Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/hwmon/emc2103.c
15109 views
1
/*
2
emc2103.c - Support for SMSC EMC2103
3
Copyright (c) 2010 SMSC
4
5
This program is free software; you can redistribute it and/or modify
6
it under the terms of the GNU General Public License as published by
7
the Free Software Foundation; either version 2 of the License, or
8
(at your option) any later version.
9
10
This program is distributed in the hope that it will be useful,
11
but WITHOUT ANY WARRANTY; without even the implied warranty of
12
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
GNU General Public License for more details.
14
15
You should have received a copy of the GNU General Public License
16
along with this program; if not, write to the Free Software
17
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18
*/
19
20
#include <linux/module.h>
21
#include <linux/init.h>
22
#include <linux/slab.h>
23
#include <linux/jiffies.h>
24
#include <linux/i2c.h>
25
#include <linux/hwmon.h>
26
#include <linux/hwmon-sysfs.h>
27
#include <linux/err.h>
28
#include <linux/mutex.h>
29
30
/* Addresses scanned */
31
static const unsigned short normal_i2c[] = { 0x2E, I2C_CLIENT_END };
32
33
static const u8 REG_TEMP[4] = { 0x00, 0x02, 0x04, 0x06 };
34
static const u8 REG_TEMP_MIN[4] = { 0x3c, 0x38, 0x39, 0x3a };
35
static const u8 REG_TEMP_MAX[4] = { 0x34, 0x30, 0x31, 0x32 };
36
37
#define REG_CONF1 0x20
38
#define REG_TEMP_MAX_ALARM 0x24
39
#define REG_TEMP_MIN_ALARM 0x25
40
#define REG_FAN_CONF1 0x42
41
#define REG_FAN_TARGET_LO 0x4c
42
#define REG_FAN_TARGET_HI 0x4d
43
#define REG_FAN_TACH_HI 0x4e
44
#define REG_FAN_TACH_LO 0x4f
45
#define REG_PRODUCT_ID 0xfd
46
#define REG_MFG_ID 0xfe
47
48
/* equation 4 from datasheet: rpm = (3932160 * multipler) / count */
49
#define FAN_RPM_FACTOR 3932160
50
51
/* 2103-2 and 2103-4's 3rd temperature sensor can be connected to two diodes
52
* in anti-parallel mode, and in this configuration both can be read
53
* independently (so we have 4 temperature inputs). The device can't
54
* detect if it's connected in this mode, so we have to manually enable
55
* it. Default is to leave the device in the state it's already in (-1).
56
* This parameter allows APD mode to be optionally forced on or off */
57
static int apd = -1;
58
module_param(apd, bool, 0);
59
MODULE_PARM_DESC(init, "Set to zero to disable anti-parallel diode mode");
60
61
struct temperature {
62
s8 degrees;
63
u8 fraction; /* 0-7 multiples of 0.125 */
64
};
65
66
struct emc2103_data {
67
struct device *hwmon_dev;
68
struct mutex update_lock;
69
bool valid; /* registers are valid */
70
bool fan_rpm_control;
71
int temp_count; /* num of temp sensors */
72
unsigned long last_updated; /* in jiffies */
73
struct temperature temp[4]; /* internal + 3 external */
74
s8 temp_min[4]; /* no fractional part */
75
s8 temp_max[4]; /* no fractional part */
76
u8 temp_min_alarm;
77
u8 temp_max_alarm;
78
u8 fan_multiplier;
79
u16 fan_tach;
80
u16 fan_target;
81
};
82
83
static int read_u8_from_i2c(struct i2c_client *client, u8 i2c_reg, u8 *output)
84
{
85
int status = i2c_smbus_read_byte_data(client, i2c_reg);
86
if (status < 0) {
87
dev_warn(&client->dev, "reg 0x%02x, err %d\n",
88
i2c_reg, status);
89
} else {
90
*output = status;
91
}
92
return status;
93
}
94
95
static void read_temp_from_i2c(struct i2c_client *client, u8 i2c_reg,
96
struct temperature *temp)
97
{
98
u8 degrees, fractional;
99
100
if (read_u8_from_i2c(client, i2c_reg, &degrees) < 0)
101
return;
102
103
if (read_u8_from_i2c(client, i2c_reg + 1, &fractional) < 0)
104
return;
105
106
temp->degrees = degrees;
107
temp->fraction = (fractional & 0xe0) >> 5;
108
}
109
110
static void read_fan_from_i2c(struct i2c_client *client, u16 *output,
111
u8 hi_addr, u8 lo_addr)
112
{
113
u8 high_byte, lo_byte;
114
115
if (read_u8_from_i2c(client, hi_addr, &high_byte) < 0)
116
return;
117
118
if (read_u8_from_i2c(client, lo_addr, &lo_byte) < 0)
119
return;
120
121
*output = ((u16)high_byte << 5) | (lo_byte >> 3);
122
}
123
124
static void write_fan_target_to_i2c(struct i2c_client *client, u16 new_target)
125
{
126
u8 high_byte = (new_target & 0x1fe0) >> 5;
127
u8 low_byte = (new_target & 0x001f) << 3;
128
i2c_smbus_write_byte_data(client, REG_FAN_TARGET_LO, low_byte);
129
i2c_smbus_write_byte_data(client, REG_FAN_TARGET_HI, high_byte);
130
}
131
132
static void read_fan_config_from_i2c(struct i2c_client *client)
133
134
{
135
struct emc2103_data *data = i2c_get_clientdata(client);
136
u8 conf1;
137
138
if (read_u8_from_i2c(client, REG_FAN_CONF1, &conf1) < 0)
139
return;
140
141
data->fan_multiplier = 1 << ((conf1 & 0x60) >> 5);
142
data->fan_rpm_control = (conf1 & 0x80) != 0;
143
}
144
145
static struct emc2103_data *emc2103_update_device(struct device *dev)
146
{
147
struct i2c_client *client = to_i2c_client(dev);
148
struct emc2103_data *data = i2c_get_clientdata(client);
149
150
mutex_lock(&data->update_lock);
151
152
if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
153
|| !data->valid) {
154
int i;
155
156
for (i = 0; i < data->temp_count; i++) {
157
read_temp_from_i2c(client, REG_TEMP[i], &data->temp[i]);
158
read_u8_from_i2c(client, REG_TEMP_MIN[i],
159
&data->temp_min[i]);
160
read_u8_from_i2c(client, REG_TEMP_MAX[i],
161
&data->temp_max[i]);
162
}
163
164
read_u8_from_i2c(client, REG_TEMP_MIN_ALARM,
165
&data->temp_min_alarm);
166
read_u8_from_i2c(client, REG_TEMP_MAX_ALARM,
167
&data->temp_max_alarm);
168
169
read_fan_from_i2c(client, &data->fan_tach,
170
REG_FAN_TACH_HI, REG_FAN_TACH_LO);
171
read_fan_from_i2c(client, &data->fan_target,
172
REG_FAN_TARGET_HI, REG_FAN_TARGET_LO);
173
read_fan_config_from_i2c(client);
174
175
data->last_updated = jiffies;
176
data->valid = true;
177
}
178
179
mutex_unlock(&data->update_lock);
180
181
return data;
182
}
183
184
static ssize_t
185
show_temp(struct device *dev, struct device_attribute *da, char *buf)
186
{
187
int nr = to_sensor_dev_attr(da)->index;
188
struct emc2103_data *data = emc2103_update_device(dev);
189
int millidegrees = data->temp[nr].degrees * 1000
190
+ data->temp[nr].fraction * 125;
191
return sprintf(buf, "%d\n", millidegrees);
192
}
193
194
static ssize_t
195
show_temp_min(struct device *dev, struct device_attribute *da, char *buf)
196
{
197
int nr = to_sensor_dev_attr(da)->index;
198
struct emc2103_data *data = emc2103_update_device(dev);
199
int millidegrees = data->temp_min[nr] * 1000;
200
return sprintf(buf, "%d\n", millidegrees);
201
}
202
203
static ssize_t
204
show_temp_max(struct device *dev, struct device_attribute *da, char *buf)
205
{
206
int nr = to_sensor_dev_attr(da)->index;
207
struct emc2103_data *data = emc2103_update_device(dev);
208
int millidegrees = data->temp_max[nr] * 1000;
209
return sprintf(buf, "%d\n", millidegrees);
210
}
211
212
static ssize_t
213
show_temp_fault(struct device *dev, struct device_attribute *da, char *buf)
214
{
215
int nr = to_sensor_dev_attr(da)->index;
216
struct emc2103_data *data = emc2103_update_device(dev);
217
bool fault = (data->temp[nr].degrees == -128);
218
return sprintf(buf, "%d\n", fault ? 1 : 0);
219
}
220
221
static ssize_t
222
show_temp_min_alarm(struct device *dev, struct device_attribute *da, char *buf)
223
{
224
int nr = to_sensor_dev_attr(da)->index;
225
struct emc2103_data *data = emc2103_update_device(dev);
226
bool alarm = data->temp_min_alarm & (1 << nr);
227
return sprintf(buf, "%d\n", alarm ? 1 : 0);
228
}
229
230
static ssize_t
231
show_temp_max_alarm(struct device *dev, struct device_attribute *da, char *buf)
232
{
233
int nr = to_sensor_dev_attr(da)->index;
234
struct emc2103_data *data = emc2103_update_device(dev);
235
bool alarm = data->temp_max_alarm & (1 << nr);
236
return sprintf(buf, "%d\n", alarm ? 1 : 0);
237
}
238
239
static ssize_t set_temp_min(struct device *dev, struct device_attribute *da,
240
const char *buf, size_t count)
241
{
242
int nr = to_sensor_dev_attr(da)->index;
243
struct i2c_client *client = to_i2c_client(dev);
244
struct emc2103_data *data = i2c_get_clientdata(client);
245
long val;
246
247
int result = strict_strtol(buf, 10, &val);
248
if (result < 0)
249
return -EINVAL;
250
251
val = DIV_ROUND_CLOSEST(val, 1000);
252
if ((val < -63) || (val > 127))
253
return -EINVAL;
254
255
mutex_lock(&data->update_lock);
256
data->temp_min[nr] = val;
257
i2c_smbus_write_byte_data(client, REG_TEMP_MIN[nr], val);
258
mutex_unlock(&data->update_lock);
259
260
return count;
261
}
262
263
static ssize_t set_temp_max(struct device *dev, struct device_attribute *da,
264
const char *buf, size_t count)
265
{
266
int nr = to_sensor_dev_attr(da)->index;
267
struct i2c_client *client = to_i2c_client(dev);
268
struct emc2103_data *data = i2c_get_clientdata(client);
269
long val;
270
271
int result = strict_strtol(buf, 10, &val);
272
if (result < 0)
273
return -EINVAL;
274
275
val = DIV_ROUND_CLOSEST(val, 1000);
276
if ((val < -63) || (val > 127))
277
return -EINVAL;
278
279
mutex_lock(&data->update_lock);
280
data->temp_max[nr] = val;
281
i2c_smbus_write_byte_data(client, REG_TEMP_MAX[nr], val);
282
mutex_unlock(&data->update_lock);
283
284
return count;
285
}
286
287
static ssize_t
288
show_fan(struct device *dev, struct device_attribute *da, char *buf)
289
{
290
struct emc2103_data *data = emc2103_update_device(dev);
291
int rpm = 0;
292
if (data->fan_tach != 0)
293
rpm = (FAN_RPM_FACTOR * data->fan_multiplier) / data->fan_tach;
294
return sprintf(buf, "%d\n", rpm);
295
}
296
297
static ssize_t
298
show_fan_div(struct device *dev, struct device_attribute *da, char *buf)
299
{
300
struct emc2103_data *data = emc2103_update_device(dev);
301
int fan_div = 8 / data->fan_multiplier;
302
return sprintf(buf, "%d\n", fan_div);
303
}
304
305
/* Note: we also update the fan target here, because its value is
306
determined in part by the fan clock divider. This follows the principle
307
of least surprise; the user doesn't expect the fan target to change just
308
because the divider changed. */
309
static ssize_t set_fan_div(struct device *dev, struct device_attribute *da,
310
const char *buf, size_t count)
311
{
312
struct emc2103_data *data = emc2103_update_device(dev);
313
struct i2c_client *client = to_i2c_client(dev);
314
int new_range_bits, old_div = 8 / data->fan_multiplier;
315
long new_div;
316
317
int status = strict_strtol(buf, 10, &new_div);
318
if (status < 0)
319
return -EINVAL;
320
321
if (new_div == old_div) /* No change */
322
return count;
323
324
switch (new_div) {
325
case 1:
326
new_range_bits = 3;
327
break;
328
case 2:
329
new_range_bits = 2;
330
break;
331
case 4:
332
new_range_bits = 1;
333
break;
334
case 8:
335
new_range_bits = 0;
336
break;
337
default:
338
return -EINVAL;
339
}
340
341
mutex_lock(&data->update_lock);
342
343
status = i2c_smbus_read_byte_data(client, REG_FAN_CONF1);
344
if (status < 0) {
345
dev_dbg(&client->dev, "reg 0x%02x, err %d\n",
346
REG_FAN_CONF1, status);
347
mutex_unlock(&data->update_lock);
348
return -EIO;
349
}
350
status &= 0x9F;
351
status |= (new_range_bits << 5);
352
i2c_smbus_write_byte_data(client, REG_FAN_CONF1, status);
353
354
data->fan_multiplier = 8 / new_div;
355
356
/* update fan target if high byte is not disabled */
357
if ((data->fan_target & 0x1fe0) != 0x1fe0) {
358
u16 new_target = (data->fan_target * old_div) / new_div;
359
data->fan_target = min(new_target, (u16)0x1fff);
360
write_fan_target_to_i2c(client, data->fan_target);
361
}
362
363
/* invalidate data to force re-read from hardware */
364
data->valid = false;
365
366
mutex_unlock(&data->update_lock);
367
return count;
368
}
369
370
static ssize_t
371
show_fan_target(struct device *dev, struct device_attribute *da, char *buf)
372
{
373
struct emc2103_data *data = emc2103_update_device(dev);
374
int rpm = 0;
375
376
/* high byte of 0xff indicates disabled so return 0 */
377
if ((data->fan_target != 0) && ((data->fan_target & 0x1fe0) != 0x1fe0))
378
rpm = (FAN_RPM_FACTOR * data->fan_multiplier)
379
/ data->fan_target;
380
381
return sprintf(buf, "%d\n", rpm);
382
}
383
384
static ssize_t set_fan_target(struct device *dev, struct device_attribute *da,
385
const char *buf, size_t count)
386
{
387
struct emc2103_data *data = emc2103_update_device(dev);
388
struct i2c_client *client = to_i2c_client(dev);
389
long rpm_target;
390
391
int result = strict_strtol(buf, 10, &rpm_target);
392
if (result < 0)
393
return -EINVAL;
394
395
/* Datasheet states 16384 as maximum RPM target (table 3.2) */
396
if ((rpm_target < 0) || (rpm_target > 16384))
397
return -EINVAL;
398
399
mutex_lock(&data->update_lock);
400
401
if (rpm_target == 0)
402
data->fan_target = 0x1fff;
403
else
404
data->fan_target = SENSORS_LIMIT(
405
(FAN_RPM_FACTOR * data->fan_multiplier) / rpm_target,
406
0, 0x1fff);
407
408
write_fan_target_to_i2c(client, data->fan_target);
409
410
mutex_unlock(&data->update_lock);
411
return count;
412
}
413
414
static ssize_t
415
show_fan_fault(struct device *dev, struct device_attribute *da, char *buf)
416
{
417
struct emc2103_data *data = emc2103_update_device(dev);
418
bool fault = ((data->fan_tach & 0x1fe0) == 0x1fe0);
419
return sprintf(buf, "%d\n", fault ? 1 : 0);
420
}
421
422
static ssize_t
423
show_pwm_enable(struct device *dev, struct device_attribute *da, char *buf)
424
{
425
struct emc2103_data *data = emc2103_update_device(dev);
426
return sprintf(buf, "%d\n", data->fan_rpm_control ? 3 : 0);
427
}
428
429
static ssize_t set_pwm_enable(struct device *dev, struct device_attribute *da,
430
const char *buf, size_t count)
431
{
432
struct i2c_client *client = to_i2c_client(dev);
433
struct emc2103_data *data = i2c_get_clientdata(client);
434
long new_value;
435
u8 conf_reg;
436
437
int result = strict_strtol(buf, 10, &new_value);
438
if (result < 0)
439
return -EINVAL;
440
441
mutex_lock(&data->update_lock);
442
switch (new_value) {
443
case 0:
444
data->fan_rpm_control = false;
445
break;
446
case 3:
447
data->fan_rpm_control = true;
448
break;
449
default:
450
mutex_unlock(&data->update_lock);
451
return -EINVAL;
452
}
453
454
read_u8_from_i2c(client, REG_FAN_CONF1, &conf_reg);
455
456
if (data->fan_rpm_control)
457
conf_reg |= 0x80;
458
else
459
conf_reg &= ~0x80;
460
461
i2c_smbus_write_byte_data(client, REG_FAN_CONF1, conf_reg);
462
463
mutex_unlock(&data->update_lock);
464
return count;
465
}
466
467
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0);
468
static SENSOR_DEVICE_ATTR(temp1_min, S_IRUGO | S_IWUSR, show_temp_min,
469
set_temp_min, 0);
470
static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp_max,
471
set_temp_max, 0);
472
static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_temp_fault, NULL, 0);
473
static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_temp_min_alarm,
474
NULL, 0);
475
static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_temp_max_alarm,
476
NULL, 0);
477
478
static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 1);
479
static SENSOR_DEVICE_ATTR(temp2_min, S_IRUGO | S_IWUSR, show_temp_min,
480
set_temp_min, 1);
481
static SENSOR_DEVICE_ATTR(temp2_max, S_IRUGO | S_IWUSR, show_temp_max,
482
set_temp_max, 1);
483
static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_temp_fault, NULL, 1);
484
static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_temp_min_alarm,
485
NULL, 1);
486
static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_temp_max_alarm,
487
NULL, 1);
488
489
static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 2);
490
static SENSOR_DEVICE_ATTR(temp3_min, S_IRUGO | S_IWUSR, show_temp_min,
491
set_temp_min, 2);
492
static SENSOR_DEVICE_ATTR(temp3_max, S_IRUGO | S_IWUSR, show_temp_max,
493
set_temp_max, 2);
494
static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_temp_fault, NULL, 2);
495
static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_temp_min_alarm,
496
NULL, 2);
497
static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_temp_max_alarm,
498
NULL, 2);
499
500
static SENSOR_DEVICE_ATTR(temp4_input, S_IRUGO, show_temp, NULL, 3);
501
static SENSOR_DEVICE_ATTR(temp4_min, S_IRUGO | S_IWUSR, show_temp_min,
502
set_temp_min, 3);
503
static SENSOR_DEVICE_ATTR(temp4_max, S_IRUGO | S_IWUSR, show_temp_max,
504
set_temp_max, 3);
505
static SENSOR_DEVICE_ATTR(temp4_fault, S_IRUGO, show_temp_fault, NULL, 3);
506
static SENSOR_DEVICE_ATTR(temp4_min_alarm, S_IRUGO, show_temp_min_alarm,
507
NULL, 3);
508
static SENSOR_DEVICE_ATTR(temp4_max_alarm, S_IRUGO, show_temp_max_alarm,
509
NULL, 3);
510
511
static DEVICE_ATTR(fan1_input, S_IRUGO, show_fan, NULL);
512
static DEVICE_ATTR(fan1_div, S_IRUGO | S_IWUSR, show_fan_div, set_fan_div);
513
static DEVICE_ATTR(fan1_target, S_IRUGO | S_IWUSR, show_fan_target,
514
set_fan_target);
515
static DEVICE_ATTR(fan1_fault, S_IRUGO, show_fan_fault, NULL);
516
517
static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, show_pwm_enable,
518
set_pwm_enable);
519
520
/* sensors present on all models */
521
static struct attribute *emc2103_attributes[] = {
522
&sensor_dev_attr_temp1_input.dev_attr.attr,
523
&sensor_dev_attr_temp1_min.dev_attr.attr,
524
&sensor_dev_attr_temp1_max.dev_attr.attr,
525
&sensor_dev_attr_temp1_fault.dev_attr.attr,
526
&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
527
&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
528
&sensor_dev_attr_temp2_input.dev_attr.attr,
529
&sensor_dev_attr_temp2_min.dev_attr.attr,
530
&sensor_dev_attr_temp2_max.dev_attr.attr,
531
&sensor_dev_attr_temp2_fault.dev_attr.attr,
532
&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
533
&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
534
&dev_attr_fan1_input.attr,
535
&dev_attr_fan1_div.attr,
536
&dev_attr_fan1_target.attr,
537
&dev_attr_fan1_fault.attr,
538
&dev_attr_pwm1_enable.attr,
539
NULL
540
};
541
542
/* extra temperature sensors only present on 2103-2 and 2103-4 */
543
static struct attribute *emc2103_attributes_temp3[] = {
544
&sensor_dev_attr_temp3_input.dev_attr.attr,
545
&sensor_dev_attr_temp3_min.dev_attr.attr,
546
&sensor_dev_attr_temp3_max.dev_attr.attr,
547
&sensor_dev_attr_temp3_fault.dev_attr.attr,
548
&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
549
&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
550
NULL
551
};
552
553
/* extra temperature sensors only present on 2103-2 and 2103-4 in APD mode */
554
static struct attribute *emc2103_attributes_temp4[] = {
555
&sensor_dev_attr_temp4_input.dev_attr.attr,
556
&sensor_dev_attr_temp4_min.dev_attr.attr,
557
&sensor_dev_attr_temp4_max.dev_attr.attr,
558
&sensor_dev_attr_temp4_fault.dev_attr.attr,
559
&sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
560
&sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
561
NULL
562
};
563
564
static const struct attribute_group emc2103_group = {
565
.attrs = emc2103_attributes,
566
};
567
568
static const struct attribute_group emc2103_temp3_group = {
569
.attrs = emc2103_attributes_temp3,
570
};
571
572
static const struct attribute_group emc2103_temp4_group = {
573
.attrs = emc2103_attributes_temp4,
574
};
575
576
static int
577
emc2103_probe(struct i2c_client *client, const struct i2c_device_id *id)
578
{
579
struct emc2103_data *data;
580
int status;
581
582
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
583
return -EIO;
584
585
data = kzalloc(sizeof(struct emc2103_data), GFP_KERNEL);
586
if (!data)
587
return -ENOMEM;
588
589
i2c_set_clientdata(client, data);
590
mutex_init(&data->update_lock);
591
592
/* 2103-2 and 2103-4 have 3 external diodes, 2103-1 has 1 */
593
status = i2c_smbus_read_byte_data(client, REG_PRODUCT_ID);
594
if (status == 0x24) {
595
/* 2103-1 only has 1 external diode */
596
data->temp_count = 2;
597
} else {
598
/* 2103-2 and 2103-4 have 3 or 4 external diodes */
599
status = i2c_smbus_read_byte_data(client, REG_CONF1);
600
if (status < 0) {
601
dev_dbg(&client->dev, "reg 0x%02x, err %d\n", REG_CONF1,
602
status);
603
goto exit_free;
604
}
605
606
/* detect current state of hardware */
607
data->temp_count = (status & 0x01) ? 4 : 3;
608
609
/* force APD state if module parameter is set */
610
if (apd == 0) {
611
/* force APD mode off */
612
data->temp_count = 3;
613
status &= ~(0x01);
614
i2c_smbus_write_byte_data(client, REG_CONF1, status);
615
} else if (apd == 1) {
616
/* force APD mode on */
617
data->temp_count = 4;
618
status |= 0x01;
619
i2c_smbus_write_byte_data(client, REG_CONF1, status);
620
}
621
}
622
623
/* Register sysfs hooks */
624
status = sysfs_create_group(&client->dev.kobj, &emc2103_group);
625
if (status)
626
goto exit_free;
627
628
if (data->temp_count >= 3) {
629
status = sysfs_create_group(&client->dev.kobj,
630
&emc2103_temp3_group);
631
if (status)
632
goto exit_remove;
633
}
634
635
if (data->temp_count == 4) {
636
status = sysfs_create_group(&client->dev.kobj,
637
&emc2103_temp4_group);
638
if (status)
639
goto exit_remove_temp3;
640
}
641
642
data->hwmon_dev = hwmon_device_register(&client->dev);
643
if (IS_ERR(data->hwmon_dev)) {
644
status = PTR_ERR(data->hwmon_dev);
645
goto exit_remove_temp4;
646
}
647
648
dev_info(&client->dev, "%s: sensor '%s'\n",
649
dev_name(data->hwmon_dev), client->name);
650
651
return 0;
652
653
exit_remove_temp4:
654
if (data->temp_count == 4)
655
sysfs_remove_group(&client->dev.kobj, &emc2103_temp4_group);
656
exit_remove_temp3:
657
if (data->temp_count >= 3)
658
sysfs_remove_group(&client->dev.kobj, &emc2103_temp3_group);
659
exit_remove:
660
sysfs_remove_group(&client->dev.kobj, &emc2103_group);
661
exit_free:
662
kfree(data);
663
return status;
664
}
665
666
static int emc2103_remove(struct i2c_client *client)
667
{
668
struct emc2103_data *data = i2c_get_clientdata(client);
669
670
hwmon_device_unregister(data->hwmon_dev);
671
672
if (data->temp_count == 4)
673
sysfs_remove_group(&client->dev.kobj, &emc2103_temp4_group);
674
675
if (data->temp_count >= 3)
676
sysfs_remove_group(&client->dev.kobj, &emc2103_temp3_group);
677
678
sysfs_remove_group(&client->dev.kobj, &emc2103_group);
679
680
kfree(data);
681
return 0;
682
}
683
684
static const struct i2c_device_id emc2103_ids[] = {
685
{ "emc2103", 0, },
686
{ /* LIST END */ }
687
};
688
MODULE_DEVICE_TABLE(i2c, emc2103_ids);
689
690
/* Return 0 if detection is successful, -ENODEV otherwise */
691
static int
692
emc2103_detect(struct i2c_client *new_client, struct i2c_board_info *info)
693
{
694
struct i2c_adapter *adapter = new_client->adapter;
695
int manufacturer, product;
696
697
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
698
return -ENODEV;
699
700
manufacturer = i2c_smbus_read_byte_data(new_client, REG_MFG_ID);
701
if (manufacturer != 0x5D)
702
return -ENODEV;
703
704
product = i2c_smbus_read_byte_data(new_client, REG_PRODUCT_ID);
705
if ((product != 0x24) && (product != 0x26))
706
return -ENODEV;
707
708
strlcpy(info->type, "emc2103", I2C_NAME_SIZE);
709
710
return 0;
711
}
712
713
static struct i2c_driver emc2103_driver = {
714
.class = I2C_CLASS_HWMON,
715
.driver = {
716
.name = "emc2103",
717
},
718
.probe = emc2103_probe,
719
.remove = emc2103_remove,
720
.id_table = emc2103_ids,
721
.detect = emc2103_detect,
722
.address_list = normal_i2c,
723
};
724
725
static int __init sensors_emc2103_init(void)
726
{
727
return i2c_add_driver(&emc2103_driver);
728
}
729
730
static void __exit sensors_emc2103_exit(void)
731
{
732
i2c_del_driver(&emc2103_driver);
733
}
734
735
MODULE_AUTHOR("Steve Glendinning <[email protected]>");
736
MODULE_DESCRIPTION("SMSC EMC2103 hwmon driver");
737
MODULE_LICENSE("GPL");
738
739
module_init(sensors_emc2103_init);
740
module_exit(sensors_emc2103_exit);
741
742