Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/i2c/busses/i2c-pmcmsp.c
15111 views
1
/*
2
* Specific bus support for PMC-TWI compliant implementation on MSP71xx.
3
*
4
* Copyright 2005-2007 PMC-Sierra, Inc.
5
*
6
* This program is free software; you can redistribute it and/or modify it
7
* under the terms of the GNU General Public License as published by the
8
* Free Software Foundation; either version 2 of the License, or (at your
9
* option) any later version.
10
*
11
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
12
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
13
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
14
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
15
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
16
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
17
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
18
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
19
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
20
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
21
*
22
* You should have received a copy of the GNU General Public License along
23
* with this program; if not, write to the Free Software Foundation, Inc.,
24
* 675 Mass Ave, Cambridge, MA 02139, USA.
25
*/
26
27
#include <linux/kernel.h>
28
#include <linux/module.h>
29
#include <linux/init.h>
30
#include <linux/platform_device.h>
31
#include <linux/i2c.h>
32
#include <linux/interrupt.h>
33
#include <linux/completion.h>
34
#include <linux/mutex.h>
35
#include <linux/delay.h>
36
#include <linux/io.h>
37
38
#define DRV_NAME "pmcmsptwi"
39
40
#define MSP_TWI_SF_CLK_REG_OFFSET 0x00
41
#define MSP_TWI_HS_CLK_REG_OFFSET 0x04
42
#define MSP_TWI_CFG_REG_OFFSET 0x08
43
#define MSP_TWI_CMD_REG_OFFSET 0x0c
44
#define MSP_TWI_ADD_REG_OFFSET 0x10
45
#define MSP_TWI_DAT_0_REG_OFFSET 0x14
46
#define MSP_TWI_DAT_1_REG_OFFSET 0x18
47
#define MSP_TWI_INT_STS_REG_OFFSET 0x1c
48
#define MSP_TWI_INT_MSK_REG_OFFSET 0x20
49
#define MSP_TWI_BUSY_REG_OFFSET 0x24
50
51
#define MSP_TWI_INT_STS_DONE (1 << 0)
52
#define MSP_TWI_INT_STS_LOST_ARBITRATION (1 << 1)
53
#define MSP_TWI_INT_STS_NO_RESPONSE (1 << 2)
54
#define MSP_TWI_INT_STS_DATA_COLLISION (1 << 3)
55
#define MSP_TWI_INT_STS_BUSY (1 << 4)
56
#define MSP_TWI_INT_STS_ALL 0x1f
57
58
#define MSP_MAX_BYTES_PER_RW 8
59
#define MSP_MAX_POLL 5
60
#define MSP_POLL_DELAY 10
61
#define MSP_IRQ_TIMEOUT (MSP_MAX_POLL * MSP_POLL_DELAY)
62
63
/* IO Operation macros */
64
#define pmcmsptwi_readl __raw_readl
65
#define pmcmsptwi_writel __raw_writel
66
67
/* TWI command type */
68
enum pmcmsptwi_cmd_type {
69
MSP_TWI_CMD_WRITE = 0, /* Write only */
70
MSP_TWI_CMD_READ = 1, /* Read only */
71
MSP_TWI_CMD_WRITE_READ = 2, /* Write then Read */
72
};
73
74
/* The possible results of the xferCmd */
75
enum pmcmsptwi_xfer_result {
76
MSP_TWI_XFER_OK = 0,
77
MSP_TWI_XFER_TIMEOUT,
78
MSP_TWI_XFER_BUSY,
79
MSP_TWI_XFER_DATA_COLLISION,
80
MSP_TWI_XFER_NO_RESPONSE,
81
MSP_TWI_XFER_LOST_ARBITRATION,
82
};
83
84
/* Corresponds to a PMCTWI clock configuration register */
85
struct pmcmsptwi_clock {
86
u8 filter; /* Bits 15:12, default = 0x03 */
87
u16 clock; /* Bits 9:0, default = 0x001f */
88
};
89
90
struct pmcmsptwi_clockcfg {
91
struct pmcmsptwi_clock standard; /* The standard/fast clock config */
92
struct pmcmsptwi_clock highspeed; /* The highspeed clock config */
93
};
94
95
/* Corresponds to the main TWI configuration register */
96
struct pmcmsptwi_cfg {
97
u8 arbf; /* Bits 15:12, default=0x03 */
98
u8 nak; /* Bits 11:8, default=0x03 */
99
u8 add10; /* Bit 7, default=0x00 */
100
u8 mst_code; /* Bits 6:4, default=0x00 */
101
u8 arb; /* Bit 1, default=0x01 */
102
u8 highspeed; /* Bit 0, default=0x00 */
103
};
104
105
/* A single pmctwi command to issue */
106
struct pmcmsptwi_cmd {
107
u16 addr; /* The slave address (7 or 10 bits) */
108
enum pmcmsptwi_cmd_type type; /* The command type */
109
u8 write_len; /* Number of bytes in the write buffer */
110
u8 read_len; /* Number of bytes in the read buffer */
111
u8 *write_data; /* Buffer of characters to send */
112
u8 *read_data; /* Buffer to fill with incoming data */
113
};
114
115
/* The private data */
116
struct pmcmsptwi_data {
117
void __iomem *iobase; /* iomapped base for IO */
118
int irq; /* IRQ to use (0 disables) */
119
struct completion wait; /* Completion for xfer */
120
struct mutex lock; /* Used for threadsafeness */
121
enum pmcmsptwi_xfer_result last_result; /* result of last xfer */
122
};
123
124
/* The default settings */
125
static const struct pmcmsptwi_clockcfg pmcmsptwi_defclockcfg = {
126
.standard = {
127
.filter = 0x3,
128
.clock = 0x1f,
129
},
130
.highspeed = {
131
.filter = 0x3,
132
.clock = 0x1f,
133
},
134
};
135
136
static const struct pmcmsptwi_cfg pmcmsptwi_defcfg = {
137
.arbf = 0x03,
138
.nak = 0x03,
139
.add10 = 0x00,
140
.mst_code = 0x00,
141
.arb = 0x01,
142
.highspeed = 0x00,
143
};
144
145
static struct pmcmsptwi_data pmcmsptwi_data;
146
147
static struct i2c_adapter pmcmsptwi_adapter;
148
149
/* inline helper functions */
150
static inline u32 pmcmsptwi_clock_to_reg(
151
const struct pmcmsptwi_clock *clock)
152
{
153
return ((clock->filter & 0xf) << 12) | (clock->clock & 0x03ff);
154
}
155
156
static inline void pmcmsptwi_reg_to_clock(
157
u32 reg, struct pmcmsptwi_clock *clock)
158
{
159
clock->filter = (reg >> 12) & 0xf;
160
clock->clock = reg & 0x03ff;
161
}
162
163
static inline u32 pmcmsptwi_cfg_to_reg(const struct pmcmsptwi_cfg *cfg)
164
{
165
return ((cfg->arbf & 0xf) << 12) |
166
((cfg->nak & 0xf) << 8) |
167
((cfg->add10 & 0x1) << 7) |
168
((cfg->mst_code & 0x7) << 4) |
169
((cfg->arb & 0x1) << 1) |
170
(cfg->highspeed & 0x1);
171
}
172
173
static inline void pmcmsptwi_reg_to_cfg(u32 reg, struct pmcmsptwi_cfg *cfg)
174
{
175
cfg->arbf = (reg >> 12) & 0xf;
176
cfg->nak = (reg >> 8) & 0xf;
177
cfg->add10 = (reg >> 7) & 0x1;
178
cfg->mst_code = (reg >> 4) & 0x7;
179
cfg->arb = (reg >> 1) & 0x1;
180
cfg->highspeed = reg & 0x1;
181
}
182
183
/*
184
* Sets the current clock configuration
185
*/
186
static void pmcmsptwi_set_clock_config(const struct pmcmsptwi_clockcfg *cfg,
187
struct pmcmsptwi_data *data)
188
{
189
mutex_lock(&data->lock);
190
pmcmsptwi_writel(pmcmsptwi_clock_to_reg(&cfg->standard),
191
data->iobase + MSP_TWI_SF_CLK_REG_OFFSET);
192
pmcmsptwi_writel(pmcmsptwi_clock_to_reg(&cfg->highspeed),
193
data->iobase + MSP_TWI_HS_CLK_REG_OFFSET);
194
mutex_unlock(&data->lock);
195
}
196
197
/*
198
* Gets the current TWI bus configuration
199
*/
200
static void pmcmsptwi_get_twi_config(struct pmcmsptwi_cfg *cfg,
201
struct pmcmsptwi_data *data)
202
{
203
mutex_lock(&data->lock);
204
pmcmsptwi_reg_to_cfg(pmcmsptwi_readl(
205
data->iobase + MSP_TWI_CFG_REG_OFFSET), cfg);
206
mutex_unlock(&data->lock);
207
}
208
209
/*
210
* Sets the current TWI bus configuration
211
*/
212
static void pmcmsptwi_set_twi_config(const struct pmcmsptwi_cfg *cfg,
213
struct pmcmsptwi_data *data)
214
{
215
mutex_lock(&data->lock);
216
pmcmsptwi_writel(pmcmsptwi_cfg_to_reg(cfg),
217
data->iobase + MSP_TWI_CFG_REG_OFFSET);
218
mutex_unlock(&data->lock);
219
}
220
221
/*
222
* Parses the 'int_sts' register and returns a well-defined error code
223
*/
224
static enum pmcmsptwi_xfer_result pmcmsptwi_get_result(u32 reg)
225
{
226
if (reg & MSP_TWI_INT_STS_LOST_ARBITRATION) {
227
dev_dbg(&pmcmsptwi_adapter.dev,
228
"Result: Lost arbitration\n");
229
return MSP_TWI_XFER_LOST_ARBITRATION;
230
} else if (reg & MSP_TWI_INT_STS_NO_RESPONSE) {
231
dev_dbg(&pmcmsptwi_adapter.dev,
232
"Result: No response\n");
233
return MSP_TWI_XFER_NO_RESPONSE;
234
} else if (reg & MSP_TWI_INT_STS_DATA_COLLISION) {
235
dev_dbg(&pmcmsptwi_adapter.dev,
236
"Result: Data collision\n");
237
return MSP_TWI_XFER_DATA_COLLISION;
238
} else if (reg & MSP_TWI_INT_STS_BUSY) {
239
dev_dbg(&pmcmsptwi_adapter.dev,
240
"Result: Bus busy\n");
241
return MSP_TWI_XFER_BUSY;
242
}
243
244
dev_dbg(&pmcmsptwi_adapter.dev, "Result: Operation succeeded\n");
245
return MSP_TWI_XFER_OK;
246
}
247
248
/*
249
* In interrupt mode, handle the interrupt.
250
* NOTE: Assumes data->lock is held.
251
*/
252
static irqreturn_t pmcmsptwi_interrupt(int irq, void *ptr)
253
{
254
struct pmcmsptwi_data *data = ptr;
255
256
u32 reason = pmcmsptwi_readl(data->iobase +
257
MSP_TWI_INT_STS_REG_OFFSET);
258
pmcmsptwi_writel(reason, data->iobase + MSP_TWI_INT_STS_REG_OFFSET);
259
260
dev_dbg(&pmcmsptwi_adapter.dev, "Got interrupt 0x%08x\n", reason);
261
if (!(reason & MSP_TWI_INT_STS_DONE))
262
return IRQ_NONE;
263
264
data->last_result = pmcmsptwi_get_result(reason);
265
complete(&data->wait);
266
267
return IRQ_HANDLED;
268
}
269
270
/*
271
* Probe for and register the device and return 0 if there is one.
272
*/
273
static int __devinit pmcmsptwi_probe(struct platform_device *pldev)
274
{
275
struct resource *res;
276
int rc = -ENODEV;
277
278
/* get the static platform resources */
279
res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
280
if (!res) {
281
dev_err(&pldev->dev, "IOMEM resource not found\n");
282
goto ret_err;
283
}
284
285
/* reserve the memory region */
286
if (!request_mem_region(res->start, resource_size(res),
287
pldev->name)) {
288
dev_err(&pldev->dev,
289
"Unable to get memory/io address region 0x%08x\n",
290
res->start);
291
rc = -EBUSY;
292
goto ret_err;
293
}
294
295
/* remap the memory */
296
pmcmsptwi_data.iobase = ioremap_nocache(res->start,
297
resource_size(res));
298
if (!pmcmsptwi_data.iobase) {
299
dev_err(&pldev->dev,
300
"Unable to ioremap address 0x%08x\n", res->start);
301
rc = -EIO;
302
goto ret_unreserve;
303
}
304
305
/* request the irq */
306
pmcmsptwi_data.irq = platform_get_irq(pldev, 0);
307
if (pmcmsptwi_data.irq) {
308
rc = request_irq(pmcmsptwi_data.irq, &pmcmsptwi_interrupt,
309
IRQF_SHARED | IRQF_DISABLED | IRQF_SAMPLE_RANDOM,
310
pldev->name, &pmcmsptwi_data);
311
if (rc == 0) {
312
/*
313
* Enable 'DONE' interrupt only.
314
*
315
* If you enable all interrupts, you will get one on
316
* error and another when the operation completes.
317
* This way you only have to handle one interrupt,
318
* but you can still check all result flags.
319
*/
320
pmcmsptwi_writel(MSP_TWI_INT_STS_DONE,
321
pmcmsptwi_data.iobase +
322
MSP_TWI_INT_MSK_REG_OFFSET);
323
} else {
324
dev_warn(&pldev->dev,
325
"Could not assign TWI IRQ handler "
326
"to irq %d (continuing with poll)\n",
327
pmcmsptwi_data.irq);
328
pmcmsptwi_data.irq = 0;
329
}
330
}
331
332
init_completion(&pmcmsptwi_data.wait);
333
mutex_init(&pmcmsptwi_data.lock);
334
335
pmcmsptwi_set_clock_config(&pmcmsptwi_defclockcfg, &pmcmsptwi_data);
336
pmcmsptwi_set_twi_config(&pmcmsptwi_defcfg, &pmcmsptwi_data);
337
338
printk(KERN_INFO DRV_NAME ": Registering MSP71xx I2C adapter\n");
339
340
pmcmsptwi_adapter.dev.parent = &pldev->dev;
341
platform_set_drvdata(pldev, &pmcmsptwi_adapter);
342
i2c_set_adapdata(&pmcmsptwi_adapter, &pmcmsptwi_data);
343
344
rc = i2c_add_adapter(&pmcmsptwi_adapter);
345
if (rc) {
346
dev_err(&pldev->dev, "Unable to register I2C adapter\n");
347
goto ret_unmap;
348
}
349
350
return 0;
351
352
ret_unmap:
353
platform_set_drvdata(pldev, NULL);
354
if (pmcmsptwi_data.irq) {
355
pmcmsptwi_writel(0,
356
pmcmsptwi_data.iobase + MSP_TWI_INT_MSK_REG_OFFSET);
357
free_irq(pmcmsptwi_data.irq, &pmcmsptwi_data);
358
}
359
360
iounmap(pmcmsptwi_data.iobase);
361
362
ret_unreserve:
363
release_mem_region(res->start, resource_size(res));
364
365
ret_err:
366
return rc;
367
}
368
369
/*
370
* Release the device and return 0 if there is one.
371
*/
372
static int __devexit pmcmsptwi_remove(struct platform_device *pldev)
373
{
374
struct resource *res;
375
376
i2c_del_adapter(&pmcmsptwi_adapter);
377
378
platform_set_drvdata(pldev, NULL);
379
if (pmcmsptwi_data.irq) {
380
pmcmsptwi_writel(0,
381
pmcmsptwi_data.iobase + MSP_TWI_INT_MSK_REG_OFFSET);
382
free_irq(pmcmsptwi_data.irq, &pmcmsptwi_data);
383
}
384
385
iounmap(pmcmsptwi_data.iobase);
386
387
res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
388
release_mem_region(res->start, resource_size(res));
389
390
return 0;
391
}
392
393
/*
394
* Polls the 'busy' register until the command is complete.
395
* NOTE: Assumes data->lock is held.
396
*/
397
static void pmcmsptwi_poll_complete(struct pmcmsptwi_data *data)
398
{
399
int i;
400
401
for (i = 0; i < MSP_MAX_POLL; i++) {
402
u32 val = pmcmsptwi_readl(data->iobase +
403
MSP_TWI_BUSY_REG_OFFSET);
404
if (val == 0) {
405
u32 reason = pmcmsptwi_readl(data->iobase +
406
MSP_TWI_INT_STS_REG_OFFSET);
407
pmcmsptwi_writel(reason, data->iobase +
408
MSP_TWI_INT_STS_REG_OFFSET);
409
data->last_result = pmcmsptwi_get_result(reason);
410
return;
411
}
412
udelay(MSP_POLL_DELAY);
413
}
414
415
dev_dbg(&pmcmsptwi_adapter.dev, "Result: Poll timeout\n");
416
data->last_result = MSP_TWI_XFER_TIMEOUT;
417
}
418
419
/*
420
* Do the transfer (low level):
421
* May use interrupt-driven or polling, depending on if an IRQ is
422
* presently registered.
423
* NOTE: Assumes data->lock is held.
424
*/
425
static enum pmcmsptwi_xfer_result pmcmsptwi_do_xfer(
426
u32 reg, struct pmcmsptwi_data *data)
427
{
428
dev_dbg(&pmcmsptwi_adapter.dev, "Writing cmd reg 0x%08x\n", reg);
429
pmcmsptwi_writel(reg, data->iobase + MSP_TWI_CMD_REG_OFFSET);
430
if (data->irq) {
431
unsigned long timeleft = wait_for_completion_timeout(
432
&data->wait, MSP_IRQ_TIMEOUT);
433
if (timeleft == 0) {
434
dev_dbg(&pmcmsptwi_adapter.dev,
435
"Result: IRQ timeout\n");
436
complete(&data->wait);
437
data->last_result = MSP_TWI_XFER_TIMEOUT;
438
}
439
} else
440
pmcmsptwi_poll_complete(data);
441
442
return data->last_result;
443
}
444
445
/*
446
* Helper routine, converts 'pmctwi_cmd' struct to register format
447
*/
448
static inline u32 pmcmsptwi_cmd_to_reg(const struct pmcmsptwi_cmd *cmd)
449
{
450
return ((cmd->type & 0x3) << 8) |
451
(((cmd->write_len - 1) & 0x7) << 4) |
452
((cmd->read_len - 1) & 0x7);
453
}
454
455
/*
456
* Do the transfer (high level)
457
*/
458
static enum pmcmsptwi_xfer_result pmcmsptwi_xfer_cmd(
459
struct pmcmsptwi_cmd *cmd,
460
struct pmcmsptwi_data *data)
461
{
462
enum pmcmsptwi_xfer_result retval;
463
464
if ((cmd->type == MSP_TWI_CMD_WRITE && cmd->write_len == 0) ||
465
(cmd->type == MSP_TWI_CMD_READ && cmd->read_len == 0) ||
466
(cmd->type == MSP_TWI_CMD_WRITE_READ &&
467
(cmd->read_len == 0 || cmd->write_len == 0))) {
468
dev_err(&pmcmsptwi_adapter.dev,
469
"%s: Cannot transfer less than 1 byte\n",
470
__func__);
471
return -EINVAL;
472
}
473
474
if (cmd->read_len > MSP_MAX_BYTES_PER_RW ||
475
cmd->write_len > MSP_MAX_BYTES_PER_RW) {
476
dev_err(&pmcmsptwi_adapter.dev,
477
"%s: Cannot transfer more than %d bytes\n",
478
__func__, MSP_MAX_BYTES_PER_RW);
479
return -EINVAL;
480
}
481
482
mutex_lock(&data->lock);
483
dev_dbg(&pmcmsptwi_adapter.dev,
484
"Setting address to 0x%04x\n", cmd->addr);
485
pmcmsptwi_writel(cmd->addr, data->iobase + MSP_TWI_ADD_REG_OFFSET);
486
487
if (cmd->type == MSP_TWI_CMD_WRITE ||
488
cmd->type == MSP_TWI_CMD_WRITE_READ) {
489
u64 tmp = be64_to_cpup((__be64 *)cmd->write_data);
490
tmp >>= (MSP_MAX_BYTES_PER_RW - cmd->write_len) * 8;
491
dev_dbg(&pmcmsptwi_adapter.dev, "Writing 0x%016llx\n", tmp);
492
pmcmsptwi_writel(tmp & 0x00000000ffffffffLL,
493
data->iobase + MSP_TWI_DAT_0_REG_OFFSET);
494
if (cmd->write_len > 4)
495
pmcmsptwi_writel(tmp >> 32,
496
data->iobase + MSP_TWI_DAT_1_REG_OFFSET);
497
}
498
499
retval = pmcmsptwi_do_xfer(pmcmsptwi_cmd_to_reg(cmd), data);
500
if (retval != MSP_TWI_XFER_OK)
501
goto xfer_err;
502
503
if (cmd->type == MSP_TWI_CMD_READ ||
504
cmd->type == MSP_TWI_CMD_WRITE_READ) {
505
int i;
506
u64 rmsk = ~(0xffffffffffffffffLL << (cmd->read_len * 8));
507
u64 tmp = (u64)pmcmsptwi_readl(data->iobase +
508
MSP_TWI_DAT_0_REG_OFFSET);
509
if (cmd->read_len > 4)
510
tmp |= (u64)pmcmsptwi_readl(data->iobase +
511
MSP_TWI_DAT_1_REG_OFFSET) << 32;
512
tmp &= rmsk;
513
dev_dbg(&pmcmsptwi_adapter.dev, "Read 0x%016llx\n", tmp);
514
515
for (i = 0; i < cmd->read_len; i++)
516
cmd->read_data[i] = tmp >> i;
517
}
518
519
xfer_err:
520
mutex_unlock(&data->lock);
521
522
return retval;
523
}
524
525
/* -- Algorithm functions -- */
526
527
/*
528
* Sends an i2c command out on the adapter
529
*/
530
static int pmcmsptwi_master_xfer(struct i2c_adapter *adap,
531
struct i2c_msg *msg, int num)
532
{
533
struct pmcmsptwi_data *data = i2c_get_adapdata(adap);
534
struct pmcmsptwi_cmd cmd;
535
struct pmcmsptwi_cfg oldcfg, newcfg;
536
int ret;
537
538
if (num > 2) {
539
dev_dbg(&adap->dev, "%d messages unsupported\n", num);
540
return -EINVAL;
541
} else if (num == 2) {
542
/* Check for a dual write-then-read command */
543
struct i2c_msg *nextmsg = msg + 1;
544
if (!(msg->flags & I2C_M_RD) &&
545
(nextmsg->flags & I2C_M_RD) &&
546
msg->addr == nextmsg->addr) {
547
cmd.type = MSP_TWI_CMD_WRITE_READ;
548
cmd.write_len = msg->len;
549
cmd.write_data = msg->buf;
550
cmd.read_len = nextmsg->len;
551
cmd.read_data = nextmsg->buf;
552
} else {
553
dev_dbg(&adap->dev,
554
"Non write-read dual messages unsupported\n");
555
return -EINVAL;
556
}
557
} else if (msg->flags & I2C_M_RD) {
558
cmd.type = MSP_TWI_CMD_READ;
559
cmd.read_len = msg->len;
560
cmd.read_data = msg->buf;
561
cmd.write_len = 0;
562
cmd.write_data = NULL;
563
} else {
564
cmd.type = MSP_TWI_CMD_WRITE;
565
cmd.read_len = 0;
566
cmd.read_data = NULL;
567
cmd.write_len = msg->len;
568
cmd.write_data = msg->buf;
569
}
570
571
if (msg->len == 0) {
572
dev_err(&adap->dev, "Zero-byte messages unsupported\n");
573
return -EINVAL;
574
}
575
576
cmd.addr = msg->addr;
577
578
if (msg->flags & I2C_M_TEN) {
579
pmcmsptwi_get_twi_config(&newcfg, data);
580
memcpy(&oldcfg, &newcfg, sizeof(oldcfg));
581
582
/* Set the special 10-bit address flag */
583
newcfg.add10 = 1;
584
585
pmcmsptwi_set_twi_config(&newcfg, data);
586
}
587
588
/* Execute the command */
589
ret = pmcmsptwi_xfer_cmd(&cmd, data);
590
591
if (msg->flags & I2C_M_TEN)
592
pmcmsptwi_set_twi_config(&oldcfg, data);
593
594
dev_dbg(&adap->dev, "I2C %s of %d bytes %s\n",
595
(msg->flags & I2C_M_RD) ? "read" : "write", msg->len,
596
(ret == MSP_TWI_XFER_OK) ? "succeeded" : "failed");
597
598
if (ret != MSP_TWI_XFER_OK) {
599
/*
600
* TODO: We could potentially loop and retry in the case
601
* of MSP_TWI_XFER_TIMEOUT.
602
*/
603
return -1;
604
}
605
606
return 0;
607
}
608
609
static u32 pmcmsptwi_i2c_func(struct i2c_adapter *adapter)
610
{
611
return I2C_FUNC_I2C | I2C_FUNC_10BIT_ADDR |
612
I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA |
613
I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_PROC_CALL;
614
}
615
616
/* -- Initialization -- */
617
618
static struct i2c_algorithm pmcmsptwi_algo = {
619
.master_xfer = pmcmsptwi_master_xfer,
620
.functionality = pmcmsptwi_i2c_func,
621
};
622
623
static struct i2c_adapter pmcmsptwi_adapter = {
624
.owner = THIS_MODULE,
625
.class = I2C_CLASS_HWMON | I2C_CLASS_SPD,
626
.algo = &pmcmsptwi_algo,
627
.name = DRV_NAME,
628
};
629
630
/* work with hotplug and coldplug */
631
MODULE_ALIAS("platform:" DRV_NAME);
632
633
static struct platform_driver pmcmsptwi_driver = {
634
.probe = pmcmsptwi_probe,
635
.remove = __devexit_p(pmcmsptwi_remove),
636
.driver = {
637
.name = DRV_NAME,
638
.owner = THIS_MODULE,
639
},
640
};
641
642
static int __init pmcmsptwi_init(void)
643
{
644
return platform_driver_register(&pmcmsptwi_driver);
645
}
646
647
static void __exit pmcmsptwi_exit(void)
648
{
649
platform_driver_unregister(&pmcmsptwi_driver);
650
}
651
652
MODULE_DESCRIPTION("PMC MSP TWI/SMBus/I2C driver");
653
MODULE_LICENSE("GPL");
654
655
module_init(pmcmsptwi_init);
656
module_exit(pmcmsptwi_exit);
657
658