Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/gpu/drm/nouveau/nouveau_calc.c
15112 views
1
/*
2
* Copyright 1993-2003 NVIDIA, Corporation
3
* Copyright 2007-2009 Stuart Bennett
4
*
5
* Permission is hereby granted, free of charge, to any person obtaining a
6
* copy of this software and associated documentation files (the "Software"),
7
* to deal in the Software without restriction, including without limitation
8
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
9
* and/or sell copies of the Software, and to permit persons to whom the
10
* Software is furnished to do so, subject to the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be included in
13
* all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
19
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
20
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
* SOFTWARE.
22
*/
23
24
#include "drmP.h"
25
#include "nouveau_drv.h"
26
#include "nouveau_hw.h"
27
28
/****************************************************************************\
29
* *
30
* The video arbitration routines calculate some "magic" numbers. Fixes *
31
* the snow seen when accessing the framebuffer without it. *
32
* It just works (I hope). *
33
* *
34
\****************************************************************************/
35
36
struct nv_fifo_info {
37
int lwm;
38
int burst;
39
};
40
41
struct nv_sim_state {
42
int pclk_khz;
43
int mclk_khz;
44
int nvclk_khz;
45
int bpp;
46
int mem_page_miss;
47
int mem_latency;
48
int memory_type;
49
int memory_width;
50
int two_heads;
51
};
52
53
static void
54
nv04_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb)
55
{
56
int pagemiss, cas, width, bpp;
57
int nvclks, mclks, pclks, crtpagemiss;
58
int found, mclk_extra, mclk_loop, cbs, m1, p1;
59
int mclk_freq, pclk_freq, nvclk_freq;
60
int us_m, us_n, us_p, crtc_drain_rate;
61
int cpm_us, us_crt, clwm;
62
63
pclk_freq = arb->pclk_khz;
64
mclk_freq = arb->mclk_khz;
65
nvclk_freq = arb->nvclk_khz;
66
pagemiss = arb->mem_page_miss;
67
cas = arb->mem_latency;
68
width = arb->memory_width >> 6;
69
bpp = arb->bpp;
70
cbs = 128;
71
72
pclks = 2;
73
nvclks = 10;
74
mclks = 13 + cas;
75
mclk_extra = 3;
76
found = 0;
77
78
while (!found) {
79
found = 1;
80
81
mclk_loop = mclks + mclk_extra;
82
us_m = mclk_loop * 1000 * 1000 / mclk_freq;
83
us_n = nvclks * 1000 * 1000 / nvclk_freq;
84
us_p = nvclks * 1000 * 1000 / pclk_freq;
85
86
crtc_drain_rate = pclk_freq * bpp / 8;
87
crtpagemiss = 2;
88
crtpagemiss += 1;
89
cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq;
90
us_crt = cpm_us + us_m + us_n + us_p;
91
clwm = us_crt * crtc_drain_rate / (1000 * 1000);
92
clwm++;
93
94
m1 = clwm + cbs - 512;
95
p1 = m1 * pclk_freq / mclk_freq;
96
p1 = p1 * bpp / 8;
97
if ((p1 < m1 && m1 > 0) || clwm > 519) {
98
found = !mclk_extra;
99
mclk_extra--;
100
}
101
if (clwm < 384)
102
clwm = 384;
103
104
fifo->lwm = clwm;
105
fifo->burst = cbs;
106
}
107
}
108
109
static void
110
nv10_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb)
111
{
112
int fill_rate, drain_rate;
113
int pclks, nvclks, mclks, xclks;
114
int pclk_freq, nvclk_freq, mclk_freq;
115
int fill_lat, extra_lat;
116
int max_burst_o, max_burst_l;
117
int fifo_len, min_lwm, max_lwm;
118
const int burst_lat = 80; /* Maximum allowable latency due
119
* to the CRTC FIFO burst. (ns) */
120
121
pclk_freq = arb->pclk_khz;
122
nvclk_freq = arb->nvclk_khz;
123
mclk_freq = arb->mclk_khz;
124
125
fill_rate = mclk_freq * arb->memory_width / 8; /* kB/s */
126
drain_rate = pclk_freq * arb->bpp / 8; /* kB/s */
127
128
fifo_len = arb->two_heads ? 1536 : 1024; /* B */
129
130
/* Fixed FIFO refill latency. */
131
132
pclks = 4; /* lwm detect. */
133
134
nvclks = 3 /* lwm -> sync. */
135
+ 2 /* fbi bus cycles (1 req + 1 busy) */
136
+ 1 /* 2 edge sync. may be very close to edge so
137
* just put one. */
138
+ 1 /* fbi_d_rdv_n */
139
+ 1 /* Fbi_d_rdata */
140
+ 1; /* crtfifo load */
141
142
mclks = 1 /* 2 edge sync. may be very close to edge so
143
* just put one. */
144
+ 1 /* arb_hp_req */
145
+ 5 /* tiling pipeline */
146
+ 2 /* latency fifo */
147
+ 2 /* memory request to fbio block */
148
+ 7; /* data returned from fbio block */
149
150
/* Need to accumulate 256 bits for read */
151
mclks += (arb->memory_type == 0 ? 2 : 1)
152
* arb->memory_width / 32;
153
154
fill_lat = mclks * 1000 * 1000 / mclk_freq /* minimum mclk latency */
155
+ nvclks * 1000 * 1000 / nvclk_freq /* nvclk latency */
156
+ pclks * 1000 * 1000 / pclk_freq; /* pclk latency */
157
158
/* Conditional FIFO refill latency. */
159
160
xclks = 2 * arb->mem_page_miss + mclks /* Extra latency due to
161
* the overlay. */
162
+ 2 * arb->mem_page_miss /* Extra pagemiss latency. */
163
+ (arb->bpp == 32 ? 8 : 4); /* Margin of error. */
164
165
extra_lat = xclks * 1000 * 1000 / mclk_freq;
166
167
if (arb->two_heads)
168
/* Account for another CRTC. */
169
extra_lat += fill_lat + extra_lat + burst_lat;
170
171
/* FIFO burst */
172
173
/* Max burst not leading to overflows. */
174
max_burst_o = (1 + fifo_len - extra_lat * drain_rate / (1000 * 1000))
175
* (fill_rate / 1000) / ((fill_rate - drain_rate) / 1000);
176
fifo->burst = min(max_burst_o, 1024);
177
178
/* Max burst value with an acceptable latency. */
179
max_burst_l = burst_lat * fill_rate / (1000 * 1000);
180
fifo->burst = min(max_burst_l, fifo->burst);
181
182
fifo->burst = rounddown_pow_of_two(fifo->burst);
183
184
/* FIFO low watermark */
185
186
min_lwm = (fill_lat + extra_lat) * drain_rate / (1000 * 1000) + 1;
187
max_lwm = fifo_len - fifo->burst
188
+ fill_lat * drain_rate / (1000 * 1000)
189
+ fifo->burst * drain_rate / fill_rate;
190
191
fifo->lwm = min_lwm + 10 * (max_lwm - min_lwm) / 100; /* Empirical. */
192
}
193
194
static void
195
nv04_update_arb(struct drm_device *dev, int VClk, int bpp,
196
int *burst, int *lwm)
197
{
198
struct drm_nouveau_private *dev_priv = dev->dev_private;
199
struct nv_fifo_info fifo_data;
200
struct nv_sim_state sim_data;
201
int MClk = nouveau_hw_get_clock(dev, PLL_MEMORY);
202
int NVClk = nouveau_hw_get_clock(dev, PLL_CORE);
203
uint32_t cfg1 = nvReadFB(dev, NV04_PFB_CFG1);
204
205
sim_data.pclk_khz = VClk;
206
sim_data.mclk_khz = MClk;
207
sim_data.nvclk_khz = NVClk;
208
sim_data.bpp = bpp;
209
sim_data.two_heads = nv_two_heads(dev);
210
if ((dev->pci_device & 0xffff) == 0x01a0 /*CHIPSET_NFORCE*/ ||
211
(dev->pci_device & 0xffff) == 0x01f0 /*CHIPSET_NFORCE2*/) {
212
uint32_t type;
213
214
pci_read_config_dword(pci_get_bus_and_slot(0, 1), 0x7c, &type);
215
216
sim_data.memory_type = (type >> 12) & 1;
217
sim_data.memory_width = 64;
218
sim_data.mem_latency = 3;
219
sim_data.mem_page_miss = 10;
220
} else {
221
sim_data.memory_type = nvReadFB(dev, NV04_PFB_CFG0) & 0x1;
222
sim_data.memory_width = (nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) & 0x10) ? 128 : 64;
223
sim_data.mem_latency = cfg1 & 0xf;
224
sim_data.mem_page_miss = ((cfg1 >> 4) & 0xf) + ((cfg1 >> 31) & 0x1);
225
}
226
227
if (dev_priv->card_type == NV_04)
228
nv04_calc_arb(&fifo_data, &sim_data);
229
else
230
nv10_calc_arb(&fifo_data, &sim_data);
231
232
*burst = ilog2(fifo_data.burst >> 4);
233
*lwm = fifo_data.lwm >> 3;
234
}
235
236
static void
237
nv20_update_arb(int *burst, int *lwm)
238
{
239
unsigned int fifo_size, burst_size, graphics_lwm;
240
241
fifo_size = 2048;
242
burst_size = 512;
243
graphics_lwm = fifo_size - burst_size;
244
245
*burst = ilog2(burst_size >> 5);
246
*lwm = graphics_lwm >> 3;
247
}
248
249
void
250
nouveau_calc_arb(struct drm_device *dev, int vclk, int bpp, int *burst, int *lwm)
251
{
252
struct drm_nouveau_private *dev_priv = dev->dev_private;
253
254
if (dev_priv->card_type < NV_20)
255
nv04_update_arb(dev, vclk, bpp, burst, lwm);
256
else if ((dev->pci_device & 0xfff0) == 0x0240 /*CHIPSET_C51*/ ||
257
(dev->pci_device & 0xfff0) == 0x03d0 /*CHIPSET_C512*/) {
258
*burst = 128;
259
*lwm = 0x0480;
260
} else
261
nv20_update_arb(burst, lwm);
262
}
263
264
static int
265
getMNP_single(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
266
struct nouveau_pll_vals *bestpv)
267
{
268
/* Find M, N and P for a single stage PLL
269
*
270
* Note that some bioses (NV3x) have lookup tables of precomputed MNP
271
* values, but we're too lazy to use those atm
272
*
273
* "clk" parameter in kHz
274
* returns calculated clock
275
*/
276
struct drm_nouveau_private *dev_priv = dev->dev_private;
277
int cv = dev_priv->vbios.chip_version;
278
int minvco = pll_lim->vco1.minfreq, maxvco = pll_lim->vco1.maxfreq;
279
int minM = pll_lim->vco1.min_m, maxM = pll_lim->vco1.max_m;
280
int minN = pll_lim->vco1.min_n, maxN = pll_lim->vco1.max_n;
281
int minU = pll_lim->vco1.min_inputfreq;
282
int maxU = pll_lim->vco1.max_inputfreq;
283
int minP = pll_lim->max_p ? pll_lim->min_p : 0;
284
int maxP = pll_lim->max_p ? pll_lim->max_p : pll_lim->max_usable_log2p;
285
int crystal = pll_lim->refclk;
286
int M, N, thisP, P;
287
int clkP, calcclk;
288
int delta, bestdelta = INT_MAX;
289
int bestclk = 0;
290
291
/* this division verified for nv20, nv18, nv28 (Haiku), and nv34 */
292
/* possibly correlated with introduction of 27MHz crystal */
293
if (dev_priv->card_type < NV_50) {
294
if (cv < 0x17 || cv == 0x1a || cv == 0x20) {
295
if (clk > 250000)
296
maxM = 6;
297
if (clk > 340000)
298
maxM = 2;
299
} else if (cv < 0x40) {
300
if (clk > 150000)
301
maxM = 6;
302
if (clk > 200000)
303
maxM = 4;
304
if (clk > 340000)
305
maxM = 2;
306
}
307
}
308
309
P = pll_lim->max_p ? maxP : (1 << maxP);
310
if ((clk * P) < minvco) {
311
minvco = clk * maxP;
312
maxvco = minvco * 2;
313
}
314
315
if (clk + clk/200 > maxvco) /* +0.5% */
316
maxvco = clk + clk/200;
317
318
/* NV34 goes maxlog2P->0, NV20 goes 0->maxlog2P */
319
for (thisP = minP; thisP <= maxP; thisP++) {
320
P = pll_lim->max_p ? thisP : (1 << thisP);
321
clkP = clk * P;
322
323
if (clkP < minvco)
324
continue;
325
if (clkP > maxvco)
326
return bestclk;
327
328
for (M = minM; M <= maxM; M++) {
329
if (crystal/M < minU)
330
return bestclk;
331
if (crystal/M > maxU)
332
continue;
333
334
/* add crystal/2 to round better */
335
N = (clkP * M + crystal/2) / crystal;
336
337
if (N < minN)
338
continue;
339
if (N > maxN)
340
break;
341
342
/* more rounding additions */
343
calcclk = ((N * crystal + P/2) / P + M/2) / M;
344
delta = abs(calcclk - clk);
345
/* we do an exhaustive search rather than terminating
346
* on an optimality condition...
347
*/
348
if (delta < bestdelta) {
349
bestdelta = delta;
350
bestclk = calcclk;
351
bestpv->N1 = N;
352
bestpv->M1 = M;
353
bestpv->log2P = thisP;
354
if (delta == 0) /* except this one */
355
return bestclk;
356
}
357
}
358
}
359
360
return bestclk;
361
}
362
363
static int
364
getMNP_double(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
365
struct nouveau_pll_vals *bestpv)
366
{
367
/* Find M, N and P for a two stage PLL
368
*
369
* Note that some bioses (NV30+) have lookup tables of precomputed MNP
370
* values, but we're too lazy to use those atm
371
*
372
* "clk" parameter in kHz
373
* returns calculated clock
374
*/
375
struct drm_nouveau_private *dev_priv = dev->dev_private;
376
int chip_version = dev_priv->vbios.chip_version;
377
int minvco1 = pll_lim->vco1.minfreq, maxvco1 = pll_lim->vco1.maxfreq;
378
int minvco2 = pll_lim->vco2.minfreq, maxvco2 = pll_lim->vco2.maxfreq;
379
int minU1 = pll_lim->vco1.min_inputfreq, minU2 = pll_lim->vco2.min_inputfreq;
380
int maxU1 = pll_lim->vco1.max_inputfreq, maxU2 = pll_lim->vco2.max_inputfreq;
381
int minM1 = pll_lim->vco1.min_m, maxM1 = pll_lim->vco1.max_m;
382
int minN1 = pll_lim->vco1.min_n, maxN1 = pll_lim->vco1.max_n;
383
int minM2 = pll_lim->vco2.min_m, maxM2 = pll_lim->vco2.max_m;
384
int minN2 = pll_lim->vco2.min_n, maxN2 = pll_lim->vco2.max_n;
385
int maxlog2P = pll_lim->max_usable_log2p;
386
int crystal = pll_lim->refclk;
387
bool fixedgain2 = (minM2 == maxM2 && minN2 == maxN2);
388
int M1, N1, M2, N2, log2P;
389
int clkP, calcclk1, calcclk2, calcclkout;
390
int delta, bestdelta = INT_MAX;
391
int bestclk = 0;
392
393
int vco2 = (maxvco2 - maxvco2/200) / 2;
394
for (log2P = 0; clk && log2P < maxlog2P && clk <= (vco2 >> log2P); log2P++)
395
;
396
clkP = clk << log2P;
397
398
if (maxvco2 < clk + clk/200) /* +0.5% */
399
maxvco2 = clk + clk/200;
400
401
for (M1 = minM1; M1 <= maxM1; M1++) {
402
if (crystal/M1 < minU1)
403
return bestclk;
404
if (crystal/M1 > maxU1)
405
continue;
406
407
for (N1 = minN1; N1 <= maxN1; N1++) {
408
calcclk1 = crystal * N1 / M1;
409
if (calcclk1 < minvco1)
410
continue;
411
if (calcclk1 > maxvco1)
412
break;
413
414
for (M2 = minM2; M2 <= maxM2; M2++) {
415
if (calcclk1/M2 < minU2)
416
break;
417
if (calcclk1/M2 > maxU2)
418
continue;
419
420
/* add calcclk1/2 to round better */
421
N2 = (clkP * M2 + calcclk1/2) / calcclk1;
422
if (N2 < minN2)
423
continue;
424
if (N2 > maxN2)
425
break;
426
427
if (!fixedgain2) {
428
if (chip_version < 0x60)
429
if (N2/M2 < 4 || N2/M2 > 10)
430
continue;
431
432
calcclk2 = calcclk1 * N2 / M2;
433
if (calcclk2 < minvco2)
434
break;
435
if (calcclk2 > maxvco2)
436
continue;
437
} else
438
calcclk2 = calcclk1;
439
440
calcclkout = calcclk2 >> log2P;
441
delta = abs(calcclkout - clk);
442
/* we do an exhaustive search rather than terminating
443
* on an optimality condition...
444
*/
445
if (delta < bestdelta) {
446
bestdelta = delta;
447
bestclk = calcclkout;
448
bestpv->N1 = N1;
449
bestpv->M1 = M1;
450
bestpv->N2 = N2;
451
bestpv->M2 = M2;
452
bestpv->log2P = log2P;
453
if (delta == 0) /* except this one */
454
return bestclk;
455
}
456
}
457
}
458
}
459
460
return bestclk;
461
}
462
463
int
464
nouveau_calc_pll_mnp(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
465
struct nouveau_pll_vals *pv)
466
{
467
int outclk;
468
469
if (!pll_lim->vco2.maxfreq)
470
outclk = getMNP_single(dev, pll_lim, clk, pv);
471
else
472
outclk = getMNP_double(dev, pll_lim, clk, pv);
473
474
if (!outclk)
475
NV_ERROR(dev, "Could not find a compatible set of PLL values\n");
476
477
return outclk;
478
}
479
480