Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/i2c/algos/i2c-algo-pca.c
17533 views
1
/*
2
* i2c-algo-pca.c i2c driver algorithms for PCA9564 adapters
3
* Copyright (C) 2004 Arcom Control Systems
4
* Copyright (C) 2008 Pengutronix
5
*
6
* This program is free software; you can redistribute it and/or modify
7
* it under the terms of the GNU General Public License as published by
8
* the Free Software Foundation; either version 2 of the License, or
9
* (at your option) any later version.
10
*
11
* This program is distributed in the hope that it will be useful,
12
* but WITHOUT ANY WARRANTY; without even the implied warranty of
13
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14
* GNU General Public License for more details.
15
*
16
* You should have received a copy of the GNU General Public License
17
* along with this program; if not, write to the Free Software
18
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
*/
20
21
#include <linux/kernel.h>
22
#include <linux/module.h>
23
#include <linux/moduleparam.h>
24
#include <linux/delay.h>
25
#include <linux/jiffies.h>
26
#include <linux/init.h>
27
#include <linux/errno.h>
28
#include <linux/i2c.h>
29
#include <linux/i2c-algo-pca.h>
30
31
#define DEB1(fmt, args...) do { if (i2c_debug >= 1) \
32
printk(KERN_DEBUG fmt, ## args); } while (0)
33
#define DEB2(fmt, args...) do { if (i2c_debug >= 2) \
34
printk(KERN_DEBUG fmt, ## args); } while (0)
35
#define DEB3(fmt, args...) do { if (i2c_debug >= 3) \
36
printk(KERN_DEBUG fmt, ## args); } while (0)
37
38
static int i2c_debug;
39
40
#define pca_outw(adap, reg, val) adap->write_byte(adap->data, reg, val)
41
#define pca_inw(adap, reg) adap->read_byte(adap->data, reg)
42
43
#define pca_status(adap) pca_inw(adap, I2C_PCA_STA)
44
#define pca_clock(adap) adap->i2c_clock
45
#define pca_set_con(adap, val) pca_outw(adap, I2C_PCA_CON, val)
46
#define pca_get_con(adap) pca_inw(adap, I2C_PCA_CON)
47
#define pca_wait(adap) adap->wait_for_completion(adap->data)
48
#define pca_reset(adap) adap->reset_chip(adap->data)
49
50
static void pca9665_reset(void *pd)
51
{
52
struct i2c_algo_pca_data *adap = pd;
53
pca_outw(adap, I2C_PCA_INDPTR, I2C_PCA_IPRESET);
54
pca_outw(adap, I2C_PCA_IND, 0xA5);
55
pca_outw(adap, I2C_PCA_IND, 0x5A);
56
}
57
58
/*
59
* Generate a start condition on the i2c bus.
60
*
61
* returns after the start condition has occurred
62
*/
63
static int pca_start(struct i2c_algo_pca_data *adap)
64
{
65
int sta = pca_get_con(adap);
66
DEB2("=== START\n");
67
sta |= I2C_PCA_CON_STA;
68
sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
69
pca_set_con(adap, sta);
70
return pca_wait(adap);
71
}
72
73
/*
74
* Generate a repeated start condition on the i2c bus
75
*
76
* return after the repeated start condition has occurred
77
*/
78
static int pca_repeated_start(struct i2c_algo_pca_data *adap)
79
{
80
int sta = pca_get_con(adap);
81
DEB2("=== REPEATED START\n");
82
sta |= I2C_PCA_CON_STA;
83
sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
84
pca_set_con(adap, sta);
85
return pca_wait(adap);
86
}
87
88
/*
89
* Generate a stop condition on the i2c bus
90
*
91
* returns after the stop condition has been generated
92
*
93
* STOPs do not generate an interrupt or set the SI flag, since the
94
* part returns the idle state (0xf8). Hence we don't need to
95
* pca_wait here.
96
*/
97
static void pca_stop(struct i2c_algo_pca_data *adap)
98
{
99
int sta = pca_get_con(adap);
100
DEB2("=== STOP\n");
101
sta |= I2C_PCA_CON_STO;
102
sta &= ~(I2C_PCA_CON_STA|I2C_PCA_CON_SI);
103
pca_set_con(adap, sta);
104
}
105
106
/*
107
* Send the slave address and R/W bit
108
*
109
* returns after the address has been sent
110
*/
111
static int pca_address(struct i2c_algo_pca_data *adap,
112
struct i2c_msg *msg)
113
{
114
int sta = pca_get_con(adap);
115
int addr;
116
117
addr = ((0x7f & msg->addr) << 1);
118
if (msg->flags & I2C_M_RD)
119
addr |= 1;
120
DEB2("=== SLAVE ADDRESS %#04x+%c=%#04x\n",
121
msg->addr, msg->flags & I2C_M_RD ? 'R' : 'W', addr);
122
123
pca_outw(adap, I2C_PCA_DAT, addr);
124
125
sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
126
pca_set_con(adap, sta);
127
128
return pca_wait(adap);
129
}
130
131
/*
132
* Transmit a byte.
133
*
134
* Returns after the byte has been transmitted
135
*/
136
static int pca_tx_byte(struct i2c_algo_pca_data *adap,
137
__u8 b)
138
{
139
int sta = pca_get_con(adap);
140
DEB2("=== WRITE %#04x\n", b);
141
pca_outw(adap, I2C_PCA_DAT, b);
142
143
sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
144
pca_set_con(adap, sta);
145
146
return pca_wait(adap);
147
}
148
149
/*
150
* Receive a byte
151
*
152
* returns immediately.
153
*/
154
static void pca_rx_byte(struct i2c_algo_pca_data *adap,
155
__u8 *b, int ack)
156
{
157
*b = pca_inw(adap, I2C_PCA_DAT);
158
DEB2("=== READ %#04x %s\n", *b, ack ? "ACK" : "NACK");
159
}
160
161
/*
162
* Setup ACK or NACK for next received byte and wait for it to arrive.
163
*
164
* Returns after next byte has arrived.
165
*/
166
static int pca_rx_ack(struct i2c_algo_pca_data *adap,
167
int ack)
168
{
169
int sta = pca_get_con(adap);
170
171
sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI|I2C_PCA_CON_AA);
172
173
if (ack)
174
sta |= I2C_PCA_CON_AA;
175
176
pca_set_con(adap, sta);
177
return pca_wait(adap);
178
}
179
180
static int pca_xfer(struct i2c_adapter *i2c_adap,
181
struct i2c_msg *msgs,
182
int num)
183
{
184
struct i2c_algo_pca_data *adap = i2c_adap->algo_data;
185
struct i2c_msg *msg = NULL;
186
int curmsg;
187
int numbytes = 0;
188
int state;
189
int ret;
190
int completed = 1;
191
unsigned long timeout = jiffies + i2c_adap->timeout;
192
193
while ((state = pca_status(adap)) != 0xf8) {
194
if (time_before(jiffies, timeout)) {
195
msleep(10);
196
} else {
197
dev_dbg(&i2c_adap->dev, "bus is not idle. status is "
198
"%#04x\n", state);
199
return -EAGAIN;
200
}
201
}
202
203
DEB1("{{{ XFER %d messages\n", num);
204
205
if (i2c_debug >= 2) {
206
for (curmsg = 0; curmsg < num; curmsg++) {
207
int addr, i;
208
msg = &msgs[curmsg];
209
210
addr = (0x7f & msg->addr) ;
211
212
if (msg->flags & I2C_M_RD)
213
printk(KERN_INFO " [%02d] RD %d bytes from %#02x [%#02x, ...]\n",
214
curmsg, msg->len, addr, (addr << 1) | 1);
215
else {
216
printk(KERN_INFO " [%02d] WR %d bytes to %#02x [%#02x%s",
217
curmsg, msg->len, addr, addr << 1,
218
msg->len == 0 ? "" : ", ");
219
for (i = 0; i < msg->len; i++)
220
printk("%#04x%s", msg->buf[i], i == msg->len - 1 ? "" : ", ");
221
printk("]\n");
222
}
223
}
224
}
225
226
curmsg = 0;
227
ret = -EREMOTEIO;
228
while (curmsg < num) {
229
state = pca_status(adap);
230
231
DEB3("STATE is 0x%02x\n", state);
232
msg = &msgs[curmsg];
233
234
switch (state) {
235
case 0xf8: /* On reset or stop the bus is idle */
236
completed = pca_start(adap);
237
break;
238
239
case 0x08: /* A START condition has been transmitted */
240
case 0x10: /* A repeated start condition has been transmitted */
241
completed = pca_address(adap, msg);
242
break;
243
244
case 0x18: /* SLA+W has been transmitted; ACK has been received */
245
case 0x28: /* Data byte in I2CDAT has been transmitted; ACK has been received */
246
if (numbytes < msg->len) {
247
completed = pca_tx_byte(adap,
248
msg->buf[numbytes]);
249
numbytes++;
250
break;
251
}
252
curmsg++; numbytes = 0;
253
if (curmsg == num)
254
pca_stop(adap);
255
else
256
completed = pca_repeated_start(adap);
257
break;
258
259
case 0x20: /* SLA+W has been transmitted; NOT ACK has been received */
260
DEB2("NOT ACK received after SLA+W\n");
261
pca_stop(adap);
262
goto out;
263
264
case 0x40: /* SLA+R has been transmitted; ACK has been received */
265
completed = pca_rx_ack(adap, msg->len > 1);
266
break;
267
268
case 0x50: /* Data bytes has been received; ACK has been returned */
269
if (numbytes < msg->len) {
270
pca_rx_byte(adap, &msg->buf[numbytes], 1);
271
numbytes++;
272
completed = pca_rx_ack(adap,
273
numbytes < msg->len - 1);
274
break;
275
}
276
curmsg++; numbytes = 0;
277
if (curmsg == num)
278
pca_stop(adap);
279
else
280
completed = pca_repeated_start(adap);
281
break;
282
283
case 0x48: /* SLA+R has been transmitted; NOT ACK has been received */
284
DEB2("NOT ACK received after SLA+R\n");
285
pca_stop(adap);
286
goto out;
287
288
case 0x30: /* Data byte in I2CDAT has been transmitted; NOT ACK has been received */
289
DEB2("NOT ACK received after data byte\n");
290
pca_stop(adap);
291
goto out;
292
293
case 0x38: /* Arbitration lost during SLA+W, SLA+R or data bytes */
294
DEB2("Arbitration lost\n");
295
/*
296
* The PCA9564 data sheet (2006-09-01) says "A
297
* START condition will be transmitted when the
298
* bus becomes free (STOP or SCL and SDA high)"
299
* when the STA bit is set (p. 11).
300
*
301
* In case this won't work, try pca_reset()
302
* instead.
303
*/
304
pca_start(adap);
305
goto out;
306
307
case 0x58: /* Data byte has been received; NOT ACK has been returned */
308
if (numbytes == msg->len - 1) {
309
pca_rx_byte(adap, &msg->buf[numbytes], 0);
310
curmsg++; numbytes = 0;
311
if (curmsg == num)
312
pca_stop(adap);
313
else
314
completed = pca_repeated_start(adap);
315
} else {
316
DEB2("NOT ACK sent after data byte received. "
317
"Not final byte. numbytes %d. len %d\n",
318
numbytes, msg->len);
319
pca_stop(adap);
320
goto out;
321
}
322
break;
323
case 0x70: /* Bus error - SDA stuck low */
324
DEB2("BUS ERROR - SDA Stuck low\n");
325
pca_reset(adap);
326
goto out;
327
case 0x90: /* Bus error - SCL stuck low */
328
DEB2("BUS ERROR - SCL Stuck low\n");
329
pca_reset(adap);
330
goto out;
331
case 0x00: /* Bus error during master or slave mode due to illegal START or STOP condition */
332
DEB2("BUS ERROR - Illegal START or STOP\n");
333
pca_reset(adap);
334
goto out;
335
default:
336
dev_err(&i2c_adap->dev, "unhandled SIO state 0x%02x\n", state);
337
break;
338
}
339
340
if (!completed)
341
goto out;
342
}
343
344
ret = curmsg;
345
out:
346
DEB1("}}} transferred %d/%d messages. "
347
"status is %#04x. control is %#04x\n",
348
curmsg, num, pca_status(adap),
349
pca_get_con(adap));
350
return ret;
351
}
352
353
static u32 pca_func(struct i2c_adapter *adap)
354
{
355
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
356
}
357
358
static const struct i2c_algorithm pca_algo = {
359
.master_xfer = pca_xfer,
360
.functionality = pca_func,
361
};
362
363
static unsigned int pca_probe_chip(struct i2c_adapter *adap)
364
{
365
struct i2c_algo_pca_data *pca_data = adap->algo_data;
366
/* The trick here is to check if there is an indirect register
367
* available. If there is one, we will read the value we first
368
* wrote on I2C_PCA_IADR. Otherwise, we will read the last value
369
* we wrote on I2C_PCA_ADR
370
*/
371
pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
372
pca_outw(pca_data, I2C_PCA_IND, 0xAA);
373
pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ITO);
374
pca_outw(pca_data, I2C_PCA_IND, 0x00);
375
pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
376
if (pca_inw(pca_data, I2C_PCA_IND) == 0xAA) {
377
printk(KERN_INFO "%s: PCA9665 detected.\n", adap->name);
378
return I2C_PCA_CHIP_9665;
379
} else {
380
printk(KERN_INFO "%s: PCA9564 detected.\n", adap->name);
381
return I2C_PCA_CHIP_9564;
382
}
383
}
384
385
static int pca_init(struct i2c_adapter *adap)
386
{
387
struct i2c_algo_pca_data *pca_data = adap->algo_data;
388
389
adap->algo = &pca_algo;
390
391
if (pca_probe_chip(adap) == I2C_PCA_CHIP_9564) {
392
static int freqs[] = {330, 288, 217, 146, 88, 59, 44, 36};
393
int clock;
394
395
if (pca_data->i2c_clock > 7) {
396
switch (pca_data->i2c_clock) {
397
case 330000:
398
pca_data->i2c_clock = I2C_PCA_CON_330kHz;
399
break;
400
case 288000:
401
pca_data->i2c_clock = I2C_PCA_CON_288kHz;
402
break;
403
case 217000:
404
pca_data->i2c_clock = I2C_PCA_CON_217kHz;
405
break;
406
case 146000:
407
pca_data->i2c_clock = I2C_PCA_CON_146kHz;
408
break;
409
case 88000:
410
pca_data->i2c_clock = I2C_PCA_CON_88kHz;
411
break;
412
case 59000:
413
pca_data->i2c_clock = I2C_PCA_CON_59kHz;
414
break;
415
case 44000:
416
pca_data->i2c_clock = I2C_PCA_CON_44kHz;
417
break;
418
case 36000:
419
pca_data->i2c_clock = I2C_PCA_CON_36kHz;
420
break;
421
default:
422
printk(KERN_WARNING
423
"%s: Invalid I2C clock speed selected."
424
" Using default 59kHz.\n", adap->name);
425
pca_data->i2c_clock = I2C_PCA_CON_59kHz;
426
}
427
} else {
428
printk(KERN_WARNING "%s: "
429
"Choosing the clock frequency based on "
430
"index is deprecated."
431
" Use the nominal frequency.\n", adap->name);
432
}
433
434
pca_reset(pca_data);
435
436
clock = pca_clock(pca_data);
437
printk(KERN_INFO "%s: Clock frequency is %dkHz\n",
438
adap->name, freqs[clock]);
439
440
pca_set_con(pca_data, I2C_PCA_CON_ENSIO | clock);
441
} else {
442
int clock;
443
int mode;
444
int tlow, thi;
445
/* Values can be found on PCA9665 datasheet section 7.3.2.6 */
446
int min_tlow, min_thi;
447
/* These values are the maximum raise and fall values allowed
448
* by the I2C operation mode (Standard, Fast or Fast+)
449
* They are used (added) below to calculate the clock dividers
450
* of PCA9665. Note that they are slightly different of the
451
* real maximum, to allow the change on mode exactly on the
452
* maximum clock rate for each mode
453
*/
454
int raise_fall_time;
455
456
/* Ignore the reset function from the module,
457
* we can use the parallel bus reset
458
*/
459
pca_data->reset_chip = pca9665_reset;
460
461
if (pca_data->i2c_clock > 1265800) {
462
printk(KERN_WARNING "%s: I2C clock speed too high."
463
" Using 1265.8kHz.\n", adap->name);
464
pca_data->i2c_clock = 1265800;
465
}
466
467
if (pca_data->i2c_clock < 60300) {
468
printk(KERN_WARNING "%s: I2C clock speed too low."
469
" Using 60.3kHz.\n", adap->name);
470
pca_data->i2c_clock = 60300;
471
}
472
473
/* To avoid integer overflow, use clock/100 for calculations */
474
clock = pca_clock(pca_data) / 100;
475
476
if (pca_data->i2c_clock > 10000) {
477
mode = I2C_PCA_MODE_TURBO;
478
min_tlow = 14;
479
min_thi = 5;
480
raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
481
} else if (pca_data->i2c_clock > 4000) {
482
mode = I2C_PCA_MODE_FASTP;
483
min_tlow = 17;
484
min_thi = 9;
485
raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
486
} else if (pca_data->i2c_clock > 1000) {
487
mode = I2C_PCA_MODE_FAST;
488
min_tlow = 44;
489
min_thi = 20;
490
raise_fall_time = 58; /* Raise 29e-8s, Fall 29e-8s */
491
} else {
492
mode = I2C_PCA_MODE_STD;
493
min_tlow = 157;
494
min_thi = 134;
495
raise_fall_time = 127; /* Raise 29e-8s, Fall 98e-8s */
496
}
497
498
/* The minimum clock that respects the thi/tlow = 134/157 is
499
* 64800 Hz. Below that, we have to fix the tlow to 255 and
500
* calculate the thi factor.
501
*/
502
if (clock < 648) {
503
tlow = 255;
504
thi = 1000000 - clock * raise_fall_time;
505
thi /= (I2C_PCA_OSC_PER * clock) - tlow;
506
} else {
507
tlow = (1000000 - clock * raise_fall_time) * min_tlow;
508
tlow /= I2C_PCA_OSC_PER * clock * (min_thi + min_tlow);
509
thi = tlow * min_thi / min_tlow;
510
}
511
512
pca_reset(pca_data);
513
514
printk(KERN_INFO
515
"%s: Clock frequency is %dHz\n", adap->name, clock * 100);
516
517
pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IMODE);
518
pca_outw(pca_data, I2C_PCA_IND, mode);
519
pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLL);
520
pca_outw(pca_data, I2C_PCA_IND, tlow);
521
pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLH);
522
pca_outw(pca_data, I2C_PCA_IND, thi);
523
524
pca_set_con(pca_data, I2C_PCA_CON_ENSIO);
525
}
526
udelay(500); /* 500 us for oscilator to stabilise */
527
528
return 0;
529
}
530
531
/*
532
* registering functions to load algorithms at runtime
533
*/
534
int i2c_pca_add_bus(struct i2c_adapter *adap)
535
{
536
int rval;
537
538
rval = pca_init(adap);
539
if (rval)
540
return rval;
541
542
return i2c_add_adapter(adap);
543
}
544
EXPORT_SYMBOL(i2c_pca_add_bus);
545
546
int i2c_pca_add_numbered_bus(struct i2c_adapter *adap)
547
{
548
int rval;
549
550
rval = pca_init(adap);
551
if (rval)
552
return rval;
553
554
return i2c_add_numbered_adapter(adap);
555
}
556
EXPORT_SYMBOL(i2c_pca_add_numbered_bus);
557
558
MODULE_AUTHOR("Ian Campbell <[email protected]>, "
559
"Wolfram Sang <[email protected]>");
560
MODULE_DESCRIPTION("I2C-Bus PCA9564/PCA9665 algorithm");
561
MODULE_LICENSE("GPL");
562
563
module_param(i2c_debug, int, 0);
564
565