Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/gpu/drm/i915/intel_dp.c
15112 views
1
/*
2
* Copyright © 2008 Intel Corporation
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining a
5
* copy of this software and associated documentation files (the "Software"),
6
* to deal in the Software without restriction, including without limitation
7
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
* and/or sell copies of the Software, and to permit persons to whom the
9
* Software is furnished to do so, subject to the following conditions:
10
*
11
* The above copyright notice and this permission notice (including the next
12
* paragraph) shall be included in all copies or substantial portions of the
13
* Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
* IN THE SOFTWARE.
22
*
23
* Authors:
24
* Keith Packard <[email protected]>
25
*
26
*/
27
28
#include <linux/i2c.h>
29
#include <linux/slab.h>
30
#include "drmP.h"
31
#include "drm.h"
32
#include "drm_crtc.h"
33
#include "drm_crtc_helper.h"
34
#include "intel_drv.h"
35
#include "i915_drm.h"
36
#include "i915_drv.h"
37
#include "drm_dp_helper.h"
38
39
40
#define DP_LINK_STATUS_SIZE 6
41
#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43
#define DP_LINK_CONFIGURATION_SIZE 9
44
45
struct intel_dp {
46
struct intel_encoder base;
47
uint32_t output_reg;
48
uint32_t DP;
49
uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
50
bool has_audio;
51
int force_audio;
52
uint32_t color_range;
53
uint8_t link_bw;
54
uint8_t lane_count;
55
uint8_t dpcd[4];
56
struct i2c_adapter adapter;
57
struct i2c_algo_dp_aux_data algo;
58
bool is_pch_edp;
59
uint8_t train_set[4];
60
uint8_t link_status[DP_LINK_STATUS_SIZE];
61
};
62
63
/**
64
* is_edp - is the given port attached to an eDP panel (either CPU or PCH)
65
* @intel_dp: DP struct
66
*
67
* If a CPU or PCH DP output is attached to an eDP panel, this function
68
* will return true, and false otherwise.
69
*/
70
static bool is_edp(struct intel_dp *intel_dp)
71
{
72
return intel_dp->base.type == INTEL_OUTPUT_EDP;
73
}
74
75
/**
76
* is_pch_edp - is the port on the PCH and attached to an eDP panel?
77
* @intel_dp: DP struct
78
*
79
* Returns true if the given DP struct corresponds to a PCH DP port attached
80
* to an eDP panel, false otherwise. Helpful for determining whether we
81
* may need FDI resources for a given DP output or not.
82
*/
83
static bool is_pch_edp(struct intel_dp *intel_dp)
84
{
85
return intel_dp->is_pch_edp;
86
}
87
88
static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
89
{
90
return container_of(encoder, struct intel_dp, base.base);
91
}
92
93
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
94
{
95
return container_of(intel_attached_encoder(connector),
96
struct intel_dp, base);
97
}
98
99
/**
100
* intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
101
* @encoder: DRM encoder
102
*
103
* Return true if @encoder corresponds to a PCH attached eDP panel. Needed
104
* by intel_display.c.
105
*/
106
bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
107
{
108
struct intel_dp *intel_dp;
109
110
if (!encoder)
111
return false;
112
113
intel_dp = enc_to_intel_dp(encoder);
114
115
return is_pch_edp(intel_dp);
116
}
117
118
static void intel_dp_start_link_train(struct intel_dp *intel_dp);
119
static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
120
static void intel_dp_link_down(struct intel_dp *intel_dp);
121
122
void
123
intel_edp_link_config (struct intel_encoder *intel_encoder,
124
int *lane_num, int *link_bw)
125
{
126
struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
127
128
*lane_num = intel_dp->lane_count;
129
if (intel_dp->link_bw == DP_LINK_BW_1_62)
130
*link_bw = 162000;
131
else if (intel_dp->link_bw == DP_LINK_BW_2_7)
132
*link_bw = 270000;
133
}
134
135
static int
136
intel_dp_max_lane_count(struct intel_dp *intel_dp)
137
{
138
int max_lane_count = 4;
139
140
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
141
max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
142
switch (max_lane_count) {
143
case 1: case 2: case 4:
144
break;
145
default:
146
max_lane_count = 4;
147
}
148
}
149
return max_lane_count;
150
}
151
152
static int
153
intel_dp_max_link_bw(struct intel_dp *intel_dp)
154
{
155
int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
156
157
switch (max_link_bw) {
158
case DP_LINK_BW_1_62:
159
case DP_LINK_BW_2_7:
160
break;
161
default:
162
max_link_bw = DP_LINK_BW_1_62;
163
break;
164
}
165
return max_link_bw;
166
}
167
168
static int
169
intel_dp_link_clock(uint8_t link_bw)
170
{
171
if (link_bw == DP_LINK_BW_2_7)
172
return 270000;
173
else
174
return 162000;
175
}
176
177
/* I think this is a fiction */
178
static int
179
intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
180
{
181
struct drm_i915_private *dev_priv = dev->dev_private;
182
183
if (is_edp(intel_dp))
184
return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
185
else
186
return pixel_clock * 3;
187
}
188
189
static int
190
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
191
{
192
return (max_link_clock * max_lanes * 8) / 10;
193
}
194
195
static int
196
intel_dp_mode_valid(struct drm_connector *connector,
197
struct drm_display_mode *mode)
198
{
199
struct intel_dp *intel_dp = intel_attached_dp(connector);
200
struct drm_device *dev = connector->dev;
201
struct drm_i915_private *dev_priv = dev->dev_private;
202
int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
203
int max_lanes = intel_dp_max_lane_count(intel_dp);
204
205
if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
206
if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
207
return MODE_PANEL;
208
209
if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
210
return MODE_PANEL;
211
}
212
213
/* only refuse the mode on non eDP since we have seen some weird eDP panels
214
which are outside spec tolerances but somehow work by magic */
215
if (!is_edp(intel_dp) &&
216
(intel_dp_link_required(connector->dev, intel_dp, mode->clock)
217
> intel_dp_max_data_rate(max_link_clock, max_lanes)))
218
return MODE_CLOCK_HIGH;
219
220
if (mode->clock < 10000)
221
return MODE_CLOCK_LOW;
222
223
return MODE_OK;
224
}
225
226
static uint32_t
227
pack_aux(uint8_t *src, int src_bytes)
228
{
229
int i;
230
uint32_t v = 0;
231
232
if (src_bytes > 4)
233
src_bytes = 4;
234
for (i = 0; i < src_bytes; i++)
235
v |= ((uint32_t) src[i]) << ((3-i) * 8);
236
return v;
237
}
238
239
static void
240
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
241
{
242
int i;
243
if (dst_bytes > 4)
244
dst_bytes = 4;
245
for (i = 0; i < dst_bytes; i++)
246
dst[i] = src >> ((3-i) * 8);
247
}
248
249
/* hrawclock is 1/4 the FSB frequency */
250
static int
251
intel_hrawclk(struct drm_device *dev)
252
{
253
struct drm_i915_private *dev_priv = dev->dev_private;
254
uint32_t clkcfg;
255
256
clkcfg = I915_READ(CLKCFG);
257
switch (clkcfg & CLKCFG_FSB_MASK) {
258
case CLKCFG_FSB_400:
259
return 100;
260
case CLKCFG_FSB_533:
261
return 133;
262
case CLKCFG_FSB_667:
263
return 166;
264
case CLKCFG_FSB_800:
265
return 200;
266
case CLKCFG_FSB_1067:
267
return 266;
268
case CLKCFG_FSB_1333:
269
return 333;
270
/* these two are just a guess; one of them might be right */
271
case CLKCFG_FSB_1600:
272
case CLKCFG_FSB_1600_ALT:
273
return 400;
274
default:
275
return 133;
276
}
277
}
278
279
static int
280
intel_dp_aux_ch(struct intel_dp *intel_dp,
281
uint8_t *send, int send_bytes,
282
uint8_t *recv, int recv_size)
283
{
284
uint32_t output_reg = intel_dp->output_reg;
285
struct drm_device *dev = intel_dp->base.base.dev;
286
struct drm_i915_private *dev_priv = dev->dev_private;
287
uint32_t ch_ctl = output_reg + 0x10;
288
uint32_t ch_data = ch_ctl + 4;
289
int i;
290
int recv_bytes;
291
uint32_t status;
292
uint32_t aux_clock_divider;
293
int try, precharge;
294
295
/* The clock divider is based off the hrawclk,
296
* and would like to run at 2MHz. So, take the
297
* hrawclk value and divide by 2 and use that
298
*
299
* Note that PCH attached eDP panels should use a 125MHz input
300
* clock divider.
301
*/
302
if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
303
if (IS_GEN6(dev))
304
aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
305
else
306
aux_clock_divider = 225; /* eDP input clock at 450Mhz */
307
} else if (HAS_PCH_SPLIT(dev))
308
aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
309
else
310
aux_clock_divider = intel_hrawclk(dev) / 2;
311
312
if (IS_GEN6(dev))
313
precharge = 3;
314
else
315
precharge = 5;
316
317
if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
318
DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
319
I915_READ(ch_ctl));
320
return -EBUSY;
321
}
322
323
/* Must try at least 3 times according to DP spec */
324
for (try = 0; try < 5; try++) {
325
/* Load the send data into the aux channel data registers */
326
for (i = 0; i < send_bytes; i += 4)
327
I915_WRITE(ch_data + i,
328
pack_aux(send + i, send_bytes - i));
329
330
/* Send the command and wait for it to complete */
331
I915_WRITE(ch_ctl,
332
DP_AUX_CH_CTL_SEND_BUSY |
333
DP_AUX_CH_CTL_TIME_OUT_400us |
334
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
335
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
336
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
337
DP_AUX_CH_CTL_DONE |
338
DP_AUX_CH_CTL_TIME_OUT_ERROR |
339
DP_AUX_CH_CTL_RECEIVE_ERROR);
340
for (;;) {
341
status = I915_READ(ch_ctl);
342
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
343
break;
344
udelay(100);
345
}
346
347
/* Clear done status and any errors */
348
I915_WRITE(ch_ctl,
349
status |
350
DP_AUX_CH_CTL_DONE |
351
DP_AUX_CH_CTL_TIME_OUT_ERROR |
352
DP_AUX_CH_CTL_RECEIVE_ERROR);
353
if (status & DP_AUX_CH_CTL_DONE)
354
break;
355
}
356
357
if ((status & DP_AUX_CH_CTL_DONE) == 0) {
358
DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
359
return -EBUSY;
360
}
361
362
/* Check for timeout or receive error.
363
* Timeouts occur when the sink is not connected
364
*/
365
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
366
DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
367
return -EIO;
368
}
369
370
/* Timeouts occur when the device isn't connected, so they're
371
* "normal" -- don't fill the kernel log with these */
372
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
373
DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
374
return -ETIMEDOUT;
375
}
376
377
/* Unload any bytes sent back from the other side */
378
recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
379
DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
380
if (recv_bytes > recv_size)
381
recv_bytes = recv_size;
382
383
for (i = 0; i < recv_bytes; i += 4)
384
unpack_aux(I915_READ(ch_data + i),
385
recv + i, recv_bytes - i);
386
387
return recv_bytes;
388
}
389
390
/* Write data to the aux channel in native mode */
391
static int
392
intel_dp_aux_native_write(struct intel_dp *intel_dp,
393
uint16_t address, uint8_t *send, int send_bytes)
394
{
395
int ret;
396
uint8_t msg[20];
397
int msg_bytes;
398
uint8_t ack;
399
400
if (send_bytes > 16)
401
return -1;
402
msg[0] = AUX_NATIVE_WRITE << 4;
403
msg[1] = address >> 8;
404
msg[2] = address & 0xff;
405
msg[3] = send_bytes - 1;
406
memcpy(&msg[4], send, send_bytes);
407
msg_bytes = send_bytes + 4;
408
for (;;) {
409
ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
410
if (ret < 0)
411
return ret;
412
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
413
break;
414
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
415
udelay(100);
416
else
417
return -EIO;
418
}
419
return send_bytes;
420
}
421
422
/* Write a single byte to the aux channel in native mode */
423
static int
424
intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
425
uint16_t address, uint8_t byte)
426
{
427
return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
428
}
429
430
/* read bytes from a native aux channel */
431
static int
432
intel_dp_aux_native_read(struct intel_dp *intel_dp,
433
uint16_t address, uint8_t *recv, int recv_bytes)
434
{
435
uint8_t msg[4];
436
int msg_bytes;
437
uint8_t reply[20];
438
int reply_bytes;
439
uint8_t ack;
440
int ret;
441
442
msg[0] = AUX_NATIVE_READ << 4;
443
msg[1] = address >> 8;
444
msg[2] = address & 0xff;
445
msg[3] = recv_bytes - 1;
446
447
msg_bytes = 4;
448
reply_bytes = recv_bytes + 1;
449
450
for (;;) {
451
ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
452
reply, reply_bytes);
453
if (ret == 0)
454
return -EPROTO;
455
if (ret < 0)
456
return ret;
457
ack = reply[0];
458
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
459
memcpy(recv, reply + 1, ret - 1);
460
return ret - 1;
461
}
462
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
463
udelay(100);
464
else
465
return -EIO;
466
}
467
}
468
469
static int
470
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
471
uint8_t write_byte, uint8_t *read_byte)
472
{
473
struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
474
struct intel_dp *intel_dp = container_of(adapter,
475
struct intel_dp,
476
adapter);
477
uint16_t address = algo_data->address;
478
uint8_t msg[5];
479
uint8_t reply[2];
480
unsigned retry;
481
int msg_bytes;
482
int reply_bytes;
483
int ret;
484
485
/* Set up the command byte */
486
if (mode & MODE_I2C_READ)
487
msg[0] = AUX_I2C_READ << 4;
488
else
489
msg[0] = AUX_I2C_WRITE << 4;
490
491
if (!(mode & MODE_I2C_STOP))
492
msg[0] |= AUX_I2C_MOT << 4;
493
494
msg[1] = address >> 8;
495
msg[2] = address;
496
497
switch (mode) {
498
case MODE_I2C_WRITE:
499
msg[3] = 0;
500
msg[4] = write_byte;
501
msg_bytes = 5;
502
reply_bytes = 1;
503
break;
504
case MODE_I2C_READ:
505
msg[3] = 0;
506
msg_bytes = 4;
507
reply_bytes = 2;
508
break;
509
default:
510
msg_bytes = 3;
511
reply_bytes = 1;
512
break;
513
}
514
515
for (retry = 0; retry < 5; retry++) {
516
ret = intel_dp_aux_ch(intel_dp,
517
msg, msg_bytes,
518
reply, reply_bytes);
519
if (ret < 0) {
520
DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
521
return ret;
522
}
523
524
switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
525
case AUX_NATIVE_REPLY_ACK:
526
/* I2C-over-AUX Reply field is only valid
527
* when paired with AUX ACK.
528
*/
529
break;
530
case AUX_NATIVE_REPLY_NACK:
531
DRM_DEBUG_KMS("aux_ch native nack\n");
532
return -EREMOTEIO;
533
case AUX_NATIVE_REPLY_DEFER:
534
udelay(100);
535
continue;
536
default:
537
DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
538
reply[0]);
539
return -EREMOTEIO;
540
}
541
542
switch (reply[0] & AUX_I2C_REPLY_MASK) {
543
case AUX_I2C_REPLY_ACK:
544
if (mode == MODE_I2C_READ) {
545
*read_byte = reply[1];
546
}
547
return reply_bytes - 1;
548
case AUX_I2C_REPLY_NACK:
549
DRM_DEBUG_KMS("aux_i2c nack\n");
550
return -EREMOTEIO;
551
case AUX_I2C_REPLY_DEFER:
552
DRM_DEBUG_KMS("aux_i2c defer\n");
553
udelay(100);
554
break;
555
default:
556
DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
557
return -EREMOTEIO;
558
}
559
}
560
561
DRM_ERROR("too many retries, giving up\n");
562
return -EREMOTEIO;
563
}
564
565
static int
566
intel_dp_i2c_init(struct intel_dp *intel_dp,
567
struct intel_connector *intel_connector, const char *name)
568
{
569
DRM_DEBUG_KMS("i2c_init %s\n", name);
570
intel_dp->algo.running = false;
571
intel_dp->algo.address = 0;
572
intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
573
574
memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
575
intel_dp->adapter.owner = THIS_MODULE;
576
intel_dp->adapter.class = I2C_CLASS_DDC;
577
strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
578
intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
579
intel_dp->adapter.algo_data = &intel_dp->algo;
580
intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
581
582
return i2c_dp_aux_add_bus(&intel_dp->adapter);
583
}
584
585
static bool
586
intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
587
struct drm_display_mode *adjusted_mode)
588
{
589
struct drm_device *dev = encoder->dev;
590
struct drm_i915_private *dev_priv = dev->dev_private;
591
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
592
int lane_count, clock;
593
int max_lane_count = intel_dp_max_lane_count(intel_dp);
594
int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
595
static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
596
597
if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
598
intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
599
intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
600
mode, adjusted_mode);
601
/*
602
* the mode->clock is used to calculate the Data&Link M/N
603
* of the pipe. For the eDP the fixed clock should be used.
604
*/
605
mode->clock = dev_priv->panel_fixed_mode->clock;
606
}
607
608
for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
609
for (clock = 0; clock <= max_clock; clock++) {
610
int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
611
612
if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
613
<= link_avail) {
614
intel_dp->link_bw = bws[clock];
615
intel_dp->lane_count = lane_count;
616
adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
617
DRM_DEBUG_KMS("Display port link bw %02x lane "
618
"count %d clock %d\n",
619
intel_dp->link_bw, intel_dp->lane_count,
620
adjusted_mode->clock);
621
return true;
622
}
623
}
624
}
625
626
if (is_edp(intel_dp)) {
627
/* okay we failed just pick the highest */
628
intel_dp->lane_count = max_lane_count;
629
intel_dp->link_bw = bws[max_clock];
630
adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
631
DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
632
"count %d clock %d\n",
633
intel_dp->link_bw, intel_dp->lane_count,
634
adjusted_mode->clock);
635
636
return true;
637
}
638
639
return false;
640
}
641
642
struct intel_dp_m_n {
643
uint32_t tu;
644
uint32_t gmch_m;
645
uint32_t gmch_n;
646
uint32_t link_m;
647
uint32_t link_n;
648
};
649
650
static void
651
intel_reduce_ratio(uint32_t *num, uint32_t *den)
652
{
653
while (*num > 0xffffff || *den > 0xffffff) {
654
*num >>= 1;
655
*den >>= 1;
656
}
657
}
658
659
static void
660
intel_dp_compute_m_n(int bpp,
661
int nlanes,
662
int pixel_clock,
663
int link_clock,
664
struct intel_dp_m_n *m_n)
665
{
666
m_n->tu = 64;
667
m_n->gmch_m = (pixel_clock * bpp) >> 3;
668
m_n->gmch_n = link_clock * nlanes;
669
intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
670
m_n->link_m = pixel_clock;
671
m_n->link_n = link_clock;
672
intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
673
}
674
675
void
676
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
677
struct drm_display_mode *adjusted_mode)
678
{
679
struct drm_device *dev = crtc->dev;
680
struct drm_mode_config *mode_config = &dev->mode_config;
681
struct drm_encoder *encoder;
682
struct drm_i915_private *dev_priv = dev->dev_private;
683
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
684
int lane_count = 4, bpp = 24;
685
struct intel_dp_m_n m_n;
686
int pipe = intel_crtc->pipe;
687
688
/*
689
* Find the lane count in the intel_encoder private
690
*/
691
list_for_each_entry(encoder, &mode_config->encoder_list, head) {
692
struct intel_dp *intel_dp;
693
694
if (encoder->crtc != crtc)
695
continue;
696
697
intel_dp = enc_to_intel_dp(encoder);
698
if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
699
lane_count = intel_dp->lane_count;
700
break;
701
} else if (is_edp(intel_dp)) {
702
lane_count = dev_priv->edp.lanes;
703
bpp = dev_priv->edp.bpp;
704
break;
705
}
706
}
707
708
/*
709
* Compute the GMCH and Link ratios. The '3' here is
710
* the number of bytes_per_pixel post-LUT, which we always
711
* set up for 8-bits of R/G/B, or 3 bytes total.
712
*/
713
intel_dp_compute_m_n(bpp, lane_count,
714
mode->clock, adjusted_mode->clock, &m_n);
715
716
if (HAS_PCH_SPLIT(dev)) {
717
I915_WRITE(TRANSDATA_M1(pipe),
718
((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
719
m_n.gmch_m);
720
I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
721
I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
722
I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
723
} else {
724
I915_WRITE(PIPE_GMCH_DATA_M(pipe),
725
((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
726
m_n.gmch_m);
727
I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
728
I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
729
I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
730
}
731
}
732
733
static void
734
intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
735
struct drm_display_mode *adjusted_mode)
736
{
737
struct drm_device *dev = encoder->dev;
738
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
739
struct drm_crtc *crtc = intel_dp->base.base.crtc;
740
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
741
742
intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
743
intel_dp->DP |= intel_dp->color_range;
744
745
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
746
intel_dp->DP |= DP_SYNC_HS_HIGH;
747
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
748
intel_dp->DP |= DP_SYNC_VS_HIGH;
749
750
if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
751
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
752
else
753
intel_dp->DP |= DP_LINK_TRAIN_OFF;
754
755
switch (intel_dp->lane_count) {
756
case 1:
757
intel_dp->DP |= DP_PORT_WIDTH_1;
758
break;
759
case 2:
760
intel_dp->DP |= DP_PORT_WIDTH_2;
761
break;
762
case 4:
763
intel_dp->DP |= DP_PORT_WIDTH_4;
764
break;
765
}
766
if (intel_dp->has_audio)
767
intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
768
769
memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
770
intel_dp->link_configuration[0] = intel_dp->link_bw;
771
intel_dp->link_configuration[1] = intel_dp->lane_count;
772
773
/*
774
* Check for DPCD version > 1.1 and enhanced framing support
775
*/
776
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
777
(intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
778
intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
779
intel_dp->DP |= DP_ENHANCED_FRAMING;
780
}
781
782
/* CPT DP's pipe select is decided in TRANS_DP_CTL */
783
if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
784
intel_dp->DP |= DP_PIPEB_SELECT;
785
786
if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
787
/* don't miss out required setting for eDP */
788
intel_dp->DP |= DP_PLL_ENABLE;
789
if (adjusted_mode->clock < 200000)
790
intel_dp->DP |= DP_PLL_FREQ_160MHZ;
791
else
792
intel_dp->DP |= DP_PLL_FREQ_270MHZ;
793
}
794
}
795
796
static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
797
{
798
struct drm_device *dev = intel_dp->base.base.dev;
799
struct drm_i915_private *dev_priv = dev->dev_private;
800
u32 pp;
801
802
/*
803
* If the panel wasn't on, make sure there's not a currently
804
* active PP sequence before enabling AUX VDD.
805
*/
806
if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
807
msleep(dev_priv->panel_t3);
808
809
pp = I915_READ(PCH_PP_CONTROL);
810
pp |= EDP_FORCE_VDD;
811
I915_WRITE(PCH_PP_CONTROL, pp);
812
POSTING_READ(PCH_PP_CONTROL);
813
}
814
815
static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
816
{
817
struct drm_device *dev = intel_dp->base.base.dev;
818
struct drm_i915_private *dev_priv = dev->dev_private;
819
u32 pp;
820
821
pp = I915_READ(PCH_PP_CONTROL);
822
pp &= ~EDP_FORCE_VDD;
823
I915_WRITE(PCH_PP_CONTROL, pp);
824
POSTING_READ(PCH_PP_CONTROL);
825
826
/* Make sure sequencer is idle before allowing subsequent activity */
827
msleep(dev_priv->panel_t12);
828
}
829
830
/* Returns true if the panel was already on when called */
831
static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
832
{
833
struct drm_device *dev = intel_dp->base.base.dev;
834
struct drm_i915_private *dev_priv = dev->dev_private;
835
u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
836
837
if (I915_READ(PCH_PP_STATUS) & PP_ON)
838
return true;
839
840
pp = I915_READ(PCH_PP_CONTROL);
841
842
/* ILK workaround: disable reset around power sequence */
843
pp &= ~PANEL_POWER_RESET;
844
I915_WRITE(PCH_PP_CONTROL, pp);
845
POSTING_READ(PCH_PP_CONTROL);
846
847
pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
848
I915_WRITE(PCH_PP_CONTROL, pp);
849
POSTING_READ(PCH_PP_CONTROL);
850
851
if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
852
5000))
853
DRM_ERROR("panel on wait timed out: 0x%08x\n",
854
I915_READ(PCH_PP_STATUS));
855
856
pp |= PANEL_POWER_RESET; /* restore panel reset bit */
857
I915_WRITE(PCH_PP_CONTROL, pp);
858
POSTING_READ(PCH_PP_CONTROL);
859
860
return false;
861
}
862
863
static void ironlake_edp_panel_off (struct drm_device *dev)
864
{
865
struct drm_i915_private *dev_priv = dev->dev_private;
866
u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
867
PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
868
869
pp = I915_READ(PCH_PP_CONTROL);
870
871
/* ILK workaround: disable reset around power sequence */
872
pp &= ~PANEL_POWER_RESET;
873
I915_WRITE(PCH_PP_CONTROL, pp);
874
POSTING_READ(PCH_PP_CONTROL);
875
876
pp &= ~POWER_TARGET_ON;
877
I915_WRITE(PCH_PP_CONTROL, pp);
878
POSTING_READ(PCH_PP_CONTROL);
879
880
if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
881
DRM_ERROR("panel off wait timed out: 0x%08x\n",
882
I915_READ(PCH_PP_STATUS));
883
884
pp |= PANEL_POWER_RESET; /* restore panel reset bit */
885
I915_WRITE(PCH_PP_CONTROL, pp);
886
POSTING_READ(PCH_PP_CONTROL);
887
}
888
889
static void ironlake_edp_backlight_on (struct drm_device *dev)
890
{
891
struct drm_i915_private *dev_priv = dev->dev_private;
892
u32 pp;
893
894
DRM_DEBUG_KMS("\n");
895
/*
896
* If we enable the backlight right away following a panel power
897
* on, we may see slight flicker as the panel syncs with the eDP
898
* link. So delay a bit to make sure the image is solid before
899
* allowing it to appear.
900
*/
901
msleep(300);
902
pp = I915_READ(PCH_PP_CONTROL);
903
pp |= EDP_BLC_ENABLE;
904
I915_WRITE(PCH_PP_CONTROL, pp);
905
}
906
907
static void ironlake_edp_backlight_off (struct drm_device *dev)
908
{
909
struct drm_i915_private *dev_priv = dev->dev_private;
910
u32 pp;
911
912
DRM_DEBUG_KMS("\n");
913
pp = I915_READ(PCH_PP_CONTROL);
914
pp &= ~EDP_BLC_ENABLE;
915
I915_WRITE(PCH_PP_CONTROL, pp);
916
}
917
918
static void ironlake_edp_pll_on(struct drm_encoder *encoder)
919
{
920
struct drm_device *dev = encoder->dev;
921
struct drm_i915_private *dev_priv = dev->dev_private;
922
u32 dpa_ctl;
923
924
DRM_DEBUG_KMS("\n");
925
dpa_ctl = I915_READ(DP_A);
926
dpa_ctl |= DP_PLL_ENABLE;
927
I915_WRITE(DP_A, dpa_ctl);
928
POSTING_READ(DP_A);
929
udelay(200);
930
}
931
932
static void ironlake_edp_pll_off(struct drm_encoder *encoder)
933
{
934
struct drm_device *dev = encoder->dev;
935
struct drm_i915_private *dev_priv = dev->dev_private;
936
u32 dpa_ctl;
937
938
dpa_ctl = I915_READ(DP_A);
939
dpa_ctl &= ~DP_PLL_ENABLE;
940
I915_WRITE(DP_A, dpa_ctl);
941
POSTING_READ(DP_A);
942
udelay(200);
943
}
944
945
/* If the sink supports it, try to set the power state appropriately */
946
static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
947
{
948
int ret, i;
949
950
/* Should have a valid DPCD by this point */
951
if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
952
return;
953
954
if (mode != DRM_MODE_DPMS_ON) {
955
ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
956
DP_SET_POWER_D3);
957
if (ret != 1)
958
DRM_DEBUG_DRIVER("failed to write sink power state\n");
959
} else {
960
/*
961
* When turning on, we need to retry for 1ms to give the sink
962
* time to wake up.
963
*/
964
for (i = 0; i < 3; i++) {
965
ret = intel_dp_aux_native_write_1(intel_dp,
966
DP_SET_POWER,
967
DP_SET_POWER_D0);
968
if (ret == 1)
969
break;
970
msleep(1);
971
}
972
}
973
}
974
975
static void intel_dp_prepare(struct drm_encoder *encoder)
976
{
977
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
978
struct drm_device *dev = encoder->dev;
979
980
/* Wake up the sink first */
981
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
982
983
if (is_edp(intel_dp)) {
984
ironlake_edp_backlight_off(dev);
985
ironlake_edp_panel_off(dev);
986
if (!is_pch_edp(intel_dp))
987
ironlake_edp_pll_on(encoder);
988
else
989
ironlake_edp_pll_off(encoder);
990
}
991
intel_dp_link_down(intel_dp);
992
}
993
994
static void intel_dp_commit(struct drm_encoder *encoder)
995
{
996
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
997
struct drm_device *dev = encoder->dev;
998
999
if (is_edp(intel_dp))
1000
ironlake_edp_panel_vdd_on(intel_dp);
1001
1002
intel_dp_start_link_train(intel_dp);
1003
1004
if (is_edp(intel_dp)) {
1005
ironlake_edp_panel_on(intel_dp);
1006
ironlake_edp_panel_vdd_off(intel_dp);
1007
}
1008
1009
intel_dp_complete_link_train(intel_dp);
1010
1011
if (is_edp(intel_dp))
1012
ironlake_edp_backlight_on(dev);
1013
}
1014
1015
static void
1016
intel_dp_dpms(struct drm_encoder *encoder, int mode)
1017
{
1018
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1019
struct drm_device *dev = encoder->dev;
1020
struct drm_i915_private *dev_priv = dev->dev_private;
1021
uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1022
1023
if (mode != DRM_MODE_DPMS_ON) {
1024
if (is_edp(intel_dp))
1025
ironlake_edp_backlight_off(dev);
1026
intel_dp_sink_dpms(intel_dp, mode);
1027
intel_dp_link_down(intel_dp);
1028
if (is_edp(intel_dp))
1029
ironlake_edp_panel_off(dev);
1030
if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
1031
ironlake_edp_pll_off(encoder);
1032
} else {
1033
if (is_edp(intel_dp))
1034
ironlake_edp_panel_vdd_on(intel_dp);
1035
intel_dp_sink_dpms(intel_dp, mode);
1036
if (!(dp_reg & DP_PORT_EN)) {
1037
intel_dp_start_link_train(intel_dp);
1038
if (is_edp(intel_dp)) {
1039
ironlake_edp_panel_on(intel_dp);
1040
ironlake_edp_panel_vdd_off(intel_dp);
1041
}
1042
intel_dp_complete_link_train(intel_dp);
1043
}
1044
if (is_edp(intel_dp))
1045
ironlake_edp_backlight_on(dev);
1046
}
1047
}
1048
1049
/*
1050
* Native read with retry for link status and receiver capability reads for
1051
* cases where the sink may still be asleep.
1052
*/
1053
static bool
1054
intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1055
uint8_t *recv, int recv_bytes)
1056
{
1057
int ret, i;
1058
1059
/*
1060
* Sinks are *supposed* to come up within 1ms from an off state,
1061
* but we're also supposed to retry 3 times per the spec.
1062
*/
1063
for (i = 0; i < 3; i++) {
1064
ret = intel_dp_aux_native_read(intel_dp, address, recv,
1065
recv_bytes);
1066
if (ret == recv_bytes)
1067
return true;
1068
msleep(1);
1069
}
1070
1071
return false;
1072
}
1073
1074
/*
1075
* Fetch AUX CH registers 0x202 - 0x207 which contain
1076
* link status information
1077
*/
1078
static bool
1079
intel_dp_get_link_status(struct intel_dp *intel_dp)
1080
{
1081
return intel_dp_aux_native_read_retry(intel_dp,
1082
DP_LANE0_1_STATUS,
1083
intel_dp->link_status,
1084
DP_LINK_STATUS_SIZE);
1085
}
1086
1087
static uint8_t
1088
intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1089
int r)
1090
{
1091
return link_status[r - DP_LANE0_1_STATUS];
1092
}
1093
1094
static uint8_t
1095
intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1096
int lane)
1097
{
1098
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1099
int s = ((lane & 1) ?
1100
DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1101
DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1102
uint8_t l = intel_dp_link_status(link_status, i);
1103
1104
return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1105
}
1106
1107
static uint8_t
1108
intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1109
int lane)
1110
{
1111
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1112
int s = ((lane & 1) ?
1113
DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1114
DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1115
uint8_t l = intel_dp_link_status(link_status, i);
1116
1117
return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1118
}
1119
1120
1121
#if 0
1122
static char *voltage_names[] = {
1123
"0.4V", "0.6V", "0.8V", "1.2V"
1124
};
1125
static char *pre_emph_names[] = {
1126
"0dB", "3.5dB", "6dB", "9.5dB"
1127
};
1128
static char *link_train_names[] = {
1129
"pattern 1", "pattern 2", "idle", "off"
1130
};
1131
#endif
1132
1133
/*
1134
* These are source-specific values; current Intel hardware supports
1135
* a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1136
*/
1137
#define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
1138
1139
static uint8_t
1140
intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1141
{
1142
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1143
case DP_TRAIN_VOLTAGE_SWING_400:
1144
return DP_TRAIN_PRE_EMPHASIS_6;
1145
case DP_TRAIN_VOLTAGE_SWING_600:
1146
return DP_TRAIN_PRE_EMPHASIS_6;
1147
case DP_TRAIN_VOLTAGE_SWING_800:
1148
return DP_TRAIN_PRE_EMPHASIS_3_5;
1149
case DP_TRAIN_VOLTAGE_SWING_1200:
1150
default:
1151
return DP_TRAIN_PRE_EMPHASIS_0;
1152
}
1153
}
1154
1155
static void
1156
intel_get_adjust_train(struct intel_dp *intel_dp)
1157
{
1158
uint8_t v = 0;
1159
uint8_t p = 0;
1160
int lane;
1161
1162
for (lane = 0; lane < intel_dp->lane_count; lane++) {
1163
uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1164
uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1165
1166
if (this_v > v)
1167
v = this_v;
1168
if (this_p > p)
1169
p = this_p;
1170
}
1171
1172
if (v >= I830_DP_VOLTAGE_MAX)
1173
v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1174
1175
if (p >= intel_dp_pre_emphasis_max(v))
1176
p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1177
1178
for (lane = 0; lane < 4; lane++)
1179
intel_dp->train_set[lane] = v | p;
1180
}
1181
1182
static uint32_t
1183
intel_dp_signal_levels(uint8_t train_set, int lane_count)
1184
{
1185
uint32_t signal_levels = 0;
1186
1187
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1188
case DP_TRAIN_VOLTAGE_SWING_400:
1189
default:
1190
signal_levels |= DP_VOLTAGE_0_4;
1191
break;
1192
case DP_TRAIN_VOLTAGE_SWING_600:
1193
signal_levels |= DP_VOLTAGE_0_6;
1194
break;
1195
case DP_TRAIN_VOLTAGE_SWING_800:
1196
signal_levels |= DP_VOLTAGE_0_8;
1197
break;
1198
case DP_TRAIN_VOLTAGE_SWING_1200:
1199
signal_levels |= DP_VOLTAGE_1_2;
1200
break;
1201
}
1202
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1203
case DP_TRAIN_PRE_EMPHASIS_0:
1204
default:
1205
signal_levels |= DP_PRE_EMPHASIS_0;
1206
break;
1207
case DP_TRAIN_PRE_EMPHASIS_3_5:
1208
signal_levels |= DP_PRE_EMPHASIS_3_5;
1209
break;
1210
case DP_TRAIN_PRE_EMPHASIS_6:
1211
signal_levels |= DP_PRE_EMPHASIS_6;
1212
break;
1213
case DP_TRAIN_PRE_EMPHASIS_9_5:
1214
signal_levels |= DP_PRE_EMPHASIS_9_5;
1215
break;
1216
}
1217
return signal_levels;
1218
}
1219
1220
/* Gen6's DP voltage swing and pre-emphasis control */
1221
static uint32_t
1222
intel_gen6_edp_signal_levels(uint8_t train_set)
1223
{
1224
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1225
DP_TRAIN_PRE_EMPHASIS_MASK);
1226
switch (signal_levels) {
1227
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1228
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1229
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1230
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1231
return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1232
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1233
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1234
return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1235
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1236
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1237
return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1238
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1239
case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1240
return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1241
default:
1242
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1243
"0x%x\n", signal_levels);
1244
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1245
}
1246
}
1247
1248
static uint8_t
1249
intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1250
int lane)
1251
{
1252
int i = DP_LANE0_1_STATUS + (lane >> 1);
1253
int s = (lane & 1) * 4;
1254
uint8_t l = intel_dp_link_status(link_status, i);
1255
1256
return (l >> s) & 0xf;
1257
}
1258
1259
/* Check for clock recovery is done on all channels */
1260
static bool
1261
intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1262
{
1263
int lane;
1264
uint8_t lane_status;
1265
1266
for (lane = 0; lane < lane_count; lane++) {
1267
lane_status = intel_get_lane_status(link_status, lane);
1268
if ((lane_status & DP_LANE_CR_DONE) == 0)
1269
return false;
1270
}
1271
return true;
1272
}
1273
1274
/* Check to see if channel eq is done on all channels */
1275
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1276
DP_LANE_CHANNEL_EQ_DONE|\
1277
DP_LANE_SYMBOL_LOCKED)
1278
static bool
1279
intel_channel_eq_ok(struct intel_dp *intel_dp)
1280
{
1281
uint8_t lane_align;
1282
uint8_t lane_status;
1283
int lane;
1284
1285
lane_align = intel_dp_link_status(intel_dp->link_status,
1286
DP_LANE_ALIGN_STATUS_UPDATED);
1287
if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1288
return false;
1289
for (lane = 0; lane < intel_dp->lane_count; lane++) {
1290
lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1291
if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1292
return false;
1293
}
1294
return true;
1295
}
1296
1297
static bool
1298
intel_dp_set_link_train(struct intel_dp *intel_dp,
1299
uint32_t dp_reg_value,
1300
uint8_t dp_train_pat)
1301
{
1302
struct drm_device *dev = intel_dp->base.base.dev;
1303
struct drm_i915_private *dev_priv = dev->dev_private;
1304
int ret;
1305
1306
I915_WRITE(intel_dp->output_reg, dp_reg_value);
1307
POSTING_READ(intel_dp->output_reg);
1308
1309
intel_dp_aux_native_write_1(intel_dp,
1310
DP_TRAINING_PATTERN_SET,
1311
dp_train_pat);
1312
1313
ret = intel_dp_aux_native_write(intel_dp,
1314
DP_TRAINING_LANE0_SET,
1315
intel_dp->train_set, 4);
1316
if (ret != 4)
1317
return false;
1318
1319
return true;
1320
}
1321
1322
/* Enable corresponding port and start training pattern 1 */
1323
static void
1324
intel_dp_start_link_train(struct intel_dp *intel_dp)
1325
{
1326
struct drm_device *dev = intel_dp->base.base.dev;
1327
struct drm_i915_private *dev_priv = dev->dev_private;
1328
struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1329
int i;
1330
uint8_t voltage;
1331
bool clock_recovery = false;
1332
int tries;
1333
u32 reg;
1334
uint32_t DP = intel_dp->DP;
1335
1336
/* Enable output, wait for it to become active */
1337
I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1338
POSTING_READ(intel_dp->output_reg);
1339
intel_wait_for_vblank(dev, intel_crtc->pipe);
1340
1341
/* Write the link configuration data */
1342
intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1343
intel_dp->link_configuration,
1344
DP_LINK_CONFIGURATION_SIZE);
1345
1346
DP |= DP_PORT_EN;
1347
if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1348
DP &= ~DP_LINK_TRAIN_MASK_CPT;
1349
else
1350
DP &= ~DP_LINK_TRAIN_MASK;
1351
memset(intel_dp->train_set, 0, 4);
1352
voltage = 0xff;
1353
tries = 0;
1354
clock_recovery = false;
1355
for (;;) {
1356
/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1357
uint32_t signal_levels;
1358
if (IS_GEN6(dev) && is_edp(intel_dp)) {
1359
signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1360
DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1361
} else {
1362
signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1363
DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1364
}
1365
1366
if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1367
reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1368
else
1369
reg = DP | DP_LINK_TRAIN_PAT_1;
1370
1371
if (!intel_dp_set_link_train(intel_dp, reg,
1372
DP_TRAINING_PATTERN_1))
1373
break;
1374
/* Set training pattern 1 */
1375
1376
udelay(100);
1377
if (!intel_dp_get_link_status(intel_dp))
1378
break;
1379
1380
if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1381
clock_recovery = true;
1382
break;
1383
}
1384
1385
/* Check to see if we've tried the max voltage */
1386
for (i = 0; i < intel_dp->lane_count; i++)
1387
if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1388
break;
1389
if (i == intel_dp->lane_count)
1390
break;
1391
1392
/* Check to see if we've tried the same voltage 5 times */
1393
if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1394
++tries;
1395
if (tries == 5)
1396
break;
1397
} else
1398
tries = 0;
1399
voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1400
1401
/* Compute new intel_dp->train_set as requested by target */
1402
intel_get_adjust_train(intel_dp);
1403
}
1404
1405
intel_dp->DP = DP;
1406
}
1407
1408
static void
1409
intel_dp_complete_link_train(struct intel_dp *intel_dp)
1410
{
1411
struct drm_device *dev = intel_dp->base.base.dev;
1412
struct drm_i915_private *dev_priv = dev->dev_private;
1413
bool channel_eq = false;
1414
int tries, cr_tries;
1415
u32 reg;
1416
uint32_t DP = intel_dp->DP;
1417
1418
/* channel equalization */
1419
tries = 0;
1420
cr_tries = 0;
1421
channel_eq = false;
1422
for (;;) {
1423
/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1424
uint32_t signal_levels;
1425
1426
if (cr_tries > 5) {
1427
DRM_ERROR("failed to train DP, aborting\n");
1428
intel_dp_link_down(intel_dp);
1429
break;
1430
}
1431
1432
if (IS_GEN6(dev) && is_edp(intel_dp)) {
1433
signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1434
DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1435
} else {
1436
signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1437
DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1438
}
1439
1440
if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1441
reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1442
else
1443
reg = DP | DP_LINK_TRAIN_PAT_2;
1444
1445
/* channel eq pattern */
1446
if (!intel_dp_set_link_train(intel_dp, reg,
1447
DP_TRAINING_PATTERN_2))
1448
break;
1449
1450
udelay(400);
1451
if (!intel_dp_get_link_status(intel_dp))
1452
break;
1453
1454
/* Make sure clock is still ok */
1455
if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1456
intel_dp_start_link_train(intel_dp);
1457
cr_tries++;
1458
continue;
1459
}
1460
1461
if (intel_channel_eq_ok(intel_dp)) {
1462
channel_eq = true;
1463
break;
1464
}
1465
1466
/* Try 5 times, then try clock recovery if that fails */
1467
if (tries > 5) {
1468
intel_dp_link_down(intel_dp);
1469
intel_dp_start_link_train(intel_dp);
1470
tries = 0;
1471
cr_tries++;
1472
continue;
1473
}
1474
1475
/* Compute new intel_dp->train_set as requested by target */
1476
intel_get_adjust_train(intel_dp);
1477
++tries;
1478
}
1479
1480
if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1481
reg = DP | DP_LINK_TRAIN_OFF_CPT;
1482
else
1483
reg = DP | DP_LINK_TRAIN_OFF;
1484
1485
I915_WRITE(intel_dp->output_reg, reg);
1486
POSTING_READ(intel_dp->output_reg);
1487
intel_dp_aux_native_write_1(intel_dp,
1488
DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1489
}
1490
1491
static void
1492
intel_dp_link_down(struct intel_dp *intel_dp)
1493
{
1494
struct drm_device *dev = intel_dp->base.base.dev;
1495
struct drm_i915_private *dev_priv = dev->dev_private;
1496
uint32_t DP = intel_dp->DP;
1497
1498
if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1499
return;
1500
1501
DRM_DEBUG_KMS("\n");
1502
1503
if (is_edp(intel_dp)) {
1504
DP &= ~DP_PLL_ENABLE;
1505
I915_WRITE(intel_dp->output_reg, DP);
1506
POSTING_READ(intel_dp->output_reg);
1507
udelay(100);
1508
}
1509
1510
if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
1511
DP &= ~DP_LINK_TRAIN_MASK_CPT;
1512
I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1513
} else {
1514
DP &= ~DP_LINK_TRAIN_MASK;
1515
I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1516
}
1517
POSTING_READ(intel_dp->output_reg);
1518
1519
msleep(17);
1520
1521
if (is_edp(intel_dp))
1522
DP |= DP_LINK_TRAIN_OFF;
1523
1524
if (!HAS_PCH_CPT(dev) &&
1525
I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1526
struct drm_crtc *crtc = intel_dp->base.base.crtc;
1527
1528
/* Hardware workaround: leaving our transcoder select
1529
* set to transcoder B while it's off will prevent the
1530
* corresponding HDMI output on transcoder A.
1531
*
1532
* Combine this with another hardware workaround:
1533
* transcoder select bit can only be cleared while the
1534
* port is enabled.
1535
*/
1536
DP &= ~DP_PIPEB_SELECT;
1537
I915_WRITE(intel_dp->output_reg, DP);
1538
1539
/* Changes to enable or select take place the vblank
1540
* after being written.
1541
*/
1542
if (crtc == NULL) {
1543
/* We can arrive here never having been attached
1544
* to a CRTC, for instance, due to inheriting
1545
* random state from the BIOS.
1546
*
1547
* If the pipe is not running, play safe and
1548
* wait for the clocks to stabilise before
1549
* continuing.
1550
*/
1551
POSTING_READ(intel_dp->output_reg);
1552
msleep(50);
1553
} else
1554
intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1555
}
1556
1557
I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1558
POSTING_READ(intel_dp->output_reg);
1559
}
1560
1561
/*
1562
* According to DP spec
1563
* 5.1.2:
1564
* 1. Read DPCD
1565
* 2. Configure link according to Receiver Capabilities
1566
* 3. Use Link Training from 2.5.3.3 and 3.5.1.3
1567
* 4. Check link status on receipt of hot-plug interrupt
1568
*/
1569
1570
static void
1571
intel_dp_check_link_status(struct intel_dp *intel_dp)
1572
{
1573
int ret;
1574
1575
if (!intel_dp->base.base.crtc)
1576
return;
1577
1578
if (!intel_dp_get_link_status(intel_dp)) {
1579
intel_dp_link_down(intel_dp);
1580
return;
1581
}
1582
1583
/* Try to read receiver status if the link appears to be up */
1584
ret = intel_dp_aux_native_read(intel_dp,
1585
0x000, intel_dp->dpcd,
1586
sizeof (intel_dp->dpcd));
1587
if (ret != sizeof(intel_dp->dpcd)) {
1588
intel_dp_link_down(intel_dp);
1589
return;
1590
}
1591
1592
if (!intel_channel_eq_ok(intel_dp)) {
1593
intel_dp_start_link_train(intel_dp);
1594
intel_dp_complete_link_train(intel_dp);
1595
}
1596
}
1597
1598
static enum drm_connector_status
1599
ironlake_dp_detect(struct intel_dp *intel_dp)
1600
{
1601
enum drm_connector_status status;
1602
bool ret;
1603
1604
/* Can't disconnect eDP, but you can close the lid... */
1605
if (is_edp(intel_dp)) {
1606
status = intel_panel_detect(intel_dp->base.base.dev);
1607
if (status == connector_status_unknown)
1608
status = connector_status_connected;
1609
return status;
1610
}
1611
1612
status = connector_status_disconnected;
1613
ret = intel_dp_aux_native_read_retry(intel_dp,
1614
0x000, intel_dp->dpcd,
1615
sizeof (intel_dp->dpcd));
1616
if (ret && intel_dp->dpcd[DP_DPCD_REV] != 0)
1617
status = connector_status_connected;
1618
DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
1619
intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
1620
return status;
1621
}
1622
1623
static enum drm_connector_status
1624
g4x_dp_detect(struct intel_dp *intel_dp)
1625
{
1626
struct drm_device *dev = intel_dp->base.base.dev;
1627
struct drm_i915_private *dev_priv = dev->dev_private;
1628
enum drm_connector_status status;
1629
uint32_t temp, bit;
1630
1631
switch (intel_dp->output_reg) {
1632
case DP_B:
1633
bit = DPB_HOTPLUG_INT_STATUS;
1634
break;
1635
case DP_C:
1636
bit = DPC_HOTPLUG_INT_STATUS;
1637
break;
1638
case DP_D:
1639
bit = DPD_HOTPLUG_INT_STATUS;
1640
break;
1641
default:
1642
return connector_status_unknown;
1643
}
1644
1645
temp = I915_READ(PORT_HOTPLUG_STAT);
1646
1647
if ((temp & bit) == 0)
1648
return connector_status_disconnected;
1649
1650
status = connector_status_disconnected;
1651
if (intel_dp_aux_native_read(intel_dp, 0x000, intel_dp->dpcd,
1652
sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1653
{
1654
if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1655
status = connector_status_connected;
1656
}
1657
1658
return status;
1659
}
1660
1661
/**
1662
* Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1663
*
1664
* \return true if DP port is connected.
1665
* \return false if DP port is disconnected.
1666
*/
1667
static enum drm_connector_status
1668
intel_dp_detect(struct drm_connector *connector, bool force)
1669
{
1670
struct intel_dp *intel_dp = intel_attached_dp(connector);
1671
struct drm_device *dev = intel_dp->base.base.dev;
1672
enum drm_connector_status status;
1673
struct edid *edid = NULL;
1674
1675
intel_dp->has_audio = false;
1676
1677
if (HAS_PCH_SPLIT(dev))
1678
status = ironlake_dp_detect(intel_dp);
1679
else
1680
status = g4x_dp_detect(intel_dp);
1681
if (status != connector_status_connected)
1682
return status;
1683
1684
if (intel_dp->force_audio) {
1685
intel_dp->has_audio = intel_dp->force_audio > 0;
1686
} else {
1687
edid = drm_get_edid(connector, &intel_dp->adapter);
1688
if (edid) {
1689
intel_dp->has_audio = drm_detect_monitor_audio(edid);
1690
connector->display_info.raw_edid = NULL;
1691
kfree(edid);
1692
}
1693
}
1694
1695
return connector_status_connected;
1696
}
1697
1698
static int intel_dp_get_modes(struct drm_connector *connector)
1699
{
1700
struct intel_dp *intel_dp = intel_attached_dp(connector);
1701
struct drm_device *dev = intel_dp->base.base.dev;
1702
struct drm_i915_private *dev_priv = dev->dev_private;
1703
int ret;
1704
1705
/* We should parse the EDID data and find out if it has an audio sink
1706
*/
1707
1708
ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
1709
if (ret) {
1710
if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
1711
struct drm_display_mode *newmode;
1712
list_for_each_entry(newmode, &connector->probed_modes,
1713
head) {
1714
if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1715
dev_priv->panel_fixed_mode =
1716
drm_mode_duplicate(dev, newmode);
1717
break;
1718
}
1719
}
1720
}
1721
1722
return ret;
1723
}
1724
1725
/* if eDP has no EDID, try to use fixed panel mode from VBT */
1726
if (is_edp(intel_dp)) {
1727
if (dev_priv->panel_fixed_mode != NULL) {
1728
struct drm_display_mode *mode;
1729
mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1730
drm_mode_probed_add(connector, mode);
1731
return 1;
1732
}
1733
}
1734
return 0;
1735
}
1736
1737
static bool
1738
intel_dp_detect_audio(struct drm_connector *connector)
1739
{
1740
struct intel_dp *intel_dp = intel_attached_dp(connector);
1741
struct edid *edid;
1742
bool has_audio = false;
1743
1744
edid = drm_get_edid(connector, &intel_dp->adapter);
1745
if (edid) {
1746
has_audio = drm_detect_monitor_audio(edid);
1747
1748
connector->display_info.raw_edid = NULL;
1749
kfree(edid);
1750
}
1751
1752
return has_audio;
1753
}
1754
1755
static int
1756
intel_dp_set_property(struct drm_connector *connector,
1757
struct drm_property *property,
1758
uint64_t val)
1759
{
1760
struct drm_i915_private *dev_priv = connector->dev->dev_private;
1761
struct intel_dp *intel_dp = intel_attached_dp(connector);
1762
int ret;
1763
1764
ret = drm_connector_property_set_value(connector, property, val);
1765
if (ret)
1766
return ret;
1767
1768
if (property == dev_priv->force_audio_property) {
1769
int i = val;
1770
bool has_audio;
1771
1772
if (i == intel_dp->force_audio)
1773
return 0;
1774
1775
intel_dp->force_audio = i;
1776
1777
if (i == 0)
1778
has_audio = intel_dp_detect_audio(connector);
1779
else
1780
has_audio = i > 0;
1781
1782
if (has_audio == intel_dp->has_audio)
1783
return 0;
1784
1785
intel_dp->has_audio = has_audio;
1786
goto done;
1787
}
1788
1789
if (property == dev_priv->broadcast_rgb_property) {
1790
if (val == !!intel_dp->color_range)
1791
return 0;
1792
1793
intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1794
goto done;
1795
}
1796
1797
return -EINVAL;
1798
1799
done:
1800
if (intel_dp->base.base.crtc) {
1801
struct drm_crtc *crtc = intel_dp->base.base.crtc;
1802
drm_crtc_helper_set_mode(crtc, &crtc->mode,
1803
crtc->x, crtc->y,
1804
crtc->fb);
1805
}
1806
1807
return 0;
1808
}
1809
1810
static void
1811
intel_dp_destroy (struct drm_connector *connector)
1812
{
1813
drm_sysfs_connector_remove(connector);
1814
drm_connector_cleanup(connector);
1815
kfree(connector);
1816
}
1817
1818
static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1819
{
1820
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1821
1822
i2c_del_adapter(&intel_dp->adapter);
1823
drm_encoder_cleanup(encoder);
1824
kfree(intel_dp);
1825
}
1826
1827
static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1828
.dpms = intel_dp_dpms,
1829
.mode_fixup = intel_dp_mode_fixup,
1830
.prepare = intel_dp_prepare,
1831
.mode_set = intel_dp_mode_set,
1832
.commit = intel_dp_commit,
1833
};
1834
1835
static const struct drm_connector_funcs intel_dp_connector_funcs = {
1836
.dpms = drm_helper_connector_dpms,
1837
.detect = intel_dp_detect,
1838
.fill_modes = drm_helper_probe_single_connector_modes,
1839
.set_property = intel_dp_set_property,
1840
.destroy = intel_dp_destroy,
1841
};
1842
1843
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1844
.get_modes = intel_dp_get_modes,
1845
.mode_valid = intel_dp_mode_valid,
1846
.best_encoder = intel_best_encoder,
1847
};
1848
1849
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1850
.destroy = intel_dp_encoder_destroy,
1851
};
1852
1853
static void
1854
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1855
{
1856
struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1857
1858
intel_dp_check_link_status(intel_dp);
1859
}
1860
1861
/* Return which DP Port should be selected for Transcoder DP control */
1862
int
1863
intel_trans_dp_port_sel (struct drm_crtc *crtc)
1864
{
1865
struct drm_device *dev = crtc->dev;
1866
struct drm_mode_config *mode_config = &dev->mode_config;
1867
struct drm_encoder *encoder;
1868
1869
list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1870
struct intel_dp *intel_dp;
1871
1872
if (encoder->crtc != crtc)
1873
continue;
1874
1875
intel_dp = enc_to_intel_dp(encoder);
1876
if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1877
return intel_dp->output_reg;
1878
}
1879
1880
return -1;
1881
}
1882
1883
/* check the VBT to see whether the eDP is on DP-D port */
1884
bool intel_dpd_is_edp(struct drm_device *dev)
1885
{
1886
struct drm_i915_private *dev_priv = dev->dev_private;
1887
struct child_device_config *p_child;
1888
int i;
1889
1890
if (!dev_priv->child_dev_num)
1891
return false;
1892
1893
for (i = 0; i < dev_priv->child_dev_num; i++) {
1894
p_child = dev_priv->child_dev + i;
1895
1896
if (p_child->dvo_port == PORT_IDPD &&
1897
p_child->device_type == DEVICE_TYPE_eDP)
1898
return true;
1899
}
1900
return false;
1901
}
1902
1903
static void
1904
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
1905
{
1906
intel_attach_force_audio_property(connector);
1907
intel_attach_broadcast_rgb_property(connector);
1908
}
1909
1910
void
1911
intel_dp_init(struct drm_device *dev, int output_reg)
1912
{
1913
struct drm_i915_private *dev_priv = dev->dev_private;
1914
struct drm_connector *connector;
1915
struct intel_dp *intel_dp;
1916
struct intel_encoder *intel_encoder;
1917
struct intel_connector *intel_connector;
1918
const char *name = NULL;
1919
int type;
1920
1921
intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1922
if (!intel_dp)
1923
return;
1924
1925
intel_dp->output_reg = output_reg;
1926
1927
intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1928
if (!intel_connector) {
1929
kfree(intel_dp);
1930
return;
1931
}
1932
intel_encoder = &intel_dp->base;
1933
1934
if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1935
if (intel_dpd_is_edp(dev))
1936
intel_dp->is_pch_edp = true;
1937
1938
if (output_reg == DP_A || is_pch_edp(intel_dp)) {
1939
type = DRM_MODE_CONNECTOR_eDP;
1940
intel_encoder->type = INTEL_OUTPUT_EDP;
1941
} else {
1942
type = DRM_MODE_CONNECTOR_DisplayPort;
1943
intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1944
}
1945
1946
connector = &intel_connector->base;
1947
drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1948
drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1949
1950
connector->polled = DRM_CONNECTOR_POLL_HPD;
1951
1952
if (output_reg == DP_B || output_reg == PCH_DP_B)
1953
intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1954
else if (output_reg == DP_C || output_reg == PCH_DP_C)
1955
intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1956
else if (output_reg == DP_D || output_reg == PCH_DP_D)
1957
intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1958
1959
if (is_edp(intel_dp))
1960
intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1961
1962
intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1963
connector->interlace_allowed = true;
1964
connector->doublescan_allowed = 0;
1965
1966
drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
1967
DRM_MODE_ENCODER_TMDS);
1968
drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
1969
1970
intel_connector_attach_encoder(intel_connector, intel_encoder);
1971
drm_sysfs_connector_add(connector);
1972
1973
/* Set up the DDC bus. */
1974
switch (output_reg) {
1975
case DP_A:
1976
name = "DPDDC-A";
1977
break;
1978
case DP_B:
1979
case PCH_DP_B:
1980
dev_priv->hotplug_supported_mask |=
1981
HDMIB_HOTPLUG_INT_STATUS;
1982
name = "DPDDC-B";
1983
break;
1984
case DP_C:
1985
case PCH_DP_C:
1986
dev_priv->hotplug_supported_mask |=
1987
HDMIC_HOTPLUG_INT_STATUS;
1988
name = "DPDDC-C";
1989
break;
1990
case DP_D:
1991
case PCH_DP_D:
1992
dev_priv->hotplug_supported_mask |=
1993
HDMID_HOTPLUG_INT_STATUS;
1994
name = "DPDDC-D";
1995
break;
1996
}
1997
1998
intel_dp_i2c_init(intel_dp, intel_connector, name);
1999
2000
/* Cache some DPCD data in the eDP case */
2001
if (is_edp(intel_dp)) {
2002
int ret;
2003
u32 pp_on, pp_div;
2004
2005
pp_on = I915_READ(PCH_PP_ON_DELAYS);
2006
pp_div = I915_READ(PCH_PP_DIVISOR);
2007
2008
/* Get T3 & T12 values (note: VESA not bspec terminology) */
2009
dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
2010
dev_priv->panel_t3 /= 10; /* t3 in 100us units */
2011
dev_priv->panel_t12 = pp_div & 0xf;
2012
dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
2013
2014
ironlake_edp_panel_vdd_on(intel_dp);
2015
ret = intel_dp_aux_native_read(intel_dp, DP_DPCD_REV,
2016
intel_dp->dpcd,
2017
sizeof(intel_dp->dpcd));
2018
ironlake_edp_panel_vdd_off(intel_dp);
2019
if (ret == sizeof(intel_dp->dpcd)) {
2020
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2021
dev_priv->no_aux_handshake =
2022
intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2023
DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2024
} else {
2025
/* if this fails, presume the device is a ghost */
2026
DRM_INFO("failed to retrieve link info, disabling eDP\n");
2027
intel_dp_encoder_destroy(&intel_dp->base.base);
2028
intel_dp_destroy(&intel_connector->base);
2029
return;
2030
}
2031
}
2032
2033
intel_encoder->hot_plug = intel_dp_hot_plug;
2034
2035
if (is_edp(intel_dp)) {
2036
/* initialize panel mode from VBT if available for eDP */
2037
if (dev_priv->lfp_lvds_vbt_mode) {
2038
dev_priv->panel_fixed_mode =
2039
drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2040
if (dev_priv->panel_fixed_mode) {
2041
dev_priv->panel_fixed_mode->type |=
2042
DRM_MODE_TYPE_PREFERRED;
2043
}
2044
}
2045
}
2046
2047
intel_dp_add_properties(intel_dp, connector);
2048
2049
/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2050
* 0xd. Failure to do so will result in spurious interrupts being
2051
* generated on the port when a cable is not attached.
2052
*/
2053
if (IS_G4X(dev) && !IS_GM45(dev)) {
2054
u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2055
I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2056
}
2057
}
2058
2059