C);
6806
}
6807
}
6808
6809
if (SUPPORTS_INTEGRATED_DP(dev) &&
6810
(I915_READ(DP_D) & DP_DETECTED)) {
6811
DRM_DEBUG_KMS("probing DP_D\n");
6812
intel_dp_init(dev, DP_D);
6813
}
6814
} else if (IS_GEN2(dev))
6815
intel_dvo_init(dev);
6816
6817
if (SUPPORTS_TV(dev))
6818
intel_tv_init(dev);
6819
6820
list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6821
encoder->base.possible_crtcs = encoder->crtc_mask;
6822
encoder->base.possible_clones =
6823
intel_encoder_clones(dev, encoder->clone_mask);
6824
}
6825
6826
intel_panel_setup_backlight(dev);
6827
6828
/* disable all the possible outputs/crtcs before entering KMS mode */
6829
drm_helper_disable_unused_functions(dev);
6830
}
6831
6832
static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6833
{
6834
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6835
6836
drm_framebuffer_cleanup(fb);
6837
drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6838
6839
kfree(intel_fb);
6840
}
6841
6842
static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6843
struct drm_file *file,
6844
unsigned int *handle)
6845
{
6846
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6847
struct drm_i915_gem_object *obj = intel_fb->obj;
6848
6849
return drm_gem_handle_create(file, &obj->base, handle);
6850
}
6851
6852
static const struct drm_framebuffer_funcs intel_fb_funcs = {
6853
.destroy = intel_user_framebuffer_destroy,
6854
.create_handle = intel_user_framebuffer_create_handle,
6855
};
6856
6857
int intel_framebuffer_init(struct drm_device *dev,
6858
struct intel_framebuffer *intel_fb,
6859
struct drm_mode_fb_cmd *mode_cmd,
6860
struct drm_i915_gem_object *obj)
6861
{
6862
int ret;
6863
6864
if (obj->tiling_mode == I915_TILING_Y)
6865
return -EINVAL;
6866
6867
if (mode_cmd->pitch & 63)
6868
return -EINVAL;
6869
6870
switch (mode_cmd->bpp) {
6871
case 8:
6872
case 16:
6873
case 24:
6874
case 32:
6875
break;
6876
default:
6877
return -EINVAL;
6878
}
6879
6880
ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6881
if (ret) {
6882
DRM_ERROR("framebuffer init failed %d\n", ret);
6883
return ret;
6884
}
6885
6886
drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6887
intel_fb->obj = obj;
6888
return 0;
6889
}
6890
6891
static struct drm_framebuffer *
6892
intel_user_framebuffer_create(struct drm_device *dev,
6893
struct drm_file *filp,
6894
struct drm_mode_fb_cmd *mode_cmd)
6895
{
6896
struct drm_i915_gem_object *obj;
6897
6898
obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
6899
if (&obj->base == NULL)
6900
return ERR_PTR(-ENOENT);
6901
6902
return intel_framebuffer_create(dev, mode_cmd, obj);
6903
}
6904
6905
static const struct drm_mode_config_funcs intel_mode_funcs = {
6906
.fb_create = intel_user_framebuffer_create,
6907
.output_poll_changed = intel_fb_output_poll_changed,
6908
};
6909
6910
static struct drm_i915_gem_object *
6911
intel_alloc_context_page(struct drm_device *dev)
6912
{
6913
struct drm_i915_gem_object *ctx;
6914
int ret;
6915
6916
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
6917
6918
ctx = i915_gem_alloc_object(dev, 4096);
6919
if (!ctx) {
6920
DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
6921
return NULL;
6922
}
6923
6924
ret = i915_gem_object_pin(ctx, 4096, true);
6925
if (ret) {
6926
DRM_ERROR("failed to pin power context: %d\n", ret);
6927
goto err_unref;
6928
}
6929
6930
ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
6931
if (ret) {
6932
DRM_ERROR("failed to set-domain on power context: %d\n", ret);
6933
goto err_unpin;
6934
}
6935
6936
return ctx;
6937
6938
err_unpin:
6939
i915_gem_object_unpin(ctx);
6940
err_unref:
6941
drm_gem_object_unreference(&ctx->base);
6942
mutex_unlock(&dev->struct_mutex);
6943
return NULL;
6944
}
6945
6946
bool ironlake_set_drps(struct drm_device *dev, u8 val)
6947
{
6948
struct drm_i915_private *dev_priv = dev->dev_private;
6949
u16 rgvswctl;
6950
6951
rgvswctl = I915_READ16(MEMSWCTL);
6952
if (rgvswctl & MEMCTL_CMD_STS) {
6953
DRM_DEBUG("gpu busy, RCS change rejected\n");
6954
return false; /* still busy with another command */
6955
}
6956
6957
rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6958
(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6959
I915_WRITE16(MEMSWCTL, rgvswctl);
6960
POSTING_READ16(MEMSWCTL);
6961
6962
rgvswctl |= MEMCTL_CMD_STS;
6963
I915_WRITE16(MEMSWCTL, rgvswctl);
6964
6965
return true;
6966
}
6967
6968
void ironlake_enable_drps(struct drm_device *dev)
6969
{
6970
struct drm_i915_private *dev_priv = dev->dev_private;
6971
u32 rgvmodectl = I915_READ(MEMMODECTL);
6972
u8 fmax, fmin, fstart, vstart;
6973
6974
/* Enable temp reporting */
6975
I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6976
I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6977
6978
/* 100ms RC evaluation intervals */
6979
I915_WRITE(RCUPEI, 100000);
6980
I915_WRITE(RCDNEI, 100000);
6981
6982
/* Set max/min thresholds to 90ms and 80ms respectively */
6983
I915_WRITE(RCBMAXAVG, 90000);
6984
I915_WRITE(RCBMINAVG, 80000);
6985
6986
I915_WRITE(MEMIHYST, 1);
6987
6988
/* Set up min, max, and cur for interrupt handling */
6989
fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6990
fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6991
fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6992
MEMMODE_FSTART_SHIFT;
6993
6994
vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
6995
PXVFREQ_PX_SHIFT;
6996
6997
dev_priv->fmax = fmax; /* IPS callback will increase this */
6998
dev_priv->fstart = fstart;
6999
7000
dev_priv->max_delay = fstart;
7001
dev_priv->min_delay = fmin;
7002
dev_priv->cur_delay = fstart;
7003
7004
DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7005
fmax, fmin, fstart);
7006
7007
I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7008
7009
/*
7010
* Interrupts will be enabled in ironlake_irq_postinstall
7011
*/
7012
7013
I915_WRITE(VIDSTART, vstart);
7014
POSTING_READ(VIDSTART);
7015
7016
rgvmodectl |= MEMMODE_SWMODE_EN;
7017
I915_WRITE(MEMMODECTL, rgvmodectl);
7018
7019
if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7020
DRM_ERROR("stuck trying to change perf mode\n");
7021
msleep(1);
7022
7023
ironlake_set_drps(dev, fstart);
7024
7025
dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7026
I915_READ(0x112e0);
7027
dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7028
dev_priv->last_count2 = I915_READ(0x112f4);
7029
getrawmonotonic(&dev_priv->last_time2);
7030
}
7031
7032
void ironlake_disable_drps(struct drm_device *dev)
7033
{
7034
struct drm_i915_private *dev_priv = dev->dev_private;
7035
u16 rgvswctl = I915_READ16(MEMSWCTL);
7036
7037
/* Ack interrupts, disable EFC interrupt */
7038
I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7039
I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7040
I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7041
I915_WRITE(DEIIR, DE_PCU_EVENT);
7042
I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7043
7044
/* Go back to the starting frequency */
7045
ironlake_set_drps(dev, dev_priv->fstart);
7046
msleep(1);
7047
rgvswctl |= MEMCTL_CMD_STS;
7048
I915_WRITE(MEMSWCTL, rgvswctl);
7049
msleep(1);
7050
7051
}
7052
7053
void gen6_set_rps(struct drm_device *dev, u8 val)
7054
{
7055
struct drm_i915_private *dev_priv = dev->dev_private;
7056
u32 swreq;
7057
7058
swreq = (val & 0x3ff) << 25;
7059
I915_WRITE(GEN6_RPNSWREQ, swreq);
7060
}
7061
7062
void gen6_disable_rps(struct drm_device *dev)
7063
{
7064
struct drm_i915_private *dev_priv = dev->dev_private;
7065
7066
I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7067
I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7068
I915_WRITE(GEN6_PMIER, 0);
7069
7070
spin_lock_irq(&dev_priv->rps_lock);
7071
dev_priv->pm_iir = 0;
7072
spin_unlock_irq(&dev_priv->rps_lock);
7073
7074
I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7075
}
7076
7077
static unsigned long intel_pxfreq(u32 vidfreq)
7078
{
7079
unsigned long freq;
7080
int div = (vidfreq & 0x3f0000) >> 16;
7081
int post = (vidfreq & 0x3000) >> 12;
7082
int pre = (vidfreq & 0x7);
7083
7084
if (!pre)
7085
return 0;
7086
7087
freq = ((div * 133333) / ((1<<post) * pre));
7088
7089
return freq;
7090
}
7091
7092
void intel_init_emon(struct drm_device *dev)
7093
{
7094
struct drm_i915_private *dev_priv = dev->dev_private;
7095
u32 lcfuse;
7096
u8 pxw[16];
7097
int i;
7098
7099
/* Disable to program */
7100
I915_WRITE(ECR, 0);
7101
POSTING_READ(ECR);
7102
7103
/* Program energy weights for various events */
7104
I915_WRITE(SDEW, 0x15040d00);
7105
I915_WRITE(CSIEW0, 0x007f0000);
7106
I915_WRITE(CSIEW1, 0x1e220004);
7107
I915_WRITE(CSIEW2, 0x04000004);
7108
7109
for (i = 0; i < 5; i++)
7110
I915_WRITE(PEW + (i * 4), 0);
7111
for (i = 0; i < 3; i++)
7112
I915_WRITE(DEW + (i * 4), 0);
7113
7114
/* Program P-state weights to account for frequency power adjustment */
7115
for (i = 0; i < 16; i++) {
7116
u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7117
unsigned long freq = intel_pxfreq(pxvidfreq);
7118
unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7119
PXVFREQ_PX_SHIFT;
7120
unsigned long val;
7121
7122
val = vid * vid;
7123
val *= (freq / 1000);
7124
val *= 255;
7125
val /= (127*127*900);
7126
if (val > 0xff)
7127
DRM_ERROR("bad pxval: %ld\n", val);
7128
pxw[i] = val;
7129
}
7130
/* Render standby states get 0 weight */
7131
pxw[14] = 0;
7132
pxw[15] = 0;
7133
7134
for (i = 0; i < 4; i++) {
7135
u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7136
(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7137
I915_WRITE(PXW + (i * 4), val);
7138
}
7139
7140
/* Adjust magic regs to magic values (more experimental results) */
7141
I915_WRITE(OGW0, 0);
7142
I915_WRITE(OGW1, 0);
7143
I915_WRITE(EG0, 0x00007f00);
7144
I915_WRITE(EG1, 0x0000000e);
7145
I915_WRITE(EG2, 0x000e0000);
7146
I915_WRITE(EG3, 0x68000300);
7147
I915_WRITE(EG4, 0x42000000);
7148
I915_WRITE(EG5, 0x00140031);
7149
I915_WRITE(EG6, 0);
7150
I915_WRITE(EG7, 0);
7151
7152
for (i = 0; i < 8; i++)
7153
I915_WRITE(PXWL + (i * 4), 0);
7154
7155
/* Enable PMON + select events */
7156
I915_WRITE(ECR, 0x80000019);
7157
7158
lcfuse = I915_READ(LCFUSE02);
7159
7160
dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7161
}
7162
7163
void gen6_enable_rps(struct drm_i915_private *dev_priv)
7164
{
7165
u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7166
u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7167
u32 pcu_mbox, rc6_mask = 0;
7168
int cur_freq, min_freq, max_freq;
7169
int i;
7170
7171
/* Here begins a magic sequence of register writes to enable
7172
* auto-downclocking.
7173
*
7174
* Perhaps there might be some value in exposing these to
7175
* userspace...
7176
*/
7177
I915_WRITE(GEN6_RC_STATE, 0);
7178
mutex_lock(&dev_priv->dev->struct_mutex);
7179
gen6_gt_force_wake_get(dev_priv);
7180
7181
/* disable the counters and set deterministic thresholds */
7182
I915_WRITE(GEN6_RC_CONTROL, 0);
7183
7184
I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7185
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7186
I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7187
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7188
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7189
7190
for (i = 0; i < I915_NUM_RINGS; i++)
7191
I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7192
7193
I915_WRITE(GEN6_RC_SLEEP, 0);
7194
I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7195
I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7196
I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7197
I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7198
7199
if (i915_enable_rc6)
7200
rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7201
GEN6_RC_CTL_RC6_ENABLE;
7202
7203
I915_WRITE(GEN6_RC_CONTROL,
7204
rc6_mask |
7205
GEN6_RC_CTL_EI_MODE(1) |
7206
GEN6_RC_CTL_HW_ENABLE);
7207
7208
I915_WRITE(GEN6_RPNSWREQ,
7209
GEN6_FREQUENCY(10) |
7210
GEN6_OFFSET(0) |
7211
GEN6_AGGRESSIVE_TURBO);
7212
I915_WRITE(GEN6_RC_VIDEO_FREQ,
7213
GEN6_FREQUENCY(12));
7214
7215
I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7216
I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7217
18 << 24 |
7218
6 << 16);
7219
I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7220
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7221
I915_WRITE(GEN6_RP_UP_EI, 100000);
7222
I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7223
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7224
I915_WRITE(GEN6_RP_CONTROL,
7225
GEN6_RP_MEDIA_TURBO |
7226
GEN6_RP_USE_NORMAL_FREQ |
7227
GEN6_RP_MEDIA_IS_GFX |
7228
GEN6_RP_ENABLE |
7229
GEN6_RP_UP_BUSY_AVG |
7230
GEN6_RP_DOWN_IDLE_CONT);
7231
7232
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7233
500))
7234
DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7235
7236
I915_WRITE(GEN6_PCODE_DATA, 0);
7237
I915_WRITE(GEN6_PCODE_MAILBOX,
7238
GEN6_PCODE_READY |
7239
GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7240
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7241
500))
7242
DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7243
7244
min_freq = (rp_state_cap & 0xff0000) >> 16;
7245
max_freq = rp_state_cap & 0xff;
7246
cur_freq = (gt_perf_status & 0xff00) >> 8;
7247
7248
/* Check for overclock support */
7249
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7250
500))
7251
DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7252
I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7253
pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7254
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7255
500))
7256
DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7257
if (pcu_mbox & (1<<31)) { /* OC supported */
7258
max_freq = pcu_mbox & 0xff;
7259
DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
7260
}
7261
7262
/* In units of 100MHz */
7263
dev_priv->max_delay = max_freq;
7264
dev_priv->min_delay = min_freq;
7265
dev_priv->cur_delay = cur_freq;
7266
7267
/* requires MSI enabled */
7268
I915_WRITE(GEN6_PMIER,
7269
GEN6_PM_MBOX_EVENT |
7270
GEN6_PM_THERMAL_EVENT |
7271
GEN6_PM_RP_DOWN_TIMEOUT |
7272
GEN6_PM_RP_UP_THRESHOLD |
7273
GEN6_PM_RP_DOWN_THRESHOLD |
7274
GEN6_PM_RP_UP_EI_EXPIRED |
7275
GEN6_PM_RP_DOWN_EI_EXPIRED);
7276
spin_lock_irq(&dev_priv->rps_lock);
7277
WARN_ON(dev_priv->pm_iir != 0);
7278
I915_WRITE(GEN6_PMIMR, 0);
7279
spin_unlock_irq(&dev_priv->rps_lock);
7280
/* enable all PM interrupts */
7281
I915_WRITE(GEN6_PMINTRMSK, 0);
7282
7283
gen6_gt_force_wake_put(dev_priv);
7284
mutex_unlock(&dev_priv->dev->struct_mutex);
7285
}
7286
7287
static void ironlake_init_clock_gating(struct drm_device *dev)
7288
{
7289
struct drm_i915_private *dev_priv = dev->dev_private;
7290
uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7291
7292
/* Required for FBC */
7293
dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
7294
DPFCRUNIT_CLOCK_GATE_DISABLE |
7295
DPFDUNIT_CLOCK_GATE_DISABLE;
7296
/* Required for CxSR */
7297
dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
7298
7299
I915_WRITE(PCH_3DCGDIS0,
7300
MARIUNIT_CLOCK_GATE_DISABLE |
7301
SVSMUNIT_CLOCK_GATE_DISABLE);
7302
I915_WRITE(PCH_3DCGDIS1,
7303
VFMUNIT_CLOCK_GATE_DISABLE);
7304
7305
I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7306
7307
/*
7308
* According to the spec the following bits should be set in
7309
* order to enable memory self-refresh
7310
* The bit 22/21 of 0x42004
7311
* The bit 5 of 0x42020
7312
* The bit 15 of 0x45000
7313
*/
7314
I915_WRITE(ILK_DISPLAY_CHICKEN2,
7315
(I915_READ(ILK_DISPLAY_CHICKEN2) |
7316
ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7317
I915_WRITE(ILK_DSPCLK_GATE,
7318
(I915_READ(ILK_DSPCLK_GATE) |
7319
ILK_DPARB_CLK_GATE));
7320
I915_WRITE(DISP_ARB_CTL,
7321
(I915_READ(DISP_ARB_CTL) |
7322
DISP_FBC_WM_DIS));
7323
I915_WRITE(WM3_LP_ILK, 0);
7324
I915_WRITE(WM2_LP_ILK, 0);
7325
I915_WRITE(WM1_LP_ILK, 0);
7326
7327
/*
7328
* Based on the document from hardware guys the following bits
7329
* should be set unconditionally in order to enable FBC.
7330
* The bit 22 of 0x42000
7331
* The bit 22 of 0x42004
7332
* The bit 7,8,9 of 0x42020.
7333
*/
7334
if (IS_IRONLAKE_M(dev)) {
7335
I915_WRITE(ILK_DISPLAY_CHICKEN1,
7336
I915_READ(ILK_DISPLAY_CHICKEN1) |
7337
ILK_FBCQ_DIS);
7338
I915_WRITE(ILK_DISPLAY_CHICKEN2,
7339
I915_READ(ILK_DISPLAY_CHICKEN2) |
7340
ILK_DPARB_GATE);
7341
I915_WRITE(ILK_DSPCLK_GATE,
7342
I915_READ(ILK_DSPCLK_GATE) |
7343
ILK_DPFC_DIS1 |
7344
ILK_DPFC_DIS2 |
7345
ILK_CLK_FBC);
7346
}
7347
7348
I915_WRITE(ILK_DISPLAY_CHICKEN2,
7349
I915_READ(ILK_DISPLAY_CHICKEN2) |
7350
ILK_ELPIN_409_SELECT);
7351
I915_WRITE(_3D_CHICKEN2,
7352
_3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7353
_3D_CHICKEN2_WM_READ_PIPELINED);
7354
}
7355
7356
static void gen6_init_clock_gating(struct drm_device *dev)
7357
{
7358
struct drm_i915_private *dev_priv = dev->dev_private;
7359
int pipe;
7360
uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7361
7362
I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7363
7364
I915_WRITE(ILK_DISPLAY_CHICKEN2,
7365
I915_READ(ILK_DISPLAY_CHICKEN2) |
7366
ILK_ELPIN_409_SELECT);
7367
7368
I915_WRITE(WM3_LP_ILK, 0);
7369
I915_WRITE(WM2_LP_ILK, 0);
7370
I915_WRITE(WM1_LP_ILK, 0);
7371
7372
/*
7373
* According to the spec the following bits should be
7374
* set in order to enable memory self-refresh and fbc:
7375
* The bit21 and bit22 of 0x42000
7376
* The bit21 and bit22 of 0x42004
7377
* The bit5 and bit7 of 0x42020
7378
* The bit14 of 0x70180
7379
* The bit14 of 0x71180
7380
*/
7381
I915_WRITE(ILK_DISPLAY_CHICKEN1,
7382
I915_READ(ILK_DISPLAY_CHICKEN1) |
7383
ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7384
I915_WRITE(ILK_DISPLAY_CHICKEN2,
7385
I915_READ(ILK_DISPLAY_CHICKEN2) |
7386
ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7387
I915_WRITE(ILK_DSPCLK_GATE,
7388
I915_READ(ILK_DSPCLK_GATE) |
7389
ILK_DPARB_CLK_GATE |
7390
ILK_DPFD_CLK_GATE);
7391
7392
for_each_pipe(pipe)
7393
I915_WRITE(DSPCNTR(pipe),
7394
I915_READ(DSPCNTR(pipe)) |
7395
DISPPLANE_TRICKLE_FEED_DISABLE);
7396
}
7397
7398
static void ivybridge_init_clock_gating(struct drm_device *dev)
7399
{
7400
struct drm_i915_private *dev_priv = dev->dev_private;
7401
int pipe;
7402
uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7403
7404
I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7405
7406
I915_WRITE(WM3_LP_ILK, 0);
7407
I915_WRITE(WM2_LP_ILK, 0);
7408
I915_WRITE(WM1_LP_ILK, 0);
7409
7410
I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
7411
7412
for_each_pipe(pipe)
7413
I915_WRITE(DSPCNTR(pipe),
7414
I915_READ(DSPCNTR(pipe)) |
7415
DISPPLANE_TRICKLE_FEED_DISABLE);
7416
}
7417
7418
static void g4x_init_clock_gating(struct drm_device *dev)
7419
{
7420
struct drm_i915_private *dev_priv = dev->dev_private;
7421
uint32_t dspclk_gate;
7422
7423
I915_WRITE(RENCLK_GATE_D1, 0);
7424
I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7425
GS_UNIT_CLOCK_GATE_DISABLE |
7426
CL_UNIT_CLOCK_GATE_DISABLE);
7427
I915_WRITE(RAMCLK_GATE_D, 0);
7428
dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7429
OVRUNIT_CLOCK_GATE_DISABLE |
7430
OVCUNIT_CLOCK_GATE_DISABLE;
7431
if (IS_GM45(dev))
7432
dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7433
I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7434
}
7435
7436
static void crestline_init_clock_gating(struct drm_device *dev)
7437
{
7438
struct drm_i915_private *dev_priv = dev->dev_private;
7439
7440
I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7441
I915_WRITE(RENCLK_GATE_D2, 0);
7442
I915_WRITE(DSPCLK_GATE_D, 0);
7443
I915_WRITE(RAMCLK_GATE_D, 0);
7444
I915_WRITE16(DEUC, 0);
7445
}
7446
7447
static void broadwater_init_clock_gating(struct drm_device *dev)
7448
{
7449
struct drm_i915_private *dev_priv = dev->dev_private;
7450
7451
I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7452
I965_RCC_CLOCK_GATE_DISABLE |
7453
I965_RCPB_CLOCK_GATE_DISABLE |
7454
I965_ISC_CLOCK_GATE_DISABLE |
7455
I965_FBC_CLOCK_GATE_DISABLE);
7456
I915_WRITE(RENCLK_GATE_D2, 0);
7457
}
7458
7459
static void gen3_init_clock_gating(struct drm_device *dev)
7460
{
7461
struct drm_i915_private *dev_priv = dev->dev_private;
7462
u32 dstate = I915_READ(D_STATE);
7463
7464
dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7465
DSTATE_DOT_CLOCK_GATING;
7466
I915_WRITE(D_STATE, dstate);
7467
}
7468
7469
static void i85x_init_clock_gating(struct drm_device *dev)
7470
{
7471
struct drm_i915_private *dev_priv = dev->dev_private;
7472
7473
I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7474
}
7475
7476
static void i830_init_clock_gating(struct drm_device *dev)
7477
{
7478
struct drm_i915_private *dev_priv = dev->dev_private;
7479
7480
I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7481
}
7482
7483
static void ibx_init_clock_gating(struct drm_device *dev)
7484
{
7485
struct drm_i915_private *dev_priv = dev->dev_private;
7486
7487
/*
7488
* On Ibex Peak and Cougar Point, we need to disable clock
7489
* gating for the panel power sequencer or it will fail to
7490
* start up when no ports are active.
7491
*/
7492
I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7493
}
7494
7495
static void cpt_init_clock_gating(struct drm_device *dev)
7496
{
7497
struct drm_i915_private *dev_priv = dev->dev_private;
7498
7499
/*
7500
* On Ibex Peak and Cougar Point, we need to disable clock
7501
* gating for the panel power sequencer or it will fail to
7502
* start up when no ports are active.
7503
*/
7504
I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7505
I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7506
DPLS_EDP_PPS_FIX_DIS);
7507
}
7508
7509
static void ironlake_teardown_rc6(struct drm_device *dev)
7510
{
7511
struct drm_i915_private *dev_priv = dev->dev_private;
7512
7513
if (dev_priv->renderctx) {
7514
i915_gem_object_unpin(dev_priv->renderctx);
7515
drm_gem_object_unreference(&dev_priv->renderctx->base);
7516
dev_priv->renderctx = NULL;
7517
}
7518
7519
if (dev_priv->pwrctx) {
7520
i915_gem_object_unpin(dev_priv->pwrctx);
7521
drm_gem_object_unreference(&dev_priv->pwrctx->base);
7522
dev_priv->pwrctx = NULL;
7523
}
7524
}
7525
7526
static void ironlake_disable_rc6(struct drm_device *dev)
7527
{
7528
struct drm_i915_private *dev_priv = dev->dev_private;
7529
7530
if (I915_READ(PWRCTXA)) {
7531
/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
7532
I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
7533
wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
7534
50);
7535
7536
I915_WRITE(PWRCTXA, 0);
7537
POSTING_READ(PWRCTXA);
7538
7539
I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7540
POSTING_READ(RSTDBYCTL);
7541
}
7542
7543
ironlake_teardown_rc6(dev);
7544
}
7545
7546
static int ironlake_setup_rc6(struct drm_device *dev)
7547
{
7548
struct drm_i915_private *dev_priv = dev->dev_private;
7549
7550
if (dev_priv->renderctx == NULL)
7551
dev_priv->renderctx = intel_alloc_context_page(dev);
7552
if (!dev_priv->renderctx)
7553
return -ENOMEM;
7554
7555
if (dev_priv->pwrctx == NULL)
7556
dev_priv->pwrctx = intel_alloc_context_page(dev);
7557
if (!dev_priv->pwrctx) {
7558
ironlake_teardown_rc6(dev);
7559
return -ENOMEM;
7560
}
7561
7562
return 0;
7563
}
7564
7565
void ironlake_enable_rc6(struct drm_device *dev)
7566
{
7567
struct drm_i915_private *dev_priv = dev->dev_private;
7568
int ret;
7569
7570
/* rc6 disabled by default due to repeated reports of hanging during
7571
* boot and resume.
7572
*/
7573
if (!i915_enable_rc6)
7574
return;
7575
7576
mutex_lock(&dev->struct_mutex);
7577
ret = ironlake_setup_rc6(dev);
7578
if (ret) {
7579
mutex_unlock(&dev->struct_mutex);
7580
return;
7581
}
7582
7583
/*
7584
* GPU can automatically power down the render unit if given a page
7585
* to save state.
7586
*/
7587
ret = BEGIN_LP_RING(6);
7588
if (ret) {
7589
ironlake_teardown_rc6(dev);
7590
mutex_unlock(&dev->struct_mutex);
7591
return;
7592
}
7593
7594
OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
7595
OUT_RING(MI_SET_CONTEXT);
7596
OUT_RING(dev_priv->renderctx->gtt_offset |
7597
MI_MM_SPACE_GTT |
7598
MI_SAVE_EXT_STATE_EN |
7599
MI_RESTORE_EXT_STATE_EN |
7600
MI_RESTORE_INHIBIT);
7601
OUT_RING(MI_SUSPEND_FLUSH);
7602
OUT_RING(MI_NOOP);
7603
OUT_RING(MI_FLUSH);
7604
ADVANCE_LP_RING();
7605
7606
/*
7607
* Wait for the command parser to advance past MI_SET_CONTEXT. The HW
7608
* does an implicit flush, combined with MI_FLUSH above, it should be
7609
* safe to assume that renderctx is valid
7610
*/
7611
ret = intel_wait_ring_idle(LP_RING(dev_priv));
7612
if (ret) {
7613
DRM_ERROR("failed to enable ironlake power power savings\n");
7614
ironlake_teardown_rc6(dev);
7615
mutex_unlock(&dev->struct_mutex);
7616
return;
7617
}
7618
7619
I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
7620
I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7621
mutex_unlock(&dev->struct_mutex);
7622
}
7623
7624
void intel_init_clock_gating(struct drm_device *dev)
7625
{
7626
struct drm_i915_private *dev_priv = dev->dev_private;
7627
7628
dev_priv->display.init_clock_gating(dev);
7629
7630
if (dev_priv->display.init_pch_clock_gating)
7631
dev_priv->display.init_pch_clock_gating(dev);
7632
}
7633
7634
/* Set up chip specific display functions */
7635
static void intel_init_display(struct drm_device *dev)
7636
{
7637
struct drm_i915_private *dev_priv = dev->dev_private;
7638
7639
/* We always want a DPMS function */
7640
if (HAS_PCH_SPLIT(dev)) {
7641
dev_priv->display.dpms = ironlake_crtc_dpms;
7642
dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7643
} else {
7644
dev_priv->display.dpms = i9xx_crtc_dpms;
7645
dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7646
}
7647
7648
if (I915_HAS_FBC(dev)) {
7649
if (HAS_PCH_SPLIT(dev)) {
7650
dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7651
dev_priv->display.enable_fbc = ironlake_enable_fbc;
7652
dev_priv->display.disable_fbc = ironlake_disable_fbc;
7653
} else if (IS_GM45(dev)) {
7654
dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7655
dev_priv->display.enable_fbc = g4x_enable_fbc;
7656
dev_priv->display.disable_fbc = g4x_disable_fbc;
7657
} else if (IS_CRESTLINE(dev)) {
7658
dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7659
dev_priv->display.enable_fbc = i8xx_enable_fbc;
7660
dev_priv->display.disable_fbc = i8xx_disable_fbc;
7661
}
7662
/* 855GM needs testing */
7663
}
7664
7665
/* Returns the core display clock speed */
7666
if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
7667
dev_priv->display.get_display_clock_speed =
7668
i945_get_display_clock_speed;
7669
else if (IS_I915G(dev))
7670
dev_priv->display.get_display_clock_speed =
7671
i915_get_display_clock_speed;
7672
else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7673
dev_priv->display.get_display_clock_speed =
7674
i9xx_misc_get_display_clock_speed;
7675
else if (IS_I915GM(dev))
7676
dev_priv->display.get_display_clock_speed =
7677
i915gm_get_display_clock_speed;
7678
else if (IS_I865G(dev))
7679
dev_priv->display.get_display_clock_speed =
7680
i865_get_display_clock_speed;
7681
else if (IS_I85X(dev))
7682
dev_priv->display.get_display_clock_speed =
7683
i855_get_display_clock_speed;
7684
else /* 852, 830 */
7685
dev_priv->display.get_display_clock_speed =
7686
i830_get_display_clock_speed;
7687
7688
/* For FIFO watermark updates */
7689
if (HAS_PCH_SPLIT(dev)) {
7690
if (HAS_PCH_IBX(dev))
7691
dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
7692
else if (HAS_PCH_CPT(dev))
7693
dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
7694
7695
if (IS_GEN5(dev)) {
7696
if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
7697
dev_priv->display.update_wm = ironlake_update_wm;
7698
else {
7699
DRM_DEBUG_KMS("Failed to get proper latency. "
7700
"Disable CxSR\n");
7701
dev_priv->display.update_wm = NULL;
7702
}
7703
dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7704
dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7705
} else if (IS_GEN6(dev)) {
7706
if (SNB_READ_WM0_LATENCY()) {
7707
dev_priv->display.update_wm = sandybridge_update_wm;
7708
} else {
7709
DRM_DEBUG_KMS("Failed to read display plane latency. "
7710
"Disable CxSR\n");
7711
dev_priv->display.update_wm = NULL;
7712
}
7713
dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7714
dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7715
} else if (IS_IVYBRIDGE(dev)) {
7716
/* FIXME: detect B0+ stepping and use auto training */
7717
dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
7718
if (SNB_READ_WM0_LATENCY()) {
7719
dev_priv->display.update_wm = sandybridge_update_wm;
7720
} else {
7721
DRM_DEBUG_KMS("Failed to read display plane latency. "
7722
"Disable CxSR\n");
7723
dev_priv->display.update_wm = NULL;
7724
}
7725
dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7726
7727
} else
7728
dev_priv->display.update_wm = NULL;
7729
} else if (IS_PINEVIEW(dev)) {
7730
if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7731
dev_priv->is_ddr3,
7732
dev_priv->fsb_freq,
7733
dev_priv->mem_freq)) {
7734
DRM_INFO("failed to find known CxSR latency "
7735
"(found ddr%s fsb freq %d, mem freq %d), "
7736
"disabling CxSR\n",
7737
(dev_priv->is_ddr3 == 1) ? "3": "2",
7738
dev_priv->fsb_freq, dev_priv->mem_freq);
7739
/* Disable CxSR and never update its watermark again */
7740
pineview_disable_cxsr(dev);
7741
dev_priv->display.update_wm = NULL;
7742
} else
7743
dev_priv->display.update_wm = pineview_update_wm;
7744
dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7745
} else if (IS_G4X(dev)) {
7746
dev_priv->display.update_wm = g4x_update_wm;
7747
dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7748
} else if (IS_GEN4(dev)) {
7749
dev_priv->display.update_wm = i965_update_wm;
7750
if (IS_CRESTLINE(dev))
7751
dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7752
else if (IS_BROADWATER(dev))
7753
dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7754
} else if (IS_GEN3(dev)) {
7755
dev_priv->display.update_wm = i9xx_update_wm;
7756
dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7757
dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7758
} else if (IS_I865G(dev)) {
7759
dev_priv->display.update_wm = i830_update_wm;
7760
dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7761
dev_priv->display.get_fifo_size = i830_get_fifo_size;
7762
} else if (IS_I85X(dev)) {
7763
dev_priv->display.update_wm = i9xx_update_wm;
7764
dev_priv->display.get_fifo_size = i85x_get_fifo_size;
7765
dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7766
} else {
7767
dev_priv->display.update_wm = i830_update_wm;
7768
dev_priv->display.init_clock_gating = i830_init_clock_gating;
7769
if (IS_845G(dev))
7770
dev_priv->display.get_fifo_size = i845_get_fifo_size;
7771
else
7772
dev_priv->display.get_fifo_size = i830_get_fifo_size;
7773
}
7774
7775
/* Default just returns -ENODEV to indicate unsupported */
7776
dev_priv->display.queue_flip = intel_default_queue_flip;
7777
7778
switch (INTEL_INFO(dev)->gen) {
7779
case 2:
7780
dev_priv->display.queue_flip = intel_gen2_queue_flip;
7781
break;
7782
7783
case 3:
7784
dev_priv->display.queue_flip = intel_gen3_queue_flip;
7785
break;
7786
7787
case 4:
7788
case 5:
7789
dev_priv->display.queue_flip = intel_gen4_queue_flip;
7790
break;
7791
7792
case 6:
7793
dev_priv->display.queue_flip = intel_gen6_queue_flip;
7794
break;
7795
case 7:
7796
dev_priv->display.queue_flip = intel_gen7_queue_flip;
7797
break;
7798
}
7799
}
7800
7801
/*
7802
* Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7803
* resume, or other times. This quirk makes sure that's the case for
7804
* affected systems.
7805
*/
7806
static void quirk_pipea_force (struct drm_device *dev)
7807
{
7808
struct drm_i915_private *dev_priv = dev->dev_private;
7809
7810
dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7811
DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
7812
}
7813
7814
/*
7815
* Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
7816
*/
7817
static void quirk_ssc_force_disable(struct drm_device *dev)
7818
{
7819
struct drm_i915_private *dev_priv = dev->dev_private;
7820
dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
7821
}
7822
7823
struct intel_quirk {
7824
int device;
7825
int subsystem_vendor;
7826
int subsystem_device;
7827
void (*hook)(struct drm_device *dev);
7828
};
7829
7830
struct intel_quirk intel_quirks[] = {
7831
/* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
7832
{ 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
7833
/* HP Mini needs pipe A force quirk (LP: #322104) */
7834
{ 0x27ae,0x103c, 0x361a, quirk_pipea_force },
7835
7836
/* Thinkpad R31 needs pipe A force quirk */
7837
{ 0x3577, 0x1014, 0x0505, quirk_pipea_force },
7838
/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7839
{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7840
7841
/* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
7842
{ 0x3577, 0x1014, 0x0513, quirk_pipea_force },
7843
/* ThinkPad X40 needs pipe A force quirk */
7844
7845
/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7846
{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7847
7848
/* 855 & before need to leave pipe A & dpll A up */
7849
{ 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7850
{ 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7851
7852
/* Lenovo U160 cannot use SSC on LVDS */
7853
{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
7854
};
7855
7856
static void intel_init_quirks(struct drm_device *dev)
7857
{
7858
struct pci_dev *d = dev->pdev;
7859
int i;
7860
7861
for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7862
struct intel_quirk *q = &intel_quirks[i];
7863
7864
if (d->device == q->device &&
7865
(d->subsystem_vendor == q->subsystem_vendor ||
7866
q->subsystem_vendor == PCI_ANY_ID) &&
7867
(d->subsystem_device == q->subsystem_device ||
7868
q->subsystem_device == PCI_ANY_ID))
7869
q->hook(dev);
7870
}
7871
}
7872
7873
/* Disable the VGA plane that we never use */
7874
static void i915_disable_vga(struct drm_device *dev)
7875
{
7876
struct drm_i915_private *dev_priv = dev->dev_private;
7877
u8 sr1;
7878
u32 vga_reg;
7879
7880
if (HAS_PCH_SPLIT(dev))
7881
vga_reg = CPU_VGACNTRL;
7882
else
7883
vga_reg = VGACNTRL;
7884
7885
vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7886
outb(1, VGA_SR_INDEX);
7887
sr1 = inb(VGA_SR_DATA);
7888
outb(sr1 | 1<<5, VGA_SR_DATA);
7889
vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7890
udelay(300);
7891
7892
I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7893
POSTING_READ(vga_reg);
7894
}
7895
7896
void intel_modeset_init(struct drm_device *dev)
7897
{
7898
struct drm_i915_private *dev_priv = dev->dev_private;
7899
int i;
7900
7901
drm_mode_config_init(dev);
7902
7903
dev->mode_config.min_width = 0;
7904
dev->mode_config.min_height = 0;
7905
7906
dev->mode_config.funcs = (void *)&intel_mode_funcs;
7907
7908
intel_init_quirks(dev);
7909
7910
intel_init_display(dev);
7911
7912
if (IS_GEN2(dev)) {
7913
dev->mode_config.max_width = 2048;
7914
dev->mode_config.max_height = 2048;
7915
} else if (IS_GEN3(dev)) {
7916
dev->mode_config.max_width = 4096;
7917
dev->mode_config.max_height = 4096;
7918
} else {
7919
dev->mode_config.max_width = 8192;
7920
dev->mode_config.max_height = 8192;
7921
}
7922
dev->mode_config.fb_base = dev->agp->base;
7923
7924
DRM_DEBUG_KMS("%d display pipe%s available.\n",
7925
dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
7926
7927
for (i = 0; i < dev_priv->num_pipe; i++) {
7928
intel_crtc_init(dev, i);
7929
}
7930
7931
/* Just disable it once at startup */
7932
i915_disable_vga(dev);
7933
intel_setup_outputs(dev);
7934
7935
intel_init_clock_gating(dev);
7936
7937
if (IS_IRONLAKE_M(dev)) {
7938
ironlake_enable_drps(dev);
7939
intel_init_emon(dev);
7940
}
7941
7942
if (IS_GEN6(dev))
7943
gen6_enable_rps(dev_priv);
7944
7945
INIT_WORK(&dev_priv->idle_work, intel_idle_update);
7946
setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
7947
(unsigned long)dev);
7948
}
7949
7950
void intel_modeset_gem_init(struct drm_device *dev)
7951
{
7952
if (IS_IRONLAKE_M(dev))
7953
ironlake_enable_rc6(dev);
7954
7955
intel_setup_overlay(dev);
7956
}
7957
7958
void intel_modeset_cleanup(struct drm_device *dev)
7959
{
7960
struct drm_i915_private *dev_priv = dev->dev_private;
7961
struct drm_crtc *crtc;
7962
struct intel_crtc *intel_crtc;
7963
7964
drm_kms_helper_poll_fini(dev);
7965
mutex_lock(&dev->struct_mutex);
7966
7967
intel_unregister_dsm_handler();
7968
7969
7970
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7971
/* Skip inactive CRTCs */
7972
if (!crtc->fb)
7973
continue;
7974
7975
intel_crtc = to_intel_crtc(crtc);
7976
intel_increase_pllclock(crtc);
7977
}
7978
7979
if (dev_priv->display.disable_fbc)
7980
dev_priv->display.disable_fbc(dev);
7981
7982
if (IS_IRONLAKE_M(dev))
7983
ironlake_disable_drps(dev);
7984
if (IS_GEN6(dev))
7985
gen6_disable_rps(dev);
7986
7987
if (IS_IRONLAKE_M(dev))
7988
ironlake_disable_rc6(dev);
7989
7990
mutex_unlock(&dev->struct_mutex);
7991
7992
/* Disable the irq before mode object teardown, for the irq might
7993
* enqueue unpin/hotplug work. */
7994
drm_irq_uninstall(dev);
7995
cancel_work_sync(&dev_priv->hotplug_work);
7996
7997
/* Shut off idle work before the crtcs get freed. */
7998
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7999
intel_crtc = to_intel_crtc(crtc);
8000
del_timer_sync(&intel_crtc->idle_timer);
8001
}
8002
del_timer_sync(&dev_priv->idle_timer);
8003
cancel_work_sync(&dev_priv->idle_work);
8004
8005
drm_mode_config_cleanup(dev);
8006
}
8007
8008
/*
8009
* Return which encoder is currently attached for connector.
8010
*/
8011
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8012
{
8013
return &intel_attached_encoder(connector)->base;
8014
}
8015
8016
void intel_connector_attach_encoder(struct intel_connector *connector,
8017
struct intel_encoder *encoder)
8018
{
8019
connector->encoder = encoder;
8020
drm_mode_connector_attach_encoder(&connector->base,
8021
&encoder->base);
8022
}
8023
8024
/*
8025
* set vga decode state - true == enable VGA decode
8026
*/
8027
int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8028
{
8029
struct drm_i915_private *dev_priv = dev->dev_private;
8030
u16 gmch_ctrl;
8031
8032
pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8033
if (state)
8034
gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8035
else
8036
gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8037
pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8038
return 0;
8039
}
8040
8041
#ifdef CONFIG_DEBUG_FS
8042
#include <linux/seq_file.h>
8043
8044
struct intel_display_error_state {
8045
struct intel_cursor_error_state {
8046
u32 control;
8047
u32 position;
8048
u32 base;
8049
u32 size;
8050
} cursor[2];
8051
8052
struct intel_pipe_error_state {
8053
u32 conf;
8054
u32 source;
8055
8056
u32 htotal;
8057
u32 hblank;
8058
u32 hsync;
8059
u32 vtotal;
8060
u32 vblank;
8061
u32 vsync;
8062
} pipe[2];
8063
8064
struct intel_plane_error_state {
8065
u32 control;
8066
u32 stride;
8067
u32 size;
8068
u32 pos;
8069
u32 addr;
8070
u32 surface;
8071
u32 tile_offset;
8072
} plane[2];
8073
};
8074
8075
struct intel_display_error_state *
8076
intel_display_capture_error_state(struct drm_device *dev)
8077
{
8078
drm_i915_private_t *dev_priv = dev->dev_private;
8079
struct intel_display_error_state *error;
8080
int i;
8081
8082
error = kmalloc(sizeof(*error), GFP_ATOMIC);
8083
if (error == NULL)
8084
return NULL;
8085
8086
for (i = 0; i < 2; i++) {
8087
error->cursor[i].control = I915_READ(CURCNTR(i));
8088
error->cursor[i].position = I915_READ(CURPOS(i));
8089
error->cursor[i].base = I915_READ(CURBASE(i));
8090
8091
error->plane[i].control = I915_READ(DSPCNTR(i));
8092
error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8093
error->plane[i].size = I915_READ(DSPSIZE(i));
8094
error->plane[i].pos= I915_READ(DSPPOS(i));
8095
error->plane[i].addr = I915_READ(DSPADDR(i));
8096
if (INTEL_INFO(dev)->gen >= 4) {
8097
error->plane[i].surface = I915_READ(DSPSURF(i));
8098
error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8099
}
8100
8101
error->pipe[i].conf = I915_READ(PIPECONF(i));
8102
error->pipe[i].source = I915_READ(PIPESRC(i));
8103
error->pipe[i].htotal = I915_READ(HTOTAL(i));
8104
error->pipe[i].hblank = I915_READ(HBLANK(i));
8105
error->pipe[i].hsync = I915_READ(HSYNC(i));
8106
error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8107
error->pipe[i].vblank = I915_READ(VBLANK(i));
8108
error->pipe[i].vsync = I915_READ(VSYNC(i));
8109
}
8110
8111
return error;
8112
}
8113
8114
void
8115
intel_display_print_error_state(struct seq_file *m,
8116
struct drm_device *dev,
8117
struct intel_display_error_state *error)
8118
{
8119
int i;
8120
8121
for (i = 0; i < 2; i++) {
8122
seq_printf(m, "Pipe [%d]:\n", i);
8123
seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8124
seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8125
seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8126
seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8127
seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8128
seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8129
seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8130
seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8131
8132
seq_printf(m, "Plane [%d]:\n", i);
8133
seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8134
seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8135
seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8136
seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8137
seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8138
if (INTEL_INFO(dev)->gen >= 4) {
8139
seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8140
seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8141
}
8142
8143
seq_printf(m, "Cursor [%d]:\n", i);
8144
seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8145
seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8146
seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8147
}
8148
}
8149
#endif
8150
8151